
Teor�� �Imov�r. ta Matem. Statist. Theor. Probability and Math. Statist.
Vip. 70, 2004 No. 70, 2005, Pages 123–134

S 0094-9000(05)00636-8
Article electronically published on August 12, 2005

THE INVARIANCE PRINCIPLE FOR A CLASS
OF DEPENDENT RANDOM FIELDS

UDC 519.21

D. V. PORYVAĬ

Abstract. Sufficient conditions for the tightness of a family of distributions of par-
tial sum set-indexed processes constructed from symmetric random fields are obtained
in this paper. We require that the moments of order s, s > 2, exist. The depen-

dence structure of the field is described by the β1-mixing coefficients decreasing with
a power rate. Assuming that a field is stationary and applying a result of D. Chen
(1991) on the convergence of finite-dimensional distributions of the processes we ob-
tain the invariance principle.

1. Introduction

The asymptotic behavior of partial sum set-indexed processes is studied in a number
of papers (see, for example, [2], [3], [6], [7], [11]). The results of the above papers are
obtained for smoothed partial sums defined on a subclass A of the Borel sets of the
cube [0, 1]d. More precisely, let X = {Xj , j ∈ Zd} be a stationary field defined on some
probability space (Ω, D, P). Consider the processes

Zn(A) = n−d/2
∑
j∈Zd

bnj(A)Xj, A ∈ A, n ∈ N,

where j = (j1, . . . , jd), Cj = (j1 − 1, j1]× · · · × (jd − 1, jd] is a unit cube, | · | is Lebesgue
measure in Rd, bnj(A) = |(nA) ∩ Cj |, and nA = {nx : x ∈ A}.

Let A be the closure of A with respect to the pseudometric dL(A, B) = |A�B| defined
for A, B ∈ A. Denote by C(A) the space of real continuous functions on A equipped with
the sup-norm.

We consider symmetric fields X (see, for example, §4.2 in [12]) constructed from
identically distributed random variables Xj . Recall that a field X is called symmetric if
the finite-dimensional distributions of the fields X and

εX = {εjXj , j ∈ Zd}

coincide where ε = {εj , j ∈ Zd} is the Rademacher field that does not depend on X.
We are interested in obtaining sufficient conditions for the invariance principle, that

is, conditions for the convergence in distribution in the space C(A) of the processes Zn

to the process
√

ηZ as n → ∞, where Z is a standard Brownian motion,

η =
∑

k∈Zd

E(X0Xk | I),
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and I is the σ-algebra of events that are invariant under the shifts of the field X (Z does
not depend on η). The standard Brownian motion Z is defined as a mean zero Gaussian
process with sample paths in C(A) and such that E(Z(A)Z(B)) = |A∩B| for A, B ∈ A.
The existence of such a process Z is proved in [9] under some entropy conditions posed on
the class A. These conditions are given in terms of the so-called entropy with inclusion.

We need more notation to describe the dependence structure of the field X. Let
β(σ1, σ2) be the coefficient of absolute regularity of the σ-algebras σ1, σ2 ⊂ D (see, for
example, [1]). Put

ρ(G1, G2) = inf{‖x − y‖ : x ∈ G1, y ∈ G2}
where G1, G2 ⊂ Zd and ‖x‖ = max1≤i≤d |xi| for x = (x1, . . . , xd) ∈ Rd. For n ∈ N and
k, m ∈ N ∪ {∞} we introduce the mixing coefficients:

(1) βX(n, k, m) = sup{β(σX(G1), σX(G2)) : �(G1) ≤ k, �(G2) ≤ m, ρ(G1, G2) ≥ n}
where the sets G1 and G2 are separated by some hyperplane in Rd, σX(G) is the σ-
algebra generated by the field X in the set G ⊂ Zd, and �(G) denotes the cardinality
of G. For x, y, z ≥ 1, we put βX(x, y, z) = βX([x], [y], [z]) where [·] is the integer part of
a number.

The convergence of finite-dimensional distributions of the processes Zn is proved in [7]
under a condition on the dependence of σX({j}) and σX(G), such that

ρ({j}, G) ≥ n, n ∈ N.

At the same time, the condition on the tightness of the family of distributions of the
processes Zn in C(A) relies on the dependence of σX({i, j}) and σX(G) such that

ρ({i, j}, G) ≥ n, n ∈ N.

The main aim of this paper is to obtain a sufficient condition for the tightness of the
distributions of Zn in terms of the coefficients βX(n, 1, m), so we avoid two-point subsets
of Zd in (1) (instead, the condition will involve those G1 for which �(G1) = 1). There
are, of course, some extra conditions on the moments of the field X and on the structure
of the class A.

To solve the problem we generalize the method of the paper [3] to the case of weakly
dependent fields. This generalization is due to the so-called reconstruction technique
(see, for example, §1.2.2 in [8]) developed in the paper [5]. Our method also uses trun-
cation of the original random variables, appropriate approximations of elements of the
class A, and some maximal inequalities.

2. Entropy conditions

We introduce the following conditions posed on the entropy with inclusion for a fam-
ily A. Let g(ε), ε ∈ [0, 1], be an increasing function such that g(ε) → ∞ as ε → 0 and

(2)
∫ 1

0

(ε−1H(ε))1/2g(ε) dε < ∞

where H(ε) = log NI(ε, A, dL) and NI(ε, A, dL) denotes the minimal number k ≥ 1 for
which there are measurable sets A

(1)
i and A

(2)
i of [0, 1]d, 1 ≤ i ≤ k, such that for all

A ∈ A there exists i such that A
(1)
i ⊂ A ⊂ A

(2)
i and

∣∣A(2)
i \ A

(1)
i

∣∣ ≤ ε.
It follows from metric entropy condition (2) that A is a compact set, and therefore

C(A) is a separable space. We define the exponent r of the metric entropy of A by
r = inf{s > 0: log NI(ε, A, dL) = O(ε−s) as ε → 0}. It is easy to see that metric
entropy condition (2) holds if r < 1. Therefore all the classes of sets studied in [3] satisfy
condition (2).
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3. Tightness

Here is the main result of the paper.

Theorem 1. Let X be a symmetric field of identically distributed random variables Xj.
Assume that A is a family of subsets of [0, 1]d satisfying metric entropy condition (2).
Moreover let

(i) E |X0|s < ∞ for some s > 2;
(ii) lim supε↓0 f2τ (ε) · βX

(
g1/d(ε) − 1, 1, f2τ (ε)/g(ε)

)
< ∞ where τ = s/(s − 2) and

f(ε) = (ε−1H(ε))1/2g(ε).
Then the family of distributions of the processes Zn = {Zn(A) : A ∈ A} is tight in the
space C(A).

Proof. Given δ > 0 consider the family of sets

Sδ = {A \ B : A, B ∈ A such that |A \ B| ≤ δ}.
Since NI(ε, Sδ, dL) ≤ NI(ε/2, A, dL)2, condition (2) holds for Sδ. Thus the process Z is
continuous in the space (Sδ, dL). Let

‖f‖D = sup
x∈D

|f(x)|

for all real functions f defined on the set D. The functional

w(Zn, δ) = sup{|Zn(B) − Zn(C)| : B, C ∈ A, |B�C| < δ}, δ > 0,

is the modulus of continuity of the process Zn in the space C(A). It is clear that Zn is a
random element in the space C(A). Since w(Zn, δ) ≤ 2‖Zn‖Sδ

, the family of distributions
is tight if for all M > 0

(3) lim
δ→0

lim sup
n→∞

P(‖Zn‖Sδ
> M) = 0.

We split the proof of (3) into several steps.
Step 1. First we truncate the random variables Xj . According to (i) there is a

sequence {cn}n≥1 such that cn → 0 and limn→∞ nd P(|X0|s > c2
nnd) = 0. If

b2
n = n2d/s−dc4/s

n ,

then limn→∞ nd P(X2
0 > b2

nnd) = 0. Fix constants M and δ > 0 and put

(4) γn = inf
{
γ > 0: nd P(X2

0 > γ2nd) < Mδb−1
n

}
∧ bn.

Let

Z ′
n = n−d/2

∑
j

bnjXj �{|Xj |>bnnd/2}, Z ′′
n = n−d/2

∑
j

bnjXj �{γnnd/2<|Xj |≤bnnd/2} .

If the sequence {bn} is defined as above, then

nd P
(
|X0| > γnnd/2

)
≤ Mδb−1

n

and bnj(·) ≤ 1. Thus by the Chebyshev inequality

P (‖Z ′
n‖Sδ

> M) ≤ P

⎛⎝ ⋃
0≤j≤n1

{
|Xj | > bnnd/2

}⎞⎠ = o(1),

P(‖Z ′′
n‖Sδ

> M) ≤ M−1 E ‖Z ′′
n‖Sδ

≤ M−1bn

∑
0≤j≤n1

P
(
|Xj | > γnnd/2

)
≤ δ.
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Here 1 = (1, . . . , 1) and 0 ≤ j ≤ n1 is equivalent to the inequalities 0 ≤ ji ≤ n for all
i = 1, . . . , d. Therefore condition (3) holds in the general case if it holds for the truncated
partial sum process

ZT
n = Zn − Z ′

n − Z ′′
n = n−d/2

∑
j

bnjXj �{|Xj |≤γnnd/2}

instead of Zn.
Step 2. We apply the so-called stratification procedure where the interval (0, γnnd/2]

is partitioned into appropriate subintervals. Let F (x) = P(|X0| > x), x ∈ R+. Put

QF (u) = inf{x ≥ 0: F (x) ≤ u}, u ∈ (0, 1].

For 0 < β < 1 let µk = βk and ak = QF (µk), k = 0, . . . , kn, where

kn = max
{

k : ak < γnnd/2
}

.

Then P(|X0| > ak) ≤ µk for k = 0, . . . , kn. Consider the intervals Jk = (ak, ak+1],
0 ≤ k ≤ kn, where akn+1 = γnnd/2.

If Yj = |Xj |, then
ZT

n =
∑

k≤kn

θkνnk

where θk = ak+1µ
1/2
k and

νnk(A) =
(
ndµk

)−1/2 ∑
j

bnj(A)a−1
k+1Xj �{Yj∈Jk} .

It is clear that a−1
k+1Yj ≤ 1 if Yj ∈ Jk. It is easy to see that

kn∑
k=0

θ2
k =

kn∑
k=0

a2
k+1µk ≤

∞∑
k=0

Q2
F (βk+1)βk ≤ 1/(β(1 − β)) EX2

0 < ∞

for all n ∈ N.
Below we use the functions f and H that are introduced above. The only properties

of the functions H and f we use in the proof are that H(ε) is an upper bound of
log NI(ε, A, dL) and f is integrable. Thus without loss of generality we may assume that

(5) H is continuous, decreases, and H(ε) ≥ 1 + log(ε−1)

and f is a decreasing function. Hence its inverse function f inv is well defined. Put
δnkn

= f inv((ndµkn
)1/2/4). For 0 ≤ k < kn we choose δnk such that

(6) ndµk = 16H(δnk)g2(δnkn
)δ−1

nk .

This can be done, since H has the inverse function. Taking into account (4) we see
that ndµkn

≥ Mδb−1
n → ∞, whence δnkn

→ 0 by (6). Note that the aim of the second
truncation above, that is, the subtraction of the process Z ′′

n , is to satisfy the latter
relation.

Step 3. Now we consider a finite net of subsets that approximate νnk on A ∈ Sδ by
its values on the subsets of the net that are close to A. The family A is totally bounded,
thus there are finite nets D

(l)
nk, l = 1, 2, whose cardinalities are less than or equal to

exp(2H(δnk)), respectively, and such that for all A ∈ Sδ there is D
(l)
nk(A) ∈ D

(l)
nk for which

D
(1)
nk (A) ⊂ A ⊂ D

(2)
nk (A) and

∣∣D(2)
nk (A) \ D

(1)
nk (A)

∣∣ ≤ 2δnk.
Since νnk is additive, we represent ZT

n as follows:

(7) ZT
n (A) =

∑
k≤kn

θkνnk

(
D

(1)
nk (A)

)
+

∑
k≤kn

θkνnk

((
A \ D

(1)
nk (A)

))
= Z(1)

n (A)+Z(2)
n (A).
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Step 4. Further we apply the reconstruction technique. Let

Ln =
{
j/n : j ∈ {1, 2, . . . , n}d

}
and Cn,j = (j − n−11, j]. Let [0, 1]d be represented as follows: [0, 1]d =

⋃
l∈Lpn

Cpn,l

where pn = [n/mn], md
n = N , and N = g(δnkn

). The intersections of an arbitrary cube
Cpn,l with cubes of the family {Cn,j , j ∈ Ln} form a family of smaller cubes. These small
cubes are numbered in every cube of the family {Cpn,l, l ∈ Lpn

} and denoted by Inli,
i = {1, . . . , N}. Put

Ini =
⋃

l∈Lpn

Inli.

Then every element Ini is a union of cubes whose sides are of length 1/n and the distances
between the cubes are at least 1/pn − 1/n.

The reasoning above implies that

νnk(A) =
N∑

i=1

νnk(A ∩ Ini) =
N∑

i=1

∑
l∈Lpn

νnk(A ∩ Inli)

and

νnk(A ∩ Inli) = (ndµk)−1/2
∑

j∈nS(n,l,i)

|n(A ∩ Inli ∩ Cn,j)|a−1
k+1Xj �{Yj∈Jk}

where
S(n, l, i) = {j ∈ Ln : Cn,j ∩ Inli = ∅}.

If n and i are fixed, then the set S(n, l, i) contains only a single element and the distance
between these sets is at least 1/pn − 1/n.

To every j ∈ nS(n, l, i) there corresponds a triple (n, l, i). Then

Ynli = Yj

for j ∈ nS(n, l, i) and νnk(A ∩ Inli) = (ndµk)−1/2|n(A ∩ Inli)|a−1
k+1Xnli �{Ynli∈Jk}.

The following result plays the key role in the reconstruction technique.

Lemma 1 ([5]). Let X and Y be two random variables assuming values in Polish
spaces S1 and S2, respectively. Suppose that the probability space where X and Y are
defined is essentially rich in the sense that there exists a random variable U that is uni-
form on the interval [0, 1] and independent of both X and Y . Then there exists a random
variable Y ∗ having the same distribution as Y , independent of X, and such that

P(Y = Y ∗) = β(σ(X), σ(Y )).

Moreover the random variable Y ∗ can be represented as Y ∗ = f(X, Y, U) where

f : S1 × S2 × [0, 1] → S2

is some measurable function.

Let ψ be a one-to-one mapping from [1, �(Lpn
)]∩N to Lpn

such that ψ(m) <lex ψ(m′)
for all 1 ≤ m < m′ ≤ �(Lpn

) where the symbol <lex stands for the lexicographic order.
Then

{Xnli, l ∈ Lpn
} = {Xn,ψ(m),i, m ∈ [1, �(Lpn

)] ∩ N}.
Given numbers n and i we use an induction and construct the independent random
variables

{X̃nli, l ∈ Lpn
}

such that the distribution of X̃nli coincides with that of Xnli and

P(X̃nli = Xnli) ≤ βX

(
mn − 1, 1, pd

n

)
.
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At the first step of the induction we put X̃n,ψ(1),i = Xn,ψ(1),i, while at the induction
step r (1 < r < �(Lpn

)) we apply Lemma 1 with

X =
(
X̃n,ψ(m),i

)
1≤m<r

, Y = Xn,ψ(r),i X̃n,ψ(r),i = Y ∗.

As a result we get the inequalities

P(X̃nli = Xnli) = β(σ{X}, σ{Y }) ≤ β
(
σ{Xn,ψ(m),i, 1 ≤ m < r}, σ{Xn,ψ(r),i}

)
.

Put Fni =
⋃

l∈Lpn
{X̃nli = Xnli}. Then

(8) P(Fni) ≤ pd
n · βX

(
mn − 1, 1, pd

n

)
.

This completes the process of reconstruction of the field X.
Step 5. First we prove relation (3) for the process Z

(2)
n (A). We represent Z

(2)
n as

follows:

Z(2)
n (A) =

N∑
i=1

∑
k≤kn

θkνnk

((
A \ D

(1)
nk (A)

)
∩ Ini

)
.

If Uk
nli(A) = n−d/2|n(A ∩ Inli)|�{Ynli∈Jk}, then

|νnk(A)| ≤
N∑

i=1

(µk)−1/2
∑

l∈Lpn

Uk
nli(A).

Since P(Yj ∈ Jk) ≤ µk, we obtain

(µk)−1/2
∑

l∈Lpn

E
(
Uk

nli(A)
)
≤ (ndµk)1/2

∑
l∈Lpn

|A ∩ Inli|

where A is an arbitrary set belonging to B([0, 1]d). This implies for A ∈ Sδ the following
estimate:∣∣∣νnk

((
A \ D

(1)
nk (A)

)
∩ Ini

)∣∣∣ ≤ N∑
i=1

(µk)−1/2
∑

l∈Lpn

Uk
nli

(
D

(2)
nk (A) \ D

(1)
nk (A)

)

≤
N∑

i=1

(µk)−1/2
∑

l∈Lpn

V k
nli

(
D

(2)
nk (A) \ D

(1)
nk (A)

)
+ (ndµk)1/2

∣∣∣D(2)
nk (A) \ D

(1)
nk (A)

∣∣∣
where V k

nli = Uk
nli − E Uk

nli. Let Ṽ k
nli = Ũk

nli − E Ũk
nli where

Ũk
nli(A) = n−d/2|n(A ∩ Inli)|�{|X̃nli|∈Jk}

and λnk = 16N(δnkH(δnk))1/2. Then we estimate P
(
‖Z(2)

n ‖Sδ
> M

)
by

P

⎛⎝ N∑
i=1

∑
k≤kn

θk sup
A∈Sδ

∣∣∣νnk

((
A \ D

(1)
nk (A)

)
∩ Ini

)∣∣∣ >
∑

k≤kn

θkλnk

⎞⎠
≤

N∑
i=1

P(Fni) +
N∑

i=1

∑
k≤kn

Rk
ni

(9)

where

Rk
ni = P

⎛⎝ sup
A∈Sδ

∣∣∣∣ ∑
l∈Lpn

Ṽ k
nli

(
D

(2)
nk (A) \ D

(1)
nk (A)

)∣∣∣∣ > pnkN

⎞⎠ ,

pnkN = (µk)1/2λnk/N − nd/2µk2δnk/N.
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Step 6. Now we are going to apply the Bernstein inequality (see [4]) to estimate Rk
ni.

This can be done, since Ṽ k
nli(E) for E ∈ Sδ are independent random variables. We need

the following estimates: ∣∣∣Ṽ k
nli(E)

∣∣∣ ≤ n−d/2|n(E ∩ Inli)| ≤ n−d/2,(10)

Var
( ∑

l∈Lpn

Ṽ k
nli(E)

)
≤

∑
l∈Lpn

Var
(�{Y0∈Jk}

)
|E ∩ Inli| ≤ |E ∩ Ini|µk.(11)

Putting E = D
(2)
nk (A) \ D

(1)
nk (A) in (10) and (11) and applying the Bernstein inequality

we obtain

Rk
ni ≤

(
�
(
D

(1)
nk

))2

max
A∈Sδ

P

⎛⎝∣∣∣∣ ∑
l∈Lpn

Ṽ k
nli

(
D

(2)
nk (A) \ D

(1)
nk (A)

)∣∣∣∣ > pnkN

⎞⎠
≤ exp

(
4H(δnk) − p2

nkN

2
(
µk2δnk + 1/3n−d/2pnkN

))
.

In view of (6) we have nd/2µkδnk = 4N(H(δnk)δnk)1/2(µk)1/2. Thus

Rk
ni ≤ exp

(
4H(δnk) − 64µkH(δnk)δnk

2(µk2δnk + 2/3δnkµk)

)
= exp(−8H(δnk)).

Then it follows from (5) that

(12)
N∑

i=1

Rk
ni ≤ N exp(−8H(δnk)) ≤ Nδnk ≤ N(δnkH(δnk))1/2.

Condition (2) implies that
∫ δnkn

0
f(ε) dε → 0 as n → ∞. In turn, the latter relation

implies that

(13)
∑

k≤kn

N(δnkH(δnk))1/2 → 0 as n → ∞.

Indeed, put

qnk =
(
ndµk

)1/2
/4 = N (H(δnk)/δnk)1/2

and note that qnk ≤ f(δnk) and qn,k+1 = β1/2qnk. Hence∑
k≤kn

N(δnkH(δnk))1/2 ≤ qnkn
f−1(qnkn

) +
(
1 − β1/2

)−1 ∑
k<kn

(qnk − qn,k+1)f−1(qnk)

≤ qnkn
f−1(qnkn

) +
(
1 − β1/2

)−1
∫ ∞

qnkn

f−1(x) dx

≤
(
1 − β1/2

)−1
∫ δnkn

0

f(ε) dε → 0, n → ∞,

whence
∑

k≤kn
θkg(δnkn

)(δnkH(δnk))1/2 → 0 as n → ∞. Therefore

(14)
∑

k≤kn

N∑
i=1

Rk
ni → 0 and

∑
k≤kn

θkλnk → 0 as n → ∞.

Step 7. Now we prove the relation

(15)
N∑

i=1

P(Fni) → 0 as n → ∞,
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which, in view of (8), follows from ndβX

(
mn − 1, 1, pd

n

)
→ 0 as n → ∞. The latter

relation is equivalent to

(16) ndβX

(
g1/d(δnkn

) − 1, 1, nd/g(δnkn
)
)
→ 0 as n → ∞.

According to (6)

nd =
(

nd

H(δnkn
)N2

)τ

· Hτ (δnkn
)N2τ

nd(τ−1)
=

16τ

(µkn
)τnd(τ−1)

· f2τ (δnkn
)

where τ = s/(s − 2) is defined in the statement of Theorem 1. The construction of µkn

and (4) imply that

lim
n→∞

(µkn
)−τn−d(τ−1) ≤ lim

n→∞
ndbτ

n/(Mδ)τ = 0.

It is clear that the latter relation holds for bn specified above. Then the relation

lim
n→∞

f2τ (δnkn
) · βX

(
g1/d(δnkn

) − 1, 1, f2τ (δnkn
)/g(δnkn

)
)

< ∞

implies (16).
Taking (9), (14), and (15) into account, we see that P

(
‖Z(2)

n ‖Sδ
> M

)
→ 0 as n → ∞.

Step 8. Now it remains to consider the processes Z
(1)
n defined by (7). When consider-

ing these processes we may face a problem that some of the approximating sets D
(1)
nk (A)

are too close together, and this may not allow us to obtain a suitable Gaussian approx-
imation. To avoid this problem we apply the following idea. Let Snk be the maximal
subset of Sδ such that |C1�C2| ≥ 2δnk for all C1 = C2. Then for any A ∈ Sδ there is an
element Cnk(A) of Snk such that |Cnk(A)�A| < 2δnk. Thus

(17)
∣∣∣Cnk(A)�D

(1)
nk (A)

∣∣∣ < 4δnk.

Put

Z(3)
n (A) =

∑
k≤kn

θkνnk(Cnk(A)), Z(4)
n (A) =

∑
k≤kn

θk

{
νnk

(
D

(1)
nk (A)

)
− νnk(Cnk(A))

}
.

Then Z
(1)
n = Z

(3)
n (A) + Z

(4)
n (A).

Proceeding in the same way as in the case of the process Z
(2)
n and substituting

D
(1)
nk (A)�Cnk(A) instead of E in (10) and in (11) we obtain from (17) that

P
(
‖Z(4)

n ‖Sδ
> M

)
→ 0 as n → ∞.

Step 9. Recall that if a field (Xj)j is symmetric, then its distribution coincides with
that of the field (εjXj)j where (εj)j is a Rademacher field that does not depend on X.
Without loss of generality one can thus consider the field Z̃

(3)
n (A) =

∑
j εjSnj(A) instead

of Z
(3)
n (A) where Snj(A) =

∑
k≤kn

n−d/2bnj(Cnk(A))Xj �{Yj∈Jk}. We have

(18) P

(∥∥∥Z(3)
n

∥∥∥
Sδ

> M

)
= P

(∥∥∥Z̃(3)
n

∥∥∥
Sδ

> M

)
≤ 1/M E

∥∥∥Z̃(3)
n

∥∥∥
Sδ

.

Step 10. Now we need

Lemma 2 ([3]). Let {fj , j ∈ T} be a finite set of real functions defined on the set D and
let {vj , j ∈ T} be a family of nonnegative random variables such that E(vj) = 1. Further
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let {εj , j ∈ T} be a family of random variables that do not depend on {vj , j ∈ T}. Then

E

∥∥∥∥∑
j∈T

εjfj

∥∥∥∥
D

≤ E

∥∥∥∥∑
j∈T

εjvjfj

∥∥∥∥
D

provided the norms are measurable.

Let {gj , j ∈ Zd} be independent standard Gaussian random variables that do not
depend on {εj , j ∈ Zd}. Since the fields X, ε, and g = {gj , j ∈ Z

d} are independent, we
may assume that these fields are defined on different probability spaces with measures PX ,
Pε, and Pg, respectively. Denote by EX , Eε, and Eg the partial integration with respect
to PX , Pε, and Pg, respectively. In particular, E(·) = EX Eε Eg(·). Put µ = 1/ E |g0|.
Since εj |gj | = gj in law, we set vj = µ|gj | in Lemma 2 and obtain

(19) Eε

∥∥∥Z̃(3)
n

∥∥∥
Sδ

≤ µ Eg ‖Zg
n‖Sδ

where Zg
n(A) =

∑
j gjSnj(A). Note that all the norms are measurable, since the upper

bounds are considered with respect to the finite set
⋃

k≤kn
Snk.

The process Zg
n is Gaussian with respect to the measure Pg. We compare the Gaussian

process Zg
n with another Gaussian process constructed from the Brownian motion Z.

Namely let G(k), k ≥ 1, be independent copies of the process Z. Let

Gn(A) =
∑

k≤kn

2θkG(k)(Cnk(A)),(20)

Qnk(A) =
(
ndµk

)−1 ∑
j

bnj(A)�{Yj∈Jk}, �nk = {E�F : E = F ∈ Snk}.

Then for A, B ∈ Sδ we have Eg(Zg
n(A)−Zg

n(B))2 =
∑

j(Snj(A)−Snj(B))2 and this does
not exceed

n−d
∑

k≤kn

∑
j

(
bnj(Cnk(A)) − bnj(Cnk(B))

)2
a2

k+1 �{Yj∈Jk}

≤
∑

k≤kn

θ2
kQnk(Cnk(A)�Cnk(B)).

On the other hand

E(Gn(A) − Gn(B))2 =
∑

k≤kn

4θ2
k|Cnk(A)�Cnk(B)|.

Therefore
Eg (Zg

n(A) − Zg
n(B))2 ≤ E(Gn(A) − Gn(B))2

on the event Dn = {Qnk(A) ≤ 4|A| for all A ∈ �nk and k ≤ kn}.
Step 11. Below we need the following result.

Lemma 3 ([10]). Let {Yi(t), t ∈ D}, i = 1, 2, be centered Gaussian processes indexed by
a countable set D such that

0 ∈ {Y1(t, ω) : t ∈ D, ω ∈ Ω} almost surely.

Assume that
E(Y1(t) − Y1(s))2 ≤ E(Y2(t) − Y2(s))2

for all s, t ∈ D. Then E ‖Y1‖D ≤ 2 E ‖Y2‖D.

The condition 0 ∈ {Y1(t, ω) : t ∈ D, ω ∈ Ω} almost surely holds if D is a class of sets
containing the empty set. Note that this is the case for our consideration (recall that
∅ ∈ Snk).
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By Lemma 3 we have

(21) Eg ‖Zg
n‖Sδ

≤ 2 E ‖Gn‖Sδ

on the event Dn. It is convenient to introduce the following notation: Znk(A) =∑kn

l=k 2θlG
(l)(A) and

Wnk(A) = Znk(Cnk(A)) − Znk(Cn,k−1(A)), v = 2
(∑

l≥0

θ2
l

)1/2

.

Changing the order of summation in (20) we get

Gn(A) =
∑

k≤kn

2θkG(k)(Cn0(A)) +
∑

k≤kn

k∑
l=1

2θk

{
G(k)(Cnl(A)) − G(k)(Cn,l−1(A))

}

= Zn0(Cn0(A)) +
kn∑

k=1

Wnk(A).

(22)

Lemma 4 ([9]). There exists an universal constant K such that

E ‖Z‖Sδ
≤ K

∫ δ

0

(
ε−1 log NI(ε, Sδ, dL)

)1/2
dε + Kδ.

Then E ‖Zn0‖Sδ
≤ v E ‖Z‖Sδ

→ 0 as δ → 0. We see that Wnk(A) is a Gaussian random
variable, and (17) implies that E W 2

nk(A) ≤ 4v2δnk. Thus

P
(
‖Wnk‖Sδ

> t
(
4v2δnk

)1/2
)
≤ �(Snk)�(Sn,k−1)(2/

√
2π)t−1 exp

(
−t2/2

)
≤ exp

(
−

(
t2 − 8H(δn,k−1)

)
/2

)
≤ exp

(
−

(
t2 − 8β−1H(δnk)

)
/2

)
≤ exp

(
−t2/4

)
for all t ≥ (16β−1H(δnk))1/2 if n is sufficiently large. Hence

E ‖Wnk‖Sδ
≤

(
4v2δnk

)1/2
(
(16β−1H(δnk))1/2 + 4

)
.

Metric entropy condition (2) implies that
∑

1≤k≤kn
E ‖Wnk‖Sδ

→ 0 as n → ∞. Combin-
ing (18)–(22) we see that

P

(∥∥∥Z(3)
n

∥∥∥
Sδ

> M

)
≤ P (Dc

n) + o(1).

Step 12. To complete the proof of Theorem 1 it is sufficient to show that

(23) P(Dc
n) → 0 as n → ∞.

As before

Qnk(A) = n−d/2µ−1
k

N∑
i=1

∑
l∈Lpn

V k
nli(A) + |A|.

Taking the above reasoning into account we obtain from the definition of the event Dc
n

that
P(Dc

n) = P(there exist k ≤ kn and A ∈ �nk : Qnk(A) > 4|A|)

≤ P

( N⋃
i=1

Fni

)
+

N∑
i=1

∑
k≤kn

R̂
k

ni

(24)
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where

R̂
k

ni = �(�nk) sup
A∈	nk

P

⎛⎝n−d/2(µk)−1

∣∣∣∣ ∑
l∈Lpn

Ṽ k
nli(A)

∣∣∣∣ > 3|A|/N

⎞⎠ .

As we have already shown before, conditions (i) and (ii) imply that the first term in (24)

approaches 0 as n → ∞. We estimate R̂
k

ni in the second term by

R̂
k

ni ≤
(
�
(
D

(1)
nk

))2

sup
A∈	nk

P

⎛⎝∣∣∣∣ ∑
l∈Lpn

Ṽ k
nli(A)

∣∣∣∣ > 3|A|/Nnd/2µk

⎞⎠ .

Applying the Bernstein inequality once more and the estimate |A| ≥ 2δnk for all A ∈ �nk

we get

R̂
k

ni ≤ sup
A∈	nk

exp

(
4H(δnk) − 9|A|2/N2ndµ2

k

2
(
µk|A| + 1/3n−d/23|A|/Nnd/2µk

))
≤ exp (−68H(δnk)) .

The latter inequality holds, since (6) implies that µknd|A|/N ≥ 32H(δnk)N . Taking (12)
and (13) into account, we get

(25)
N∑

i=1

∑
k≤kn

R̂
k

ni → 0 as n → ∞.

Therefore (24) and (25) imply (23).
Theorem 1 is proved. �

4. Weak convergence

We use a result of the paper [7] to prove the convergence of finite-dimensional distri-
butions of the processes Zn.

We call a Borel set A regular if the Lebesgue measure of its boundary is zero.

Theorem 2. Let A be a family of regular sets of [0, 1]d satisfying metric entropy con-
dition (2). Let X be a symmetric strictly stationary field and let assumption (i) of
Theorem 1 be satisfied. If

(ii′) lim supε↓0 f2τ (ε) · βX

(
g1/d(ε), 1,∞

)
< ∞,

then the invariance principle holds.

Proof. The tightness of the family of distributions of {Zn}n∈N follows from Theorem 1.
To prove the convergence of finite-dimensional distributions of the fields {Zn(B), B ∈ A}
to those of the field {Z(B), B ∈ A} it is sufficient (see [7]) to check that

(26)
∑
n∈N

nd−1α
(s−2)/s
X (n, 1,∞) < ∞.

The latter condition follows from (ii′). �
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