
THE ASTROPHYSICAL JOURNAL, 550 :824È840, 2001 April 1
( 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE INVERSE CASCADE AND NONLINEAR ALPHA-EFFECT IN SIMULATIONS OF ISOTROPIC
HELICAL HYDROMAGNETIC TURBULENCE

AXEL BRANDENBURG1,2
Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, Santa Barbara, CA 93106 ; brandenb=nordita.dk

Received 2000 June 12 ; accepted 2000 December 8

ABSTRACT

A numerical model of isotropic homogeneous turbulence with helical forcing is investigated. The
resulting Ñow, which is essentially the prototype of the a2 dynamo of mean Ðeld dynamo theory, pro-
duces strong dynamo action with an additional large-scale Ðeld on the scale of the box (at wavenumber
k \ 1 ; forcing is at k \ 5). This large-scale Ðeld is nearly force free and exceeds the equipartition value.
As the magnetic Reynolds number increases, the saturation Ðeld strength and the growth rate of theR

mdynamo increase. However, the time it takes to build up the large-scale Ðeld from equipartition to its
Ðnal superequipartition value increases with magnetic Reynolds number. The large-scale Ðeld generation
can be identiÐed as being due to nonlocal interactions originating from the forcing scale, which is char-
acteristic of the a-e†ect. Both a and turbulent magnetic di†usivity are determined simultaneously usingg

tnumerical experiments where the mean Ðeld is modiÐed artiÐcially. Both quantities are quenched in an
fashion. The evolution of the energy of the mean Ðeld matches that predicted by an a2R

m
-dependent

dynamo model with similar a and quenchings. For this model an analytic solution is given thatg
tmatches the results of the simulations. The simulations are numerically robust in that the shape of the

spectrum at large scales is unchanged when changing the resolution from 303 to 1203 mesh points, or
when increasing the magnetic Prandtl number (viscosity/magnetic di†usivity) from 1 to 100. Increasing
the forcing wavenumber to 30 (i.e., increasing the scale separation) makes the inverse cascade e†ect more
pronounced, although it remains otherwise qualitatively unchanged.
Subject headings : MHD È turbulence

1. INTRODUCTION

The generation of large-scale magnetic Ðelds from small-
scale turbulence is important in many astrophysical bodies
(planets, stars, accretion discs, and galaxies). Over many
decades the a-u dynamo concept has been invoked to
explain large-scale magnetic Ðeld generation (Mo†att 1978 ;
Parker 1979 ; Krause & 1980). Over recent years,Ra� dler
however, numerical simulations have become available
that produce large-scale Ðelds with appreciable magnetic
energy, sometimes even exceeding the turbulent kinetic en-
ergy (e.g., Glatzmaier & Roberts 1995 ; Brandenburg et al.
1995 ; Ziegler & 2000). Whether or not large-scaleRu� diger
Ðeld generation to such amplitudes is related to the
a-e†ect remains debatable (e.g., Cattaneo & Hughes 1996 ;
Brandenburg & Donner 1997).

The a-e†ect is a key ingredient to many astrophysical
dynamo models. The purpose of this paper is, therefore, to
study a simple system that is prototypical of the a-e†ect :
homogeneous isotropic turbulence that lacks mirror sym-
metry. Astrophysical dynamos often work in conjunction
with shear, i.e., the u-e†ect : this case is studied in a second
paper (Brandenburg, Bigazzi, & Subramanian 2000). An
isotropic helical turbulent Ñow is accomplished by adopting
a body force corresponding to plane-polarized waves in
random directions (but constant polarization) with wave-
lengths short compared with the size of the box. Since the
seminal papers by Frisch et al. (1975) and Pouquet, Frisch,
& (1976), we know that there should be an inverseLe� orat
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cascade of magnetic helicity, which has also been demon-
strated using direct numerical simulations (e.g., Meneguzzi,
Frisch, & Pouquet 1981 ; Balsara & Pouquet 1999).
However, to our knowledge there has never been a detailed
study of the spatial magnetic Ðeld patterns obtained from
the inverse cascade, nor has there been a quantitative identi-
Ðcation of the classical a-e†ect in mean Ðeld dynamo
theory. Furthermore, the Reynolds and Prandtl number
dependences of this process have not been fully explored
yet. In the present paper we study models with strongly
helical forcing at di†erent Reynolds numbers. We also
investigate some models in which the magnetic Prandtl
number (viscosity/magnetic di†usivity) is increased from 1
to 100. This may be important in connection with the
Galactic magnetic Ðeld, and there are some serious con-
cerns that the inverse cascade may not be efficient at large
magnetic Prandtl numbers.

2. THE MODEL

We consider a compressible isothermal gas with constant
sound speed constant dynamical viscosity k, constantc

s
,

magnetic di†usivity g, and constant magnetic permeability
The governing equations for density o, velocity u, andk

0
.

magnetic vector potential A are given by
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where D/Dt \ L/Lt ] u Æ $ is the advective derivative,
B \ $ Â A is the magnetic Ðeld, is theJ \ $ Â B/k

0current density, and f is a random forcing function.
We use periodic boundary conditions in all three direc-

tions for all variables. This implies that the mass in the box
is conserved, i.e., where is the value of theSoT \ o

0
, o

0initially uniform density and angular brackets denote
volume averages. We adopt a forcing function f of the form

f (x, t) \ Re MNf
k(t)

exp [ik(t) Æ x ] i/(t)]N , (4)

where is a time-dependent wavevector,k(t) \ (k
x
, k

y
, k

z
)

x \ (x, y, z) is position, and /(t) with o / o \ n is a random
phase. On dimensional grounds the normalization factor is
chosen to be where is a non-N \ f

0
c
s
(kc

s
/dt)1@2, f

0dimensional factor, k \ o k o , and dt is the length of the time
step. We focus on the case in which o k o is around k

f
\ 5

and select at each time step randomly one of the 350 pos-
sible vectors in 4.5 \ o k o \ 5.5. We force the system with
eigenfunctions of the curl operator,

f
k
\

k Â (k Â eü ) [ i o k o (k Â eü )

2k2J1 [ (k Æ eü )2/k2
, (5)

where is an arbitrary unit vector needed in order to gener-eü
ate a vector that is perpendicular to k. Note thatk Â eü

and, in particular, so the helicityo f
k
o 2 \ 1 ik Â f

k
\ o k o f

k
,

density of this forcing function satisÐes

f Æ $ Â f \ o k o f 2 [ 0 (6)

at each point in space. We note that since the forcing func-
tion is like a d-function in k-space, this means that all points
of f are correlated at any instant in time but are di†erent at
the next time step. Thus, the forcing function is d-correlated
in time (but the velocity is not).

We adopt nondimensional quantities by measuring u in
units of x in units of where is the smallest wave-c

s
; 1/k

1
, k

1number in the box, which has a size of L \ 2n ; density in

units of and B in units of This is equivalento
0
; (k

0
o
0
) 1@2c

s
.

to putting

c
s
\ k

1
\ o

0
\ k

0
\ 1 . (7)

In the following we always quote the mean kinematic vis-
cosity which is close to the actual kinematic vis-l 4 k/o

0
,

cosity k/o because the Mach numbers considered in the
present paper are less than 1.

We advance the equations in time using a third-order
Runge-Kutta scheme and sixth-order explicit centered
derivatives in space. In all cases presented we chose f

0
\ 0.1,

which yields rms Mach numbers around 0.1È0.3 and peak
values less than 1.

Our initial condition is ln o \ u \ 0, and A is a
smoothed Gaussian random Ðeld that is d-correlated in
space, so the initial magnetic energy spectrum is E

M
(k) D k4

with a decline at high wavenumbers.

3. RESULTS

All the runs are summarized in Table 1. The deÐnitions of
various entries to the table are given below, together with
an outline of the general behavior of the solutions.

After about 30 time units the rms velocity, reachesu
rms

,
an approximate equilibrium amplitude of up to 0.3. (Since

this is also the Mach number.) This velocity corre-c
s
\ 1,

sponds to a turnover time of time units,q \ l
f
/u

rms
B 4

where is the forcing scale. We note that thel
f

\ 2n/k
fvalue of q is approximately equal to the value of the corre-

lation time obtained from the temporal correlation function
of the velocity. The value of is somewhat smaller foru

rmssmaller Reynolds number. The Ñow has strong positive heli-
city, as measured by the relative helicity Sx Æ uT/(u

rms
u
rms

),
which can be as large as 70% (or even larger when the
Reynolds number is smaller). Here x \ $ Â u is the vor-
ticity.

The growth rate of the magnetic Ðeld is determined as
where the subscript ““ lin ÏÏ refers to earlyj \ d ln SB2T

lin
1@2/dt,

TABLE 1

SUMMARY OF RUNS

Parameters Run 1 Run 2l Run 2 Run 3 Run 3p Run 4 Run 5 Run 6 Run 7

Mesh points . . . . . . . . . . . . . . . 303 303 603 1203 1203 1203 1203 1203 1203
l . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.01 0.005 0.005 0.002 0.002 0.02 0.02 0.001 0.002
l/g . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 2 20 100 1 0.1
k
f

. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 5 5 5 5 5 30 5
Su2T

lin
1@2 . . . . . . . . . . . . . . . . . . . . . 0.16 0.23 0.22 0.29 . . . 0.11 0.114 0.082 0.29

Su2T
sat
1@2 . . . . . . . . . . . . . . . . . . . . . 0.12 0.15 0.15 0.18 0.19 0.10 0.104 0.062 0.20

R
m

. . . . . . . . . . . . . . . . . . . . . . . . . . 80 200 200 600 1200 700 3300 400 60
R

m,lin
. . . . . . . . . . . . . . . . . . . . . . . 100 300 300 900 1800 700 3600 500 90

R
m,j . . . . . . . . . . . . . . . . . . . . . . . . 3 9 9 23 46 21 112 3 2

R
m,forc

. . . . . . . . . . . . . . . . . . . . . . 20 60 60 180 360 140 700 17 18
R

m,forc,crit
. . . . . . . . . . . . . . . . . . 7.3 . . . 6.9 8.9 8.9 12 12 . . . 8.9

j . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.026 0.06 0.056 0.067 . . . 0.03 0.04 0.075 0.036
jq . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.24 0.32 0.34 0.30 . . . 0.34 0.48 0.19 0.16
SB2T

sat
1@2 . . . . . . . . . . . . . . . . . . . . 0.18 0.27 0.28 0.38 0.40 [0.2 [0.21 [0.2 0.18

SJ2T
sat
1@2 . . . . . . . . . . . . . . . . . . . . . 0.44 0.75 0.76 1.27 1.56 0.7 1.05 1.5 0.46

Sx2T
lin
1@2 . . . . . . . . . . . . . . . . . . . . 0.80 1.12 1.12 1.81 1.81 0.58 0.58 2.4 1.76

Sx2T
sat
1@2 . . . . . . . . . . . . . . . . . . . . 0.65 0.78 0.82 1.23 1.38 0.55 0.55 1.8 1.03

Sx Æ uT
lin

. . . . . . . . . . . . . . . . . . 0.13 0.24 0.24 0.37 0.37 0.063 0.063 0.20 0.36
Sx Æ uT

sat
. . . . . . . . . . . . . . . . . . 0.08 0.10 0.11 0.16 0.17 0.058 0.055 0.10 0.19

SJ Æ BT
max

. . . . . . . . . . . . . . . . . 0.007 0.025 0.027 0.07 [0.03 0.025 [0.06 0.040 0.006
SJ Æ BT

max
/(J

rms
B

rms
) . . . . . . 0.22 0.20 0.20 0.25 . . . 0.23 0.18 0.25 0.17

o SJ Æ BT/SB2T o
lin

. . . . . . . . . 0.9 1.3 1.1 1È1.5 . . . 2.2 2.4 5.5 0.70
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times when the Ðeld is still weak on all scales. Ellipses in the
table indicate that the run has been restarted from another
run, so no data are available for the linear growth phase.
Also given is the growth rate normalized with the turnover,
q \ l

f
/Su2T

lin
1@2.

In order to assess the Reynolds number dependence
of our results, we have performed three runs, with
l \ g \ 0.002 (run 1), l \ g \ 0.005 (run 2), and
l \ g \ 0.01 (run 3 ; see Table 1 for a summary). In order to
assess the dependence on magnetic Prandtl number, we
have additional runs with l/g \ 20 (run 4) and 100 (run 5),
as well as one with l/g \ 0.1 (run 7). These runs will be
explained in detail in ° 3.5. In runs 1È5 and 7 the forcing
wavenumber was around 5, but in run 6 we increased it to
30 in order to study the properties of larger scale separation
(see ° 3.5). The rms values of various quantities are reason-
ably well converged, as can be gauged by comparing run 2
(603 mesh points) with run 2l (303 mesh points), which has
the same values of g and l. We return to a detailed dis-
cussion on the Reynolds number dependence in ° 3.6.

In the table we give various magnetic Reynolds numbers :
is based on the box size (\2n) and the velocityR

m
Su2T

sat
1@2

at the time when the magnetic Ðeld is saturated, is theR
m,linsame but during the linear growth phase (using Su2T

lin
1@2),

is based on the Taylor microscaleR
m
, j Su2T

lin
1@2/Sx2T

lin
1@2,

and is based on the forcing scale and TheR
m,forc

l
f

Su2T
lin
1@2.

critical values of for the onset of dynamo action areR
m,forcalso given and are typically between 7 and 9. In all cases the

onset for dynamo action occurs for l/g \ 1, i.e., for mag-
netic Prandtl numbers less than unity.

The evolution of magnetic and kinetic energies and(E
mis shown in Figure 1. Note that decreases afterE

K
) E

K
E

mhas reached its saturation value. (We note that even after
saturation the Ðeld continues to grow somewhat, but this
will be discussed in full detail in ° 3.6.) The relative kinetic
helicity changes only slightly before and after saturation.
Both the growth rate and the saturation level of the mag-
netic Ðeld increase with increasing Reynolds number and
are likely to reach some asymptotic value at sufficiently
large Reynolds number.

The level of turbulence may be characterized by the ratio
of the turbulent to the microscopic di†usion coefficient for a

FIG. 1.ÈEvolution of magnetic energy and kinetic energy (per volume)
for three values of the magnetic Reynolds number, Note that theR

m
.

growth rate and the saturation level increase with increasing ForR
m
.

reasons of clarity the curves of kinetic energy are not shown in the range
550 \ t \ 1000.

passive scalar, The standard estimate isD
t
/D. D

t
\ 1

3
u
rms

l,
so For run 3 we have so weD

t
/D \ 1

3
Re

forc
. Re

forc
\ 180,

expect The actual value obtained by solving theD
t
/D \ 60.

passive scalar advection di†usion equation simultaneously
with equations (1)È(3) is somewhat smaller (see ° 3.4, where
we Ðnd for weak Ðelds). This is probably due toD

t
/D B 40

the absence of a proper inertial range. Ideally, one would
like to simulate higher levels of turbulence, which requires
higher resolution. Certain questions therefore cannot be
addressed in a satisfactory manner, for example, what the
spectral properties of the magnetic Ðeld are, especially at
large magnetic Prandtl numbers. Addressing this requires
the presence of a sufficiently extended inertial range. Other
aspects may very well be addressed, for example, what the
behavior of the large-scale Ðeld is and how it depends on
Reynolds and Prandtl numbers. We shall show that the
spectral properties are well converged at large scales, but
the timescales for reaching a Ðnal state increase with mag-
netic Reynolds number. In order to address these questions,
it is important that there is sufficient scale separation
between the energy-carrying scale and the scale of the box.
Furthermore, it is important to allow for sufficient separa-
tion between dynamic and resistive timescales in order to
identify properly the mechanisms a†ecting large-scale
dynamo action. A factor of 5 in scale separation seems to be
a good compromise, allowing still some degree of turbulent
mixing to take place.

3.1. T he Inverse Cascade

Consistent with previous studies in this Ðeld (e.g., Mene-
guzzi et al. 1981 ; Balsara & Pouquet 1999), we Ðnd the
development of large-scale Ðelds through an inverse cascade
e†ect of the magnetic helicity. This is best seen in the evolu-
tion of magnetic energy spectra, (see Fig. 2). TheE

M
(k)

kinetic energy spectrum, is also shown.E
K
(k),

The random initial condition has a k4 power spectrum,
corresponding to a d-correlated vector potential. However,
even though the initial Ðeld was smoothed, the spectrum is
deformed signiÐcantly during the Ðrst few time steps.
During the interval 20 ¹ t ¹ 200, the spectrum is nearly
shape invariant and grows at all scales at the same rate (see
Fig. 2). This is typical of small-scale dynamos (Kazantsev
1968).

At t \ 200 the magnetic energy approaches equipartition
with the kinetic energy at small scales. After t \ 240 the
magnetic energy is in slight superequipartition with the
kinetic energy at k [ 10. This marks the beginning of a
more complicated process (Fig. 3), during which the Ðeld at
the largest possible scale (k \ 1) continues to grow, but the
Ðeld at intermediate wavenumbers (k \ 2, 3, and 4) begins
to decline. This process is essentially completed by the time
t \ 400. The signiÐcance of this process becomes clear when
looking at the magnetic Ðeld evolution in real space.

3.2. T he Emergence of a L arge-Scale Field

Although the magnetic Ðeld reached equipartition
already at t B 200 and its scale began to reach the largest
possible scale of the box, it took another 100 time units for
the large-scale Ðeld at scale k \ 1 to develop fully and, more
importantly, to suppress the power at intermediate scales.
Looking at xy and yz cross sections, two components of the
Ðeld and show the development of a large-scale(B

x
B

z
)

sinusoidal modulation through the entire box. In Figure 4
we show xy slices of but the yz cross sections lookB

x
,
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FIG. 2.ÈSpectra of magnetic energy for run 3 during the initial growth
phase at t \ 0 (dotted line) ; t \ 20, 40, . . . , 220 (solid lines) ; and t \ 240
(dashed line). The kinetic energy spectrum (time averaged between
600 ¹ t ¹ 1000) is shown for comparison (the dot-dashed line gives the
kinetic energy spectrum).

qualitatively similar, except for a 90¡ phase shift of in theB
z

y-direction. This systematic phase shift is seen more clearly
in a plot of the three Ðeld components averaged in the x-
and z-directions (see Fig. 5).

Although our forcing is isotropic, one particular direction
has been selected by the large-scale magnetic Ðeld. In runs 1
and 3 it was the y-direction, in run 2 the z-direction, and in
run 5 the x-direction. Which direction is selected depends
on Ðne details of the initially random condition. Neverthe-
less, it is not until the time of saturation that the Ðnal selec-

FIG. 3.ÈSpectra of magnetic energy for run 3 during the saturation
phase at times between t \ 240 and 360. The time-averaged spectrum for
times between 600 and 1000 is shown as a thick line. (Only the range
1 ¹ k ¹ 10 is shown.)

tion is established, as can be seen in Figure 6, where we plot
the magnetic energies of the mean Ðeld for the three possible
directions, denoted by and Hence,E(K

x
), E(K

y
), E(K

z
).

E(K
x
) \ SSBT

yz
2 T

x
, (8)

E(K
y
) \ SSBT

xz
2 T

y
, (9)

E(K
z
) \ SSBT

xy
2 T

z
, (10)

where the subscripts denote the directions of averaging.
Thus, for any direction K, say the x-direction, we deÐne
corresponding mean Ðelds by averaging in the two perpen-
dicular directions (y and z in this case), and then we calcu-
late their mean squared value. The time of selection, i.e.,
when one of the three becomes dominant, is earlier inE(K

i
)

the large Reynolds number cases.
A quantity of theoretical interest is the ratio SB1 2T/SB2T,

which characterizes the fraction of space occupied by the
large-scale Ðeld. Initially this ratio is just D2% (for run 3)
and D0.7% (for run 5), but later it begins to level o† near
80% (Fig. 7). Most likely, real astrophysical dynamos are
far less e†ective in producing such clean large-scale Ðelds
because in reality the helicity of the e†ective forcing will be
far less than 100%. Nevertheless, it is important to notice
that it is at least theoretically possible to achieve large-scale
Ðeld energies near or in excess of the kinetic energy, even
though the magnetic Reynolds number is reasonably high.

We note that the phase of the large-scale Ðeld may be
drifting slowly as long as the large-scale magnetic energy
has not yet reached a fully steady state. In run 3, for
example, the phase was still drifting slowly in the y-
direction (speed but then it began to settle afterD1.5gk

1
),

t B 1000.

3.3. Spectral Helicity and Energy Transfer

The primary reason for the large-scale Ðeld generation is
related to magnetic helicity conservation. Once helicity is
injected into the system, it tends to make the magnetic Ðeld
also helical, as is seen from Figure 8. For a closed or period-
ic system, however, the net magnetic helicity is conserved,
except for di†usion at small scales, i.e.,

d

dt
SA Æ BT \ [2gSJ Æ BT . (11)

Thus, if the magnetic Ðeld is to become helical, it must at
Ðrst have equal amounts of positive and negative helicity.
This feature, which is familiar in magnetohydrodynamics
(e.g., Seehafer 1996 ; Ji 1999), is also seen in hydrodynamical
simulations (Biferale & Kerr 1995). At later times, however,
magnetic di†usion can destroy magnetic helicity at small
scales, leaving magnetic helicity of opposite sign at large
scales. This is best described by the evolution equation of
the magnetic helicity spectrum, which can be derived from
the Fourier transformed induction equation (3),

LAŒ
k

Lt
\ EŒ

k
[ gJŒ

k
, (12)

where hats and subscripts k indicate three-dimensional
Fourier transformation and E \ u Â B is the electromotive
force. We write down the corresponding equation for the
evolution of and derive from these equationsBŒ

k
\ ik Â AŒ

kthe evolution equation for where asterisks denoteAŒ
k

Æ BŒ
k
*,

complex conjugation. Note that this is gauge invariant
because adding a gradient to corresponds to adding anAŒ

k
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FIG. 4.ÈGray-scale images of cross sections of y, 0) for run 3 at di†erent times showing the gradual buildup of the large-scale magnetic Ðeld afterB
x
(x,

t \ 300. Dark (light) corresponds to negative (positive) values. Each image is scaled with respect to its minimum and maximum values.

term that vanishes because the magnetic Ðeld is sole-ik Æ BŒ
k
*

noidal. We denote the real parts of the shell-integrated
spectra of and by andAŒ

k
Æ BŒ

k
* EŒ

k
Æ BŒ

k
* H

M
(k, t) S

M
(k, t),

respectively, and obtain

L
Lt

H
M

(k, t) \ 2S
M

(k, t) [ 2gk2H
M

(k, t) . (13)

Note that and, because of helicity/ H
M

(k, t)dk \ SA Æ BT
conservation, so it makes sense to write/ S

M
(k, t)dk \ 0,

equation (13) in the form

L
Lt

H
M

(k, t) \ [
L
Lk

G
M

(k, t) [ 2gk2H
M

(k, t) , (14)

where we have deÐned the spectral Ñux of helicity,

G
M

(k, t) \
P
k

=
2S

M
(k@, t)dk@ , (15)
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FIG. 5.ÈThree magnetic Ðeld components averaged in the x- and
z-directions at t \ 1000. Note the 90¡ phase shift between andSB1

x
T(y)

and that the functional form is nearly sinusoidal (run 3).SB1
z
T(y)

which is plotted in Figure 9 for di†erent times. The mag-
netic helicity Ñux, is found to be always positive,G

M
(k, t),

and its peak shifts from small scales (k B 10) at early times
to large scales (k \ 2È3) at later times when the magnetic
Ðeld becomes dynamically important. Positive magnetic
helicity is being produced on the right of the maximum of

and negative on the left (see Fig. 10).G
M

(k, t)

FIG. 6.ÈMagnetic energies (per volume) of those components of the
large-scale Ðeld whose wavevectors point in the x-, y-, or z-direction.
Which of the three possible force-free solutions is selected in the end
depends on chance.

FIG. 7.ÈEvolution of the ratio for runs 3 and 5. Note thatSB1 T2/SB2T,
strong large-scale Ðelds are obtained even for large magnetic Reynolds and
Prandtl numbers.

In view of the realizability condition,

E
M

(k, t) º 1
2
kH

M
(k, t) (16)

(e.g., Mo†att 1978), the spectral magnetic helicity can be
viewed as the driver of spectral magnetic energy : while

FIG. 8.ÈEvolution of [SA Æ BT/SB2T, compared with other magnetic
length scales (run 3).

FIG. 9.ÈSpectra of magnetic helicity Ñux at t \ 10, 30, and 60 (dot-
dashed line) ; t \ 100 and 130 (solid lines) ; t \ 160 and 200 (dashed lines) ;
t \ 300 (dotted line), and for the time average between t \ 600 and 1000
(thick line).
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FIG. 10.ÈDivergence of magnetic helicity Ñux, scaled by k, so theS
M

(k),
areas under the positive and negative parts of the curve are the same when
plotted in a lin-log plot. Because of resistive losses of positive magnetic
helicity at small scales, the resulting magnetic helicity, is now domi-H

M
(k),

nated by negative helicity at large scales. The lower plot shows H
M

(k),
scaled by k3 to show the contributions from small scales. Both spectra are
time averages over the interval 600 ¹ t ¹ 1000.

small-scale magnetic helicity is being destroyed, an equal
amount gets into the large scales, and this must necessarily
enhance the magnetic energy so as to satisfy equation (16).
Indeed, in the present simulations the inequality equation
(16) is almost saturated at all scales, except at intermediate
scales 2 ¹ k ¹ 4 (see Fig. 11).

In order to determine the dominant interactions leading
to the generation of the large-scale Ðeld at k \ 1, we now

FIG. 11.ÈTime-averaged spectra of kinetic and magnetic energy, as
well as kinetic and magnetic helicity. Note that the magnetic energy
exceeds the kinetic energy at k \ 1 and that the inequality (eq. [16]) is
almost saturated, except near k \ 2 and 3. The corresponding realizability
condition for the kinetic helicity, on the other hand, is not very sharp. The
dissipative cuto† wavenumber, Sx2/l2T1@4, is indicated by an arrow at the
top.

consider the spectral energy equation,

L
Lt

E
M

(k, t) \ 2T
M

(k, t) [ 2gk2E
M

(k, t) , (17)

where the transfer function of magnetic energy, isT
M

(k, t),
the shell-integrated spectrum of the real part of EŒ

k
Æ JŒ

k
*.

Since E \ u Â B, this corresponds really to a triple product,

;
k/p`q

(uü
p

Â BŒ
q
) Æ JŒ

k
* , (18)

where the skew product can also be written as
emphasizing that this term corresponds[uü

p
Æ (JŒ

k
* Â BŒ

q
),

to the work done against the Lorentz force. In order to
identify the dominant interactions, we have calculated, in
real space, the spectral transfer matrix

T
M

(k, p, q, t) \ [Su
p

Æ (J
k
Â B

q
)T , (19)

where angular brackets denote volume averages and the
subscripts k, p, and q denote Fourier Ðltering around the
corresponding wavenumber (by (In this notation^1

2
).

for example, is exactly the same as the helicitySA
k

Æ B
k
T,

spectrum.)
In Figure 12 we show T (k, p) normalized\ £

q
T (k, p, q),

by SB2T for the corresponding times, for k \ 1 and 2. This
function shows that most of the energy of the large-scale
Ðeld at k \ 1 comes from velocity and magnetic Ðeld Ñuc-
tuations at the forcing scale, k \ 5. At early times this is also
true of the energy of the magnetic Ðeld at k \ 2, but at late
times, t \ 1000, the gain from the forcing scale, k \ 5, has
diminished, and instead there is now a net loss of energy
into the next larger scale, k \ 3, suggestive of a direct
cascade operating at k \ 2 and similarly at k \ 3.

The generation of large-scale energy at k \ 1 through
nonlocal inverse energy transfer is characteristic of the a-
e†ect in mean Ðeld electrodynamics. In the following we
shall pursue this analogy further. It should be emphasized,
however, that without the simultaneous loss of energy at the
next smaller scales (here k \ 2 and 3) through direct energy

FIG. 12.ÈSpectral energy transfer function T (k, p, t), normalized by
SB2T for three di†erent times, for k \ 1 and 2 (run 3).
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transfer, the k \ 1 Ðeld would have been totally swamped
by smaller scale Ðelds. Thus, nonlinearity is quite crucial for
this process to produce well-deÐned large-scale Ðelds.
Indeed, in the absence of the nonlinear term J Â B in equa-
tion (2) the marked large-scale pattern (Fig. 4) disappears
within a turnover time. Recent numerical experiments have
shown, however, that the ambipolar di†usion nonlinearity
also leads to well-deÐned large-scale Ðelds, even in the
absence of the Lorentz force (Brandenburg & Subramanian
2000).

3.4. Mean Field Interpretation

In this subsection we adopt the hypothesis that the large-
scale component of the Ðeld at wavenumber k \ 1 can be
described in terms of mean Ðeld theory. The magnetic Ðeld
at other wavenumbers (k º 2) is important for contributing
to the a-e†ect and the turbulent magnetic di†usivity, butg

t
,

apart from that it is merely an extra source of noise as far as
the dynamics of the large-scale Ðeld is concerned. As we
have seen in the previous section, this extra noise is auto-
matically kept to a minimum as a result of direct cascade
e†ects and transfer to kinetic energy during the saturation
phase.

According to mean Ðeld theory for nonÈmirror sym-
metric isotropic homogeneous turbulence with no mean
Ñow, the mean magnetic Ðeld is governed by the equation

L
Lt

B1 \ a$ Â B1 ] g
T

+2B1 , (20)

where bars denote the mean Ðelds, a and areg
T

\ g ] g
tconstants, and is the turbulent magnetic di†usivity. Ing

tgeneral, these coefficients are not constant and depend, for
example, on the magnetic Ðeld. (In our particular case the
local magnetic energy density is, however, approximately
uniform.) Furthermore, since the magnetic Ðeld is strong, a
and should really be replaced by tensors, but we shallg

tignore this additional modiÐcation except that we shall
allow a and to vary slowly in time as the magnetic Ðeldg

tapproaches saturation. This simpliÐed form of nonlinearity
may be justiÐed by noting that the mean magnetic Ðeld
looks nearly sinusoidal (Fig. 5).

Equation (20) permits steady force-free solutions where
the current helicity of the large-scale Ðeld, is given byJ1 Æ B1 ,

Apart from some common phase factor, the mean(g
T
/a)J12.

Ðeld depicted in Figure 5 is given by 0, cos y),B1 (y) \ (sin y,
so 0, [ cos y), corresponding to negative heli-J1 \ ([sin y,
city, and therefore a must be negative. This is in agreement
with mean Ðeld theory, which predicts that a is a negative
multiple of the residual (kinetic minus current) helicity (e.g.,
Blackman & Chou 1997 ; Field, Blackman, & Chou 1999),
which is positive in our case (see Table 1).

If the wavevector of the large-scale Ðeld is (as in theK
ycase discussed above), equation (20) becomes

B1B0
x
\ [aB1

z
@ ] g

T
B1B0

x
@@ , (21)

B1B0
z
\ [aB1

x
@ ] g

T
B1B0

z
@@ , (22)

where dots and primes denote di†erentiation with respect to
t and y, respectively. Since a \ 0, the solution can be written
in the form

B1
x
(y, t) \ b

x
(t) sin (y ] /) , (23)

B1
z
(y, t) \ b

z
(t) cos (y ] /) , (24)

where and are positive functions of time thatb
x
(t) b

z
(t)

satisfy

b5
x
\ o a o b

z
[ g

T
b
x

, (25)

b5
z
\ o a o b

x
[ g

T
b
z

. (26)

In a steady state and In order to Ðnd theo a o \ g
T

b
x
\ b

z
.

actual values of o a o and during both the saturatedg
Tsteady state and the growth phase, we can do a simple

experiment : suppose we put at some moment inb
x
\ 0

time ; then equation (25) would predict that starts tob
xrecover at the rate which allows us to estimate a. Ino a o b

z
,

practice, we put by subtracting from the x com-b
x
\ 0 B1

xponent of B at a certain time and restart the simulation with
that Ðeld.

In order to have a somewhat more precise estimate, we
need the solution to equations (25) and (26) for the initial
condition b

x
(0) \ 0 :

b
x
\ e( @ a @ ~gT)t [ e~( @ a @ `gT)t , (27)

b
z
\ e( @ a @ ~gT)t ] e~( @ a @ `gT)t , (28)

where the amplitude is arbitrary in linear theory. Adding
and subtracting equations (27) and (28), we can solve for

and respectively. In terms of o a o ando a o [ g
T

o a o ] g
T
,

separately, we haveg
T

o a o \
1

2

d

dt
[ ln (b

x
] b

z
) [ ln ([b

x
] b

z
)] , (29)

g
T

\
1

2

d

dt
[[ ln (b

x
] b

z
) [ ln ([b

x
] b

z
)] . (30)

In practice, we average the results of equations (29) and (30)
over some Ðve to 10 time units. We have applied this
method to runs 1È3 at times between t \ 100 and 600 and
to run 5 at times between t \ 300 and 1600 (Fig. 13). During
these times the mean Ðeld was still evolving (Fig. 6), so at
di†erent times the mean magnetic Ðeld was di†erent, which
allows us to obtain the a( o B o ) dependence. We take into
account the fact that during the experiment the actual Ðeld
is only of what it was before one of the two com-1/J2
ponents of the mean Ðeld has been removed. We have then
attempted a Ðt of the form

a \
a
0

1 ] a
B
SB1 2T/B

eq
2

, (31)

where The result is shown in Figure 14,B
eq
2 \ k

0
o
0
Su2T

sat
.

and the coefficients and are listed in Table 2. Onea
0

a
Bshould note, however, that equation (31) does not accu-

rately represent the actual data of run 5. Nevertheless, it is
clear that a quenching is enhanced for large values of R

m
,

TABLE 2

COEFFICIENTS FOR THE a QUENCHING EXPRESSIONS FOR FOUR

RUNS WITH DIFFERENT VALUES OF R
m

Parameters Run 1 Run 2 Run 3 Run 5

R
m,lin

. . . . . . . 100 300 900 3600
R

m,forc
. . . . . . 20 60 180 700

o a
0

o . . . . . . . . 0.04 0.07 0.14 0.30
a
B

. . . . . . . . . . . 1.4 2.4 10 100
o a

0
imp o . . . . . . 0.040 0.076 0.092 0.035

a
B
imp . . . . . . . . 1.3 4.3 14 35
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FIG. 13.ÈExample of the evolution of the mean Ðelds, and after subtracting from the actual Ðeld (left), and the corresponding results for a andB1
y

B1
z
, B1

y
B

y(right). The average values are indicated by horizontal lines (run 5).g
T

which may be described by a Ðt of the form

a
B

B
AR

m,forc
22

B1.35
. (32)

Such a steep dependence of on was suggested bya
B

R
m,forcVainshtein et al. (1993), although his argument (see also

Vainshtein & Cattaneo 1992) assumes the presence of
strong small-scale Ñuctuations (which is not the case here ;
see Fig. 7).

In Figure 15 we compare with the result for a obtained by
just imposing a uniform magnetic Ðeld, and calculatingB

0
z,

a simply as

aimp \
(Su Â BT)

z
B

0
. (33)

Each point in Figure 15 corresponds to a di†erent run with
given Ðeld strength but otherwise the same parametersB

0
,

as in runs 1È3 and 5. This method was frequently used in the
past (e.g., Brandenburg et al. 1990 ; Tao, Cattaneo, &
Vainshtein 1993 ; Cattaneo & Hughes 1996), but it is not a
priori clear that one measures the same a as with the
method explained above. Nevertheless, the two results
appear to be qualitatively similar (cf. Figs. 14 and 15)

FIG. 14.ÈResults for a for di†erent values of using eq. (29). The linesR
mrepresent the Ðts described in the text.

although there are some di†erences in the case in which R
mis very large (Table 2). The same values of are conÐrmeda

Bby yet another method that is explained below in ° 3.6.
The only way a strongly a quenching canR

m
-dependent

be compatible with the large-scale Ðeld generation seen in
the present simulations would be if was also stronglyg

tquenched (see Cattaneo & Vainshtein 1991 for two-
dimensional simulations supporting the hypothesis of
strong quenching). In Figure 16 we compare the resultsg

tobtained for with the turbulent di†usion coefficient for ag
Tpassive scalar. The passive scalar di†usion coefficient is

obtained by simultaneously solving an additional equation
for the concentration per unit mass, c,

Dc

Dt
\

1

o
$ Æ oD$c , (34)

where D \ g is chosen for runs 1È3 and D \ 2.5g for run 5.
The total (turbulent plus microscopic) passive scalar di†u-
sion coefficient is obtained by measuring the rate at which a
narrow Gaussian distribution of c widens as time goes on.
The result is shown in the bottom panel of Figure 16. Gen-
erally, the suppression of by magnetic Ðelds is strongerg

tthan the suppression of (For run 3 ranges betweenD
T
. D

T
/D

FIG. 15.ÈResults for a for di†erent values of using an imposedR
mmagnetic Ðeld. The lines represent the Ðts described in the text.
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FIG. 16.ÈResults for and for di†erent values of The linesg
T

D
T

R
m
.

represent the Ðts described in the text. In the plot of the asterisks denoteg
T

o a o [ j for the which agrees reasonably well withR
m,forc

\ 120 run, g
T
.

40 for weak Ðelds and 10 for strong Ðelds.) We note that a
dependence of the form

D
T

\
D ] D

t0
1 ] D

B
S o B1 o T/B

eq
(35)

seems to Ðt at least the data better than a quadraticD
Tdependence. Unlike the results for a, the dependence of D

Bon Reynolds number is here less strong. In the Ðts shown in
Figure 16 a good Ðt is for all three runs, andD

B
\ 2 D

0
\

0.02, 0.035, and 0.06 for runs 1, 2, and 3, respectively. Run 5
behaves di†erently because in this large magnetic Prandtl
number run there is no inertial range, and so we used D

0
\

0.007 and D
B

\ 6.
Determining from dynamo simulations is notoriouslyg

tdifficult : has to be determined simultaneously with a fromg
tthe electromotive force, where multiplies a derivative ofg

tthe Ðeld, so it is numerically more noisy. Nevertheless, one
sees from Figure 16 that is quenched by more than ag

tfactor of 10. However, the functional form cannot be estab-
lished from our data. Using for a similar Ðt formula asg

Tequation (35), we have for all three runs ;g
B

\ 16 g
T0

\
0.03, 0.07, and 0.2 for runs 1, 2, and 3, respectively ; and

for run 5. However, for strong magneticg
T0

\ 0.43, g
B

\ 60
Ðelds, levels o† at a value of 0.01 (for run 3) or 0.005 (forg

Trun 5). These values are similar to the values of a. Thus,
which means that the mean Ðeld dynamo hasa B g

T
k
1
,

turned into a marginally critical state, which is indeed to be
expected. As a consistency check for the directly obtained
values of we use the time-dependent growth rate j(t) andg

T
,

show o a o [ j (Fig. 16, asterisks) for run 3. They agree rea-
sonably well with (except near suggest-g

T
S o B1 o T \ 0.4B

eq
),

ing that equations (25) and (26) are approximately satisÐed
with the coefficients obtained above. In ° 3.6 we present a
more accurate and self-consistent determination of the com-
bined expression for a and quenching by Ðtting solutionsg

tof equation (20) to the actual evolution of the mean Ðeld.
Those results support a quadratic quenching formula for
both a and g

t
.

3.5. L arge-Scale Separation

In some earlier exploratory models we forced the Ñow at
k \ 10, which gave somewhat more room for the inverse
cascade to develop but less room for the direct cascade
toward smaller wavenumbers. The latter means that the
Reynolds number with respect to the forcing scale is smaller
and the turbulent mixing properties, as quantiÐed by the
ratio are poorer. Strong turbulent mixing was impor-D

t
/D,

tant in order to address the issue of Reynolds numberÈ
dependent suppression of transport coefficients. In this
subsection we shall accept poor mixing in favor of larger
scale separation and hence a signiÐcantly larger subrange in
which the inverse cascade can develop. Thus, we now force
the Ñow at k \ 30 (run 6).

After saturation is reached, which happens Ðrst at some
intermediate scale, there is a wave of spectral energy propa-
gating toward smaller k. This is similar to the results of
closure models of Pouquet et al. (1976). However, unlike
these models there does not seem to develop a k~1 magnetic
energy spectrum. Instead, there is only an envelope of the
helicity wave that follows approximately a k~1 power law
(Fig. 17). As before, there is a strong buildup of magnetic
energy at the largest scale, k \ 1, combined with a sub-
sequent suppression of energy at intermediate scales
(2 ¹ k ¹ 20). The ratio of the peak value at to thek

1
\ 1

FIG. 17.ÈMagnetic energy spectra for run 6 with forcing at k \ 30. The
times range from 0 (dotted line) to 10, 30, . . . , 290 (solid lines). The thick
solid line gives the Ðnal state at t \ 1000. Note that at early times the
spectra peak at The k~1 and k3@2 slopes are given for orientationk

max
B 7.

as dot-dashed lines.
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value of the secondary peak at the forcing scale k
f

\ 30
scales like (Fig. 17). This is also the case in runs(k

1
/k

f
) ~1

with (Fig. 11).k
f

\ 5
As a function of time, the spectral magnetic energy grows

at the same rate at all values of k until saturation is reached.
During early times the magnetic spectra peak at k

max
B 7,

which is also the wavenumber that reaches equipartition
Ðrst, but then the Ðeld at this wavenumber decays to a
somewhat smaller value while the contributions from the
next smaller k grow and subsequently decay (see Fig. 18).
Finally, when the energy at k \ 1 reaches equipartition, the
energy of all larger values of k becomes suppressed.

Although a comparison with mean Ðeld theory may be
inappropriate, it is interesting to note that the existence of a

is predicted from the theory of a2 dynamos in inÐnitek
maxmedia (Mo†att 1978). The dispersion relation is

j \ o a o k [ g
T

k2 , (36)

where j is the growth rate. Maximum growth occurs at
wavenumber

k
max

\
1

2

o a o

g
T

, (37)

and there the maximum growth rate is

j
max

\ 1
2

o a o k
max

. (38)

Since and can be measured, we can determinek
max

j
max

o a o \
2j

max
o k

max
, g

T
\

j
max

o k
max
2

(39)

during the growth phase of the dynamo. With k
max

\ 7
(Fig. 18) and (Fig. 17) we have o a o \ 0.02 andj

max
\ 0.07

In this case, the forcing occurs essentially ing
T

\ 0.0014.
the dissipation range, so the turbulence therefore has poor
mixing properties The value of a is about 7(g

T
/g \ 1.4).

times smaller than that of run 3 during the kinematic
regime, which seems reasonable.

In the nonlinear regime there are marked di†erences
between mean Ðeld theory and simulations. Using a nonlin-
ear mean Ðeld model of the inverse cascade with a-e†ect,
Galanti, Sulem, & Gilbert (1991) found signiÐcant power at
k º 2, which is in contrast to the behavior seen in Figure 17.
Consequently, the mean Ðelds of Galanti, Gilbert, & Sulem
(1990) look much less sinusoidal than in the simulations
(Fig. 5). If one wanted to model this within the framework of

FIG. 18.ÈEvolution of spectral magnetic energy for selected wavenum-
bers in a simulation with forcing at k \ 30.

an a-e†ect, one would need to invoke a scale-dependent a
integral kernel, where the dominant contributions to a
come only from the largest scale of the system
(Brandenburg & Sokolo† 2000).

3.6. Reynolds Number Dependence and Magnetic Helicity

In this section we Ðrst discuss to what extent our results
are a†ected by the limited resolution and Ðnite magnetic
Reynolds number. We then show that magnetic helicity
conservation implies slow saturation of helical magnetic
Ðelds and that this feature is quantitatively reproduced by a
mean Ðeld model with quenching of a andR

m
-dependent g

t
.

In Figure 19 we show energy spectra of the magnetic Ðeld
for three values of The three curves di†er by a certainR

m
.

factor but are otherwise essentially the same at small wave-
numbers. The main di†erence is, as expected, at the smaller
scales : the spectra for large begin to show signs of anR

minertial range for values of k larger than the forcing wave-
number.

Although the magnetic energy spectra of the statistically
steady state seem to show convergence to a spectrum
roughly compatible with k~5@3, there are some serious con-
cerns about the timescale on which such a steady state is
achieved. As was Ðrst pointed out by Berger (1984), in a
closed box (periodic or perfectly conducting) there is
an upper bound on the rate of change of the magnetic
helicity. This is relevant because the Ðelds that are gener-
ated in the simulations have strong magnetic helicity :

(Fig. 8). Most of the magnetic hel-SA Æ BT/SB2T B [0.8/k
1icity is in the large scales (Fig. 11). In order to build up the

helicity at large scales, we have to destroy magnetic helicity
at small scales (Fig. 9).

Open boundary conditions would help to get rid of mag-
netic helicity (see Blackman & Field 2000), which may well
be an important factor in more realistic simulations (e.g.,
Glatzmaier & Roberts 1995 ; Brandenburg et al. 1995). How-
ever, the present simulations are for closed boxes and
yet they do show strong Ðelds, so we need to understand
whether and how they have been a†ected by this constraint.

FIG. 19.ÈComparison of time-averaged magnetic energy spectra for
runs 1È3 (t \ 600È1000) and run 5 (t \ 1600). To compensate for di†erent
Ðeld strengths and to make the spectra overlap at large scales, two of the
three spectra have been multiplied by a scaling factor (] 3.4 for run 5, ] 2
for run 2, and ] 5 for run 1). There are signs of a gradual development of
an inertial subrange for wavenumbers larger than the forcing scale. The
k~5@3 slope is shown for orientation. The dissipative magnetic cuto† wave-
numbers, are indicated by arrows at the top.k

d
\ SJ2/g2T1@4,
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The rate at which magnetic helicity can change (see eq.
[11]) is constrained by the Schwarz inequality,

K d

dt
SA Æ BT

K
\ 2g o SJ Æ BT o ¹ 2gJ

rms
B

rms
(40)

(Berger 1984 ; Mo†att & Proctor 1985). In forced systems it
is common (albeit not necessary) that the energy and(B

rms
2 )

dissipation rate are independent of the Reynolds(gJ
rms
2 )

number. However, this would imply that the rate of change
of SA Æ BT is limited resistively by a term proportional to
g1@2. In our simulations, has a maximumSJ Æ BT/(J

rms
B

rms
)

of D0.25 (see Table 1), so this limit does not seem to be
saturated. Another estimate for the helicity dissipation is
obtained by assuming that the magnetic spectrum has
power-law behavior with for The valueE

M
(k) D k~n k \ k

d
.

of follows by assuming that the Joule dissipation isk
maxindependent of g, which yields (Dg~3@4 fork

d
D g~1@(3~n)

n \ 5/3). The helicity dissipation is then proportional to
which always tends to zero for small valuesk

d
~1 D g1@(3~n),

of g. For n \ 5/3 the magnetic helicity dissipation scales like
g3@4, which is faster than BergerÏs limit.

There is a related and even more important consequence
of helicity conservation. In a steady state, SA Æ BT, which is
gauge invariant and therefore physically meaningful, must
be constant, and hence SJ Æ BT ] 0. Thus, although we are
going to generate a strong large-scale Ðeld with signiÐcant
current helicity in the large scales, the net current helicity
must actually vanish. This can only happen if there is an
equal amount of small-scale current helicity of opposite
sign, i.e.,

Sj Æ bT B [SJ1 Æ B1 T (in the steady state) , (41)

where angular brackets denote volume averages, bars
denote the large scales at k \ 1, and lowercase characters
refer to contributions from all higher wavenumbers. The
spectrum of the magnetic helicity is k2 times steeper than
that of the current helicity, so andSa Æ bT B Sj Æ bT/k

f
2,

therefore o Sa Æ bT o > o SA1 Æ B1 T o .
In the following we estimate the evolution of the energy

density of the large-scale Ðeld, using the fact that in theB1 2,
present simulations a large fraction of the magnetic energy
is contained in the large-scale Ðeld (Fig. 7) and that mag-
netic helicity is strong (Fig. 8). This would be too ideal an
assumption for astrophysical settings, but it is adequate for
describing our present simulations. Thus, we may set

k
1
SA Æ BT B k

1
SA1 Æ B1 T B [SB1 2T B

SJ1 Æ B1 T
k
1

. (42)

For clarity we retain here the factors, even though theyk
1are equal to 1. Using equation (11), this yields

d

dt
SB1 2T B [2gk

1
2SB1 2T ] 2gk

1
o Sj Æ bT o , (43)

which has the solution

SB1 2T B 2gk
1

e~2gk12 t
P
tsat

t
e2gk12 t{ o Sj Æ bT o dt@ , (44)

which is expected to apply after the time of saturation, t \
when Sj Æ bT is approximately constant, sot

sat
,

SB1 2T B
o Sj Æ bT o

k
1

[1 [ e~2gk12(t~tsat)] . (45)

To a good approximation we may assume Sj Æ bT B
This means that the ““ residual helicity ÏÏ (Pouqueto

0
Sx Æ uT.

et al. 1976), is small, which is indeedSx Æ uT [ Sj Æ bT/o
0
,

consistent with the present data and also with the results of
Brandenburg & Subramanian (2000), who used the ambi-
polar di†usion model of Subramanian (1999). The kinetic
helicity can be approximated by and soSx Æ uT B k

f
Su2T,

the Ðnal Ðeld strength, is given byB
fin

,

B
fin
2 B

o Sj Æ bT o

k
1

B o
0

o Sx Æ uT o

k
1

B o
0
Su2T

k
f

k
1

4 B
eq
2

k
f

k
1

.

(46)

For runs 1È3 and 5È7, the ratios of the actual values of B
finto those anticipated from equation (46) are 0.61, 0.76, 0.85,

1.16, 0.74, and 0.36. In the cases (runs 3 and 5) thelarge-R
mratio is close to 1, thus conÐrming the assumption of small

residual helicity in the saturated state.
The resistively limited growth of has immediate conse-B1

quences for a. The evolution equation for can beSA1 Æ B1 T
derived from equation (20),

d

dt
SA1 Æ B1 T \ 2aSB1 2T [ 2g

T
SJ1 Æ B1 T . (47)

In the strongly helical case considered here the magnetic
helicity of the large-scale Ðeld, is very nearly equalSA1 Æ B1 T,
to SA Æ BT, so the right-hand sides of equations (11) and (47)
must be approximately equal, which leads to

o a o [ g
T

k
1

B
g o SJ Æ BT o

SB1 2T
. (48)

In order to check this relation, we plot the two sides of
equation (48) versus time (Fig. 20), where andg

T
\ g ] g

thas been obtained directly from E \ u Â Bo a o [ g
t
k
1assuming which, for fully helical mean Ðelds,E1 \ aB1 [ g

t
J1 ,

leads to

o a o [ g
t
k
1

\
o SE1 Æ B1 T o

SB1 2T
. (49)

(Note that here enters, not Recall also that in our caseg
t

g
T
.

a \ 0, so The condition (eq. [48]) on a reÑectsSE1 Æ B1 T \ 0.)
the fact that the growth of the large-scale Ðeld is limited by

FIG. 20.ÈComparison of with and g expo a o [ g
T

k
1

gSJ Æ BT/SB1 2T
Note that follows very closely the resistively[[2gk

1
2(t [ t

sat
)]. o a o [ g

T
k
1dominated limit. Notice also the relatively large noise level in o a o [ g

T(run 3).
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the microscopic resistivity, as seen already from equation
(45). Note, however, that this statement only applies to the
present case of strong helicity and closed or periodic boxes.

There have been previous attempts to incorporate the
conservation of helicity into the expression for a, which led
to a dynamical dependence of a on time and Ðeld strength
(Kleeorin, Rogachevskii, & Ruzmaikin 1995 ; Kleeorin et al.
2000). In the following we point out, however, that the heli-
city constraint, which leads to the prolonged saturation
phase, is well described in terms of an a2 dynamo with
resistively dominated quenching functions for both a and g

t
,

i.e.,

a \
a
0

1 ] a
B

B1 2/B
eq
2

, g
t
\

g
t0

1 ] g
B

B1 2/B
eq
2

, (50)

where is assumed. Using the fact that the magnetica
B

\ g
Benergy density of the mean Ðeld, is approximatelyB1 2,

uniform, we can write equation (20) in the form

d

dt

A1

2
B1 2
B

\
o a

0
o k

1
[ g

t0
k
1
2

1 ] a
B

B1 2/B
eq
2

B1 2 [ gk
1
2 B1 2 . (51)

There is a steady solution with

a
B

B1 2
B

eq
2

\
j

gk
1
2

, (52)

where

j \ o a
0

o k
1

[ g
T0

k
1
2 (53)

is the kinematic growth rate of the dynamo. The time-
dependent equation (51) can be integrated to give the solu-
tion in the form

B1 2
(1 [ B1 2/B

fin
2 )1`j@gk12

\ B
ini
2 e2jt , (54)

where is the initial Ðeld strength and is the Ðnal ÐeldB
ini

B
finstrength that is given by equation (52). The parameters B

iniand can be obtained from Figure 1. The kinematicB
fingrowth rate j is the same for small- and large-scale Ðelds

and hence can be taken from Table 1. We emphasize that
there is excellent agreement between the results of the simu-
lation and equation (54) (see Fig. 21).

Having obtained j and from the simulation, we canB
finuse equation (52) to Ðnd for and the resulta
B

g
B

a
B

\ g
B

\
j

gk
1
2

AB
eq

B
fin

B2
. (55)

Note that and are proportional to 1/g, which impliesa
B

g
Ba and quenchings. The results forR

m
-dependent g

t
a
B

\ g
Bare summarized in Table 3 for di†erent runs.

To a good approximation (see eq. [46]),B
fin
2 /B

eq
2 B k

f
/k

1so we expect Since we havea
B

B j/(gk
1

k
f
). j B 0.3u

rms
/l

f
,

a
B

B
0.3

(2n)2
u
rms

L

g
B 0.01R

m,lin
. (56)

Thus, should scale with the magnetic Reynolds numbera
Bbased on the box scale, not the forcing scale. The di†erence

is particularly evident when comparing with run 6, where
the forcing wavenumber is 6 times larger than in the other
runs. For comparison we list in Table 3 also andR

m,lin
/100

The agreement between equations (55) and (56) isR
m,forc

/20.
generally good, except for run 7, where is smaller thanB

finexpected from equation (46). This was the run with a small
value of l/g and small R

m
.

FIG. 21.ÈEvolution of for runs 1È3 and 5È7 (solid lines), com-SB1 2T
pared with the solution (eq. [54]) of the mean Ðeld dynamo equations
using resistively dominated a and quenchings (dotted lines).g

t

In Table 3 we also give for completeness the values of
Together with the values of g and j in Table 1 all theB

ini
.

data entering equation (54) are now speciÐed. It should be
mentioned that the value of is obtained from a Ðt and isB

inionly roughly comparable to the actual seed magnetic Ðeld
in the simulation, where di†erent initial structures are pos-
sible.

For weak Ðelds equation (54) gives the usual exponential
growth, For strong Ðelds we recovero B1 o \ B

ini
exp (jt).

equation (45) with in the limit j ?t
sat

\ j~1 ln (B
fin

/B
ini

)
gk

1
2.

3.7. L arge Magnetic Prandtl Numbers

The magnetic helicity constraint becomes more impor-
tant as the magnetic Reynolds number is increased. So far
we have mainly considered the case in which l/g \ 1. In the
Sun and many other astrophysical bodies, l/g > 1, but in
the Galaxy l/g ? 1 (e.g., Kulsrud & Andersen 1992). This

TABLE 3

COEFFICIENTS FOR THE a QUENCHING EXPRESSION OBTAINED FROM

EQUATION (55) FOR RUNS WITH DIFFERENT VALUES OF MAGNETIC

REYNOLDS NUMBER

Run R
m,lin

/100 R
m,forc

/20 a
B

B
fin

B
ini

1 . . . . . . 1 1 1.4 0.16 3 ] 10~8
2 . . . . . . 3 3 3.9 0.25 3 ] 10~9
3 . . . . . . 9 9 9.3 0.34 2 ] 10~9
5 . . . . . . 35 35 30 0.27 4 ] 10~11
6 . . . . . . 5 1 4.6 0.25 4 ] 10~11
7 . . . . . . 1 1 2.8 0.16 1 ] 10~9

NOTE.ÈNote the rough agreement between the values of R
m,lin

/100
and a

B
.
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FIG. 22.ÈSpectra of magnetic and kinetic energy and helicity for a
large magnetic Prandtl number at early and late times ; l \ 0.02,
g \ 2 ] 10~4.

may lead to a magnetic energy spectrum peaking at small
scales (Kulsrud & Andersen 1992). However, although
viscous damping will dissipate energy at small scales
(Chandran 1998 ; Kinney et al. 1998), there is some recent
evidence that the inverse cascade may no longer operate

FIG. 23.ÈComparison of the magnetic energy spectra for runs 3, 4, and
5. The magnetic cuto† wavenumbers are 25, 26, and 72, as indicated by
arrows at the top.

(Maron 2000). These results have been obtained in the
absence of net helicity. It will therefore be interesting to see
whether in the presence of net helicity an inverse cascade is
still possible when l/g ? 1.

In a preliminary attempt to clarify this question we have
carried out simulations for l/g \ 20 (mainly by increasing
the viscosity to l \ 0.02 ; run 4) and l/g \ 100 (where the
magnetic di†usivity was lowered to g \ 2 ] 10~4 ; run 5).
The viscous cuto† wavenumber is then around 5, i.e., at the
forcing scale, and the magnetic cuto† wavenumbers are 25
and 72, respectively. The resolution for run 5 may be insuffi-
cient, and discretization errors must play a role at small
scales, but the images of the current density look reasonable
(see below), and the evolution of the large-scale Ðeld is also
in agreement with expectations (° 3.6).

As seen from Figure 22, the magnetic energy spectrum
does indeed peak at large wavenumbers initially, although
the magnetic energy spectrum does not scale like k3@2
(Kulsrud & Andersen 1992). Instead, the spectrum is close
to k1@3, which was also found during the kinematic stage of
convective dynamos (Brandenburg et al. 1996). However,
this result is inconclusive because it could be an artifact of

FIG. 24.ÈImages of the and components of the magnetic Ðeld in an arbitrarily chosen x-y plane. Run 5, t \ 1600.B
y

B
z
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FIG. 25.ÈImages of the current density, in the plane of the large-scale magnetic Ðeld. The Ðeld direction is shown as a vector. Run 5, t \ 1600.J
x
,

the lack of an inertial range in this run. In any case, at large
wavenumbers the magnetic energy exceeds the kinetic
energy, although at later times the kinetic energy is
increased somewhat by magnetic forces. Especially at later
times the magnetic energy is no longer dominated by small
scales and the spectrum falls o† more like k~5@3. The con-
vergence to this power law is evident when comparing runs
3, 4, and 5 (Fig. 23). Most importantly, there are now clear
signs of an inverse cascade (see Fig. 24).

In these runs with large magnetic Prandtl number the
current density shows strong Ðlamentary structures that
tend to be aligned with the local magnetic Ðeld direction, as
seen in Figure 25. The resulting anisotropy a†ects particu-
larly the small scales (Goldreich & Sridhar 1997 ; Maron
2000). Note that this type of anisotropy cannot be captured
by closure models (e.g., Pouquet et al. 1976).

The main shortcoming of the present large Prandtl
number calculations is that the viscous dissipation cuto†
wavenumber is so small that it lies in the range of the
forcing scale, so no inertial range in the kinetic energy is
possible. At the same time, of course, the range of scales
available to the magnetic Ðeld is still not large enough to
establish a k3@2 scaling at early times.

4. CONCLUSIONS

The main conclusion to be drawn from this work is that
in the presence of net magnetic helicity there is a gradual
buildup of a nearly force-free magnetic Ðeld at the largest
possible scale of the system. In our periodic calculations this
corresponds to a sinusoidal one-dimensional Beltrami Ðeld,
e.g., sin z, 0), which is, of course, locally strong-B1 D (cos z,
ly distorted by the turbulence. Nevertheless, the presence of
the large-scale Ðeld is clearly seen without averaging (Fig.
4). We emphasize that this result is numerically robust : the
relative dominance of magnetic energy at the smallest wave-
number is independent of resolution (Fig. 19) and indepen-
dent of the degree of scale separation (Fig. 17). Thus, the
e†ect is seen equally well at resolutions ranging from 303 to
1203 mesh points and at forcing wavenumbers ranging from
5 to 30. However, the time it takes to establish such large-
scale Ðelds increases with the ohmic di†usion time. We also
note that the results are not very sensitive to the choice
of the forcing function : a forcing function that is nearly
d-correlated in space, but still strongly helical, yields very
similar results. In the absence of net helicity, however, no
large-scale Ðeld is generated. Likewise, if the forcing is made
nonhelical, the large-scale Ðeld disappears.

An important property of the turbulence is that once the
large-scale Ðeld is established, it can suppress magnetic
energy on scales smaller than the largest one. This leads to
something like a ““ self-cleaning ÏÏ process. This is also seen in
histograms of the magnetic Ðeld, which are, for the present
simulations, more nearly Gaussian (with one hump perpen-
dicular to the Ðeld and two in the direction of the Ðeld). This
is similar to other simulations with large-scale dynamo
action (see Brandenburg et al. 1995) but very di†erent from
simulations of small-scale dynamo action where the histo-
grams of the Ðeld components show stretched exponentials
(Brandenburg et al. 1996), which can also be seen in the
present simulations, but only at early times.

Our simulations show that most of the energy input to
the large-scale Ðeld comes from small scales. This type of
nonlocal spectral energy transfer is suggestive of an a-e†ect
that could be responsible for the Ðeld generation, rather
than a local inverse cascade, which transports energy from
k \ 2 to k \ 1, for example. Although a local inverse
cascade seems to occur at early times, i.e., before the mag-
netic Ðeld is fully established, once the Ðeld is strong the
magnetic energy at k \ 2 is actually cascaded to k \ 3
and/or transferred to kinetic energy, both of which are
probably important for the ““ self-cleaning ÏÏ process. A
sketch of the anticipated energy transfer properties is given
in Figure 26.

We point out that the present simulations must not be
regarded as local in the sense of representing only a small

FIG. 26.ÈSketch illustrating direct and inverse cascade processes in
helical MHD turbulence.
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chunk of a larger system because the Ðeld structure depends
crucially on the size of the box. Instead, they should be
viewed as global within the geometry considered. With
other boundary conditions or in di†erent geometries the
shape of the large-scale Ðeld will be di†erent. In the case of a
sphere, for example, no perfectly force-free Ðeld is possible,
but the Ðeld may be nearly force free. An example may be
the Ðeld obtained in hydromagnetic calculations with a-
e†ect (Proctor 1977), where Ðeld saturation occurs through
the Lorentz force of the large-scale Ðeld. In these calcu-
lations the magnetic saturation Ðeld strength is relatively
large, which reÑects the fact that the Ðeld is indeed nearly
force free.

It should be emphasized that the overall growth of the
large-scale Ðeld and the saturation phase of the dynamo are
well described by a simple a2 dynamo with a and coeffi-g

tcients that are quenched in an fashion (seeR
m
-dependent

eqs. [50] and [55]). The reason such a dynamo can still
saturate is because of the presence of microscopic di†usion,
and it is this that causes the saturation to happen so slowly.
The excellent agreement in the evolution toward saturation
between both the simulation and the mean Ðeld model is an
indication that the simple quadratic quenching formula is
actually correct. For example, a cubic nonlinearity (Mo†att
1972 ; 1974) would lead to di†erent behavior andRu� diger
would not have the correct resistive relaxation asymptotics
consistent with helicity conservation (Brandenburg 2000).

The slow resistive Ðeld evolution past equipartition has
become particularly clear in run 5, where the Ðnal selection
of the large-scale Ðeld structure occurred rather late (after
t B 1200, corresponding to about 100 turnover times ; Fig.
6). By contrast, in run 3, where the magnetic Reynolds
number was about 6 times smaller, the large-scale Ðeld was
fully developed by the time t B 400, corresponding to about
50 turnover times. In stars the typical magnetic Reynolds
numbers are at least another 6 orders of magnitude larger
than in run 5, so a large-scale Ðeld, if generated by an a-
e†ect, would require D108 turnover times or D3 ] 106 yr
(assuming a turnover time of 10 days). In the case of the Sun
this estimate would be reduced by another factor of 100
(Brandenburg et al. 2000) because di†erential rotation con-

tributes to nonhelical Ðeld generation, so the resulting Ðelds
are only partially subject to the helicity constraint. Since
even the youngest protostars are older than 3 ] 104, the
a-u dynamo may still be responsible for Ðeld generation in
these bodies. For galaxies, on the other hand, the magnetic
Reynolds numbers are by another 7 orders of magnitude
larger than in stars, making here the case for an a-u
dynamo doubtful, unless the microscopic resistivity is
enhanced during reconnection (see Ji et al. 1998 for anom-
alous resistivities in a laboratory reconnection experiment).

There is now also some evidence that in oscillatory
dynamos of a-u type the cycle period is not strongly
a†ected by the helicity timescale constraint (Brandenburg et
al. 2000). This could be related to the fact that with shear
the large-scale Ðeld is no longer fully force free and that in
that case the turbulent magnetic di†usivity is only partially
suppressed (Gruzinov & Diamond 1996). However, the case
for a-u dynamo action in stars, galaxies, or accretion discs
is by no means settled. First of all, proposals have been
made for nonhelical large-scale dynamo action (Vishniac &
Cho 2000 ; Zheligovsky, Podvigina, & Frisch 2000), which
may avoid the problems that a-u dynamos have. Secondly,
real astrophysical bodies do have open boundaries and may
get rid of small-scale helicity rather rapidly (Berger & Ruz-
maikin 2000). Indications are, however, that open bound-
aries also produce signiÐcant losses at large scales, which
lowers the overall dynamo efficiency (see Brandenburg &
Dobler 2000).
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