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Abstract

The intrinsic random functions (IRF) are a particular case of the Guel
fand generalized processes with stationary increments. They constitute a
much wider class than the stationary RF, and are used in practical applica
tions for representing non-stationary phenomena. The most important
topics are: existence of a generalized covariance (Ge) for which statistical
inference is possible from a unique realization; theory of the best linear
intrinsic estimator (BLIE) used for contouring and estimating problems;
the turning bands method for simulating IRF; and the models with poly
nomial G'C, for which statistical inference may be performed by automatic
procedures.
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o. INTRODUCTION

G. MATHERON

The aim of the present study is essentially to act as a theoretical support

to the optimum automatic contouring procedures being developed under

the name of universal kriging, and which have been presented elsewhere in

a more practical context ([7J, [8], [9]). The problem we are dealing with

is the following. We know the values z(x,) taken by the physical variable of

interest at several experimental locations Xi (in general anywhere in two

or three-dimensional space) and we want to estimate at each point X the

value of the function z (or of any other function deduced from it by a linear

operation). We then assume that the function z can be considered as a realiza

tion of an order-two random function Z, and we compute at each point x

the best linear predictor z*(x) of z (in the sense of Wiener [12J). But for this

the covariance function of Z must be known. Statistical inference from a

unique realization is in general reasonably possible in the stationary case (al

though some difficulties still arise when the experimental points are not located

on a regular grid). Unfortunately, in numerous cases, this assumption of

stationarity is physically inadmissible. Hence, it was necessary to find a wider

class than that of order-two random functions, but one that would present

the same advantages concerning statistical inference.

This class is that of intrinsic random functions (IRF) which constitutes,

in fact, a particular case of the generalized stochastic processes with stationary

increments of order k defined by Guelfand and Vilenkin ([3], [4]), namely

the case where the generalized processes are random functions (and not only

distributions). This circumstance leads to special properties which deserve to

be studied, especially because of their interest regarding applications. For

instance, here the generalized covariances will be conditionally positive definite

functions (and not only distributions). The aim is, moreover, to present

IRF's as a generalization of stationary random functions (stationary" in this

paper, is always taken in the sense of weak stationarity), and hence without

referring to the theory of distributions.

-The simplest example of an IRF is that of a RF of the form Y(x) = Yo(x)

+ P(x) , when Yo(x) is a SRF and P(x) a polynomial of degree k with random

coefficients. Besides, we will see that any IRF is, in a way, a limit of RF's

of this type. The established concept of introducing this form of RF's comes

naturally to mind when one tries to represent non-stationary phenomena.

Indeed, it corresponds to the simplest hypothesis that can be made with a

view to making statistical inference possible from a single realization, but

IRF's present the same advantages concerning statistical inference, while

offering a wider scope of possible models.

Realizations of an IRF of order 0, like Brownian motion, show characteris

tics that do not evoke the intuitive idea of stationarity (see, for example,
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[2], p. 87). This circumstance is amplified when the order k of the IRF in

creases (see Figures 1, 2, 3) so that the theory becomes applicable to larger

and larger ranges of non-stationary phenomena, while keep.ng, for the greatest

part, the advantages linked to stationarity.

Figure 1

Realization of a" O-IRF with the GC K(h) = - r h I. The representation

chosen vanishes at the center of the figure (from Orfeuil [l0]).

Figure 2

Realization of a l-IRF with the GC K(h) = - r h IJ. The representation chosen,

as well as its first derivatives, vanishes at the center of the figure (from Orfeuil [lODe

After giving the definitions and general properties of IRF'Is (Sections 1

and 2), we examine in Section 3 their generalized covariances, and the condi

tions that an IRF must fulfil to be differentiable, or identical to an IRF of

lower order. The theory of the best linear intrinsic estimator (BLIE), given
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Figure 3

Realization of a 2-IRF with the GC K(h) = - Ihis. The representation chosen,

as well as its first and second derivatives, vanishes at the center of the figure

(from Orfeuil [10D.

in Section 4, is a straightforward generalizatic n of Wiener's best linear pre

dictor [12], and is fundamental for the applications, as is the turning bands

method for simulating IRF s (Section 5). From a practical point of view,

statistical inference is particularly easy to carry out by automatic procedures

for a generalized covariance whose expression depends linearly on some

unknown parameters. This is the justification for models with polynomial

covariances (Section 6). These models are isotropic, but this is not so limiting

as might be thought at first sight. The structure of an IRF is indeed determined

by its generalized covariance only up to a random polynomial and, in practical

cases, this implicit polynomial is often adequate to take into account the

anisotropies of the real phenomenon. On the other hand, the IRF s with poly

nomial covariances are locally stationary, i.e., may be locally identified with a

stationary RF up to a random polynomial. These circumstance enables us

to define a precise and locally significant notion of trend, or drift, and this is

also important in the applications (Section 7).

1. DEFINITION AND GENERAL PROPERTIES

1.1 The spaces A and Me

I shall denote by A the vector space of real measures in Rn with finite sup

ports. For any function f on Rn and AE A, the integral f f(x) A(dx) is thus a

finite linear expression of the form LiAif(xi). If Z: B" -+ L2(Q, .91, P) is a

real order-two random function, it admits a linear extension Z: A -+ L2(Q, .91, P)

defined by putting Z(A) = f A(dx)Z(x), AEA. The function A-+ II A II = II Z(A) II
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is a norm on A if f A(dx)Z(x) implies A = 0, this condition being equivalent

to the strict positivity of the covariance matrix <Z(xa) , Z(xp) for any finite

set of distinct points x, in B", Under this condition, A is prehilbertian for the

norm II A II ' and the completed space A may be identified with the real Hilbert

space He L2(Q,d,P) generated by the Y(X) , XE R", If the condition of

strict positivity is not fulfilled, it is always posssible to take a convenient

quotient-space instead of A itself, and nothing is changed substantially.

It will often be useful in the sequel to consider another topology for A.

Let Me:::> A be the space of measures with compact supports. Me is the exact

dual of the space CC of the continuous functions on Ril (for the compact con

vergence topology). We shall consider only the weak topology on Me' and the

corresponding relative topology on A. For this weak topology, the convergence

/In ~ J-t in Me is equivalent to the following two conditions:

(1) the sequence {J-tn} is weakly convergent towards u;

(2) the supports of the measures J-tn are contained in a fixed compact set.

The random function Z: R" --+ I3(Q,d,P) is then strongly continuous if
and only if the mapping A ~ Z(A) is continuous on A for the relative Me

topology. The if part is obvious. Conversely, if Z is strongly continuous on

Rn, the covariance function <Z(x),Z(y) is continuous on B" x R", But the

weak convergence An --+ 0 in A c Me implies An ® An --+ 0 in Me (Rn x Rn), and

Thus, the mapping A ~ Z(A) is continuous.

If Z is continuous on A, it admits a unique continuous extension on Me'

defined by putting Z(/l) = f /l(dx) Z(x) (J-t E Me) . If II Z(x) II = 0 implies Jl = 0,

Me may be identified with a subspace (generally not closed) of A, but the

weak topology on AIc is generally strictly stronger than the prehilbertian

relative topology induced by A.
For any h ERn and Jl E Me' we define the translated measure "hJl by

f Th(dx)f(x) = JJl(dx)f(x + h) (JEre).

If Z is a stationary random function (SRF), there exists a group of unitary

operators Uh, hE R" on H = Z(A) satisfying UhZ(A) = Z(ThA) (A E A). More

over, if Z is a continuous SRF, the group Uh is continuous and we also have

UhZ(/l) = Z(Th/l) for JlEMe. This property may be used as definition of the

SRF and, with a slight modification, will lead us to the notion of IRF.

1.2 Definition of the IRF

Now let A' be a subspace of A closed in A for the relative Me topology.

In other words, there exists a family I', I E L of continuous functions on
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Rn such that A' = {A: AEA, f Afl = 0, IEL}, or A' = M ' () A if M ' is

the subspace of Me orthogonal to the family r , I E L. Then, we shall say that

a linear mapping

is a generalized (order-two) random function on A'. We denote H(Z), or

simply H , the closure of the range ZeA') in L2(0, .91, P). If II Z(A) II = 0 implies

A = 0 for AE A' , the completed space A' of A' for the norm \I AII = II Z(A) II
may be identified with H itself. If this condition is not fulfilled, A' will denote

the completion of the convenient quotient space. If Z is continuous on A'

for the relative Me topology (continuous generalized random function), it

admits a unique continuous extension Z: M ' --+ L2(o., .91, P), and M ' (or a

convenient quotient space) may be identified with a dense (but not closed)

subspace of A'. In order to generalize the notion of stationarity, we now

suppose A' closed for translations (Le., 't'hA E A' for h e R" and AE A'), and

we say that the generalized random function Z: A' --+ L2(o.,d, P) is an intrinsic

random function (IRF) on A' if the mapping h --+ Z(!hA) is a SRF for any

AE A' , Le., if there exists a group of unitary operators Uh s h e B" on H = ZeA')

satisfying UhZ(A) = Z(!hA) for any AE A I • Obviously, an IRF Z is continuous

on A' if and only if the mapping (h, A) --+ Z( 't'hA) is continuous on R" x A' .

In this case, the group Uh is continuous on Rn, and we also have UhZ(P) = Z(!hJl)

for any JlEM'.

The subspace M' c Me being closed for translations, so also is its orthogonal

complement, i.e., the closed subspace of rc generated by the functions fl, 1E L.

In particular, if L is finite, this implies that the r are exponential-polynomial

functions. In what follows, we shall examine only the case where the r func

tions are polynomials. More precisely: for k, an integer ~ 0, we denote

M k the subspace of Me defined by the condition u E M k if p E Me and

for iI' ... , in' integers ~ 0, such that i1 + ... + in ~ k. For brevity, we shall

write 1 instead of (iI' ... , in)' I ~ k instead of i1 + ... + in ~ k and flex) for

X~1 X~2 ... x ~ n . The subspace A () M k (closed in A) will be denoted Ak , and we

shall say that an IRF Z on Ak is an IRF of order k, or a k-IRF. If a k-IRF Z

is continuous, its unique continuous extension on M k will also be denoted

by Z. In the sequel, we consider only continuous k-IRF's.

1.3 Representations of a k-IRF

If Z is an IRF on a subspace A' c A, we say that an order-two random

function Y: Rn --+ 13(0.,.91, P) is a representation of Z if Z(A) = f Y(x)A(dx)
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for any AE A' . In the sequel, we examine only the case ofa continuous k-IRF Z.

It is easy to find measures AIEA (1 = i1 + iz + ... + in ~ k) such that

(1.1)

(s = (jb·· ·,in), i 1 + ... + l« ~ k, ~ : = 0 for 1 i: s and ~ : = 1 if s = 1).

If ~ x is the Dirac measure at x ERn, clearly ( ~ x - f~AI) E Ak • Then, the random

function Y(x), x ERn, defined by

(1.2)

is a representation of Z. For, if AE Ak , i.e., f A(dx)f'(X) = 0, we also have

A = f A(dx)[l5x - f~AI]. Z being a linear mapping of Ak into H = Z(Ak ) ,

we may write

Z(A) = f A(dx)Z((;x - f~A,) = f A(dx)Y(x)

and Y(x) is a representation of the k-IRF Z.

Let X(x) be another representation of Z. By the very definition, we may

write

Z(A) = f A(dx)Y(x) = f A(dx)X(x) for any AEAk •

In particular, for A = ~x - f ;Az, we find

Y(x) = Y(x) - i: f A,(dy)Y(y) = X(x) - f~ f A,(dy)X(y).

From this relationship, we conclude:

(a) The representation defined by the relationship (1.2) is characterized

by

(1.3) f A,(dx) Y(x) = o.

For, if another representation X(x) satisfies (1.3), we find

Y(x) = X(x) - f; f A,(dy)X(y) = X(x).

(b) Any other representation X(x) of Z is of the form

(1.4) X(x) =Y(x) + Azf'(X)

for random variables AzE L2(Q,d,P) satisfying Az = f Az(dx)X(x). Converse-
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(1.5)

(1.6)

ly, for any random variables A, E L2(Q, d, P), the random function X(x)

defined by the relationship (2.4) is obviously a representation of Z, because

f ),(dx)X(x) = f A(dx) Y(x) for any), E Ak •

This representation satisfies

Al = f AMx)X(x)

by (1.1) and (1.3). Thus, the relationships (1.2) and (1.4) give us the general

form of all the representations of the k-IRF Z .

The k-IRF Z being continuous on Ak (for the relative Me topology), all its

representations are continuous, and, conversely, if Z admits a continuous

representation, it is a continuous k-IRF.

1.4 The translations formula

Let Z be a continuous k-IRF. Let us choose measures A, satisfying (1.1),

and consider the representation Y(x) = Z(l5x - f;A,). From the very defini

tion of an IRF, we have

for h, x E B", This may be written as follows

UhY(x) = Z(l5x+ h - f;+hA,) + Z(f;+hA, - f;rhA,).

But Z(l5x +h - f;+hAL) = Y(x + h), and the relationship (1.3) implies

Z ( f ~ + h A I - f~r:hAI) = f~+h f ALCdy)Y(y) - f; fAMy)Y(y + h)

= - f~ f AI(dy)Y(y + h).

Thus we obtain the following translations formula

UhY(x) = Y(x + h) - Az(h)f'(X) ,

ALCh) = f AMy) Y(y + h).

From the relationship (1.6) we can obtain an important inequality. Because

II Y(x) II is continuous on Rn, and the measures Al E A have their supports

included in the same compact, there exists a real B > 0 such that

Ih Is 1 => ~ f A,(dy)Y(x + h)11 ~ B.
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By writing (1.6) in the form

Y(x + h) = UhY(x) + l~x) f Aj(dy) Y(y + h),

and taking into account the inequality If'(x) I ~ r' (with r = , x I and

I = i1 + ... + in = degree of the monomial f') we thus obtain for IhI ~ 1

an inequality of the form

k

II Y(x + h) II ~ II Y(x) " + L b.r! (bi ~ 0).
i=O

If now u is a unit vector in Rn and s a real number with 0 ~ e ~ 1, we find

by iteration

II Y(u) II ~ II YeO) II + bo ,

k

II Y(2u) II ~ II Y(u) II + L b.,
o

k

II Y(mu) II ~ \I Y[(m -1)u] II + L blm -1)i ,
o

k

II Y[(m + e)u] II ~ II Y(mu) II + L bim
i

•
o

By adding these inequalities, we obtain an inequality of the form

k+l
II Y[(m + e)u] II s L Bimi ~ a + b(m + e)k+l

o

for convenient a, b, real ~ 0 independent of u and 8. Thus, for any x ERn.,

the representation Y(x) of Z satisfies the following inequality

(1.7) II Y(X) II ~ a + br
k+ 1

(r = Ix!).

By (1.4), it is clear that any other representation of Z satisfies inequalities

of the same type.

From the relationship (1.7), we conclude that the integral f Y(x)f1(dx)

exists not only for any measure f1 E Me with compact support, but also for

any measure f1 with a sufficiently rapid decrease at infinity. For instance,

if cP E Y is an infinitely differentiable function rapidly decreasing at infinity,

as also do each of its derivatives, the regularized random function 4(x)

defined by

Ytj>(x) = f ¢(y) Y(x + y)dy
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always exists, and is an infinitely differentiable random function, as can easily

be verified.

Besides, we note that for any AE Ak , the integral f A(dx)Yq,(x) does not

depend on the choice of the particular representation Y(x) of the k-IRF we

have used, as shown by

I A(dx)Y4>(x) = I cjJ(y)dyI A(dx)Y(x + y)

= I cjJ(y)UyZ(A)dy.

In other words, the regularized RF Yq,(x) is a representation of the k-IRF Zq,

defined on Ak by putting Zq,(A) = f 4J(y)UyZ(A)dy.

We shall say that the k-IRF Zq, is the regularized function of Z by 4J.

Clearly, Zq, is infinitely differentiable if 4J E!7 (i.e., any representation of Zq,

is infinitely differentiable, or Zq,(D) exists for any derivative D). If D is a deriv

ative of order p, the corresponding derivative D Zq" defined by

DZiA) = (-ItI DcjJ(y)UyZ(A) dy

is a (k- p)-IRF for p ~ k, and a SRF for p > k.

1.5 A decomposition theorem

If Y(x), x ERn is a SRF, the mapping A -+ f A(dx)Y(x) obviously defines

a k-IRF on Ak , which may be denoted A -+ Y(A). It is thus possible to add

a k-IRF Z; and the SRF Y considered as a k-IRF. The sum Z; + Y is the

k-IRF Z defined by Z(A) = Zc(A) + f A(dx) Y(x), AE Ak • Then we may state

the following theorem.

Theorem 1.5. Any continuous k-IRF Z is the sum of a SRF and of an

infinitely differentiable k-IRF.

Proof. Let PaE!/ be the function defined by its Fourier transform

Pa(u) = (1 + ta 1u 1
2 + ... + tk,-la k ' 1uI 2 k

' ) exp( -a 1u (2) for a > 0

and an integer k' > tk. All the derivatives of 1 - Pa up to order 2k' > k

vanish in u =0. Thus, the measure b-Pa(x)dx is in M k • Put J:(x) = Z(bx-'CxPa)'

i.e., Ya(x) = UxZ(b-Pa). In other words, J:(x) is a SRF. From the definition

of the regularized Zpa' we then have Z = Ya+ Zpa' where Ya is the mapping

A -+ JJ:(x) A(dx) , AE Ak , and the regularized Zpa is an infinitely differentiable

k-IRF.
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For any representation Y(x) of Z, we have

449

y"(x) = Z(bx - TxPa) = Y(x) - I piy)Y(x + y)dy,

because (bx - 'txPa) E Ak , and the decomposition theorem gives simply

Y(x) = y;'(x) + Ypa(x) , where y:'(x) = Y(x) - Ypa(x) is a SRF and Ypa(x) a

representation of the infinitely differentiable k-IRF Zp_.

Also note the following corollary.

Corollary. For any k-IRF, there exists a sequence {~} of SRF such

that f A(dx) Yn(x) strongly converges toward Z(A) for any AE Ak •

With the preceding notation, we have to show that, for AE Ak , lim y;'(A) = Z(A)

for a --+ 00, i.e., limf Pa(y)UyZ(A)dy = o. Let X(du) be the spectral measure

associated with the SRF UyZ(A). Then, by IPa1
2 ~ 1 and 1Pa(U) 1

2
--+ 0 for any

u E B", we obtain

Le., Ya(A) --+ Z(A).

1.6 Drift of an IRF

Let Z be a continuous k-IRF, H o -the subspace of H = H(Ak) containing

the invariant elements of H (i.e., X E H 0 if X E Hand UhX = X for any

h ERn) and ITo the projector on H 0 (in the ergodic case, ITo may be identi

fied with the expected value). By putting mo(A) = IToZ(A) for AE Ak , we define

a continuous k-IRF m o obviously invariant for the group Uh. Let us choose

AEA satisfying (1.1), and write mo(x) = mo(~x - f;Az) . Then, the represen

tation mo(x) of the k-IRF mo is a polynomial of degree ~ k + 1 with coeffi

cients in H 0 (constant in the ergodic case).

Proof. If Z is infinitely differentiable, so also are mo and its representation

mo(x). By mo(x) E H 0 and the translations formula (1.6), we obtain

mo(x) = mo(x + h) - AtCh)fl(x). Differentiation of order k + 1 with respect

to x eliminates the terms Az(h)f'(X), and then differentiation of order 1 with

respect to h eliminates mo(x). Hence, all derivatives of order k + 2 of mo(x)

vanish identically, and mo(x) is a polynomial of degree ~ k + 1. The decom

position theorem shows that the result remains true when Z is not differentiable.

The polynomial mo(x) with invariant coefficients depends on the choice

of the representation we have used. But it is easy to verify that the terms of

degree k + 1 do not depend on it, and thus-constitute a property of the k-IRF Z

itself. The corresponding homogeneous polynomial of degree k + 1 with

invariant coefficients will be called the drift (or intrinsic drift) of the k-IRF.
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If m., = 0, the k-IRF Z is said to be without drift. Obviously, Z is without

drift if and only if noY(x) is a polynomial of degree ~ k with invariant co

efficients for a representation of Z (and then, the same is true for any represen

tation).

2. THE GENERALIZED COVARIANCES (GC)

2.1 The class of the GC of a k-IRF

Let Z be a continuous k-IRF. We say that a continuous and symmetric

function K on Rn is a generalized covariance (GC) of Z if

(Z(A), Z(Jl) = f A(dx) K(x - y) Jl(dy) for A, u E Ak °

This is equivalent to the condition:

(2.1)

(2.2)

The family of the continuous and symmetric functions K satisfying the con

dition (2.1) will be called the class of the GC of Z. We will show that such

GC always exist, and, if one of them is known, we obtain all the others by

adding arbitrary even polynomials of degree ~ 2k. In other words, there is

an existence theorem, and a uniqueness theorem, the latter up to an equiv

alence defined by the relationship K 1 == K 2 if K 1 - K 2 is an even polynomial

of degree ~ 2k.

We shall also say that a continuous, symmetric function K on R" is con

ditionally positive definite of order k if

f A(dx)K(x-Y)A(dy) ~ 0 for any AEAko

From the definition, the GC of a k-IRF (if any) are k-conditionally positive

definite. Conversely, if K is a continuous k-conditionally positive definite

function, there exists a continuous k-IRF Z such that the Z(A), AE Ak are

Gaussian random variables satisfying (2.1), and these two classes of functions

may be identified. The following theorem gives their characterization.

Theorem 2.1. Let K be a continuous and symmetrical function on R",

Then, K is k-conditionally positive definite if and only if it admits the re

presentation:

-f cos(2n(uh)) - 1B(u)Pk(2n(uh))

K(h) - 21 12 k 1 Xo(du) + Ko(h) ,
(4n I u ) +

where K o is an even k-conditionally positive definite polynomial of degree
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~ 2k + 2, 1B the indicator of a neighbourhood of the origin, and Xo a positive

measure, necessarily unique, without atom at the origin, and such that

(2.3) f [1 + 4n21 u 1
2r k

- ·Xo(du) < co

(Pk is the polynomial Pk(x) = L~ (- I)Px2 P/(2p) !) .

Proof. It follows from Section 1.4 that any representation of a k-IRF

is a generalized stochastic process with stationary increments, so that the

existence and uniqueness theorem as well as Theorem 2.1 are simple con

sequences of the Guelfand-Vilenkin theory ([3], Chapter 2, Section 4 and

Chapter 3, Section 3). Note that it is also possible to derive them by spectral

analysis, i.e., without using the distribution theory.

2.2 k-IRF without drift

Let Z be a k-IRF, K a GC of Z which admits the representation (2.2),

AE Ak and X its Fourier transform. Then, it follows from (2.2) that the

spectral measure X;. associated with the SRF x --+ UxZ(A) is

X;. = (I ~ 12
/ 4n21 u 1

2k
+

2
)XO+ ab,

and the atom a is given by

a = f 2(dx)Ko(x- y)2(dy).

In other words, Z is without drift if and only if the degree of the polynomial

K o is ~ 2k. More precisely, we may state the following theorem.

Theorem 2.2. Let Z be a continuous k-IRF, K a GC and Y(x), x E Rn

a representation of Z. Then, the following three conditions are equivalent:

(a) Z is without drift (i.e., IloZ = 0),

(b) K(h)/I h 1
2k

+ 2 --+ 0 for I h I --+ 00,

(c) Y(x)/I X Ik + 1 --+ 0 strongly for Ix I --+ 00.

Proof. By the inequality 1cos x - Pk(X) J ~ X
2k

+ 2,(2k + 2)!, we have

I
cos(2n(uh)) - Pk(2n(uh)) I ~ Ih 1

2 k
+

2

(4n 2u 2)k+l (2k + 2)!

and, by the dominated convergence theorem

lim Jcos(2n(uh)) - Pk(2n(uh)) (du) = 0

Ih 12k+2(4n2u2)k+ 1 Xo •
Ihl-+oo B
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Thus, the condition (b) is fulfilled if and only if the polynomial K o of Theorem

2.3 is of degree ~ 2k, i.e., if (a) is satisfied, and thus (a) and (b) are equivalent.

By the relationship (1.4), we may assume that the representation Y(x) of Z

is of the form (1.2). Then, the covariance of Y(x) is the function

(Y(x), Y(y) = K(x- y) -r« f K(z- y)JeMz) -ley)f K(z-x)Je,(dz)

+l(x)!"(y) f Je,(dz)K(z- z') Je,(dz').

It follows from this relationship that (b) implies (c).

Finally, the representation TIoY(x) of the drift rno = TIoZ is a polynomial

of degree ~ k + 1 with invariant coefficients. If the condition (c) is fulfilled,

this polynomial is of degree ~ k, and thus Z is without drift.

2.3 Examples

By Theorem 2.1, a positive measure Xo without atom at the origin and satis

fying the condition (2.3) characterizes a k-conditionally positive definite

function, and thus a possible model of a k-IRF.

For instance, the function ra. on B" (r = Ix I, a. real, > 0 and different

from an even integer) admits as a Fourier transform (in the sense of the distri

bution theory) the (pseudo) function n-a.- t " r[!(a. + n)]/r( -te<)p rr a rr n (with

p = Iu I). If a.< 2k + 2, the absolutely continuous measure p2k+2-a.- ndu

satisfies the conditions of Theorem 2.1. Thus r( -te<)ra. is k-conditionally

positive definite. If a. = 2p + 1 (p ~ k) is an odd integer, the function

(_I)P+l r 2
p+l may be used as GC of a k-IRF. More generally, the function

K defined on Rn by

(2.4)
k

K(r) = L (_I)P+l apr 2P+l

p=o

is a k-GC if and only if the coefficients ap satisfy the condition

i ap r[t(2p + 1 + n)] -n-2p+ 1 > 0

p=o 1t
2
p+ 2 + t n r[1 + !(2p + 1)]P -

for any p > o. These "polynomial isotropic" GC are interesting from the

applications point of view, because their expression depends linearly on the

coefficients ap » an advantageous property for statistical inference. (See suc

ceeding paragraph).

Now let us examine the case n = 1. Let X(x) be a SRF on R 1
, u(h) its

stationary covariance and Xits spectral measure, and consider the successive

integrals
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or explicitly,

Then, Yi is a representation of a k-IRF Zk with the GCKk defined by

453

If lloX(x) = 0, Zk is without drift, and the spectral measure Xo of X(x) is

identical with the measure Xo occurring in Theorem 2.3.

Now if Wo(x) is a O-IRF with the GC -I h I (for instance, Wo may be a

Brownian motion), the expression

rx(x - ir:
Wlx) = Jo (k _ 1)! Wo(~)d~

constitutes a representation of a k-IRF with the GC (_l)k+ 11 h 1
2k + 1/(2k + 1)!.

More generally, if we put

(2.5)
k

Y(x) = L bpWp(x)
p=o

with arbitrary real coefficients bp , we obtain a realization of a k-IRF which

admits a polynomial GC of type (2.4). Conversely, it is possible to show

that any k-IRF with a polynomial GC of type (2.4) admits a representation

of the form (2.5).

2.4 Applications of Theorem 2.1

It follows from Theorem 2.1 that the classical results of the harmonic

analysis may be applied to the k-IRF. Let Z be a k-IRF without drift, and Xo

the spectral measure associated by Theorem 2.1 with its GC. Then, as we have

seen, for any AE Ak , the SRF x -+- UxZ(A) admits the spectral measure

XA = (I 11
2/(4n21 u 1

2)k+l)XO (1 is the Fourier transform of A). Moreover, if

we denote by CA the orthogonal random measure whose Fourier transform

is UxZ(A), the following relationship holds

(2.6)

Furthermore, the mapping A -+- Xj(4n21 u 1
2} i (k+1) may be extended by an

isomorphism from the completion Ak onto L2(Rn/
Xo) , so that (2.6) remains

valid for any A,A' E Ak •
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(2.7)

As a direct consequence, we see that the k-IRF Z is differentiable up to

order p if and only if

f [1 + 4n21 u 1
2

JP-k - 1XO(du) < 00.

Thus, the integral

(2.8) K (h) f cos(2n(uh» - Pk(2n(uh») (d)
1 = (4n2IuI2)k+l Xo u

exists, and represents a GC of Z , if'jand only if Z is differentiable up to order k .

If so, K 1 is the unique qc of Z which vanishes at h = 0 as also do its deriv

atives up to order 2k. In particular, any O-IRF without drift admits a GC

of the form

K (h) = Jcos(2n(uh)) - 1 (d)
1 4n2 /u/2 Xo u.

Any k-GC K satisfies the inequality

(2.9) IK(O) - K(h) I ~ a + bIh 1
2k

+
2

for convenient constants a, b ~ 0, as can be shown from (2.2) or (1.7). Then,

the following criterion is easy to prove by harmonic analysis: a k-IRF is dif

ferentiable if and only if its GC satisfies inequalities of the form

(2.10)

Let us now examine under which condition a k-IRF Z actually is of order

< k, i.e., is the restriction to Ak of a (k-l)-IRF Z.

Theorem 2.4. Let Z be a continuous k-IRF without drift, k ~ 1 (respec

tively, a O-IRF such that no z = 0). Then, the following three conditions

are equivalent.

(a) Z is the restriction to Ak of a continuous (k-l)-IRF Z (resp. the re

striction to Ao of a continuous SRF Z), and Z is unique up to a drift (resp.

to an invariant).

(b) There exists a measure X ~ ~ 0 without atom at the origin such that

f [1 + 4n2
/ u 1

2
] -kX~(du) < 00, and the spectral measure associated with Z by

Theorem 2.1 is Xo = (4n21u 12)X~. If so, X~ is the spectral measure associated

with the (k -1)-IRF Z (with the SRF Z).

(c) The GC~s of Z satisfy inequalities of the form IK(h)/ ~ a + hi h/ 2 k

(resp. are bounded on Rn).

Proof. Let Z be a k-IRF andZ, Z' (k-l)-IRF such that Z(A) = Z'(A)=Z(A)

for any AE Ak • Then, for any A' E Ak - 1 , we find
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(Uh - 1)Z'(;1.) = Z(rh ;1. - A) = (Uh - 1)Z(;1.).

Thus, Z'(A) = Z(A) up to an invariant, and Z is unique up to a drift.

The implications (a) => (b) and (b) => (c) are trivial. Let K be a k-GC such

that (c) holds, and Xo its spectral measure. If B is the neighbourhood of 0

such that (2.1) holds, and C = B
C the complementary set, the measure lcXo

trivially satisfies (b), so that we may suppose Xo = 1BXO' i.e., Z is infinitely

differentiable. Then, the function K 1 defined by (2.8) exists and is a GC of Z .

Moreover, by (2.4) and (c), there exists a real B < 00 such that

(2.11)

It remains to prove that (2.11) implies (b). We start from the obvious re

lationship

k + 1 rx (x - ~) 2k - 1

cosx-Pk(x) = (-1) Jo (2k-l)! [1-cose]de

which implies, for r = IhI and a = hlr ,

cos 2n(uh) - Pk(2n(uh))

rr (r )2k-l
= (_1)k+ 1(21t(UIX)i

k Jo (~~ I)! [1 - cos(21t(ulX)p)] dp .

By substituting in (2.8) we obtain

(2 12) ( l)
k+'« () fr (r - p)2k-l d J(Ue<)2k 1 - cos(21r(u~)p) (du)

• - 1 ar = 0 (2k - I)! P (U2)k 4n2u2 Xo •

Let <1>(1 be the Laplace transform of ( _l)k+ 1Ko(e<r), i.e.,

<1>..(A) = ( _1)k+ 1 LIZ) K l(:xr)e-.I.r dr (A > 0).

By (2.12), the function (_l)k+ 1K l(ar) is the convolutive product in R+ of

two functions, the Laplace transforms of which are respectively A-2k and

J
(Ue<)2k Xo(du)

( u2)k A(A2 + 4n2(ue<)2) •

Thus, we obtain

(2.13)
1 J (Ue<)2k Xo(du)

<1>..(A) = A,2k+ 1 (U2)k ..P + (21t(u:x»2 ·

On the other hand, the function (-l)k+ JKo(ctr) is ~ 0 by (2.8), and thus

(2.11) implies the inequality «I>(iA) ~ B(2k) !/A2 k + 1 • By (2.13) and

(Ue<)2 ~ u2a2 = u2
, we obtain
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J
(ueX)2k Xo(du) :::; B(2k) 1.

(U 2)k A2 +4n2u2 -

If lJ. is the unit vector of the u, axis, this implies

J
Ui2k Xo(du)

---k 2 2 2 ~ B(2k)!.
(L uj

2
) (A + 4n U )

G. MATHERON

(2.15)

By the convexity relationship L ~ X ~ ~ n
1

-
P( L Xi ) P, Xi and p ~ 0, we have

(I:U/)k ~ n k
-

1 LU/ k
• Thus, by substituting in (2.14) and summing from

i = 1 to i = k, we find

The decreasing family X;. = Xo/(A2 + 4n2u2)
being dominated, it follows that

there exists a positive bounded measure X ~ = lim x;., for A i O. By the rela

tionship 4n2u2x;. = Xo - A2X;., we get Xo = lim 4n2u2x;. = 4n2u2x~. Thus,

(b) is true.

It remains to prove (b) implies (a). Let us at first examine the case k = O.

Let Z be a O-IRF without drift, satisfying (b), i.e., admitting a GC of the form

K(h) = f [cos2rr(uh) - IJx~(du)

for a bounded positive measure X ~ without atom at the origin. Let X;. = /1/ 2 X~

and ,;. be the spectral measure and the orthogonal random measure associated

with a AE Ak • The function 1/1 belongs to L2(Rn, X).), and thus the integral

Y(x) = f [(exp {- 2irr(ux)})/X(u)] Udu)

exists and defines an SRF Y(x) , X E R", For any J1 E Ak , we may write

JY(x)/l(dx) =J([i(u)/A(u)Kidu) =J'idu) = Z(/l)

by il(;. = 1(u. Then (a) is true.

Now let Z be a k-IRF without drift, k > 0, suppose (b) is true and prove (a).

For AE Ak - 1 , put Y;.(x) = Z( !xA - A)(x ERn). l).(x) is a representation of

a O-IRF and satisfies the relationship

II Y).(x) 11 2 = J lexp{ -2i1t(U:)~ ~ 11
21

AI2 X~(du).
(4n u )

The function 1112/(4n2u2)k being bounded on R">; {O}, and X ~ without atom

at the origin, it follows that II Y).(x) II is bounded on Rn. By the result which

we have already proved for the O-IRF, there exists a unique element Y). E H

such that Y).(x) = (U x - I) Y;. and no Y;. = O. The spectral measure associated
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with Y;. is IX12x~/(4n2u2)k. The continuity of the linear mapping A ~ YA

from Ak - t into H is then easy to prove, so that this mapping is a continuous

(k -l)-IRF. For AE Ak C Ak - h obviously

and thus Y;. = Z(A) up to an invariant. But this invariant is null, for

no YA = noZ(A) = 0, and the equality Y;. = Z(A) holds. This achieves the

proof of Theorem 2.3. As an immediate consequence, we may state the follow

ing coro llary.

Corollary. A (k + p)-IRF (respectively a (p-l)-IRF) with k ~ 0, p ~ 1

is the restriction to Ak + p(Ap- 1) of a k-IRF (a SRF) if and only if one of its GC

satisfies an inequality of the form 1K(h) 1 ~ a + b 1h 12k+ 2 (resp. is bounded

on Rn).

3. THE BEST LINEAR INTRINSIC ESTIMATORS (BLIE)

In practical applications, we generally have to interpret the concerned

phenomenon as a realization of a certain representation Y(x) of a k-IRF Z.

Statistical inference is then reasonably possible as far as the GC of Z are con

cerned. On the contrary, if only one realization of Y(x) is available, it is

entirely impossible to specify which particular representation of Z is involved

in the experimental data. Thus, only "authorized.' integrals, i.e., integrals

of the form f A(dx) Y(x), AE Ak or AE M k , may be assigned a computable

variance (because they depend only on Z, and not on the choice of the parti

cular representation Y(x»).

Then, if Yo is an element of the Hilbert space H(Y) generated by the Y(x) ,

x E Rn, we shall say that another element Y* E H( Y) is an intrinsic estimator

of Yo if the difference (y* - Yo) is itself an authorized integral, or a strong

limit of authorized integrals. For, in this case only, the variance of the "error"

(y* - Yo) uniquely depends on Z and not on the representation - and may

be computed at least approximately. In this context, it is natural to develop

a theory of the best linear intrinsic estimators (BLIE).

The element Yo E H( Y) we have to estimate will be, for instance, the "value"

Y(x o) of Y(x) at a given point X o ERn, or the integral Jp(dx) Y(x) , where

the measure p is known, or a derivative of Y(x) at a given point, and so on.

Generally speaking, we consider the case Yo = .PCY), where .P is an element

of the completed x, of A for the norm II AII = II JA(dx) Y(x) II (or of the

convenient quotient space, if II A II is not a norm). But the space Ay depends

on the choice of the particular representation Y(x), and not only on the

k-IRF Z itself, and in practice we do not know which particular representation

is involved. For this reason, the operator .P must be taken so that ~ ( Y ) is
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defined for any representation Yof Z . In other words, by (1.4), the monomials

r of degree ~ k necessarily belong to the domain of 2. Or, which is the

same, there exists in A a sequence {An} such that f An(dx)Y(x) strongly con

verges in H(Y) towards the limit 2Y for any representation Y(x) of Z.

In particular, this implies the numerical convergence of the sequences

{J An(dx)f'(X)} towards limits denoted 2 f' . Instead of2(Y) = lim JAn(dx)Y(x) ,

we shall use the symbolic notation 2(Y) = f 2(dx)Y(x) for brevity.

In order to estimate 2(Y) , we know, say, the elements Y(x) , XES belonging

to a compact set S (the set of the "experimental data"). In other words, the

only possible estimators Y* are in the form f A(dx)Y(x) , for measures AEA(S)

(i.e., with finite supports included into S) and, more generally, strong limits

of such elements, Le., elements of the form f2*(dx) Y(x) for operators !R*

with "support" in S. For AEA(S), the element f A(dx)Y(dx) is an intrinsic

estimator of 2(Y) if and only if A satisfies the "universality conditions"

fA(dx)f'(x) = .!1'r ,

Le., AE 2 + Ak • Now, if a sequence {An} in A(S) n (2 + Ak ) is such that

{f An(dx)Y(x)} strongly converges in H(Y) for a given representation Y(x) ,

it follows from the universality condition that the sequence {f An(dx)X(x)}

is also convergent for any other representation X(x). In other words, the set

of the operators 2* with support in S and such that Y* = 2*(Y) is an in

trinsic estimator of 2(Y) (i.e., the closure A(S) n(2 + Ak ) ) does not depend

on the choice of the representation Y(x) we have used to define the norm

\\ A II = II f A(dx)Y(x) II·
This result may be stated in another equivalent manner: if

AnEA(S) n (2 + Ak ) ,

i.e., 2 - An E Ak , the element

f.!1'(dx)Y(x) - f An(dx)Y(x) = Z(.!1' - An)

does not depend on the choice of the representation Y(x). In other words,

the strong convergence f An(dx) Y(x) --+ 2*(Y) for a particular representation

Y(x) is equivalent to the convergence Z(2 - An) --+ Z(2 - 2*) and thus

implies f An(dx)X(x) --+ 2*(X) for any other representation X(x).

The variety A(S) n(2 + Ak ) is empty if it is not possible to find AE A(S)

with f A(dx)f'(X) = 2 f'" i.e., if there exist coefficientsC, such that C,f'(x) = 0

for any XES and C,2f' =F o. For this reason, we shall always suppose the

monomials r linearly independent on S, i.e., C,f'(x) = 0 for any XES

implies C, = 0, so that the variety containing the intrinsic estimators on S

will never be empty.
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In order to determine the BLIE, it remains to write that Z(2 - 2*) is the

projection of 0 into the linear variety Z(2 - A(S) n(2 + x,» , which is

closed and non-empty, by the above considerations. We obtain the condition:

<Z(2 -: 2*),Z(A) = 0 for any AE Ak(S). This condition expresses that the

continuous function y -+ f (2(dx) - 2*(dx))K(x- y) is orthogonal to Ak(S),

and thus coincides on S with a linear combination p,f' (i.e., a polynomial of

degree ~ k). Finally, the operator .P* with support in S associated with the

BLIE y* = 2*(Y) is characterized by the following conditions:

.P*f' .fl?f' ,
(3.1)

t-

J 2*(dx)K(x - y) f 2(dx)K(x-Y)+/ldl(y) for all yES;

(3.2)

and the corresponding "estimation variance" is

f (2(dx) - 2*(dx»K(x- y)(2(dy) - 2*(dy»

= f 2(dx)K(x- y)2(dy) - f 2(dx)K(x- y)2*(dy) + /l12f'.

Example 3.1 (The finite case)

If the set S of "experimental data" is finite, the preceding discussion is

greatly simplified, because we only have to consider estimators of the form

f A(dx) Y(x) with AE 1\(S) . Let xa, ex = 1,2,···, N be the points of S , and write

~ , f ~ ,Kap , etc., instead of Y(xa),f'(xa) , Ktx; - xp) , etc. Then, the BLIE on

S for Yo = 2(Y) is y* = Aaya , with coefficients Aa satisfying the following

system:

Aaf: = .Pf',

;.,aKap= f 2(dx)K(x - xp) + /ldp'.

The BLIE y* = AaYa always exists, the functions r being independent on S,

so that the system (3.2) admits solutions. The unicity of y* does not imply

the regularity of the system (3.2), but only the relationship A ~ Ya = A~ Ya a.s.

if At and A2 are two distinct solutions. As a matter of fact, the difference

v = At - A2 between two solutions will satisfy the system:

a.,1 0 aK ,.,1
V ) a = , V afJ = Ill) fJ ,

from which it follows \I vaYa 11
2 = vaKapvP = p;fJ vfJ = o. It is not difficult to

show that the system (3.2) is regular if and only if the following two conditions

are fulfilled:
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(a) the matrix K aD is strictly conditionally positive definite,

(b) the functionsf' are linearly independent on S (i.e., e,i; = 0 ~ C, = 0).

Example 3.2 (Estimation of a drift)

We suppose now that the k-IRF Z admits as representation a SRF Z(x)

= UxZo with 110Zo = o. By the corollary of Theorem 2.4, it is the case if

and only if Z is without drift and admits a bounded GC, say (l.We may suppose

that a is the stationary covariance of the SRF Z(x) = UxZo. Any other re

presentation of Z is of the form

Y(x) = Z(x) + A,f'(x)

where the A, are order-two random variables. In the present context, we shall

say that the (random) polynomial A,f' is the drift of the R.F Y(x). We may

ask if it is possible to get a BLIE for the drift value A,f'(x) at a given point x,

and for the coefficients A, themselves. This new formulation of an old problem

(see, for instance, [5]) will remain valid if Z is only locally stationary (see

Section 7), but not stationary, so that it will be possible to define a locally

significant notion of a drift and to get a BLIE for it.

The first question that arises is whether A, E H( Y) and A, = fiJ,Y for opera

tors fiJ, including the monomials fS in their domains. For this purpose, take

A, E A satisfying the "universality condition" f A,(dx)fS(x) = c5: (= 0 if I "# s,

= 1 if I = s), and denote 4J, the density of the Gaussian centered law with

variance t . The regularized functions

4J,(x, t) = JA,(dY)4J,(x + y)

still satisfy the universality conditions

J4J,(x,Oj"(x)dx = b:,

and we get

J4J,(x, t)Y(x)dx = J4J,(x, t)Z(x)dx + A,.

For t --+ 00, the ergodic theorem asserts that f 4J'(x,t) Z(x)dx strongly con

verges towards o. Thus, the operators fiJ, defined by

.P,(Y) = lim J4J,(x, t) Y(x) dx
t-+ 00

satisfy fiJ,(Y) = A, for any representation Y, as required, and in particular

.P,f
s = c5: .
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Thus, there exists a BLIE for A, = .P,Y, say Ai = .Pi(Y). The opera

tor .Pi (with support in the compact set S of experimental data) is charac

terized by the system (3.1) written with a instead of K. But, in the second

relationship (3.1), the term f .PI(dx)u(x - y) vanishes, by the ergodic theorem.

Finally, we get the following system:

J.P'iCdx)F(x) = (j:,

(3.3)

J.Pj(dx)a{x - y) = JllsF(y) for all yES.

The matrix (/lIs) of the "Lagrange parameters" admits a very simple inter

pretation: it is identical with the covariance matrix <A, - A,*, As - A:), as

is easy to verify by direct calculation. It is also easy to show that, for a given

x ERn, Aiflex) is the BLIE for the drift value in x, A,f'(x).

Let H yeS) be the Hilbert space generated by the Y(x) , XES, and

Hk(S) c H y(S) the Hilbert space generated by the f A(dx)Y(x) = Z(A), AE Ak(S).

By the system (3.3), the AT belong to the orthogonal H ~ ( S ) of Hk(S) in H y(S).

Conversely, if Yo E Ht(S) , this element is of the form Yo = C'A ,*. For, if

XES, the relationship Y(x) = Z(b x - f;.Pi) + Ai f'ex) implies <Yo, Y(x) =

<Yo,AT>fl(x) , and the projection of Yo into the orthogonal of the A, vanishes.

Thus, Ht(S) is spanned by the AT. We shall say that Ht(S) is the space of

the drift and Hk(S) the space of the residuals.

Then, by relationship Y(x) = Z(b x - f'(x).Pi) + Aif'(x) , we conclude that

for XES the BLIE Ai f'ex) of the drift value at XES is the projection of Y(x)

itself into the drift space Ht(S). But this result does not remain true for x ¢ S.

4. THE TURNING BANDS METHOD

In practical applications, one must sometimes simulate realizations of a

given random function in R2 or R 3
, and we will now describe a procedure

which may be used in the isotropic case for SRF as well as for k-IRF.

First, let t ~ yet) be a SRF on R 1
, C 1 its covariance, and s a unit vector

in B", Then, x ~ Z s ( x ) = Y«x,s») is a SRF on Rn and its covariance is

defined by <Zs(x),Zs(y) = C1«(x-y),s»). If now s is substituted by the

unit random vector, Zs(x) is changed into a SRF Z(x), the covariance C of

which is defined by

where UJn is the probability concentrated on the unit sphere and invariant
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under rotations. Clearly, the covariance C is isotropic, i.e., there exists a

function C; on R+ such that C(h) = Cn(l h j), say explicitly

(4.1) Cn(r) = 2r(!n)n-t(r[t(n-l)])-1 LI

C I(vr)(1-v
2)t<n-3)dv.

Let G be the positive measure on R+ such that

C1(r) = Loo

cos2nprG(dp).

An easy calculation gives

(4.2) Cn(r) = 2t n
-

1r<tn) Loo

(2npr)1-t"Jt n_1(2npr)G(dp)

where Jtn-l is the classical Bessel function. But we know from the Bochner

theorem that (4.2) is the general form of an isotropic covariance on B"; so

that the mapping C1 ~ C; is one-to-one from the covariances on R1 onto

the isotropic covariances on B", In other words, for any isotropic covariance

Cn, there exists a unique covariance Cion R1 such that (4.1) holds. For

instance, if n=3, we find C3(r ) = f~Cl(vr)dv, and, conversely,

Cl(r) = drC3(r)fdr.

If an isotropic covariance C; on Rn is given, the procedure described above

(i.e., the "turning bands" method) will yield a realization of a SRF with

covariance en, if it is applied to a realization of a SRF Ywith the correspond

ing covariance Cion R1
•

The turning bands method may also be used in order to construct represen

tations of a k-IRF with a given isotropic GC on Rn, for it is easy to see from

Theorem 2.1 that the relationship (4.1) defines a one-to-one mapping from

the k-GC on R 1 onto the isotropic k-GC on B", Moreover, the monomials

r", (X ~ 0 are eigen-functions for the turning bands operator (4.1), so that the

polynomial isotropic GC on Rn (see Section 5 below) are generated by the

polynomial GC on R", This procedure was used by Orfeuil [10], who con

structed the originals of the Figures 1, 2 and 3 above. These figures give rea

lizations of IRF order k = 0, 1,2 with GC proportional to - Ihi, Ih 1
3

and - Jh Is respectively. The representations chosen by Orfeuil vanish at

the center of the figures, as well as their derivatives up to order k, and this

explains the feature of Figure 3 in which nothing resembles an isotropic and

stationary phenomenon any longer.

5. THE POLYNOMIAL GC

Let us denote by T; the turning bands operator defined in (4.1), so that

for any (X > 0 the function r ~ ra. is an eigen-function for Tn. If (X = 2p + 1

is an odd integer, we find explicitly
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As noted above, the function K t defined by

463

(5.1)

k

Kt(r) = L (-1)P+t apr2P+l/(2p + 1)!
p=o

is a k-GC on R t if and only if the function

(5.2)
k

Kn(r) = L (-l)P+ lapBnpr2P+ 1/(2p+ 1)!
p=o

is itself an isotropic K-GC on R": With the notations (5.1) and (5.2), the

conditions the coefficients ap have to satisfy do not depend on the dimension n,

From the relationship

(_l)p+l r
2 p

+
1

= 4f'X> cos(2npr)-Pp(2npr) d
(2p + I)! Jo (4n2p2)P+l p ,

it follows that the function K, defined in (5.1) admits (up to an even poly

nomial of degree ~ 2k) the representation

k

g(p) = 4 L a
p(4n

2p2 ) k - P •

p=o

In other words, K, (and K n) are k-GC if and only if the polynomial

TI(x) = Lapx 2
(k - P ) is ~ 0 for x real.

Lemma 5. An even polynomial II with real coefficients and degree 2k

satisfies TI(x) ~ 0 for x real if and only if there exists a polynomial <I> with

real coefficients and degree k such that II(x) = I cI>(ix) 1
2

•

Proof. The if part is obvious. Conversely, let II be an even polynomial

with real coefficients and degree 2k such that IT(x) ~ 0 for x real. Then (up

to a positive multiplicative constant) II(z) is the product of terms of the type

(z + ib)(z - ib) = (b + iz)(b - iz),

with b real, or

(z - a)(z + a)(z - a)(z + a) = (« + iz)(Ci+ iz)(rx - iz)(Ci- iz),

with ex = ia and a = at + ia2' at, a2 real and at -:f:. o. Each of these terms

is of the form 4>(iz) 4>( - iz) for a polynomial 4> with real coefficients. The

lemma follows.
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K(h)

Let us now give the general form of the k-IRF with polynomial GC on RI.

Theorem 5. A k-IRF Z on R 1 admits a polynomial GC if and only if

it admits a representation Y such that

rx rx (x _ ~)k-I
(5.3) Y(x) = boW(x) + b, Jo W(~)d~ + ... + b, Jo (k _ I)! W(~)d~

where the bp are real coefficients and W(x) a representation of a O-IRF with

the GC K(h) = - Ih I.

Proof. If Z admits the representation (5.3),

X(x) = LX (x - ~l-lWW/(k-1)!d~

is a representation of a k-IRF with the GC ( -1)k+ 1 Ih 1
2k+1 j(2k + 1)!. If

DP denotes the derivation order p, we have

Y(x) = ('LbpDk-P)X(x)

and the k-IRF Z admits the GC

K(h) = (LbpD k- P) (L( _l)k- PDk- P) Ih 1
2k+Ij(2k + 1)!

i.e., a polynomial GC.

Conversely, let Z be a k-IRF on HI admitting a GC K(h) of the form (5.1).

From Lemma 5 and the preceding considerations we may write (up to an

even polynomial of degree ~ 2k)

2J
oo cos2nuh - lB(u)Pk(2nuh)Im(2· ) 12d

(4
2 2 k +1 'P ttiu u ,

-00 n u )

k

<!leu) = L bpuk
-

P
,

p=O

with convenient real coefficients bp • Now let tt E Ak be the function defined

by its Fourier transform a(u) = (2inu)k exp( ---u2), and (IX the random ortho

gonal measure such that Z(rhtt) = Jexp(-2inuh)(IX(du). The corresponding

spectral measure XIX is

XIX(du) = 2[l a I
2I<1>(2inu)12j(4n2u2)k+1Jdu,

and, for any AE Ak the Fourier transform of which is X,Xja E L2(R1, XIX) implies

(5.4) Z(Je) = f (l(u)/fi(u»'a(du).

The function (exp( - 2inux) - 1) ( - 2inu)kj[a(u) <1>( - 2inu)J is also in L2(Rt, XIX)'

and thus there exists a random function W(x) defined by
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(5.5)
W(x) = 'J+oo (exp{ -_2inux}-~)( -2inu)k, (du).

_ 00 octU ) <1>( - 21nu ) (X

II J ),(dx)W(x) 1/

2

If AE 1\0' we have

JA(dx)W(x) = f-+oooo l(u)( -2inu)kj(Ci(u)(P( -2inu)Kidu)

and thus

J
1112(4n 2u 2

) k

IIX 121 (P(- 2inu) 12 Xidu)

= 2f C/1/2
j4n

2
u

2
)du .

From this relationship, it follows that A ~ f A(dx)W(x) is a O-IRF with the GC

2 f + 00 cos 2nuh - 1 = - J hi.
-00 4n 2u 2

Now let Y(x) be defined by (5.3) and (5.5), and J1 E Ak • By (5.5), we may write

JJ1(
dx)Y(x) = J P(u) ( -2inu)k Lbp/ ( -2inu)P

Ci(u)(P( -2inu) 'idu)

= J(fi(u)jCi(u)Ka(du).

Thus, by (4.4), we have JJ1(dx) Y(x) = Z(J1), and Y(x) is a representation

of Z. This completes the proof.

It is very easy to construct realizations of a O-FAI with GC -I h 1on R 1
•

For instance, we may choose a Wiener-Levy process (Brownian motion).

By Theorem 5, we are thus able to construct realizations of a k-IRF with a

given polynomial GC, and by the turning bands method we may also obtain

realizations of a k-IRF with a given polynomial covariance isotropic on B",

6. k-IRF LOCALLY STATIONARY

Any stationary covariance is also a k-GC, and thus there exist k-IRF's

which admit stationary representations and may be called stationary k-IRF's.

Any representation ofa stationary k-IRF is then of the form Y(x) = Yo(x) +P(x),

where Yo(x) is a SRF and P(x) a polynomial of degree ~ k with random

coefficients AI. From Theorem 2.4, we know that a k-IR.F is stationary if and

only if it admits a GC bounded on R", This condition is never fulfilled by a

polynomial GC. But, on the other hand, we shall see that the k-IRF with poly

nomial GC are always locally stationary in the following sense.
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Definition. A k-IRF Z is locally stationary if there exist a bounded open

set VeRn and a representation Y(x) of Z such that Y(x) coincides on V

with a SRF Yy(x).

Clearly, if Z is locally stationary on an open set V, it is still so on any trans

lation V' of V, but the SRF Yy ' cannot be identical to Yy if Z itself is not

stationary. This property is important for practical applications, because it

leads to a locally significant notion of the drift, i.e., the polynomial 4J(x)

= Y(x) - Yy(x), XE V. In particular, the estimation of P(x) in a point x E V,

or of its coefficients A, is then possible by the technique of the best linear

intrinsic estimator (BLIE, see Section 3). There exist k-IRF's which cannot

be locally stationary. For instance, if an analytic k-IRF were locally stationary,

it would be stationary on the whole space R",

Theorem 6. Any k-IRF with polynomial GC is locally stationary on any

bounded open set v.

Proof. If the theorem is true in R I
, it will be true in Rn for any n > 0 by

the turning bands method. Then, suppose n = 1, and examine at first the

casek=O.

Let Z be a O-IRF with the GC -I h Ion R I
, and choose the representation

W(x) = Z(c5x - t(c5L + <50) ) , for an arbitrary real L > O. The covariance of

W(x) satisfies

(W(x), W(y) = tL -I x - y I

for x, y E [0, LJ, and, in particular, W(O) + W(L) = O. Thus, it is possible

to define a periodic random function Yo(x) continuous on R I by putting

Yo(x) = W(x) if x E [0, L]
and

Yo(x) = (-1)kyO(X + kL) for kL ~ x ~ (k + 1)L, k integer.

The period of Yo(x) is 2L. Let C denote the function with period 2L defined

by C(h) = tL -I h I for Ih I ~ L. For x = Xo + kL, y = Yo + k'L, Xo,
Yo E [O,L], we have

k-r k' I I( -1) [tL - Xo - Yo ]

k+k' I I(-1) [tL- x-y-(k-k')L]

C(I x - y I)

by the relationship C(h + kL) = (-l)kC(h).

Thus Yo(x) is a SRF and its covariance is C(h). By W(x) = Yo(x) for

o ~ x ~ L, Z is then locally stationary on [0, L] .
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Now let Z be a k-IRF with polynomial covariance on R1
, and W(x) the

Q-IRF occurring in its representation (5.3) (Theorem 5) which may be chosen

in such a way that W(O) + W(L) = O. By the preceding part of the proof,

we have W(x) = Yo(x) if 0 ~ x ~ Lfor a periodic SRF Yo(x), the covariance

of which is C(h). By the Fourier expansion,

00

C(h) = ~ 4Ln- 2(2q + 1)-2cos(2q + 1)n(h/L) ,
q=O

there exists a sequence {C,} , 1 = ± 1, ± 3, ... of complex orthogonal variables,

with C-I = C, and II C, 11
2

= 4L/(nl)2 such that

Yo(x) = ~lC,exp( - inlxjl.),

For p integer > 0, the SRF Yp(x) defined by

Yp(x) = 'L(iLJnl)P C,exp( - inlxJL)

admits the covariance

00

Cp(h) = 4 L J!P+ 1((2q + 1)n)-2Pcos(2q + l)n(h/L) ,
q=O

and is equal to f~(X-~)P-IYO(~)/(p-l)!d~ up to a random polynomial of

degree ;£ p. By the formula (5.3), Theorem 5, the SRF L bpYp(x) is thus

equal to Y(x) , up to a random polynomial of degree ~ k for any x E [0, L].

Thus, Z is locally stationary on [0, L] .

Corollary. Let Z be a k-IRF with the de

k

K(h) = L (-1)Pa p ) hj2 p +l /(2p + 1)1
o

on R1
, and C(h) the covariance of the SRF with period 2L which coincides

on [0, LJ with a representation of Z. Then,

ex>

C(h) = 4 ~ Bqcos(2q + 1)n(h/L),
q=O

k

s, = L apL2P+ 1n-2
p-2(2q + 1)-2p-2.

p=o

The corollary follows easily from Lemma 5 and

Lapx
2

(k - P) = I Lbp(ix)k- p
12

•

Note that C(h) = K(h) for 1h 1 ~ L, up to an even polynomial of degree ~ 2k.
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