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Introduction 

Our motivation is to study the geometric theory of Weyl group represen- 
tations, so called Springer's representations (see [21] and its references), from 
the view point of holonomic systems on Lie algebras. In this attempt, the 
system of differential equations defining invariant eigendistributions, which was 
extensively investigated by Harish-Chandra, occurs quite naturally as the re- 
gular holonomic system corresponding to the intersection cohomology com- 
plex defining Springer's representations, through the Riemann-Hilbert cor- 
respondence. Thus we obtain a decomposition of this holonomic system ac- 
cording to the action of the Weyl group, which is also related to the decom- 
position according to the monodromies. Through the Fourier transform, this 
decomposition gives an "analytic" proof of a recent theorem of Borho and 
MacPherson ([4], [5]), which has been first proved by using a deep theorem of 
Bernstein-Beilinson-Deligne-Gabber. Secondly, applying this result, we can in- 
vestigate structures of solutions to this system of differential equations�9 In 
particular, we can extend, in a unified way, a recent result of Barbasch and 
Vogan ([7], [8]) on the Fourier transforms of the nilpotent orbital integrals. 

We are going into more details. Let g be a complex semisimple Lie algebra 
with connected group G. Fix a Cartan subalgebra b of g and denote by [3* the 
dual space of [3 which is often identified with [3 through the Killing form. Let 
S(g) ~ (resp. II;[g] G) be the ring of G-invariant symmetric tensors (resp. 
G-invariant polynomials) on g. For 2e[3", we consider the following systems 
of differential equations: 

and 

�9 ~ ( [ A , x ] , ~ x > u a = O  

JI/ga ( ( P ( x )  - P(2))  uz = 0 

uf = o 

~ [ :  ((Q(o~)- Q(,~))u~ = o 

(Acg) 
(p~r 

(A~g) 
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where ([A,x],8~) denotes the vector field whose tangent vector at x equals 
[A, x]eg. Thus JC/a v is a defining system of invariant eigendistributions and the 
Fourier transform of Jr These systems wilt be known to be regular holo- 
nomic. Our aim is to study their structures as ~g-Modules, mainly aspects 
related to the Weyl group action. This will be done in w However, for this, 
we first consider the total deformation of these Jr with parameter 2eb*-~b. 

In w we shall consider the ~g• A r defined by the following 
system on g x b 

{ ( [A,x] ,0~) f i=0  (A~g) 

diP'. (P(x) - P(t))fi = 0 (POI? [g]o) 

(Q(a~)-Q(-a,))~=o (Q~S(g)G). 

Here ~g• is the sheaf of linear differential operators with coefficients in 
rational functions. We remark, in this paper, we mainly consider Y-Modules in 
the algebraic category (see w 1). Let ~ be the flag manifold consisting of all 
Borel subalgebras of g and .~ the incidence subvariety of ~ x g ,  i.e., .~ 
= { ( b ' , x ) ~  x glx~b'}. Denote by p: . ~ g  the projection to the second factor. 
Fixing a Borel subalgebra b containing the Cartan subalgebra b, we have the 
smooth map0: . ~ g  defined by O((gb, x ) ) = g - l x m o d n  (g~G) where n is the 
nilpotent radical of b and b is identified with b/n. We thus have the corn- 
mutative diagram 

0 

fi -,.q 

1 
b- --+blw 

where W is the Weyl group for (g,b) and tc is the invariant map. Using these 
maps, we consider the product map 

f=pxO: fi--,g x b 

where f ( ~ ) = g  Xb/wbCg x b- As our first main result, we prove 

which implies that A r is a simple completely regular (for definition, see 1.5) 
holonomic ~g• (Theorems 4.1, 4.2 and 5.1). Here the symbol fs is the 
functor integration along fibers, and ~NI~)lg• is the minimal extension of 
~r~.~rslgrs• (grs is the set of regular semisimple elements in g and f(.~)rs 
=f(~)~m~ xb). 

The W-action on g x b, defined by that on b, makes f(~) stable and hence 
gives rise to the W-action on the ~• A/'___~$(9~. In w we shall 
investigate this W-action. Borho-MacPherson's result [4] will be clarified as 
follows. Note that the following two isomorphisms (Prop. 4.8.1); 

~p (9~-~ ~p Y '  (p=Prl :  g x b~g),  

~O_~(N)~g(gO_~(N)=j* ~V" (j: g = g  x {0} ~--~g x I)), 
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where the both are single ~-Modules  (N is the nilpotent variety of 9). Con- 
sidering the Fourier transform (,)F on .q, we have 

(~p (9~)v --- (~o-' ~r~)~, (~/p_, ~N)) | sgn 

as W-~-Modules, where sgn is the sign representation of W (Theorem 5.2). 
Since 

DR(~pC~)=~p,ff~ and DR(j'p_~<N)~gOp_,~N))--~p,~lN[-rankg] 

through the Riemann-Hilbert correspondence DR, we have the natural decom- 
positions into simple constituents of the both objects (Theorem 5.3), which 
recovers Borho-MacPherson's result. We also see why the sign representation 
is involved in various situations in Springer's representations. 

In w 6, we shall relate the previous ~g-Modules d//~ and ./g~" with JV using 
harmonic polynomials. Let b(2) be the span of the coroots orthogonal to 2 in b 
and wo. )={w~WIw2=2} .  Let Je(b(2)) be the space of harmonic polynomials 
on I)(2) with respect to the small Weyl group W(2). We can then define a 
natural isomorphism 

ebb: ,/#~ ~ Homw~(~(1)()0) , J/l,= 4) 

(Theorem 6.1). At this point, we use Harish-Chandra's ancient result on J /~  
(Theorem 6.7.2) by which he derived the famous regularity theorem on in- 
variant eigendistributions. We, however, know some method which gives our 
results without relying on his result, at least, in the classical case (see 6.6). 

We now consider the particular case 2=0. Using the earlier decomposition 
of 

JVI,= 0---~o-,(r~)_,gc,'o-,~N), we have ~[o~-(~zjvd//ax~x) 

where ffV is the set of the equivalence classes of irreducible representations of 
W and d(z ) is the degree of Z~I~. Here ~'x is a simple ~-Module .  We now 
take the Fourier transform 

. 

Then ~/o v is a regular holonomic system which satisfies the asymptotics of 
distribution characters ([6]). In the above, jgv is a system with monodromy 
representation Z. Using this result, in w167 and 8, we shall generalize some 
results of Barbasch-Vogan ([7], [8]) and King ([17]). For instance, let O be a 
nilpotent orbit of 9. The nilpotent orbital integral 

#o(f) = ~o f (x) dpo(X ) 

then defines the invariant measure /~o on 9. Then the Fourier transform /2 0 is 
explicitly given (up to constant multiplication) in terms of a harmonic poly- 
nomials on b x b using Springer's correspondence (Theorem 8.2). For "special" 
O this result has been proved in [7], [8]. We shall also deduce some results on 
real Lie algebras (w 8). 

We are grateful to J. Sekiguchi who has treated related problems in other 
aspects and discussion with whom has helped us in some point (6.6). 



330 R. Hotta and M. Kashiwara 

w 1. Holonomic systems on algebraic varieties 

1.1. Let (X,(gx) be a smooth algebraic variety defined over ~. We denote by 
(X,n, (gX.n) the underlying complex manifold. Let 1 x denote the morphism of ~-  
ringed spaces 

(1.1) t = tx: (X, , ,  ~Oxa.)~(X , (gx). 

The sheaf ~x of differential operators on X and the sheaf ~xa. of differential 
operators on Xan are related by 

(1.2) ~xa =(gx~ |174  .. 

For a left ~x-Module ~', we shall write J//,. for 

~ X a .  | , - l ~ x l - l j [ / [  = O X ~ .  | , - , e x l - l o /~[  . 

A coherent ~x-Module , g  is called holonomic (resp. regular holonomic, cf. 
[16]) if so is Jg,,. As in the case of coherent ~x ,  -Modules, we can define the 
characteristic variety of a coherent ~x-Module J / a s  a Zariski closed subset of 
the cotangent bundle T * X  of X, which we shall denote by Ch(~'). The 
characteristic variety of ~ ' , ,  coincides with t~.~(Ch(J[)). The following prop- 
osition immediately follows from GAGA [20]. 

Theorem 1.1. Assume X to be smooth and proper over C. Then we have 
(1) For coherent ~x-Modules ~ and JV,," we have 

(2) 7he category of coherent ~x-Modules and that of coherent ~x~-Modules 
generated by a coherent sub-(gx~ -Module are equivalent. 

1.2. For a quasi-coherent (gx-Module ~- and a closed subset Y of X, we have 
(see [9], [13]). 

(1.2.1) ~-~/[[yan](O~an) = ~Fy(~")a n 

and 

(1.2.2) RF[x,. i y..l(O~a.) = RFxl r(~)a . . 

In particular, for a holonomic (resp. regular holonomic) Nx-Module J / ,  
Yg~(dr and : ,~ l r (~ ' )  are also holonomic (resp. regular holonomic). 

1.3. Let f:  X ~ Y  be a morphism of smooth algebraic varieties X and Y defined 
over (E. We define the sheaves ~ x - r  and ~ r - x  on X by 

(1.3.1) ~ x ~ r = ( g x |  ~r+x=f-t(~r|174 

where O r and /2 x are the invertible sheaves of the highest degree forms on Y 
and X, respectively. As in the analytic case, ~ x - r  is a (~x, f -a~r) -b i -Module  
and ~ r - x  is an ( f - l~r ,~x) -b i -Module .  For a Dr-Module ~,, we set 
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I L l *  ~ / ' =  L - 1 D x + r |  f A/ '=Cx|  A/" 

and for a Dx-Module J / ,  we set 

I f Jg  = Nf , (Dr~ x |  

where | denotes the left derived functor of | 

Theorem 1.2 ([19], [16]). (1) I f  JV'is a holonomic (resp. regular hoIonomic ) D r- 
Module, then ~JOLf* dl/') is a holonomic (resp. regular holonomic) Dx-Module 
for any j. 
(2) l f  f is proper and if Jg is a coherent (resp. holonomic, regular holonomic) 
Dx-Module, then any cohomology group of 5f.//g is a coherent (resp. holonomic, 
resp. regular holonomic ) Dr-Module. Moreover we have Ch(WJ(Sf~/)) 
cwp-a(Ch(~/)) ,  where vo is the projection X x r T * Y ~ T * Y  and p is the 
morphism X xrT* Y ~ T * X .  

1,4. For a holonomic ~x-Module Jg  and for an irreducible component A of 
the characteristic variety of J/g, we can define the multiplicity, denoted by 
multa(Jg), of ~ '  along A. (See [14]). We shall call the algebraic cycle 
~.,i multA(JtZ)A the characteristic cycle of Jr' and we shall denote it by Ch(Jg). 

If 0 - - , ~ / ' ~ J L ~ J { " ~ 0  is an exact sequence of holonomic Dx-Modules , 
then we have 

(1.4.1) Ch(~/) = Ch(Jg') + Ch(Jg"). 

As shown in [14], we have 

Theorem 1.3. Let f: X ~ Y  be a morphism of smooth algebraic varieties X and Y,, 
and let 

m: X x r T * Y ~ T * Y  and p: X x r T * Y ~ T * X  

be the canonical morphisms. 
(1) Let JV" be a holonomic Dr-Module. I f  ~v-l(Ch(JV')) is finite over T ' X ,  then 
we have ,.~J0Lf* JV')= 0 for j ~O and Ch(f*dV)=p~v- X(Ch(~P)). 
(2) Let Jg be a holonomic Dx-Module. I f  p-a(Ch(Jg)) is finite over T'Y,, then 
we have 

~r =0  for j #O  and Ch(3Cg~ - '(Ch(J/[)). 

1.5. Let j: X~--+X be a compactification of a smooth algebraic variety X; i.e. j is 
an open embedding and X is proper and smooth over C. A holonomic ~x- 
Module ~ is called completely regular if j , J [  is a regular holonomic D x- 
Module. This definition does not depend on a choice of a compactification j. 
In order to see this, for another compactification f :  X~-*X ', we take a third 
compactification j": X~--*X '' and morphisms f:  X " ~ , g  and f ' :  -~"~.~'  such 
that j = f o j "  and j '= f 'o j " .  If j , ~ '  is regular holonomic, f * j , J g  is regular 
holonomic. Therefore 

o/g'=~~ ) and j ,  J l =  gf~:glx, x(Jt  ') 

are also regular holonomic. 
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Theorem 1.4. (1) I f  ill and ~4 ~ are completely regular holonomic ~x-Modules, 
then 

(2) The category of completely regular holonomic ~x-Modules is equivalent to 
that of regular holonomic ~x,-Modules whose characteristic variety is Zariski 
closed. 

Proof In order to prove (1), we have to show 

for any open subset U of X. By replacing U by X we may assume from the 
beginning U =X.  Let j:  X~-~X be a compactification of X and suppose that 
- X  is a divisor. Set ~ '=j ,  ~/" and J f f = j , ~ / .  By the definition they are 
regular holonomic. We have 

(1.5.1) 

and 

(1.5.2) ~r(~a.; ~t ~-,~X.~ .JF~.))~F,F(Xa,; ~ ~m~x~ (J/a., ~aa.))' 

The first is trivial and the second follows from Theorem 5.4.1 and Theo- 
rem 6.4.1 in [16]. On the other hand, Serre's GAGA [20] implies that the left 
hand sides of (1.5.1) and (1.5.2) are isomorphic. This shows (1). 

The statement (2) follows from Theorem 1.1, Theorem 2.1 and (1). 

Theorem 1.5. Let f: X--o Y be a morphism of smooth algebraic varieties X and Y. 
(1) For a completely regular holonomic Dr-Module ~,, ~J(ILf* JV) is also a 
completely regular ~x-Module for any j. 
(2) For a completely regular ~x-Module d/l, any cohomology group of 

~ = ~ f , ( ~ - x  |  
is completely regular. 

Proof Let us embed f into f :  X ~  Y where X and Y are compactifications of 
X and Y, respectively. Then (1) follows from Theorem 1.2. Let j denote the 
embedding X'--,X. Then 

J i m  = ~-Y,(-@r. x | ~J ,  ~)1 r. 

Since any cohomology group of F , j , J [  is regular holonomic, (2) follows from 
Theorem 1.2. 

w 2. Correspondence of holonomic systems and constructible sheaves 

2.1. Let X be a complex manifold. We denote by Mod(~x) the category of ~x" 
Modules and RH(X) the full subcategory of Mod(Nx) consisting of regular 
holonomic ~x-Modules. Let D(~x) denote the derived category of Mod(~x) 
and let D~h(~X) the full subcategory of D(Nx) consisting of bounded complexes 
whose cohomology groups are regular holonomic. 
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Let Mod(X) denote the category of sheaves of K-vector spaces on X and 
D(X) its derived category. 

We denote by D~(X) the full subcategory of D(X) consisting of bounded 
complexes ~"  satisfying 

(2.1.1) { .~ ' (~ ' )} .  is constructible, i.e., there exists a decreasing sequence 
closed analytic subsets X = X  o ~ X ~ 2 . . ,  such that ~X~=0 and that 
~'~"(~')[x~-x~+~ is locally constant of finite rank for any j and n. 

Let Perv(X) denote the full subcategory of D~(X) consisting of J~" satisfying 

(2.1.2) codim Supp ~ ( ~  ") > j  

and 

(2.1.3) codim Supp g c ~ ( ~ ' ,  ~ x) >J 

where (13 x is the constant sheaf on X with I1; as its stalk. 
Then we have 

Theorem 2.1. (1) Dbrh(~X)~ D)(X) and R H ( X ) ~  Perv(X) by 

DRx: ,/el" v--~ HI, ~'~'~,,((fix, ~ ')-  

(2) We denote by Solx(J/l ) = I1 ~ ,~x(Jg , (gx) .  Then Sol x and DR x are related 
by 

Solx(~r ) = N ~,~r162 (Fx) for dg'~Db~h(2x). 

Now, let X be a smooth algebraic variety. We denote by RH(X) the 
category of completely regular holonomic Dx-Modules. We denote by Perv(X) 
the full subcategory of Perv(X,~) obtained by replacing (2.1.1) with the follow- 
ing condition. 

(2.1.1') {~'~"(~')}, is algebraically constructible i.e. (2.1.1) holds by choosing X~ 
to be Zariski closed. 

Then we have 

Theorem 2.2. RH(X)-V~ Perv(X) by DRx: ~-->DRx,=(J#~, ). 

2.2. Let X be a complex manifold. 

For J/['@Dbrh(~X) we set 

(2.2.1) Jr = R ~, ,~,r  ~x) | ~2x ~ -~ [dim X]. 

Then Jl 'v-,~ is a contravariant functor fi'om D~h(~x) into itself. 

Proposition 2.2.1. (1) Jg'** = ~ "  for ,Jl'eDb~h(@x). 
(2) DRx(JF* ) = Solx(Jg" ) ,[or ,~l'eDb~h(,@x). 
(3) JgV-~j~'* is an exact contravariant functor from RH(X) into itself 
(4) Ch(,///) = Ch(o//{*) for any J/16 RH(X). 
(5) * commutes with integration: i.e., .for a proper morphism f: X ~ Y  and 

= 
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(6) * commutes with non-characteristic pull-back; i.e. under the situation of" (1) in 

Theorem 1.3, ( f*  ,4') * =  f*(~A/'*). 

2.3. Let X be a smooth complex manifold, and Y a closed analytic subset of X. 
Let ~ be a regular holonomic ~x_r-Module.  Assume that J// is extendable; 
i.e. there exists a coherent ~x-Module ~r on X whose restriction to X - Y  is 

isomorphic to J//. This is equivalent to saying that j~DR x_ y(,///) is contructible, 
where j is the embedding X -  Y~-+X. 

Theorem 2.3. Under the above assumption, there exists a regular holonomic ~x- 
Module o~' which satisfies the following conditions 

(2.3.1) os r ~ J #  

(2.3.2) ~ ~  and ~ ~  

Moreover, such an ,/r is unique up to isomorphism. (See [3].) 

Definition 2.4. We call J / '  the minimal extension of J /  and denote it by ~Jt{. 
It is easy to see that J[~-~"Jg is a functor from the category of extendable 

regular holonomic ~x_r-Modules  to RH(X). 

Theorem 2.5. Let J /  be an extendable regular holonomic ~x-r-Module  and ~.~# 
its minimal extension. Set ~ " =  DRx_ y(,//g ) and J~"=  DRx(~,//r Then we have 

(2.3.2) o~"]x_ y~- ~"  

(2.3.2) codim x Supp ~ % ~ " ' )  c~ Y > j  

codim x Supp g ~ ( ~ - " ,  II~x) ~ Y >j.  

Conversely, if .~'" satisfies these conditions, then ,~"~-DRx(~/r  ). 

Definition 2.6. We call o~'" the minimal extension of ,~-'. 

Proof of  Theorem 2.5. 

Lemma 2.3.1. Let JC'eDh~h(~X) and Z a smooth subvariety of X.  Then 

1~ ~ = ( , A [ ' ,  ~zlx)lz = R ~ r  z, II;z) [ - codim Z]. 

Here Mzlx denotes ~/fc~ ] 

Proof We may assume Z is closed. Then we have 

I (  2/tf,~,~ ~ x ( ~ "  , ~ z Ix) = ~ Fz 11 ~(~-,.~ x (,~", (fix) [codim Z]. 

On the other hand, 11 ~f~,,~,c(Jr (fix)= N ~>~,r ~x) implies 

R F  z R ~**~x(,A(', Cx)= R Jfo~r Rx(.Jg')]z, II?x) 

= ~  o~,~(DRx(, / /[ ' ) lz ,  q~z)[-  2 codim Z] Q.E.D. 

We shall apply this to o ~ ' '  and ~ ' .  Then if .r is locally constant and Z ~ Y, 

~.-%~ [ )~c~ J [ ~  ''M I~ ~ 
g ~ = ( ~ ' , ~ z l x )  = r ~ )~z, z). 
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Hence o~.J~ex(~////,~ZlX)=0 implies .~J(.~-")lz=0 for j > c o d i m Z .  Hence we 
obtain codimxSupp.~C'%~-")n Y >j. Since G/C/)* is the minimal extension of 
,////*, the same discussion implies 

codim x Supp 8JJ( ,~-",  ~) n Y >j. 

The converse is also proved by the similar argument. Q.E.D. 

Let Z be a locally closed subset of X such that ,Z and Z - Z  are complex 
analytic. Let us take as Y a closed analytic subset of ,Z such that Y is nowhere 
dense in Z and Y contains the singular locus of Z. The minimal extension of 

'J~z-YlX-r is denoted by '~zlx. This does not depend on the choice of Y 
These notions are also generalized to the algebraic case. 

w Fourier transformation 

3.1. Let V be a finite-dimensional vector space over ~. Then we have, by 
regarding V as an algebraic variety 

F(V, ,~p = r IV] | 1 6 2 1 6 2  [V*] = S(V*) | 

where ~[V]=S(V*)=F(V, Cv) and we regard ~ [V*]  as the ring of constant 
coefficient differential operators. Hence F(V,~v) is a ~-algebra generated by 
V| V* with the fundamental relation 

(3.1.1) [vl,v2]=[v*,v*]=O, [v,v*] =(v ,v*> 

for vl,Vz,wV and v*,v~,v*EV*. 

Therefore, F(V,~v) is isomorphic to F(V*,~v.) by 

v|174 ((v,v*)~(v*,-v)). 

On the other hand, the category of coherent ~v-Modules is equivalent to that 
of finitely generated F(V, ~v)-modules. Hence we obtain the functor F from the 
category of coherent ~v-Modules onto the category of coherent ~v.-Modules. 
For a coherent ~v-Module o//g, we call the Fourier transform of J/g the image of 
,////by F and denote it by .///v. 

If we denote by a the isomorphism v~-~-v of V, then we have (~/v)V=a*~[t 
for a coherent ~v-Module Jg. 

The Fourier transforms of holonomic ~v-Modules are holonomic ~v*- 
Modules. In fact, ~# is holonomic if and only if g.~4~v(.///,~v) =0  for j + d i m  V. 

3.2. Let 0 denote the element in V*| corresponding to the iden- 
tity. For a linear coordinate (xl, . . . ,x,)  of V, ,9 is explicitly given by 

0 
f3.2.1) o= y xj , 

j 0xj 

that is, 0 is the infinitesimal transformation of homotheties. 
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For a coherent ~v-Module  ~/ ,  we say ~ '  is homogeneous if, for any element 

v~F(V,,/tl), ~;[,~]v is a finite-dimensional vector space. 

It is easy to see that a homogeneous regular holonomic ~v-Module is 
completely regular, 

For a homogeneous ~v-Module  , / / /we can describe the relation between 

1 /o~f~v ,=(~ '= , ,  Ov,,) and R o~f,~ �9 (~/r (gV,) 
J V a i n  a n  " 

Let Z be the closed subset of Va, x Va* given by 

{(x,y)~ v=, x v~; Re(x, y) _>_ 0}. 

Let z and rc be the projections from Va, X V* onto Va, and V,*, respectively. 

Then we have 

Theorem 3.1. Let Jig be a coherent homogeneous ~v-Module. Then we have 

R ~%.~V~%(~g,[n, (gV.:) ~ R re, ~.rz(z-  ~ R ~, . ,~v .o( .# , . ,  (gv=:)). 

Theorem 3.2. Let ~ be a homogeneous holonomic @v-Module. Then Ch(Jr 
=Ch(,//C'v). Here we identify T* V with T*(V*) (both isomorphic to V x V*). 

Proof. We may assume that ~//g is generated by u with ( O - 2 ) " u = 0  for some 

2etE and m. Now, let I be the annihilator of u in F(V,~v). Then I is generated 
by homogeneous elements. Here, we assign the degree 1 and - 1  to the 

elements of V and V*, respectively. Let F ~ be the filtration of F(V,~v) by the 

order, and let F z be the filtration of F(V*, C~v. ) by the order. If we denote by 

F(V, ~v),, the homogeneous part of degree m, then 

e) nr(V,~v)==v~+~r(V,~v)=. 
Thus we obtain 

gr v' (I) = grV~(I). 

Since Ch(,/g) is the algebraic cycle corresponding to (9 v • v,/grV~(I) and Ch(,/# v) 

is the one corresponding to (_9 v • v./grV~(1), we obtain the desired result. Q.E.D. 

3.3. The Fourier transformation discussed in w can be generalized to ~ -  
Modules on a vector bundle. In such a general case we have to twist ~ and 

the argument becomes slightly complicated. However, if a vector bundle is 
trivial, the same argument as in w can be applied. So, we shall restrict 

ourselves to such a case. 

Let V be a finite-dimensional vector space and X a smooth algebraic 

variety. Let f and g be the projections from X x  V and X x V *  onto X, 

respectively. Then f ,  ~x  • v and g ,  @x • v* are isomorphic to 

~x|  and ~x|  

respectively. Hence f ,@x• is isomorphic to g,~x• via the isomorphism 

between F(V,~v) and F(V*,~v ,  ) given in w Therefore the category of 

coherent ~x • v -M~ are equivalent to that of coherent ~x • v *-M~ We 
call this the partial Fourier transformation with respect to V. 
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3.4. Let X be a smooth algebraic variety and f a section of (9 x. We define a 
coherent ~x-Module , J / a s  follows: 

"/11 = ~x/ Y, ~x( v - v(f)) 
v r  

where O is the sheaf of vector fields on X. We have ,////,,~(5~x,n and the 
isomorphism is given by l~---~expf In this reason, we shall denote by expf  the 
canonical generator of J{. The holonomic Module ~x expf  is regular but this 
is not completely regular except when f is locally constant. 

3.5. Let X be an algebraic manifold and let f: X ~ V  be a morphism from X 
to a vector space V. Then f defines a section f '  of (9 x• by ( f (x ) ,  v*) for 

(x,v*)eX x V*. We write ~x• expf  for ~x• expf'. Let Y be the graph o f f  
Then it is easy to see 

Proposition 3.5.1. ~x • is the partial Fourier transform of ~3~1x• v. Here 
expf  and 5@- f(x)) correspond. 

After writing up the first draft of this paper, we came to know the following 
references related to the geometric Fourier transformation [-1] and [2], which 
will help the reader's understanding of this section. 

w 4. Some holonomie systems on semisimple Lie algebras 

4.1. Let ,q be a semisimple Lie algebra defined over �9 and G a connected affine 
algebraic group with g as its Lie algebra. We fix a G-invariant non-degenerate 
quadratic form on g by which we identify g with its dual g*. 

We denote by ~ the flag manifold, i.e., the set of Borel subgroups of G, or 
equivalently the set of Borel subalgebras of g. 

We denote by ,~ the subvariety of ~ x g defined by 

(4.1.1) ,~ = {(b', x ) e ~  x ,q;b'~x} 

and let p denote the canonical projection .~ onto g. The map p is proper and 
we have 

(4.1.2) dim p -  I (X)  = d i m ~  - �89  Gx 

for any x~g. 

We shall fix a Cartan subalgebra b of g and a Borel subalgebra b contain- 
ing D. Let A be the root system of (g,b) and A+ the set of positive roots given 
by b. Let W denote the Weyl group of (g,[). If we denote by tt the nilpotent 
radical of b, we have b/n ~ b. 

We define the map 

(4.1.3) 0: f i~b  

by (b',x)~-~gxmodn where g is an element of G satisfying gb '=b.  Here the 
actions of G on g and ~ are via the adoint action. This 0 is a smooth morphism. 



338 R. Hotta and M. Kashiwara 

Let dx be a nowhere-vanishing global section of the sheaf f2g of differential 
forms of the highest degree on g. The sheaf f2~ has also a unique nowhere- 
vanishing global section co up to a constant multiple. We normalize co and dx 
so that 

(4.1.4) p*(dx) =( ]-I (0, c~))co. 

Let g~ be the set of regular semisimple elements of g. Then grs is Zariski 
open in g. We denote by b~s = 9~ c~ b- 

Let ~c be the canonical morphism from g onto b/W such that 

is commutative. 
i3 -~i3/w 

We denote by N the set of nilpotent elements of g. Then N is given by 

(4.1.5) N = {xeg; P(x)=P(O) for any PeC[g]  G} 

where C[g] G denotes the ring of G-invariants on .q. 

4.2. Let f:  ~ g  • b be the morphism given by p and 0. Then the image of f is 
given by 

(4.2.1) f (~ )=  {(x, t)~g x b; P(x)=P(t) for any p ~ [ g ] G } ,  

and isomorphic to g x ~/wb. Here C[g]  a is the ring of G-invariant polynomials 
on g. By f, ) is a desingularization of f(,~). 

Now, we shall investigate the property of Sy(9~. 

Theorem 4.1. (1) ~~ for j~=O and ~~ is a completely regular 
holonomic ~ • 

(2) Ch(~f(9~)={(x,y;t,s)Eg x g xb x b = g  x g* xt) xD*= T*(g x I)); [x,y] =0  and 
there exists b' sM such that b'~x,y and O((b',x))=t, O((b',y))=-s}, 

and this is irreducible. 
(3) SI(9~ is a simple Module and isomorphic to ~I(~lg• 

Proof. Let my and Pl be the projections from ,~x~• (gxb) to T*(gxb) 
and to T*~, respectively. Then by Theorem 1.2, Ch(SIC~) is contained in 
A =r-afp~ ~(T~*~). For 

is given by 

Tc~,,~fi = {(A, [A, x ] ) e ~ k ' |  A~g} + (O| 
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On the other hand, we have T:tb, ~)(g x b)=g  x b 

and df: T~b,,~)~ T1tb,,~)(g X [3) is given by 

g/b' @gin(A, [A, x])~--~ [A, x] @0 

OOb'eOOA~-~AG(gA rood n), 

where geG is an element such that gb '=b.  Using this, we can easily show that 
A coincides with the set given in (2). Remark that A is a Lagrangian variety 
and hence A has pure dimension dim g + rk g. 

Lemma 4.2.1. ([18]) V=  {(x,y)~9 x 9; [x,y] =0} is irreducible and has dimension 
dim 9 + rk g. 

Proof Since the canonical projection A ~ V  is finite and surjective, V has also 

pure dimenion dim9 + rk g. We shall stratify g by g =  U 9i so that the fiber 
j=o 

dimenion of V ~ 9  is constant over 9j, and that gSs are G-invariant. We take 9rs 
as 90. Take a generic point xj of g~. Then 

dim Vc~ (9i x 9) = dim gj + dim gx~, where 9xj={y6gI[y, xj]=O}. 

On the other hand, for j=#0, ~c: gj~b/W has nowhere dense image and the fiber 
dimension equals dim[g, xj] because the fiber has a finite number of G-orbits. 
Hence d i m g j < r a n k g + d i m [ g ,  xj]. Hence for j=t=0, d im V c~(g jx g )<d im g  

+ r a n k g = d i m  V, which implies that V c~(gr= x 9) is Zariski dense in V. Since 
Vc~(gr= X g) is irreducible, V is also irreducible. Q.E.D. 

Lemma 4.2.2. A is irreducible. 

Proof By the preceding lemma, A C~(gr= X g X [3 X [3) is a Zariski dense subset of 
A. Since this is irreducible, A is also irreducible. 

Now, we shall prove Theorem 4.l. Since f is embedding on gr= x [3, we have 

{? (4,2.2) ,jt#j(~s C~)I~,= • b = ~,~)lg • blgr= • ~ for j=O  
for j + 0 .  

Hence Ch(WJ(~:C~)) (j +0) is a nowhere dense subset of A. Since the character- 

istic variety is always involutive, we have 

3UJ(~S(9~) = 0 for j * 0 .  

Thus (1) is proved. The property (2) is also evident. The property (3) follows 
from (4.2.2) and irreducibility of the characteristic variety of ~:(9~. 

Corollary 4.2.3. Jf~(~p(9i)=0 for j~O and ~p(9 i is the minimal extension of 

(S,,~)I~r=" 
Proof Let p be the projection g x b--*g. Then we have 

(4.2.3) ~o (9i = ~p(~:(9~). 
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Since .gFJ(~s(9~)=0 for j4 :0  and Supp(Jf~ is a finite map, ~J(So(9~)=0 
( j+0)  follows from Theorem 1.3. 

Now, let us remark that local cohomology commutes with integration. 
Hence 

by (3) of Theorem 4.1. On the other hand, since (9~ is self-dual, So(P~ is self dual. 
Therefore So(9~ has no non-trivial quotient supported in g-g~.~. Hence So(9~ is 

the minimal extension of its restriction to g~. Q.E.D. 

Corollary 4.2.4. (1) JgJ(So-~(N)~(9o- ~(N)) =0  for j#:O. 
(2) ,f~o(~- ~r ~r is a completely regular holonomic ~-Module. 

Proof (2) follows from Theorem 1.5. We shall show (1). We have p - l (N)  
= f - ~ ( g  • {0}) and 

(9p_~r where i: p- l (N)~-~.  

Therefore, i f j  denotes the embedding gc---,g • b given by {0}~-~ b we have 

(4.2.4) ~0 ~(r~)~g (go-,~r~) = ILj* (~y Cr 

Since A ~ T~* w~(g x 19) is contained in the zero section, Theorem 1.3 implies (1). 

p x l  
4.3. The projection f:  ~ g x  b decomposes fi--,fixb ~gxb. Hence the 

partial Fourier transform of ~j,(9~ w.r.1 b is the integration of the partial 
Fourier transform of ~1~• 

Proposition 4.3.1. 
(1) ~ffJ(L• 1N~• ~,exp 0) = 0 for j .  0 and .~~ • ~ ~ •  b exp 0) is the partial Fou- 
rier transform of ~y(9~ with respect to b. 
(2) So• ~.~• is a regular holonomic ~g• 
(3) Ch(S o • ~a • ~ exp 0) a {((x, y), (t, s))e T*(g x t)) = g x g x b x b* ; s = 0, [x, y] = 0, yeN}. 

Proof (1) and (2) follow from the fact that the partial Fourier transform of 
~.al.~• is ~ •  (Proposition 3.5.1). (3) follows from Ch(~•  

= T~* ~(~ x b) and Theorem 1.2. 

4.4. We shall remark that Sp• 1N~• 0 is not a completely regular holo- 
nomic system. This does not contradict (1) of Proposition 4.3.1, because the 
(partial) Fourier transformation does not preserve completely regular holo- 
nomic systems when they are not homogeneous. 

For 2eb* =b,  the ~g-Module 

Sp• 1 ~ • ~ exp 01g • {z~= So ~  exp(0,; t)  

is neither completely regular except when 2=0 .  However, the corresponding 
~G-Module on the group G is completely regular. 
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4.5. Now, we shall express explicitly the c~g• ~f6~. We define a 
coherent ~ • B-Module JV" by 

(4.5.1) jV'=~g•215 ~ ~•  
P~S(g) G 

+ Y. G• x)-  Q(O)) 
OEC[g] ~ 

=2u• 

Here, (x, t) denotes a point of g • l) and ad g is the vector space of vector fields 

d ,A 
([A, xJ, ax) (Aeg), which denotes f(x)~--+~f(e x)[,= o. By fi we denote the 

canonical generator of JV'. 

Theorem 4.2. JV" _~ ~s 6~. 

We shall prove this theorem in two steps. 
(1) Jff is a simple or zero 9g• 
(2) To construct a non-zero homomorphism JV'-~f(9~. Since ~f(9~ is a simple 
~g • B-Module Theorem 4.2 follows from these two statements. 

4.6. Proof of (1). By the partial Fourier transformation with respect to fi, it is 
enough to show that 

j f fr  = ~ •  b/(9~ • bad g + ~ 9~• b(P(ax)-- P(t)) 
PES(g) G 

+ Y G• x)-  Q(a))) 
(2er ~ 

: ~ g x b H  F 

is a simple ~ • B-Module or zero. 
The characteristic variety of vF F is clearly contained in 

W =  {(x,y; t,s)eT*g x T*D=g x g xb x b; [x ,y ]=0 ,  ye N,s=0}  

r * g  x T~*D. 

By Theorem 1.3, for a coherent ~q • u-Module 5r such that Ch(L/~) c W, s162 =0  if 
and only if L~~215 for some toeD. Hence it is enough to show that 
~Mr[g• is a simple or zero Module for toeb~ ,. By using the partial Fourier 
transformation with respect to g again, (1) follows from the following Lemma. 

Lemma 4.6.1. For t0eb~ ~, ~A/'[~• is a simple ~g-Module or zero. 

Proof. First, we shall show that Jfflg• is generated by 1| We have 

IF(a,), Q(t)] fi = - [ P ( -  ax), Q(x)] 

for PeS(g) 6 and QOE[g] 6. By choosing p = t 2 + . . . + t  2 where (t 1 . . . . .  tz) is an 
orthonormal basis of b, 

25. aQ(t) a at, atiu=--( E +[P(-ax)'Q(x)]) ~" 
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Since there are Q1 . . . . .  QlOE[g]  ~ such that  dQl[~ .. . . .  dQzl~ are linearly inde- 

pendent  at t o , we have the relat ion 

c~ 

on a ne ighborhood  of t o. This implies 

On the other  hand  1 | satisfies 

(ad g ) ( l |  

(P(x)-P(to))(l| for Pe (E[g ]  a. 

Since S={xeg;P(x)=P(to) } is smoo th  and consists of a single G-orbit,  we 

have Ch(Xl,• or Ts*g. Therefore  Y[,•162 is a simple ~g-Module  or zero. 

4.7. Proof of (2). Now,  we shall construct  a non-zero  h o m o m o r p h i s m  
Y ~ I ( 9 0 '  By taking the par t ia l  Four ier  t ransformat ion,  it is enough to con- 

struct a non-zero  h o m o m o r p h i s m  

~ V ~ S p • 2 1 5  bexp0. 

Let fil F be the section of S p • 2 1 5  given by (dx)-t|174 We shall 

show that  uVv-*fi~ v gives a ~0• h o m o m o r p h i s m  f rom JV "F to 

So • 1 ~  • b exp 0. In order  to see this, we have to show 

(4.7.1) (ad g)fiv = 0 

(4.7.2) (P(x)- P(~?,))fia v = 0 for POE [g ig  

(4.7.3) (P(~?~)--P(t))fiF=o for P~S[g] a. 

The first equali ty follows f rom the fact that  dx and co are G-invariant.  The  
second equali ty follows f rom P(0t) exp 0 = P(x) exp 0. 

In order  to see (4.7.3), we shall recall the following lemma.  We define 

(4.7.4) A = 1-I c~. 
~>0 

Proposition 4.7.1. ([10]) Let (p be a g-invariant function defined on a neigh- 
borhood of tosl?~ s. Then for any PE(E[g]  G 

P(0~)~ol~ = A - ~ P ( ~ , ) ( A  ~ol~). 

We shall apply  this to show (4.7.3). Since p x 1 is a ( #  W)-sheeted un- 

ramified covering of g x D over  g~s x b, we have 

(So • 1 c~ • ~, exp 0).. -4 ((9(0 • b~,,)* w 
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on a neighborhood of (to,tl)69rsXb. Since d x =  +_Am at any branch, this 
isomorphism is given by 

~[~o(x ,  wt), (we W). 

Here ~o(x,t) is a 9-invariant function defined on a neighborhood of t o x ~)rs 
given by ~o(x, t)]~• ~= e <x't >/A(x). Hence by applying Proposition 4.7.1, we have 

(P(~x) q0)(t', t)= A(t')- 1 p(c~c)e<C,O 

= A(t')- 1 p(t)eO',t> 

= (P(t)~o)(t', t). 

Hence (P(c?~)-P(t))q~=O on b~ x 1)~. Since this is G-invariant, this holds on 9~ 
x b~. Thus we obtain 

(P(Ox)--P(t))fiF=O o n  9rs • Drs . 

Since ~p•215 is a simple Module we have (4.7.3) on 9xb.  Thus the 
proof of (2) is completed. 

4.8. As seen in w ~0(9~ and ~p-,(N)~(gp '(N~ are canonically obtained from 
~f(9~. Hence we have 

Proposition 4.8.1. (1) ~o(9~'~v~Af 

(2) fp - ,(N)~ 9 (tip- ,(N) = j *  ~/" 

where p: g x b-* fl and j: fl~---~g x [3 is given by {0} ~---~b- In particular, we have 

, IV  - ~ r(9, ]0 o~) = r(9 x b .  )/)L ~ ,  r(9 x ~, x )  

r(9, L ,~N)~r = r(9 x b, Y ) / 2  t , r (9 x b, Y ) .  

If F' denotes the Fourier transformation with respect to g xb, we have 
JV F' = ~ .  Hence 

r(9, (S~oS)~ r(9 • b, ./r i f ( 9  • b, x ~') 

Thus, we obtain 

Proposition 4.8.2. ~p_ ,~N)~gCp_ ,~N) is the Fourier transform of ~p (~. 

Proposition 4.8.3. Ch(~p (9~)= V-(g • N). Here 

V =  {(x, y)e T* 9= 9 • 9" =9  • g; f-x, y] =0}. 

Proof. By the use of Theorem 1.3 and the relation ~pC~=~yV, we shall calcu- 
late Ch(~;(~). Here p is the projection 9 x b ~ g .  We have Ch(JV)=A; where A 
is the one defined on right hand side of (2) in Theorem 4.1. Hence, we have 

Ch(~, C~) = m,(A .  {s = 0}). 
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Here m is the project ion from the (x, y, 0-space onto  the (x,y)-space. Now set, 
for w~W, 

A w = {(x, y, t, s); (x, y, t, ws)eA} .  

Then we have A w. {s=0} = A .  {s=0}. Hence 

(:~ W)" Ch(Ip(9~)=m,(( ~ Aw) ' {s  =01). 
w~W 

On the other  hand, we have 

71 = ~, A w = {(x, y, t, s); Ix, y] = O, ~c(x) = •(t), 1r = tr - s)}. 

Let m~ be the project ion from the (x, y, t,s)-space onto  the (x, y, s)-space. Then, 

re(A-{s= 0})= ~(A). {s=0}. 

On the other hand, it is easy to see that 

rol(~)=(~ w) . s  
where 

s=  {(x, y, s); Ix, y] =0, K(y)= ~(-  s)}. 
Thus, we obtain 

Ch(~p V~) = S. {s = 0}. 

Since N = {y; ~:(y)= ~(0)}, we obtain the desired result. Q.E.D. 

Proposition 4.8.4. Ch(~A/r)= Ch(~p(9~) x Tb* b. In particular, 

Ch(~V)  = {(x,y)6 9 x 9 = 9  x g*=  T ' g ;  Ix, y] = 0 , y ~ N }  x Tb* D. 

Proof  We have 

~/ 'F  --~ ~px i d ~ t  x b exp O. 

Since (9.a • ~ exp O)a n = ((9~ • ~)~n we have 

( '::~)~n = (P*(~o (~))~~ 

where p is the project ion g x b--'g. Hence we have 

Ch(~A/'r) = Ch(p* Ip(9~) = Ch(~p(9o) x T~* b. Q.E.D. 

Proposition 4.8.5. Ch(~,_ ,(N)~,(g,_ ~(N))= V. (N x g*). 

Proof  Since ~p_,(N)~(9,-,(N) is the Four ier  t ransform of ~0(9~ which is homo-  
geneous, this is obtained by Theorem 3.2. This proposi t ion also can be proven 

in the similar way as Proposi t ion 4.8.3 by using 

4.9. The  correspondence of R H  and Perv implies the following 

Proposition 4.9.1. 

(1) DRg • b(~/(9~)= N f ,  II~[ - rank g] 
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(2) DR.(~p Ca) = N p ,  112~ 

(3) DR.(~o  ,(N)_g(Qp_ I(N)) = l R p ,  I ~ [ N [  --  rank 9] 

(4) DR~• n(~o• ~ @~• ~ exp 0) = P,.(p x 1), r • 

(5) DR~(XvI~ • ~a/) = R P ,  ~a. 

Here we considered them in the usual topology. 
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w 5. The action of W on ~t ~" 

5.1. The action of the Weyl group W on b induces the action of W on g x b. 
The  subset f(,~) is clearly invariant by this action. Hence W acts on 

Through  Riemann-Hi lber t  correspondence in Theorem2.1,  this W-action is 
closely connected with Lusztig's construct ion of Springer's representations. 

5.2. As seen in the preceding section fir~__,fi~ gives an isomorphism between 
~Arv and (~ICS.  Hence,  by taking the partial Four ier  t ransform fi~--,fi~ 
= ( d x d t ) - l |  gives an isomorphism between ,/V and ~s(g~. 

Now, g ~ , = ~ f - l ( g r ~ X b ) i s  isomorphic to f ( . ~ ) ~ g ~ x b .  Hence W acts on 
.~.,. It is easy to see that  w*(co)=(sgnw)co for any weW. Here  sgnw=det~(w).  
Since w * ( d t ) = ( s g n w ) d t ,  fi~ is invariant by the action of W. 

Proposition 5.2.1. W acts on .IV by W~w: fi~--~fi. 

5.3. The section u can be realized as a section of ~ y ~ l g •  as follows. Let  
{Pl(x), . . . ,P~(x)} be a homogeneous  base of r  G where l = r a n k g .  Then, for a 
linear coordinate  system (t 1 . . . . .  tz), the Jacobian of (Pl(t) . . . . .  Pl(t)) equals a 
constant  multiple of A (t) = 1-L~a + (c~, t ) .  

Fix a point  toeb,  s. We shall consider on a ne ighborhood of ( to, to)eg 
x bc~f(.~ ). Then, there exists a function ~ol(x ) . . . . .  (pl(x) so that f(.~) is defined 

by t~ = q)j(x) (j = 1 . . . . .  l) and also Pj(t) = P~(x) (j = 1 . . . . .  l). Hence u corresponds to 

~(t 1 -- ~ I(X)) ~(t 2 i ~ 2 ( X ) ) " "  " ' $ ( t  1 1 q~;(x))dx- ~ | 

= 6 ( t  1 - ~P ~ ( x ) ) . . . f ( t  t - ~p~(x)) A ( t ) -  t .  

On the other  hand we have 

6(P1(0- Pl(x))...a(~(t)- P~(x)) 

- (Jacobian of (P1 (t) . . . .  , P / ( t ) ) ) - I  c](t I _ r (X))... ~ ( t  I - -  qgl(X)). 

Hence,  we obtain 

Theorem 5 . 1 . . k ~ f ~ ) l ~ •  is given by 

fi~--~ 6(P, (t) - P, (x)).. .6(Pt(t) - Pt(x)). 

Note  that Proposi t ion 5.2.1 follows also from this theorem. 
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5.4. The action of W on ~i(9~ induces the action of W on ~o_~r and 
~o(9~ because they are canonically obtained from ~i(_9~ (see w On the other 
hand, we see ~p(9~ is the Fourier transform of ~O-,CN)~g(9O-,<N ). More precisely 
we have the following theorem. 

Theorem 5.2. Together with the actions of  W, we have 

(~p (9i)r = (~p-'(N)~ ~ (9O-'<N)) | sgn. 

Proof As seen in w we have 

and 

r(9, ], o~) = r(~ x b; Y )  ~ r(g x b; ~ )  

~ p - l ( N ) ~ g ( ~  p I(N ) = i f ( 9  X D;f)/Z tiF(g • I) ; JF). 
i 

0 
Since a(t) f imod~c3~ir(gxl; .A/" ) corresponds to a(t)fidt in ~0(9~ (here dt 

=dt~...dt~ and (t~ . . . .  ,h) is a linear coordinate of t)) w ~ W  acts by 
a(t) fi~--* sgn wa(w- 1 t) ft. 

by On the other hand w e W  acts on a(Ot ) f imod~t iF(gx[ ) ;Y)  
a(Ot)fiw-~a(w-lO,)fi. Thus we obtain the desired result. Q.E.D. 

Now, we decompose, according to the W-action, 

(5.4.1) ~o-'(N~, Op - I(N)~@~w Vx | 

where I~ is the set of irreducible representations of W and V X is a repre- 
sentation space of X. 

Theorem 5.3. (1) JC[x is a simple ~g-Module. 
(2) The .///x's are not isomorphic to each other. 
(3) The support o f  "//gx is the closure of  a nilpotent G-orbit. 

Proof. Note that (3) follows from (1). By Theorem 5.2, we have 

(5.4.2) ~o (9~-~ @x~w Vx |162 , )(=)~| 

In order to prove this proposition it is enough to show that the ~/xF,'s are 
simple ~g-Modules and not isomorphic to each other. Since ~0(9~ is a minimal 
extension of its restriction to gr~, so is Jg~. Hence it is sufficient to show them 
for "/r Now p-l(g~s)-,g~= is a principal W-bundle and hence W acts on 
~p(9il~ =. This action coincides with the action already defined. Now fix a point 
XoeD~=. Then, DR(~p(9~)~o~H~ - l(xo), C). The action of W via the structure of 
principal W-bundle and the action via the monodromy endow H~ -a(xo),IE ) 
with the structure of bi-W-module, and this is isomorphic to IE[W]. Since 
II?[W]~@xVx| as W-bi-modules, the monodromy action to DR(J/~)~o is 
isomorphic to V*. Since the V*'s are irreducible and not isomorphic to each 
other, we obtain the desired result. Q.E.D. 
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By the argument discussed here we obtain 

Corollary 5.4.1. The multiplicity of J/gx along T~*~g equals dim V x. 

We shall denote by O(X) the nilpotent G-orbit whose closure is the support 
of Jl~. For example O(trivial) is the orbit of regular nilpotent elements and 
O(sgn) is the origin. 

w 6. The invariant holonomic system 

6.1. For 2~D*, we define a 29-module os by 

(6.1.1) , / / g z = ~ , / ( ~ a d g +  ~ ~,(P(x)-P(2))) 

~ q U  2 . 

Hence its Fourier transform is given by 

(6.1.2) , ~  = ~ / ( ~  ad 9 + ~ ~ , ( P ( G ) -  P(;~))) 

This is nothing but the system of linear differential equations for invariant 
eigendistributions. We call ~f//~ the invariant holonomic system on 9. In this 
section, we shall study the relation between ,/{~ and Jf'. 

6.2. For 2~b*, we define 

A(~)= {c~A ; (~,).) = 0} 
and 

w(,~) = {we  w; w,i = 2}. 

If we denote by b(2) the vector space generated by A(2), then (b(2),A(2)) is a 
root system and W(2) is its Weyl group. Let us denote by 0~(b(2)) the space of 
harmonic polynomials on b(2). By definition 

~f, (b(2)) = { f ~  [b(2)] ; (~  w(2))f(#) = ~ f (#  + w#') for any p, #'eb(2)} 
weW(2} 

= { f e ~  [b(2)]; P(#,)f(#)= P(O)f(#) for any Pc  S(b(2))w~)}. 

As is well-known, J4~ is isomorphic to (;[W(,~)] as representations of 
w(,~). 

6.3. As was seen in w we have 

( 6 . 3 . 1 )  Y F = ~ • 2 1 5  Z ~g• 
Pet[g] G 

+ Y. G• QG))), 

= ~ g x b U  F . 
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We shall define a homomorphism 

(6.3.2) ~ux: ~ ( b ( 2 ) )  |162 ~ y v l, = 

by PQuV~--~P(O,)fivl,=~. 

Here, we identify b()0 with a vector subspace of b* by the invariant quadratic 
form. 

Proposition 6.3.1. 7~a is a well-defined ~q-linear homomorphism. 

In order to see this, we have to show for any Pe~(b (2 ) )  

(1) (ad g)P(~,)fiv[,= x =0  

(2) (Q(Ox)-Q(R))P(O,)fiVl,=z=O for any QeC[g*]  G 

The first statement is obvious. 
We shall show (2). We have 

(Q(0,) - Q(2)) P(e,)fi r = P(~,)(Q(t) - Q(2))fi r. 

Hence it is enough to show 

P(c~t) (Q (t) - O(2)) e I x ~ .  

Here I x is the ideal of (9 b consisting of the functions vanishing at 2. 
Let b=D(2)OD()0 • be the orthogonal decomposition of b. Then Q s C [ b ]  w 

can be written in the form Q = ~ Q j R  i where Qfi{E[b(2)] w(x) and R j ~ [ b ( 2 )  l ]  

because W(2) acts trivially on b()0 • 
Since 2~b(2) l, we have 

Q(t)- Q(2)= ~(Qj(t)Rj(t)- Qj(0)Rj().)) 

= Z (Rj(t) - Rj(~))Qj(t) + ~ Rj(2)(Qj(t)- Qj(O)). 

Since Rj(t) commutes with P(~,), we have 

P(c~t) ~ (R ~(t) - R j(2)) Q j(t) e I x ~ .  

Hence (2) is reduced to the following Lemma. 

Lemma 6.3.2. For P~Uf(D(2)) and Q~r w~) with Q(0)=0, we have 

P(~t) Q(t)~I~x). 

Here I is the maximal ideal of (gb~x) consisting of the functions vanishing at the 
origin. 

Proof. By taking the Fourier transformation, it is enough to show 

P(t)Q(- O,)e~ ~ ~tj b(X)" 
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Here (t 1 .. . .  ,tN) is a linear coordinate system of I3(2), By taking the formal 
adjoint, this is equivalent to 

Q(~,)P(t)6~, @b(z) at-~" 

This follows from the definition of W(13(,~)). Q.E.D. 

In the preceding section, we have defined the homomorphism 

On the other hand, since 2 is a fixed point of W(2), W(2) acts on ,/V'l,=,, and it 
is obvious that 7Jr is W(2)-linear. Thus we can define 

r  Jg#-*Homw~.)(~g(b(2)), ~#l,= ~). 

Theorem 6.1. q~, is an isomorphism. 

The proof is devided into three steps. 
(1) q,f is an isomorphism on g,~. 
(2) codimn(S)>2. Here S is the support of the kernel of (hi and K is the 
canonical morphism from g onto 13/W. 
(3) (bf is an isomorphism. 

6.5. Proof of (1). As was seen in Propositions 4.8.3 and 4.8.4 we have 

(6.5.1) Ch(YVl,= ~)= {(x, y); [x,y] =0}-(,q • N). 

Hence the multiplicity of ~g'v[,=z along T*q equals ~W. Hence in order to 
show (1), it is enough to prove that 

is injective for any xo~fl~ ~. 
By the adjoint action, we may assume x0~13~. By the well-posedness of 

Cauchy's problem 

For w~W, let q3w(X,t ) be a ~-invariant holomorphic function defined on a 
neighborhood of {x0} • 13 given by 

~Ow(X, t)lh• h = e<~">/[L > o( ~, x).  

Then, ~ [ W ]  ~ Jt~,m~(~ • b~o( .~ ,  (9(, • bl,)(~o.*) by W~---~(fiF~--~O~(X, t)). The action 

of W(2) on the right hand side is the left multiplication on ~ [W] .  We shall 
choose P~W(2) such that ~(13(2))~--~[W(2)] P. Then, we have 

[W] ~- ~,5~-,~q, (Homw(a~(~(b(2)),,,Uvl,= a),,, (9,..).~o- 
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Then Jvgo,m~(4~, (9~)xo is given by 

w~(u~~(P(~k~p~(x,  t))l,= ~). 

On the other hand P(~,)q~w=P(wx)cp~,(x,2). Therefore it is enough to show the 
homomorphism 

r [w]-->c;~,~ o 

given by w~--,P(wx)e <~'w-'~> is injective. This easily follows from the fact that 
~ j lC[x]e  <x'u,> forms a direct sum for mutually different pfs. 

This shows (1). 

6.6. Proof of (2). Since ~v[,= ~ is the minimal extension of its restriction to g,~, 
the same thing holds for 

H omctw(~) 1 (,~(I)(2)), oArvlt= ,0" 

Hence the surjectivity of v q)z ].q,, implies 

(1') <b~ v is surjective. 
Let LP be the kernel of (b e. Then we have 

(6.6.1) Ch (Jg~) = Ch(5r + Ch (JV v It = ~). 

On the other hand, we have 

Ch(~'ff) c {(x, y)eg x N ; I-x, y] = 0}. 

Hence if A is an irreducible component of the right hand side, we have 

mUltA ~{F >= multa.A#vlt = z" (6.6.2) 

Moreover, if 

(6.6.3) m u l t a ~  ~ ~multa-ArFIt= x 

holds, then C h(~ )  does not contain A. 
Now, we know that 

Ch(,/ffFlt= z) = {(x, y)eg • g; Ix, y] = 0}..q • N. 

Assume that at some point (x 0, yo)~A we have 

(6.6.4) dim gxom .qyo= rank .q. 

Then by the Jacobian criterion {(x,y); [-x,y]=0} is non-singular on a neigh- 

borhood of (x o, Yo)- 
Let {P1 .. . .  , Pz} be a system of homogeneous generators of C[g]  a (/= rank.q). 

Then multn~/'v[t= x is the multiplicity of Cg• along A where I is the ideal 
generated by Ix, y] and Pj(y). On the other hand, the symbol ideal of u~ 
contains I. Hence multa#/~ is equal to or less than the multiplicity of C~• 

along A. Thus (6.6.3) holds and hence Ch(A ~ :b A. 
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Remark  that  in the case when ,q is a classical semisimple Lie algebra,  

(6.6.4) holds for any A. Therefore  we have Ch(LP)=O and hence q~x is an 
i somorphism.  However  in the exceptional  Lie algebra case (e.g. F4), there exists 

some A where (6.6.4) does not hold (communica ted  by J. Sekiguchi). 

N o w  we shall prove  (2). In order  to prove this, it is enough to show that, 
for A with codim~crr(A)= 1, (6.6.4) holds. Here  ~ is the project ion f rom T*,q 

onto  ,q. 

In this case we can take h + x ~  or h as x o. Here,  c~ is a root ,  h is a generic 
point  of e 1(0), and x~ is a roo t  vector  of c~. In the first case we have dim,qxo 

= rank,q and in the second case we have dim,q~oC~ gx, =rank,q .  Thus, (6.6.4) is 
satisfied in either case, and hence (2) holds. 

6.7. Proof of  (3). In order  to prove  this we shall show the kernel ~ of 4~" 
equals zero. Let  S be the suppor t  of  S .  By (2), we have 

(6.7.1) d im to(S)_<_ rank g - 2. 

Now,  assuming S is non-empty  we shall deduce the contradict ion.  Let  x o be a 
generic point of S. 

L e m m a  6.7 .1 .  1 v ~~ = )., ~ a n ) x 0  = 0 .  

Proof On a ne ighborhood  of Xo, f a ,  is i somorphic  to a direct sum of copies of  

Hence  it is enough to show that  

1 F 

By L e m m a  2.3.1, this is equivalent  to 

.)ttocodim S - 1 (D R,(~Mv[t = a))~o = O. 

On the other  hand, by Proposi t ion  4.9.1, 

DRg(~A/'Flt- 4) = N P ,  ~ .  

Thus  it is enough to show 

H~Odi.~s l(p l (Xo) ,~)=0.  

Thus the l emma  is reduced to 

o r  

cod im S - 1 > 2 dim p -  1 (Xo) = d im ,q - d im[g ,  Xo] - rank ,q, 

(6.7.2) d im S + 1 < dim [,q, Xo] + rank ,q. 

Since the fiber of ~c is a union of a finite number  of G-orbits,  we have 

d im S = d im ~c(S) + d im [,q, x0]. 

Hence  (6.7.1) implies (6.7.2). 
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Now, we shall recall the following famous deep result due to Harish- 
Chandra ([10, 11]). 

Theorem 6.7.2 (Harish-Chandra). (j/iv),. has no non-zero coherent quotient 
whose support is contained in g-g~s. 

What he proved is not exactly of this form, but his main purpose was 
rather to show the regularity of invariant eigendistributions. In fact, if one 
inspects his proof, one can apply his method to obtain the above form of 
expression. Rather, in our point of view, the essence of his regularity theorem 
lies in the above stated point and the regularity property can be deduced di- 
rectly from this. (See also unpublished paper of Atiyah-Schmid.) 

Now, by Lemma 6.7.1, the exact sequence 

0---> ~an--~(~AF)an"~(~/'F]t= A)an'-'~0 

splits on a neighborhood of x o. Hence ~ , ,  is a quotient of (//g~')an on a neigh- 
borhood of x o. This contradicts Theorem 6.7.2. 

This completes the proof of Theorem 6.1. 

Corollary 6.7.3. For 2 and 2'sb, we have 

Proof. We have, by Theorem 6.1 and Proposition 4.9.1, 

DR(J//f) ~ DR(dg~) = P,p.(IE,). 

Thus this corollary follows from the Riemann-Hilbert correspondence in Theo- 
rem 2.1. 

Note that this isomorphism is not canonical. Note also that Jg~" is not 
completely regular in general and ~ / f  is not isomorphic to ~#~. 

w 7. Homogeneous decomposition of d/lo ~ 

7.1. Let ;~ be the vector field y xjO/~xj for a linear coordinate system 
J 

(x 1 . . . . .  x,) of g. Similarly we define the vector field 0~ on b. 
We define the ~g-linear endomorphism ~ of og0 by 0: Uo~--~Ogu o. This is 

well-defined because the defining ideal of u o is homogeneous. 

Lemma 7.1.1. (O~+Ob +c)fi=O where c= ~ A + + r a n k g  =dimb.  

Proof. We shall take orthonormal base (x 1 . . . . .  x,) and (tl, ..., fi) of g and D, where 
n = dim g and l = rank g. Then 

2 

and 
02 62 02 --~/2 

" 
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By taking the commutators ,  we have 

(4x~ 8 ~ ~ + 4 f i ~ t + 2 n + 2 1 )  fi=O. + . . .  

The lemma follows from this and n=2(#A+)+l .  

Proposition 7.1.2. q)o(Ou)(P)=q)o(u)((-c-O~)(P)) for any Pe,;/g(b) and 

JUo. 

Proof. We may assume u=u o. Then we have 

q)o (Og Uo) (P) = Oo qgo(Uo)(P ) = O,P(c3t)hl, = O. 

On the other  hand, 

any u6 

O, P(0~) fi = P(8,) 0g fi = P(St) ( - c - 8b)fi = ( - cP(c3,) - [P(8,), 3~])fi - ObP(0t)fi. 

Since 8be~tj~g• , and [P(?~),ObJ=(O~P)(8~), the statement holds for u=u o. 
The general case follows from the ~-l ineari ty.  Q.E.D. 

We set Jg(~)=, ,#o/(B-~) , / /4  o for ~e(E, and o~(a)={P6Jt~(b);O~P=~P}. 
Since ,~f(b)=@,~(~) ,  we have, by Theorem 6.1 and the preceding lemma 

(7.1.1) ~U o = @~ ' (~ )  

and 

(7.1.2) J / ( a )  = ,aff~,,J, w ( ~  ( - c - c 0, JVlt= o). 

Proposit ion 7.1.3 (Barbasch-Vogan [6]). For any nilpotent orbit 0 of  g, we have 

0 for e >)~o=�89 O - d i m  g 
Jtf~'~'eg~ ~ o . .  for c~=2 o 

Corollary 7.1.4. (1) For any nilpotent orbit O, there is Zo ~ I?V such that dgXo- ~ol~ 

{10 for c t = # A + - � 8 9  
[Jg(~); Z~ = for a <  @ A + - � 8 9  

(2) The dimension of the support of any non-zero sub-Module of J4(c 0 is equal to 
or larger than 2(~ + dim g). 

Corollary 7.1.5. Let Jo be the defining ideal of 0 and J the defining ideal of the 
set N of nilpotent elements. Then 

~ o l  ~-~/(~gadg+~gJ~+~(bl , - ;~o)+@gJ)  .for any k>=l. 

~ n j  Proof. Let ~ denote the right hand side. Then Supp 2~ ~ c O and ~ = ~o1~ on a 
ne ighborhood  of O by Proposi t ion 7.1.3. On the other  hand, ~ is a quotient  of 
~ o .  Since dr' o is completely reducible (i.e. a direct sum of simple ~g-Modules),  so 

~ ' ~ - M o d u l e  &o, L~q' is Lf. Hence ~ =  Mol. , |  ~ for some such that Supp c~?O. 
On the other  hand the preceding corollary implies dim S u p p ~ ' > d i m O ,  if 

~e' 4=0. Hence LP' vanishes. 
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w 8. Hyperfunction solutions to ,A/" and ~//o 

8.1. In this section, we shall study hyperfunction solutions to 
Since the sheaf of hyperfunctions is obtained from the sheaf of holomorphic 

functions by a cohomological manipulation, the property of hyperfunction so- 
lutions is, theoretically derived from that of holomorphic solutions. In our 
case, the knowledge on DR(JV) permits us to perform this program. 

In the sequel, we shall maifily treat the case where g is the complexification 
of a complex semisimple Lie algebra. 

Let g be a semisimple Lie algebra and gR a real form of g. Let us fix a 
Cartan subalgebra ba of g~ and let b be the complexification of b~. Let G~ be a 
connected Lie group with gg as its Lie algebra. 

We set 

(8.1.1) bt = {t~b~; there exists at least two positive roots vanishing at t}. 

Then we have 

Proposition 8.1.1. 
(a) ~ o  • ~ ( ~ q  

~,~_..~ • b~ao(./r ~ •  

lh ~<" S7 denotes the sheaf of  hyperfunctions. 

Proof Let us take a subanalytic Whitney stratification 

such that 

(0) MI is connected. 

(1) Any fiber of Mi--*b~ consists of a single G~-orbit (or empty). 

(2) M i ~ (g~ i  g r s ) x b~ O r M i ~ grS X b~" 

(3) M i c g ~ x ( b ~ - - b X )  or M i = g ~ x b l .  

(4) Mi~b~  has constant rank. 

(5) Mi~(x, t)v--~dim[g, x] is locally constant. 

(6) DR(,N')]M, has locally constant cohomology groups. 
The properties (4) and (5) implies 

(7) For  (x, t )~M i, dim M i = dim[g, x] + rank of (M i ~ b~). 
Now we shall remark the following lemma 

Lemma 8.1.2. Let M be a real analytic manifold and N a closed submanifold of 

M. Let Y c X  be complexifications of  N c M .  Let Jg be a holonomic ~x-Module 

such that all the cohomology groups of  DRx(J-Y)[~v are locally constant. Then we 

have 

~ R  ~ff~: , , (D Rx(JC)IN, a''~N] v'~CN~(~ ~ r 1 7 6  t~M] L--Jr codim N]. 

Proof \V c have 

R~ R ~.,,~(~g, ~x) 

= R ~,~,~,,r ~x) 
- -  ~ . 2 d i m M - d i m N  �9 - ~'uY~'~e~,(DR(Jg)IN, ~N) |162 ;ZfN (~x) [dim S - 2dim M]. 
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On the other  hand, :Nv=lRFM((gx)| implies 

= R F  N R J~,~,=(J/r COx)| ~ ( ~ x ) [ d i m  M] 

= ~'~ ~ ' q ~ N ( D R ( ~ { ) I N  , (~N)(~)~2 dimM - dlmN([~X}(~).~MdimM(~x) [ __ codim N]. 

Hence the lemma follows from 

,~a2dimM.- dimN(r ~.~NcodimN(~M). Q.E.D. 

We shall resume the proof  of Proposi t ion 8.1.1. By using this lemma, we 
have locally 

= R N,,,r ~TM,) [ - -  codlin Mi] 

= P, ~,,CM(IRf,((I?~)IM,, 112~,)[rank g-codim Mi]. 

Hence for p i = ( x ,  ti)eMi, we have 

Homr . . . .  k~l -k(f  l(pl) ' {E), (12). 

Now, we have 2 dim f -  l (p;) = dim .q - rank .q - dim [.q, xi]. Hence, if 

(8.1.2) codim M i - rank .q - k > dim .q - rank .q - dim [.q, xi] 

holds, then ~k -Y/~, (R ~ , , % , •  (. t -~  • ))lu vanishes. Now (8.1.2) is equiva- 
lent to 

(8.1.3) k<rankg+dim[ .q ,  x l ] - d i m M ~ = r a n k q - t h e  rank of (M~--+b~). 

Hence, we obtain 

~XY ~ (R ~,'f~,~(,.#', ~))  = 0 for m l c  (.q - g,~) x b~ (8.1.4) 

and 

(8.1.5) . ~ ,  (R ~.,,~,~(y,~))=o for m ~ c q  •  

This shows immediately (a) and (b). 

Proposition 8.1.3. 

(1) F(.qt~; J g ~ % ,  ((./#aV)an,.~)) does not depend on 2. 
(2) 0 v , _ 

' < g F ,  grs) ~//Q~gan (( '/~k) . . . .  ~gnt.) - 0 "  

Proof (1) follows immediately from Corol lary  9.7.3. 
Let us show (2). By Lemma  8.1.2, it is enough to show that  for a subvariety 

N of g~--grs such that G~N= N and DRg(J/4'~v)IN is locally constant,  

o;/gcodi,, N (DR.,(j//v)lu) = 0. 
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Now, we have DRg( ,A/ f f )=Rp, (~) .  Hence we have, for x~N, 

~i(DR,(Jg~))x=HJ(p-l(x),~)=O for j>2dimp-l(x) .  

On the other hand, we have 

2 dim p -  1 (x) = dim g - rank g - dim[g, x] 

= dim g - rank .q - (dim N - dim •(N)) 

= codim N - codim •(N) 

< codim N. 

Thus we obtain the desired result. 

8.2. In the sequel we shall restrict ourselves to the case where g~ is the under- 

lying structure of a complex semisimple Lie algebra go. Hence g = go| where 

.% is the complex conjugate of go. 

Theorem 8.1. Under this assumption 

Proof Ser (2=f())m(.q~c~g,s)Xb~. Then, the sheaf ~ * ~ , . ( J V ,  n ,~,~x~)[  n is 
isomorphic to ~a" In fact, choosing a base {P~ . . . . . .  Pt} of homogeneous gene- 

rators of ~[g~G~,  we set 

~p(x, t )= I~ '= ,  6(Pj(t) - Pj(x)). 

Then q~ is a well-defined hyperfunction on a neighborhood of (2 and 

defines the isomorphism 

Since we assumed that g~ is a complex semisimple Lie algebra, 

and f2 is connected. Hence by Proposition 8.1.1, we have 

The last term is isomorphic to C because (2 is connected. Q.E.D. 

By this theorem, the hyperfunction ~0 is extended to a global hyperfunction 

solution to JV. We shall denote it by 6(x, t). 

8.3. Let W b e  the Weyl group of (g,b) and let W~ be the subgroup {w~W; wb~ 
= b~ .  Then, W~ is the Weyl group of go, and W is isomorphic to W~ x W~. 

Since the Fourier transform of JV is isomorphic to JV we have 

Proposition 8.3.1. The Fourier transform of 6 is a constant multiple of ft. 
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Proposition 8.3.2. For P6~q?(b), 

(8.3.1) P(O,)6(x,t)l,:o=O if and only if ~ P(wt)=O. 
w~W~ 

Proof. The Fourier transform of P(~,)6(x,t)l,:o is the integration of P(2~it)- 
times the Fourier transform of 6 with respect to t. Hence P(c?,)6(x,t)l,=o=O if 
and only if 

P(2n it) 6(x, t)dt =0. 

On the other hand, the Fourier transform of P(~,)6(x,t)l,=o satisfies J/o ~, 
and hence it vanishes if it vanishes on .g~ngg (Proposition 8.1.3). Since 

Supp6~(G~b~) • b,,  (8.3.1) is equivalent to 

~P(2=it)6(x,t)dt=O for xr b~s. 
Since 

1 
5 ( x , t ) i ~ h ~ , =  ~ i ~ t ) i S ( t - w x ) ,  

weW~. 

we have 

~ P(2nit)6(x, t)dt= Z P(2niwx)/IA(x)l. 
w6W R 

Thus we obtain the desired result. 

8.4. Let O be a G~-orbit of 9~ consisting of nilpotent elements. Let Or be the G- 
orbit containing O. Now, the invariant measure on O extends to a measure on 
,q~, which defines a distribution/to on g~. This defines a solution to J{()~or on 

By Proposition 7.1.3, Corollary 7.1.4 and Corollary 7.1.5, we have 

Proposition 8.4.1. (l) Po is a solution to .g//Xo. 
(2) Any solution to ,J~ " o~/Xo is a constant multiple of Po. 

These results hold for an arbitrary .q~. 
Now assume that 9~ is the underlying real structure of a complex semi- 

simple Lie algebra ,% and let W and l~h be as in 8.3. Then ,q = 9o • ,q~ and Or 

= O  • and incidentally Zoe=Zo| for )~o~ I?r where the bar - denotes the 
complex conjugation. 

Theorem 8.2. There exists 

p e ~,~r ( - (dim g + rank g)/2 - 20r 

which transforms according to Zor174 such that 

P(ct) 6(x, t)lt = o = Po. 

Proof Note that Zf = ~,~(- (dim fl + rank 9 ) /2 -  2or contains Zor Since Zoclw~ 
contains the trivial representation there exists P~.gf which transforms accord- 

ing to Zoc such that ~ P(wt)#O. Let us take such a P. Then P(~t)6(x,t)lt=o#O 
w e W ~  

by Proposition 8.3.2. On the other hand by Theorem 6.1, P(~,)b(x,t)]t=o is a 

solution to ~/#~or Hence it is a non-zero constant multiple of Po. Q.E.D. 

This theorem is proved by Barbasch-Vogan [7, 8] for special orbits. 
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