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ABSTRACT

The radio emission from Sgr A* is thought to be powered by accretion onto a supermassive black hole of
~ ´ M4 106 at the Galactic Center. At millimeter wavelengths, Very Long Baseline Interferometry (VLBI)
observations can directly resolve the bright innermost accretion region of Sgr A*. Motivated by the addition of
many sensitive long baselines in the north–south direction, we developed a full VLBI capability at the Large
Millimeter Telescope Alfonso Serrano (LMT). We successfully detected Sgr A* at 3.5 mm with an array consisting
of six Very Long Baseline Array telescopes and the LMT. We model the source as an elliptical Gaussian brightness
distribution and estimate the scattered size and orientation of the source from closure amplitude and self-calibration
analysis, obtaining consistent results between methods and epochs. We then use the known scattering kernel to
determine the intrinsic two-dimensional source size at 3.5 mm: ( ) ( )m m ´ 147 7 as 120 12 as , at position angle
  88 7 east of north. Finally, we detect non-zero closure phases on some baseline triangles, but we show that

these are consistent with being introduced by refractive scattering in the interstellar medium and do not require
intrinsic source asymmetry to explain.

Key words: accretion, accretion disks – galaxies: active – galaxies: individual (Sgr A*
) – Galaxy: center –

techniques: interferometric

1. INTRODUCTION

The compact radio source Sagittarius A* (Sgr A*) at the
center of the Galaxy is associated with a supermassive black
hole of~ ´ M4 106 (Ghez et al. 2008; Gillessen et al. 2009).
The mechanism responsible for the radio emission is thought to
be synchrotron from a jet-like outflow (Markoff et al. 2007;
Falcke et al. 2009), a radiatively inefficient accretion flow
(RIAF) onto the black hole (e.g., Narayan et al. 1995; Yuan
et al. 2003; Broderick et al. 2009), or an almost isothermal jet
coupled to an accretion flow (Mościbrodzka & Falcke 2013).
Different jet and accretion disk models can be tested by
modeling the radio through the submillimeter spectrum of
Sgr A* (e.g., Markoff et al. 2007), the frequency-dependent
source size (e.g., Bower et al. 2004; Mościbrodzka &
Falcke 2013; Chan et al. 2015), and data from millimeter Very
Long Baseline Interferometry (VLBI) observations (Broderick
et al. 2011; Dexter et al. 2012).

At wavelengths longer than a few centimeters, the image of
Sgr A* is heavily scattered by the intervening ionized
interstellar medium, and the scattering determines the size of
the measured image. The effect of this scattering decreases at
shorter wavelengths, with a l2 dependence, and VLBI
observations at wavelengths shorter than a centimeter have
found deviations from the l2 law, suggesting that intrinsic

source structure contributes to the apparent image at these
wavelengths (Doeleman et al. 2001; Bower et al. 2004, 2006;
Shen et al. 2005; Krichbaum et al. 2006). The intrinsic two-
dimensional (2D) source size can then be estimated by
extrapolating the scattering properties from longer wavelengths
and then deconvolving the scattering ellipse from the observed
size. At a wavelength of one millimeter or less, the scatter
broadening is subdominant to intrinsic structure in the image
(Doeleman et al. 2008; Fish et al. 2011; Johnson et al. 2015).
Because of the lack of good north–south baselines in existing

VLBI arrays, efforts to study the intrinsic structure of Sgr A* at
3.5 mm have been mostly limited to the east–west direction. To
unambiguously determine the intrinsic 2D structure of Sgr A*,
VLBI observations with higher angular resolution in the north–
south direction are needed. In this paper we describe such
observations of Sgr A* obtained at λ = 3.5 mm with the
National Radio Astronomy Observatory10 Very Long Baseline
Array (VLBA) and the Large Millimeter Telescope Alfonso
Serrano (LMT) located in Central Mexico, operated in concert
as a single VLBI array. This required that the LMT be equipped
as a VLBI station as we now describe.
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2. VLBI AT THE LMT

Situated at an altitude of 4600 m at the summit of Volcán
Sierra Negra in Central Mexico, the LMT has a large collecting
area (32 m circular aperture currently operational, extending to
the full 50 m diameter by 2017) and geographical location that
make it particularly useful for mm-wavelength VLBI observa-
tions. Technical work leading to development of VLBI
capability at the LMT was the product of a multi-year
collaboration between Instituto Nacional de Astrofísica,
Óptica y Electrónica, the University of Massachusetts, the
Smithsonian Astrophysical Observatory, the Massachusetts
Institute of Technology Haystack Observatory, the Universidad
Nacional Autónoma de México (UNAM), and the NRAO.
Recognizing the importance of LMT participation in 3.5 mm
VLBI networks (e.g., the VLBA or the Global Millimeter VLBI
Array—GMVA) and in the Event Horizon Telescope (EHT)

project at 1.3 mm wavelength, these groups began planning
VLBI tests in 2012. First 3.5 mm observations were scheduled in
2013 April, for which a full VLBI recording system was
installed. This included integration at the Sierra Negra site of

1. a GPS receiver (model CNS) to enable synchronization
with other VLBI sites;

2. a custom-built radio frequency downconverter to shift the
output of the facility Redshift Search Receiver (RSR) to a
standard VLBI intermediate frequency (IF) range of 512-
1024MHz;

3. a digital backend to digitize and format data for VLBI
recording (Whitney et al. 2013); and

4. two high-speed hard-disk Mark5c VLBI recorders.11

The RSR is one of the two instruments currently available at
the LMT. The RSR has two H and V linear polarization
receivers that instantaneously cover a wide frequency range of

73–111 GHz and has a dedicated backend spectrometer that
covers the entire band with a spectral resolution of 31MHz
(Erickson et al. 2007). The receivers are chopped between the
ON and OFF source positions (beam 1 and 0, respectively)
separated by 76″. Sources are tracked on beam 1 during VLBI
observations. The RSR has two fixed first local oscillators at
93.4 and 112.3 GHz, which are used to downconvert the
frontend band into two 0–20 GHz IF bands. For this VLBI
experiment we used the 73–93.4 GHz band (see Figure 1) for
further down-conversion and processing.
A hydrogen maser, typically used to provide a stable

frequency reference for VLBI, was not available for the 2013
observations, so an ultra-stable quartz crystal oscillator loaned
by the Applied Physics Laboratories of Johns Hopkins
University was used. This unit has an Allan Deviation of
< -10 13 over integration times from 1 to 10 s, resulting in
coherence losses of<25% at 3.5 mm wavelength. This crystal
was thus sufficient for initial tests but not for scientific
observations. To convert the Linear Polarization natively
received by the RSR to Circular Polarization, a quarter-wave
plate made of grooved dielectric was inserted into the telescope
optics, and for subsequent observations Left Circular Polariza-
tion was selected.
Using this test setup (see Figure 1), several SiO maser

sources (v = 1, J = 2 − 1) and bright active galactic nucleus
were detected on baselines from the LMT to the VLBA,
confirming the stability of the LMT RSR and VLBI system
performance. In 2014, this same setup was augmented by the
installation and integration of a hydrogen maser frequency
standard (manufactured by Microsemi), which is housed in the
pedestal room of the telescope. A custom-built enclosure
provides a temperature stable environment for the maser and a
low-noise distribution system installed near the VLBI equip-
ment routes the maser reference to phase lock all VLBI
instrumentation.
Commissioning observations in 2014 were conducted over the

course of four nights between the VLBA and the LMT. A precise

Figure 1. Block diagram of VLBI instrumentation setup at the LMT for the 2015 April observations.

11 http://www.haystack.edu/tech/vlbi/mark5/mark5_memos/057.pdf.
Unlike nominal operations of the VLBA, the LMT did not record dual
polarization on the same disk set.
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position for the LMT was measured by modeling the delays and
rates of VLBI detections on strong quasars over a wide range of
elevation. The operational location of the LMT in the
International Terrestrial Reference Frame geocentric coordinates
is ( ) ( ( )= - ´X Y Z, , 7.687156 2 10 m,5 ( )- ´5.9885071 2
10 m,6 ( ) )´2.0633549 5 10 m .6 This location corresponds to
the projection point of the horizontal axis onto the vertical axis.
Figure 2 shows the VLBA and LMT as seen by Sgr A* and the
corresponding baseline coverage.

3. OBSERVATIONS AND DATA CALIBRATION

The observations reported here (project code BD183) were
obtained in 2015 by operating the eight VLBA antennas
equipped with 3.5 mm receivers and the LMT as a single VLBI
array. The central frequency was 86.068 GHz. A total of 27 hr
of telescope time were allocated to the project, which were
covered in three epochs of 9 hr each on 2015 April 24, 27, and
28 (codes A, C, and D, respectively). Because scans for
pointing and calibration were also included in each observa-
tion, only about 3.6 hr were actually spent on-source in each
epoch. Observations were triggered at all sites based on
expected weather conditions at LMT and North Liberty, the
key stations of the project. Data were recorded at a rate of
2 Gb s−1 and taken in left circular polarization, with 480MHz
of bandwidth covered by 15 32MHz IF channels.

In the first epoch, the LMT RSR tracked on the wrong beam
(beam 0) and this was caught just before finalizing observa-
tions. On the second epoch, the station at Pie Town (PT)

experienced precipitation during most of the observing run, so
data were highly affected. On the third epoch, the Los Alamos
(LA) recording system corrupted the data due to timing issues.
Thus, the data taken at the LMT on first epoch, at PT on the
second epoch, and at LA on the third epoch were discarded.
Because the longest VLBI baselines between Mauna Kea and
the rest of the array resolve out the emission from Sgr A*, the
source was not detected on these baselines. Fringe detections
on Sgr A* were therefore obtained with an array consisting of
seven stations in the North American continent in each of the
three epochs.
For the remainder of the paper we will focus on the last two

epochs (BD183C and BD183D) because our goal of constrain-
ing the intrinsic size of Sgr A* at 3 mm relies heavily on the
north–south baselines provided by the LMT.
The initial data reduction was done using the Astronomical

Image Processing System (AIPS; Greisen 2003). Phase
calibration was performed as follows. Corrections for the
antenna axis offset at the LMT and for voltage offsets in the
samplers at all stations were first applied to the data. Single-
band delays were determined by fringe-fitting on a strong
calibrator (3C279 for BD183C and 3C454.3 for BD183D) and
the solutions were applied to all scans in the corresponding
observing night. Sgr A* was then fringe-fitted, producing rate
and delay solutions every 1 minute. These solutions were
smoothed using a median window filter smoothing function
with a six-minute filter time and then applied to the data. A
single bandpass solution was derived from the autocorrelations
on the continuum sources and applied to the data after fringe-
fitting. At this point, all scans with non-detections were
flagged. Also, the outer 4.5MHz from the edge of each IF were
discarded because these are adversely affected by the bandpass
response function.
To optimize the coherent averaging of visibilities, we

estimated the atmospheric coherence time of our data by
examining the ratios of debiased coherent to incoherent
averages12 as a function of time using a scan on 3C279. For
every baseline we found that the fractional amplitude loss is
<0.7% for =t 10 savg (see Figure 3). Considering the fractional
amplitude loss scales with the line of sight optical depth and
because Sgr A* is at lower elevation, we estimated the loss
increases to <4% in the worst case. To ensure that closure
relationships (discussed below) were not affected by coherence
losses, we then utilized 10 s coherent averages. For this
segment of time, the losses can be considered negligible in all
of our data. After this coherent averaging in time and across the
full bandwidth, these phase-only calibrated data were exported
as FITS files for further analysis outside of AIPS.

4. ANALYSIS

VLBI visibilities were analyzed via two standard pathways:
the first analysis used only “closure” quantities, which provide
immunity to station-based calibration errors, and the second

Figure 2. Top: the 3.5 mm stations of the VLBA and the LMT. Bottom: the
corresponding u–v coverage; the faint tracks denote baselines to Mauna Kea,
on which we do not detect Sgr A*.

12 A coherent average takes the vector-average of complex visibilities,
preserving the coherence of phase over time and frequency (Thompson
et al. 2007). An incoherent average takes the scalar-average of complex
visibilities segmented at short-length times. A debiased average corrects
visibility amplitudes by the noise bias introduced because of the inherently
positive nature of amplitudes.
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analysis used “self-calibration,” which attempts to simulta-
neously solve for source structure and complex, time-
dependent station gains.

4.1. Fitting an Elliptical Gaussian Using Closure Amplitudes

For a closed triangle of interferometric baselines, the phase of
the bispectrum (the directed product V V V12 23 31 of the three
complex visibilities Vij around the triangle) is immune to any
station-based phase errors. This quantity is known as a “closure
phase.” Likewise, closure amplitudes, such as ∣( ) ( )∣V V V V12 34 13 24 ,
can be constructed for any quadrangle of sites and provide
immunity to station-based gain amplitude errors (Thompson
et al. 2007). We constructed closure amplitudes and phases from
the phase-only calibrated data for each 10 s time segment.

Measured closure phases from both days are consistent with
a zero-mean Gaussian distribution (see Figure 4). We then fit
the distribution of closure phases to calculate a single
coefficient that converts AIPS weights wi to thermal noise
s µ w1i i for each measurement. Because the atmospheric
coherence time at l = 3.5 mm is only tens of seconds and
because coherent averages must be done over even shorter
timescales to preserve the closure relationships discussed
below, most of our measurements have only moderate signal-
to-noise. For example, the median signal-to-noise ratio (S/N)

in our two observing epochs was 8.3 and 7.2, respectively, for
all detections, but ~10% of detections have <S N 3/ . Both
closure amplitudes and phases have markedly non-Gaussian
errors in this regime, and closure amplitudes suffer a noise bias.
For example, for a closure amplitude constructed from four
visibilities that each have an S/N of 3, the average will be
biased upward by 30%, and estimates of the closure amplitude
uncertainty using high-S/N properties will be incorrect. For
this reason, we derived the conversion between AIPS weights
and thermal noise using closure phases with >S N 3/ , and we

used Monte Carlo simulations to estimate the bias and
uncertainties in our closure quantities.
Even after averaging our closure phases over each epoch,

they are still close to zero, which is consistent with an elliptical
Gaussian structure. Consequently, for both epochs BD183C
and BD183D, we performed a least-squares fit of elliptical
Gaussian source models to the closure amplitudes (see
Figure 5). To avoid errors that were significantly non-Gaussian
and the associated bias, we only used closure amplitudes
constructed from visibilities that had >S N 3/ in their 10 s
coherent average for these fits.
The best-fit solutions have a reduced c2 of 1.50 for BD183C

and 1.25 for BD183D. These values are greater than unity at
high significance, so to determine whether the excess can be
entirely accounted for by the non-Gaussian closure amplitude
errors we generated synthetic data sets for each epoch using the
best-fit elliptical Gaussian model for the source. We sampled
the model on each baseline for which there was a detection and
added the expected amount of thermal noise to each sample.
Finally, we calculated closure amplitudes for these synthetic
data and used them to find the best-fit elliptical Gaussian. This
procedure successfully reproduced the input model within the
derived uncertainties and found a corresponding reduced c2 of
~1.25 in both epochs. Thus, the excess in our reduced c2 is
comparable to what is expected from the non-Gaussian errors
on the closure amplitudes.
Unlike previous efforts (e.g., Bower et al. 2004, 2014b; Shen

et al. 2005), we did not use the c2 hypersurface to estimate
parameter uncertainties in the fits to closure amplitudes.
Several problems in this approach have been noted by
Doeleman et al. (2001). Namely, because the closure
amplitudes are not independent, a fixed increase cD 2 does
not accurately represent an expected confidence interval. As a
trivial example of this, duplicating a data set will double the
cD 2 but obviously does not constrain model parameters better.

Because there are nominally ~N4 closure amplitudes for N
stations but only ~N 2 visibilities and independent closure
amplitudes, the redundant information can be substantial. Non-
Gaussian noise, especially the high tail in the closure amplitude
distribution, can also invalidate a standard c2 approach.

Figure 3. Fractional amplitude loss as a function of averaging time for a scan
on 3C279 taken in the first epoch. We estimated this fraction for each baseline
and took the maximum values to show in the plot.

Figure 4. Probability density function (PDF) of the standardized closure phases
on all triangles with baselines shorter than lM250 . The solid line shows a
fitted Gaussian, representing zero intrinsic closure phase and non-zero
measurements entirely due to thermal noise. We use this Gaussian fit to
estimate the scaling factor relating each “weight” reported by AIPS for a
complex visibility to the thermal noise.
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Instead, we estimated the uncertainty of the Gaussian
parameters using a Monte Carlo simulation, independently
fitting elliptical Gaussians to 20 different new data sets that
each added additional thermal noise to the original complex
visibilities with equal standard deviation to their original
thermal noise before constructing the closure amplitudes for
each set. We then report uncertainties given by the scatter in the
fitted parameters. Note that because this procedure decreases
the S/N of each measurement by a factor of 1 2 , it
conservatively estimates the parameter uncertainties. Table 1
gives our best-fit model and its associated uncertainty in each
epoch.

4.2. Fitting an Elliptical Gaussian Using Self-calibration

We also fit an elliptical Gaussian to the complex visibilities
using “self-calibration.” This approach fits the Gaussian model
simultaneously with time-dependent complex station gains. In
this case, measurement uncertainties are described simply as
additive complex Gaussian noise, and so there is neither bias
nor non-Gaussian noise to contend with, even when the S/N is
low. Thus, self-calibration can reliably utilize weaker detec-
tions than the closure-only analysis.

A concern for self-calibration is that the derived model can
be heavily biased by the input self-calibration model (the initial
guess for the source structure), especially if the minimization is
not permitted to iteratively converge (Bower et al. 2014b

illustrates this unsurprising bias for self-calibration with a
single iteration). A second concern is that parameters reported
for self-calibration are often computed without accounting for
the uncertainties in the self-calibration parameters—the cD 2 is
explored over the space of model parameters while holding the
best-fit self-calibration solution constant. Such estimates can
significantly underestimate model parameter uncertainties.
We self-calibrated our data by independently deriving gain

solutions for every 10 s integration. We confirmed that the self-
calibration (iteratively) converged to the same solution
regardless of the initially specified model. Specifically, we
checked convergence by comparing the results with two initial
models: a point source and a 500 μas circular Gaussian source.
We then use the c2 hypersurface of both the self-calibration

and elliptical Gaussian parameters to evaluate uncertainties in
the model. We only included points with >S N 3/ to avoid
potentially spurious or corrupted detections. This restriction
eliminates »10% of our data but only <2% of the LMT
detections because of their higher S/N. The best-fit model in
each epoch and the corresponding model uncertainties are
given in Table 1.
We also repeated the estimate of uncertainties in the

Gaussian model parameters while holding the self-calibration
solution constant and equal to the best-fit self-calibration
solution (this is the most straightforward self-calibration
approach in AIPS, for instance). The derived Gaussian
parameter uncertainties were a factor of ~6 smaller for the
major and minor axes, and were a factor of~10 smaller for the
position angle, showing that the self-calibration uncertainties
are a critical part of the error budget even when the self-
calibration is allowed to iteratively converge.

4.3. Self-calibration Versus Closure-only Analysis

There has been considerable discussion in the literature
about whether self-calibration or closure-only analysis is
preferable for fitting Gaussian models to Sgr A* (e.g.,
Doeleman et al. 2001; Bower et al. 2004, 2014b; Shen
et al. 2005). We have performed both analyses and found
consistent results both in the best-fit models and for their
associated parameter uncertainties when the self-calibration
model uncertainties are properly taken into account. We do find
that the self-calibration uncertainties are still smaller by a factor
of ~2, even after accounting for uncertainties in the self-
calibration solution. Overall, our data suggest that both
approaches should be used and checked for consistent results;
differences may highlight problems in the assumptions for
deriving the uncertainties of either model.

4.4. The Role of the LMT

Prior attempts to constrain the minor (NS) axis size of
Sgr A* have met with varied success. Shen et al. (2005), who
analyzed closure amplitudes, could only determine an upper
bound for the minor axis size; likewise, Lu et al. (2011), who
self-calibrated to an elliptical Gaussian model, found that in 2
out of 10 observing epochs the elliptical model is under-
determined. When LMT baselines are excluded from the
analysis presented here, the results are similar. Specifically,
even when including weak detections, self-calibration to the
BD183C data without the LMT gave a minor axis size of

m153 15 as. However, in BD183D, the self-calibration finds
a best-fit minor axis of m-

+67 as67
40 (i.e., a size of zero is

Figure 5. Examples of closure amplitudes on two quadrangles. The points
show scan-averaged closure amplitudes. The lines and shaded regions show the
best-fit model from self-calibration in each epoch and s1 uncertainty.
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excluded at a significance of s<1 ). Likewise, in both epochs,
fits using only closure amplitudes could only estimate an upper
bound for the minor axis size, so the self-calibration solutions
must be interpreted with caution. We then conclude that past
measurements could only confidently measure an upper bound
for the minor axis size of the scattered image of Sgr A* at
l = 3.5 mm in individual observing epochs. This analysis
confirms that inclusion of the LMT baselines is essential to the
robust determination of the intrinsic size in the north–south
direction. This result is unsurprising because the geographical
location and size of the LMT significantly improves the north–
south coverage and sensitivity of the VLBI array.

5. THE INTRINSIC SIZE OF SGR A*

The size of the scattering ellipse can be estimated based on
the wavelength-dependent size of Sgr A* at wavelengths
longer than a few cm. Bower et al. (2006) determined the
normalization of the scattering law to be given according to
1.31 × 0.64 mas cm−2 at 78° east of north. The uncertainties in
these values are ±0.03 mas in major axis size, +0.04 and
−0.05 mas in minor axis size and ±1° in position angle. At
3.5 mm, this law gives scattering sizes of m159.2 3.6 as and

m-
+77.8 as6.1
4.9 for major and minor axis, respectively. This ellipse

is smaller that the ellipse measured at both epochs from closure
quantities and self-calibration, which means that we are
detecting the intrinsic structure of the source. However, Psaltis
et al. (2015) have also analyzed the set of measured sizes of
Sgr A* and suggest that there are large systematic errors in the
minor axis size. Indeed, our comparison of self-calibration and

closure-only results reinforces the suspicion that uncertainties
derived in previous experiments may be systematically low.
We deconvolve the measured ellipse with the scattering

ellipse to determine the intrinsic size and orientation of Sgr A*.
To properly account for the errors, we perform a Monte Carlo
simulation. For this simulation we create 10,000 realizations of
the observed ellipse by taking independently a major axis size,
a minor axis size, and a position angle from Gaussian
distributions with standard deviations equal to the errors given
in Table 1. For each of these realizations we similarly create a
realization of the scattering ellipse, with parameters taken from
Gaussian distributions that have a variance equal to the
quadratic sum of the errors reported by Bower et al. (2006)
and the systematic errors by Psaltis et al. (2015). These
systematic errors are 3% in the major axis, 25% in the minor
axis, and 12% in the position angle. We then take the
deconvolution with the observed ellipse for each realization
and compute the ratio of major to minor axis, Aint. The
resulting distributions are symmetric Gaussians for the intrinsic
major axes with means and standard deviations given in
Table 2. The distributions for minor axis, position angle, and
axial ratio are non-Gaussian, so we give for those the median
and the 15.87th and 84.13th percentiles ( s- and s+ ) in
Table 2. We note that errors estimated using this approach are
comparable to those derived by standard error propagation.
Within the accuracy of our measurements, we do not see
significant variations from one epoch to other in the intrinsic
sizes of major and minor axis, and in position angle. For our
two observations, we performed a weighted average of the
closure and self-calibrated intrinsic size estimates to arrive at an
intrinsic ellipse of m m ´ -

+147 6 as 120 as13
10 , at -

+88 3
7 for the

Table 1

Summary of Elliptical Gaussian Fits to 3 mm VLBI of Sgr A*

BD183C BD183D Doeleman+(′01) Shen+(′05) Lu+(′11)
Closure Amp. Self-Calibration Closure Amp. Self-Calibration Self-Calibration Closure Amp. Self-Calibration

Major axis m214.9 4.0 as m212.7 2.3 as m217.7 5.0 as m221.7 3.6 as m180 20 as m-
+210 as10
20 m210 10 as

Minor axis m139.0 8.1 as m138.5 3.5 as m147.3 8.0 as m145.6 4.0 as L m-
+130 as130
50 m130 10 as

P.A.   80 .8 3 .2   81 .1 1 .8   80 .2 4 .8   75 .2 2 .5 L -
+79 33
12   83 .2 1 .5

Axial ratio 1.55 ± 0.08 1.54 ± 0.04 1.48 ± 0.07 1.52 ± 0.05 L -
+1.62 0.6
20 1.62 ± 0.11

Note. Our elliptical Gaussian fits to the scattered image of Sgr A* at l = 3.5 mm and previously published values. Major and minor axes are given as the FWHM.
Doeleman et al. (2001) found that their data did not warrant an elliptical Gaussian model rather than a circular Gaussian; their quoted uncertainties include the effects
from uncertainties in the self-calibration solution and from thermal noise. Shen et al. (2005) only placed upper limits on the minor axis and did not measure anisotropy
at high statistical significance. Lu et al. (2011) reported fits and uncertainties from self-calibration and used the spread of fitted size among different epochs to estimate
the overall uncertainty. However, their reported spread in fitted values from epoch to epoch did not include the two epochs for which an elliptical model is
underdetermined. Consequently, the uncertainties reported by Lu et al. (2011) in minor axis size are likely too small by a factor of ∼2–3. Note that the axial ratio and
its corresponding uncertainty was not reported in Shen et al. (2005) or Lu et al. (2011); we derived these quantities using a skew normal distribution for the Shen et al.
(2005) results and a normal distribution for Lu et al. (2011), each with uncorrelated errors on the major and minor axes.

Table 2

Summary of Intrinsic Sizes of Sgr A*at 3.5 mm

BD183C BD183D Doeleman+(′01) Shen+(′05) Lu+(′11)
Closure Amp. Self-Calibration Closure Amp. Self-Calibration Self-Calibration Closure Amp. Self-Calibration

Major axis m145 9 as m142 7 as m149 9 as m155 8 as m82 46 as m-
+136 as18
32 m139 17 as

Minor axis m-
+114 as19
14 m-

+113 as17
11 m-

+124 as17
13 m-

+122 as16
11

L m-
+104 as164
65 m102 21 as

P.A. -
+88 4
9 -

+89 4
10 -

+87 4
13 -

+69 5
3

L


-

+82 34
15   95 10

Axial ratio -
+1.27 0.15
0.26

-
+1.25 0.12
0.22

-
+1.20 0.12
0.21

-
+1.27 0.12
0.19

L -
+1.31 2.07
0.87 1.36 ± 0.33

Note. We apply the same deconvolution scheme to the measured sizes by Doeleman et al. (2008), Shen et al. (2005), and Lu et al. (2011) to arrive at the values listed
in this table. Notice that the measurement by Lu et al. (2011) resulted from an average over eight epochs, while here we are able to determine the intrinsic size and
orientation at individual epochs.
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closure approach and m m ´ -
+148 5 as 118 as10
8 , at   81 3

for the self-calibration approach. The corresponding axial ratios
of major to minor intrinsic size are -

+1.23 0.09
0.16 and -

+1.26 0.08
0.14,

respectively. Considering that the Schwarzschild radius (Rsch)

for a black hole of mass ´ M4.3 106 (Gillessen et al. 2009) at
a distance of 8.34 kpc (Reid et al. 2014) is m10.2 as, the
intrinsic angular sizes can be translated into physical sizes. The
resulting values are  ´ -

+
R R14.4 0.6 11.8sch 1.3

1.0
sch for the

closure approach and  ´ -
+

R R14.5 0.5 11.6sch 1.0
0.8

sch for the
self-calibration approach.

We now use past measurements of the scattered image at 1.3,
7, and 13.5 mm to study the dependence of the intrinsic size as
a function of wavelength. We again use the kernel from Bower
et al. (2006) to remove the effects of scattering and determine
the intrinsic size of major and minor axis at these wavelengths.

At 7 mm, the scattered 2D image has been reported by
Bower et al. (2014b), Lu et al. (2011), and Shen et al. (2005).
At 13.5 mm, there are measurements by Bower et al. (2004)
and Lu et al. (2011). We follow the approach described above
for deconvolution of these five size measurements with the
scattering ellipse. At 1.3 mm, the (NS) apparent size is not
well-constrained (Doeleman et al. 2008), so the scattered
source at this wavelength is assumed to be given by a circular
Gaussian distribution. We find that intrinsic sizes at a given
wavelength from measurements by different authors are
consistent within the errors.

We note that when the uncertainties reported by Psaltis et al.
(2015) are included in the error budget of the scattering kernel,
the axial ratio of intrinsic sizes at 7 mm is not statistically
significant. Specifically, an axial ratio of -

+2.78 4.94
4.79 is found and

then this measurement should be treated with caution.
To investigate if the axial ratio scales with wavelength, we

show in Figure 6 the intrinsic sizes derived from the
measurements by Doeleman et al. (2008) at 1.3 mm, Bower
et al. (2014b) at 7 mm, Bower et al. (2004) at 13.5 mm, as well
as the measurements from Lu et al. (2011) at 3.5, 7 and
13.5 mm, where we have multiplied the minor axis uncertainty

at 3.5 mm by a factor of two. Our weighted averages of sizes
derived from the closure approach at 3.5 mm using the new
observations presented here are also shown as open circles.
Assuming that the data can be represented by a lb law, we

performed a weighted least-squares linear fit to all measure-
ments obtaining b = 1.34 0.13. If the power-law indices for
the major and minor axes are allowed to differ, the respective
fits give b = 1.35 0.14 and b = 1.26 0.38. The errors in
the power-law indices are taken from the diagonal entries of the
covariance matrix constructed for the fits. Hence, within the
errors of the measurements, the intrinsic size of the major and
minor axes follow the same power law. More precise
measurements at wavelengths other than 3.5 mm are necessary
to enable a robust fit from the minor axis data alone and an
investigation of the dependence of the intrinsic shape on
wavelength.
The observed size at 3.5 mm also gives an absolute upper

limit on the scatter broadening along the minor axis. Our
measurements at both epochs are only 1.4–1.7σ above the
minor axis suggested by Psaltis et al. (2015) at 3.5 mm,
significantly constraining the scattering kernel.

6. DISCUSSION

6.1. Effects from Refractive Scattering

The “blurring” from interstellar scattering that causes the l2
scaling of the scattered image of Sgr A* at wavelengths longer
than a few centimeters is an ensemble-average effect and so
only strictly applies when the scattered image is averaged over
a long period of time. Diffractive scattering of the intrinsic
image with an elliptical Gaussian kernel does not affect closure
phase (Fish et al. 2014). However, within individual observing
epochs, refractive scattering causes the image to become
fragmented and it does introduce stochastic non-zero closure
phase variations (Johnson & Gwinn 2015). The imprint of
these stochastic fluctuations can then be used to constrain
properties of both the intrinsic source and the turbulence in the
scattering material (Gwinn et al. 2014).
Refractive scattering causes flux modulation and positional

variation (image wander) at scales smaller than the scattered
size (Rickett et al. 1984; Blandford & Narayan 1985; Cordes
et al. 1986; Narayan 1992). On baselines that are long enough
to resolve the ensemble-average image, the refractive scattering
introduces small-scale power from substructure that affects
interferometric visibilities and which can be estimated
analytically (Goodman & Narayan 1989; Narayan & Goodman
1989; Johnson & Gwinn 2015). However, effects from
refractive scattering on closure amplitudes and closure phases
for baselines that weakly or moderately resolve the image are
difficult to estimate analytically. For this reason, we use
numerical simulations of the refractive scattering to estimate
the expected effects on our measurements.
Following the methodology outlined in Johnson & Gwinn

(2015), we generated an ensemble of 500 scattered images of a
circular Gaussian source with an intrinsic FWHM of m130 as.
For each image, we generated a scattering screen with ´2 213 13

correlated random phases corresponding to a Kolmogorov
spectrum for the turbulence and we determined the strength of
the scattering by extrapolating the frequency-dependent
angular size from longer wavelength measurements (Bower
et al. 2006). We assumed a scattering screen, placed at a
distance of 5.8 kpc from the Galactic Center, as inferred by the

Figure 6. Plot of intrinsic major (blue) and minor (red) axis size vs.
wavelength. The open circles at 3.5 mm correspond to the measurements
reported in this work from closure approach. The squares at 1.3, 3.5, 7, and
13.5 mm were obtained by reanalyzing the measurements from Doeleman et al.
(2008), Bower et al. (2004, 2014b), and Lu et al. (2011). The dotted lines
represent a fit to a power-law trend with common index of 1.34 ± 0.13 for both
major and minor axes.
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combination of angular and temporal broadening from the
Galactic Center magnetar (Bower et al. 2014a; Spitler et al.
2014). Refractive effects are, however, rather insensitive to the
placement of the screen, with their strength scaling with -D 1 6,
where D is the observer-screen distance (Johnson & Gwinn
2015). Figure 7 shows an example image from these scattering
simulations.

Each screen phase “pixel” had a linear dimension of
approximately m0.5 as corresponding to ´2 10 km5 , which
is still insufficient to resolve the phase coherence length, r0, of
the scattering screen, which is ( ) ( )´1200 km 2400 km as
determined by the angular size, qscatt of the scattering kernel
( l q~r0 scatt). Because of this limitation, we set the inner
scale, rin, of the scattering to be equal to the pixel resolution to
ensure that the unresolved phase variations were smooth. For
this reason, our simulations have slightly more refractive noise
than expected, by a factor of ( )» ~r r 1.6in 0

1 6 , where r0 is the
phase coherence length of the scattering along the major axis.
We divide the fluctuations of our simulations by this correction
factor to derive comparisons with data.

Our simulations gave a root mean square flux modulation of
6.6%, which is reasonably close to the result from analytic
calculations of 5.6%. They also predict fractional modulation
of the major and minor axes of the measured image of 3.1%
and 1.5%, respectively, or about 7 μas for the major axis and
2 μas for the minor axis. The expected fluctuation in the
position angle of the scattered image is 2 .0. These fluctuations
are potentially detectable among a set of multiple epochs when
the LMT participates in VLBI with the VLBA. However,
because our two observing epochs with the LMT are on
consecutive days and the scattering likely evolves on a
timescale of a week, the inter-epoch consistency in our
measured parameters (see Table 1) is expected. The timescale
for the stochastic fluctuations to evolve is approximately given
by the transverse size of the scatter-broadened image at the
location of the scattering material divided by the transverse
velocity of the scattering material (Johnson & Gwinn 2015).
Assuming a transverse velocity of 50 km s−1, we derive a
characteristic timescale of approximately two weeks for the
refractive scattering to evolve.

The fluctuations in visibility phase on each baseline are
primarily determined by the visibility amplitude on that
baseline. For an ensemble-average normalized visibility
amplitude of ∣ ∣ V0.1 0.5, the phase fluctuations in our
numerical simulations are approximately ∣ ∣ ( )V0.05 radians for
long east–west baselines and ∣ ∣ ( )V0.03 radians for long north–
south baselines. However, because the phase fluctuations are
correlated on similar baselines, the closure phase fluctuations
are not well-approximated by the quadrature sum of these
fluctuations. For example, phase fluctuations from image
wander are entirely canceled in closure phase.
Figure 8 compares our measured closure phases as a function

of time on three representative baseline triangles with the root
mean square fluctuations expected from refractive scattering.
Our data exhibit some non-zero closure phases at high
statistical significance ( s4 ), but these values are consistent
with being introduced by the scattering. Thus, while we find
evidence for non-zero closure phases, we do not find evidence
for intrinsic non-zero closure phases. With additional observing
epochs, the level of closure phase fluctuations could be used to
constrain the scattering kernel and intrinsic structure of Sgr A*
without relying on extrapolating the scattering kernel from
longer wavelengths.

6.2. Constraints on the Stratified Emission Structure of Sgr A*

Our measurement of intrinsic source size at 3.5 mm and thelb
intrinsic size scaling provides a crucial constraint for any model
of the emission from Sgr A*. Models that successfully reproduce
the radio properties of Sgr A* usually separate outflow from
accretion inflow for the emission. On the one hand, RIAF
models (e.g., Yuan et al. 2003; Broderick et al. 2009) suggest
that the submillimeter emission stems from thermal electrons in
the inner parts of the accretion flow. The intrinsic intensity
profile, however, cannot be well described by a Gaussian
distribution (Yuan et al. 2006). In the semi analytical jet model
of Falcke & Markoff (2000), on the other hand, the intrinsic
structure is comprised of two components, the jet and the nozzle,
whose length and width at 3.5 mm are m~160 as (15.7 Rsch) and

m~48 as (4.7 Rsch), respectively. At this frequency the nozzle
dominates the millimeter emission. In this model the jet length
scales as lm, with ~m 1, and the axial ratio of major to minor
axis of the jet is ∼3 at 3.5 mm. While our results support a
power-law dependence of the intrinsic size close to 1, we have
found a somewhat symmetric deconvolved size, which does not
agree with the intrinsic anisotropic structure predicted by such jet
model.
More sophisticated models in which jets are coupled to a

RIAF, are equally successful in explaining the spectrum of
Sgr *A . Mościbrodzka et al. (2014) conclude that the radio
appearance is dominated by the outflowing plasma; however,
the geometry of the emitting region depends on model
parameters such as electron temperature in the jet and accretion
disk, the inclination angle of the jet, and the position angle of
the black hole spin axis. Nevertheless, their best (bright jet)
models are within the size constraint imposed by our
measurements at 3.5 mm.
To unambiguously distinguish between the various models

more accurate closure phase measurements are needed. In
addition, multi-epoch observations will be essential to
unambiguously distinguish between intrinsic structure and
refractive substructure from interstellar scattering. The LMT
has recently joined the EHT for 1.3 mm VLBI observations of

Figure 7. Simulated scattered images of Sgr *A at l = 3.5 mm; color denotes
brightness on a linear scale, shown at the far right and image contours are 10%
to 90% of the peak brightness, in steps of 10%. The intrinsic source is modeled
as a circular Gaussian with a FWHM of m130 as; the ensemble-average
scattered image has a FWHM of ( ) ( )m m´206 as 151 as . The left image shows
an approximation of the ensemble-average image, obtained by averaging 500
different scattering realizations. This image illustrates the “blurring” effects of
scattering when averaged over time. The right image shows the appearance for
a single epoch, which exhibits scattering-induced asymmetries that would
persist over a characteristic timescale of approximately one week. Each image
has been convolved with a m20 as restoring beam to emphasize the features that
are potentially detectable at l = 3.5 mm.
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Sgr A* and ALMA is planned to do so in the near term.
Because at 1.3 mm the source structure is less contaminated by
scattering, the EHT (Doeleman et al. 2009) operating in its full
configuration will enable image reconstruction of Sgr *A , and
the first direct images of this nearest supermassive black hole.

7. SUMMARY

We have used VLBI to study Sgr A* at 3.5 mm wavelength.
Our results are the first to use the LMT as part of a VLBI
network, providing significant improvements to the VLBA,
especially in the north–south array coverage. We find that the
image of Sgr A* at this wavelength is well characterized as an
elliptical Gaussian and we determine a robust measurement of
the intrinsic size at this wavelength separately in two observing
epochs. When our data are analyzed without including the
LMT, we are unable to meaningfully constrain the intrinsic
north–south structure because the LMT adds the critical north–
south baseline coverage. We also find that previous experi-
ments reported significantly underestimated uncertainties in the
minor axis size, principally because they did not consider the
systematic errors in the scattering kernel. Our data show non-
zero closure phases in Sgr A*, but we demonstrate that these
values are consistent with being introduced by refractive
scattering in the ionized interstellar medium; they do not yet
provide evidence for asymmetric intrinsic structure at 3.5 mm
wavelength. Our measurements provide guidance for simula-
tions and theories that describe the energetic accretion and
outflow from Sgr A* and they highlight the importance of
refractive interstellar scattering for understanding the intrinsic
structure of Sgr A* with short-wavelength VLBI imaging.
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