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Abstract

In this paper we prove an integral representation formula for the inverse Fueter mapping
theorem for monogenic functions defined on axially symmetric open sets U ⊆ R

n+1, i.e. on
open sets U invariant under the action of SO(n). Every monogenic function on such an open
set U can be written as a series of axially monogenic functions of degree k, i.e. functions
of type f̆k(x) := [A(x0, ρ) + ωB(x0, ρ)]Pk(ω), where A(x0, ρ) and B(x0, ρ) satisfy a suitable
Vekua-type system and Pk(ω) are spherical monogenic polynomials of degree k. The Fueter
mapping theorem says that given a holomorphic function f of a paravector variable defined
on U then the function f̆(x)Pk(x) given by

∆k+
n−1

2 (f(x)Pk(x)) = f̆(x)Pk(x)

is a monogenic function. The aim of this paper is to invert the Fueter mapping theorem by
determining a holomorphic function f of a paravector variable in terms of f̆(x)Pk(x). This
result allows to invert the Fueter mapping theorem for any monogenic function defined on
an axially symmetric open set.

Key words: The inverse Fueter mapping theorem in integral form, Fueter primitives, elliptic
equations, Cauchy-Riemann equations, Vekua-type system.
Mathematical Review Classification numbers: 30G35, 32A25, 30E20.

1 Introduction and notations

The Fueter mapping theorem, see [14], is an ingenious tool to generate Cauchy-Fueter regular
functions from holomorphic functions of a variable in the upper complex plane. Such a theorem
has been extended in order to obtain monogenic functions (see [1], [4], [15], [18]), by Sce [25] for
n odd and to Qian [22] in the general case. Later on, Fueter’s theorem has been generalized to
the case in which a function f as above is multiplied by a monogenic homogeneous polynomial
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of degree k, (see [19], [20], [21], [26]) and to the case in which the function f is defined on an
open set U not necessarily chosen in the upper complex plane, (see [22], [23], [24]).

The setting in which we work is the real Clifford algebra Rn over n imaginary units e1, . . . , en

satisfying the relations eiej +ejei = −2δij . An element in the Clifford algebra will be denoted by
∑

A eAxA where A = i1 . . . ir, iℓ ∈ {1, 2, . . . , n}, i1 < . . . < ir, is a multi-index, eA = ei1ei2 . . . eir

and e∅ = 1. As it is well known, R1 is the algebra of complex numbers C (the only case in
which the Clifford algebra is commutative), while for n = 2 we obtain the division algebra
of real quaternions H. For n > 2, the Clifford algebras Rn have zero divisors. In Rn, we
can identify some specific elements with the vectors in the Euclidean space R

n: an element
(x1, x2, . . . , xn) ∈ R

n can be identified with a so called 1-vector in the Clifford algebra through
the map (x1, x2, . . . , xn) 7→ x = x1e1 + . . . + xnen.
An element (x0, x1, . . . , xn) ∈ R

n+1 will be identified with the element x = x0 + x called, in
short, paravector. The norm of x ∈ R

n+1 is defined as |x|2 = x2
0 + x2

1 + . . . + x2
n. The real part

x0 of x will be also denoted by Re[x]. A function f : U ⊆ R
n+1 → Rn is seen as a function f(x)

of the paravector x. We denote by S
n−1 the sphere of unit 1-vectors in R

n+1, i.e.

S
n−1 = {x = e1x1 + . . . + enxn : x2

1 + . . . + x2
n = 1}.

Any element I ∈ S is such that I2 = −1. We will denote by ∂x the Dirac operator ∂x =
∂x0 + e1∂x1 + . . . + en∂xn and we say that a smooth function is left monogenic on the open set
U of R

n+1 if it satisfies ∂xf(x) = 0 on U . In the sequel, we will denote by M(U) the right
Rn-module of (left) monogenic functions on the open set U and by AM(U) the Rn-submodule
of axially monogenic functions, i.e. monogenic functions of the form A(x0, ρ) + ωB(x0, ρ) with
A,B satisfying a Vekua-type system and ω ∈ S

n+1.
Let us now recall the classical Fueter theorem for monogenic functions. Let f be a holomor-

phic function in an open set U of the upper half complex plane and let

f(u + ιv) = α(u, v) + ιβ(u, v), u ∈ R, v ∈ R
+

where α and β are differentiable functions with values in R. The Fueter theorem in this setting
states that, taken a function f as above and considering the axially symmetric open set (called
the open set induced by U)

U = {x = x0 + x ∈ R
n+1 | x0 + ι|x| ∈ U},

by replacing u by x0, v by |x| and ι by x/|x|, we get that the function

∆
n−1

2
x

(

α(x0, |x|) +
x

|x|β(x0, |x|)
)

,

where ∆x is the Laplace operator in dimension n + 1, is a monogenic function on U . For sake
of simplicity, we will use the notation of cylindrical coordinates, i.e. we will write x = x0 + Iρ
where ρ = |x|, I = x

|x| . In the sequel, taken two open sets U and U as above, it will be useful to
consider the following set of functions:

N (U) = {f : U ⊆ R
n+1 → Rn, f(x) = f(x0 + I|x|) = α(x0, |x|) + Iβ(x0, |x|) |

α(u, v) + ιβ(u, v) is a C−valued holomorphic function in u + ιv ∈ U}.
Note that when considering functions in N (U), sometimes called holomorphic functions of a
paravector variable, α and β are R-valued functions. However one can consider a more general

2



class of functions: let f : U ⊂ R
n+1 → Rn be of the form f(x) = f(x0 + I|x|) = α(x0, |x|) +

Iβ(x0, |x|), where I ∈ S, α and β are Rn–valued functions satisfying the Cauchy–Riemann
system and suitable additional conditions. Note that such a function f is slice monogenic in
the sense of [7], (for more detail on slice monogenic functions and some of their applications see
[2], [3], [5], [8], [9], [10], [11]). In the recent paper [6] we have proved an integral representation
formula for f(x0, ρ) in terms of the function f̆(x0, ρ), where f̆(x0, ρ) and f(x0, ρ) are related by

f̆(x0, ρ) = ∆(n−1)/2
x f(x0, ρ). (1)

We have proved that the function f̆(x0, ρ) is axially monogenic (see [12]) and that ∆(n−1)/2 is
surjective onto AM(U). Moreover, given f̆ ∈ AM(U) we construct a slice monogenic function
f satisfying (1), thus inverting the Fueter mapping theorem.

Remark 1.1. On an axially symmetric open set U , see [13] p. 310, every left monogenic function
f̆ can be written in the form f̆(x) =

∑∞
k=0 f̆k(x) where f̆k(x) are axially monogenic functions of

degree k , i.e. f̆k(x) are functions of the form

f̆k(x) = Ak(x0, ρ, ω) + ωBk(x0, ρ, ω)

where Ak(x0, ρ, ω) and Bk(x0, ρ, ω) satisfy the Vekua-type system:

{

∂x0Ak − ∂ρBk = k+n−1
ρ Bk,

∂x0Bk + ∂ρAk = k
ρAk.

(2)

Even though the following definition is very well known, we recall it for sake of completeness.

Definition 1.2. A left monogenic polynomial Pk in R
n+1 (resp. R

n) is called inner spherical
monogenic polynomial of degree k if it is homogeneous of degree k, that is Pk(x/|x|)|x|k, (resp.
Pk(x/|x|)|x|k) and satisfies ∂xPk(x) = 0 (resp. ∂xPk(x) = 0).

Remark 1.3. For any (x0, ρ) fixed the functions Ak and Bk are inner spherical monogenics of
degree k, see [1]. Thus we can write

Ak(x0, ρ, ω) = A(x0, ρ)Pk(ω), Bk(x0, ρ, ω) = B(x0, ρ)Pk(ω) (3)

where A(x0, ρ), B(x0, ρ) are real valued. Note that this assumption is not a restriction, in fact,
in view of the finite dimensionality of the space of inner spherical monogenics we can always
decompose any axially monogenic function of degree k of the form Ak(x0, ρ, ω) + ωBk(x0, ρ, ω)
into a finite sum of functions of the form (3), i. e.

Ak(x0, ρ, ω) + ωBk(x0, ρ, ω) = (A(x0, ρ) + ωB(x0, ρ))Pk(ω).

The preceding discussion leads to the following result (see [13]):

Theorem 1.4. Let U ⊆ R
n+1 be an open set invariant with respect to SO(n). Then every

monogenic function f̆ : U → Rn can be written in the form f̆(x) =
∑∞

k=0 f̆k(x) with

f̆k(x) =

mk
∑

j=0

[Ak,j(x0, ρ) + ωBk,j(x0, ρ)]Pk,j(ω) (4)

where Pk,j form a basis for the space of spherical monogenics of degree k of dimension mk and
Ak,j, Bk,j are suitable real valued functions.

3



The main aim of this paper is to find the inversion of the Fueter mapping theorem in the case
of monogenic functions of type (Ak,j(x0, ρ) + ωBk,j(x0, ρ))Pk,j(ω) by providing their so-called
Fueter primitive.

Problem 1.5. Suppose that U ⊆ R
n+1 be an axially symmetric domain, where n in an odd

number. Given the axially monogenic function of degree k

f̆(x)Pk(x) = (A(x0, ρ) + ωB(x0, ρ))Pk(x)

where Pk(x) is a spherical monogenic function determine a function f(x0, ρ) = α(x0, ρ) +
ωβ(x0, ρ) ∈ N (U) such that

∆
k+n−1

2
x (f(x)Pk(x)) = f̆(x)Pk(x) on U, (5)

where ∆x is the Laplace operator in dimension n + 1.

The solution of Problem 1.5 is given by the following integral representation formula for f(x)Pk(x):

f(x)Pk(x) =

∫

Γ
W−

k,n

(x − y0

ρ

)

Pk

(x − y0

ρ

)

ρ2k+n−2[dy0 A(y0, ρ) − dρB(y0, ρ)] (6)

−
∫

Γ
W+

k,n

(x − y0

ρ

)

Pk

(x − y0

ρ

)

ρ2k+n−2[dy0B(y0, ρ) + dρA(y0, ρ)],

where f(x)Pk(x) is solution to the equation (5) and Γ is a suitable regular curve. Here W+
k,n

and W−
k,n are explicit kernels that are determined in Section 4.

From (4) and the integral representation formula (6) we show that we can find a Fueter primitive
for any monogenic function on an axially symmetric open set, see Corollary 5.4. Acknowledgments.

This research was supported by Research Foundation on Flanders (F.W.O. project 31506208).

2 A restriction result for the Fueter primitive

Definition 2.1 (Fueter’s Primitive). Let n be an odd number and let U ⊆ R
n+1 be an axially

symmetric domain. Let f̆(x)Pk(x) = (A(x0, ρ)+ωB(x0, ρ))Pk(x) be an axially monogenic func-
tion of degree k ∈ N0. We say that a function f(x)Pk(x), f ∈ N (U) is a Fueter primitive of
f̆(x)Pk(x) if

∆
k+n−1

2
x (f(x)Pk(x)) = f̆(x)Pk(x) on U,

where ∆x is the Laplace operator in dimension n + 1.

Given any paravector x = x0 + ωρ, where ρ 6= 0, it is obvious that x belongs to the complex
plane Cω and that any paravector on the real axis belong to Cω for all ω ∈ S

n+1.

Definition 2.2. Let U ⊆ R
n+1 be a domain. We say that U is a slice domain (s-domain for

short) if U ∩ R is non empty and if U ∩ Cω is a domain in Cω for all ω ∈ S
n+1.

Remark 2.3. Let U ⊆ R
n+1 be an axially symmetric s-domain. Suppose that W ∈ N (U). So

function W admits the power series expansion and we have

W (x) =
∑

ℓ≥0

1

ℓ!
xℓ V (ℓ)(x0), (7)
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where V (x0) := W (x)|x=0. For functions W ∈ N (U) the terms V (ℓ)(x0) are real numbers. The
convergence is in a suitable ball B(x0, r) centered at x0 ∈ U ∩ R and radius r > 0. Finally
observe that the product W (x)Pk(x) is well defined and we can write

W (x)Pk(x) =
∑

ℓ≥0

1

ℓ!
xℓ V (ℓ)(x0)Pk(x).

We have the following results which will be crucial in the sequel. We reason in the ball B(x0, r)
of convergence and for the Identity Principle for slice monogenic functions, see [7], the result
can be extended to the whole axially symmetric s-domain U .

Proposition 2.4. Let U be an axially symmetric s-domain in R
n+1, n be an odd number, and

suppose that W ∈ N (U). Let Pk(x) be an inner left spherical monogenic polynomial of degree
k ∈ N0. Let x0 ∈ U ∩ R and suppose that (7) is the power series expansion of W in B(x0, r).
Then there exists a positive constant Hk,n, independent of x0, such that, for x → 0

∆
k+

(n−1)
2

x (W (x)Pk(x)) = Hn,kV
(2k+n−1)(x0)Pk(x) + R(x0, x)Pk(x),

where

Hk,n :=

k+n−1
2

∑

j=0

(

k + n−1
2

j

)

(−1)j22jj!
1

(2j)!

Γ
(

2k+n
2 + j

)

Γ
(

2k+n
2

) , (8)

and
lim
x→0

R(x0, x) = 0.

Proof. We set for simplicity m = k + (n − 1)/2 and we calculate ∆m
x (W (x)Pk(x)), keeping in

mind that we have to take the limit x → 0. Since ∆x = ∂2
x0

+ ∆x, we can write

∆m
x (W (x)Pk(x)) =

m
∑

j=0

∑

ℓ≥0

(

m

j

)

1

ℓ!
∂2(m−j)

x0
∆j

x

(

xℓ Pk(x)V (ℓ)(x0)
)

=

m
∑

j=0

∑

ℓ≥0

(

m

j

)

1

ℓ!
∆j

x

(

xℓ Pk(x)
)

∂2(m−j)
x0

V (ℓ)(x0)

and we observe that

∆j
x

(

xℓPk(x)
)

=







0 if 2j > ℓ,
CℓPk(x) if 2j = ℓ,
E(x)Pk(x) if 2j < ℓ,

where Cℓ are constants depending on ℓ and E is a continuous function such that E(x) → 0 for
x → 0. Moreover, it is easy to see that all the terms corresponding to 2j = ℓ contain

∂2(m−j)
x0

V (2j)(x0) = V (2m)(x0).

So we have

∆m
x (W (x)Pk(x)) =

m
∑

j=0

∑

ℓ≥0

(

m

j

)

1

ℓ!
∆j

x

(

xℓ Pk(x)
)

∂2(m−j)
x0

V (ℓ)(x0)
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=

m
∑

j=0

1

(2j)!

(

m

j

)

∆j
x

(

x2jPk(x)
)

V (2m)(x0) + R(x0, x)Pk(x).

Let us set:

Hn,k :=

m
∑

j=0

1

(2j)!

(

m

j

)

∆j
x

(

x2jPk(x)
)

, where m = k +
(n − 1)

2
.

Now recall that ∆x = −∂2
x where ∂x is the Dirac operator in dimension n and the well known

relations
∂x

(

x2sPk(x)
)

= −2s x2s−1Pk(x),

∂x

(

x2s+1Pk(x)
)

= −(2s + 2k + n) x2sPk(x).

Observe that ∆0
x

(

x0Pk(x)
)

= 1 and consider the terms:

∆j
(

x2jPk(x)
)

= −∆j−1∂2
x

(

x2jPk(x)
)

=

= ∆j−1∂x

(

2j x2j−1Pk(x)
)

= −2j(2j − 2 + 2k + n) ∆j−1
(

x2(j−1)Pk(x)
)

.

So we get

∆
(

x2Pk(x)
)

= −2(2k + n)Pk(x),

∆2
(

x4Pk(x)
)

= 2 · 4(2 + 2k + n)(2k + n)Pk(x),

and by induction we have

∆j
(

x2jPk(x)
)

= (−1)j22jj!
Γ
(

2k+n
2 + j

)

Γ
(

2k+n
2

) Pk(x)

we finally obtain that

Hk,n :=
m

∑

j=0

1

(2j)!

(

m

j

)

(−1)j22jj!
Γ
(

2k+n
2 + j

)

Γ
(

2k+n
2

) .

This concludes the proof recalling that m = k + (n−1)
2 .

3 The kernels F+
k,n(x) and F−

k,n(x) and their factorization

Using the monogenic Cauchy kernel and the inner left spherical monogenic polynomials Pk(x)
we define two important kernels that we will use in the sequel. We start by recalling:

Definition 3.1 (The monogenic Cauchy kernel). We denote by G the monogenic Cauchy kernel
on R

n+1

G(x) =
1

An+1

x

|x|n+1
, x ∈ R

n+1 \ {0}, (9)

where An+1 is the area of the unit sphere:

An+1 =
2π(n+1)/2

Γ(n+1
2 )

.
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Definition 3.2 (The kernels F+
k,n(x) and F−

k,n(x)). Let G(x−y) be the monogenic Cauchy kernel

defined in (9) with x = x0 + x ∈ R
n+1 and for y = rω ∈ R

n we assume r = 1 and ω ∈ S
n−1. Let

Pk(x) be an inner left spherical monogenic polynomial of degree k ∈ N0. We define the kernels

F+
k,n(x) =

∫

Sn−1

G(x − ω)Pk(ω) dS(ω), F−
k,n(x) =

∫

Sn−1

G(x − ω)ω Pk(ω)dS(ω), (10)

where dS(ω) is the scalar element of surface area of S
n−1.

Before we are able to prove the main result of this section that is the factorization property
of the kernels F+

k,n(x) and F−
k,n(x) we recall some results that we will use in the sequel.

Theorem 3.3 (Funk-Hecke (see [16])). Denote by S
n−1 the unit sphere in R

n and by An−1 its
area. Let ξ and η be two unit vectors in R

n. Let ψ be a real-valued function whose domain
contains [−1, 1] and let Pk(ξ) be spherical harmonics, of degree k. Then we have

∫

Sn−1

ψ(〈ξ, η〉)Pk(η) dS(η) = An−1Pk(ξ)

∫ 1

−1
ψ(t)Pk,n(t)(1 − t2)(n−3)/2 dt,

where dS(η) is the scalar element of surface area on S
n−1, by 〈ξ, η〉 we denote the scalar product

of ξ, η. The Legendre polynomials are denoted by Pk,n(t) and

An−1 =
2π(n−1)/2

Γ(n−1
2 )

.

Remark 3.4. By the Rodriguez formula the Legendre polynomials Pk,n(t) can be expressed by

Pk,n(t) =
(

− 1

2

)k Γ((n − 1)/2)

Γ(k + (n − 1)/2)
(1 − t2)(3−n)/2 dn

dtn
(1 − t2)k+(n−3)/2.

We recall the following formula (see [16] p. 188).

Proposition 3.5. Let f : [−1, 1] → R be a continuous function with its n derivatives, then the
following formula holds:

∫ 1

−1
f(t)Pk,n(t)(1 − t2)(n−3)/2 dt =

(1

2

)k Γ((n − 1)/2)

Γ(k + (n − 1)/2)

∫ 1

−1
(1 − t2)k+(n−3)/2 f (n)(t) dt, (11)

where Pk,n are the Legendre polynomials, n is the dimension and k is the degree of Pn,k.

Theorem 3.6 (Factorization property of the kernels F+
k,n(x) and F−

k,n(x)). Let n be an odd
number. Let Pk(x) be an inner left spherical monogenic polynomial of degree k ∈ N0. Let
F+

k,n(x) and F−
k,n(x) be the kernels defined in (10). Then there exists two functions S+

k,n(x) and

S−
k,n(x) belonging to N (U), independent of Pk(x), such that

F+
k,n(x) = S+

k,n(x)Pk(x), F−
k,n(x) = S−

k,n(x)Pk(x) (12)

and

lim
x→0

S+
k,n(x) = Ck,n

x0

(x2
0 + 1)k+(n+1)/2

, lim
x→0

S−
k,n(x) = −Ck,n

1

(x2
0 + 1)k+(n+1)/2

, (13)

where

Ck,n :=
(−1)k

√
π

Γ(k + n+1
2 )

Γ(k + n
2 )

. (14)
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Proof. Let us consider first the function F+
k,n(x), for all n odd number, and recalling (9), we can

write F+
k,n(x) as:

F+
k,n(x) =

1

An+1

∫

Sn−1

x0 − x + ω

(x2
0 + 〈x − ω, x − ω〉)(n+1)/2

Pk(ω) dS(ω).

By setting r = |x|, I = x/r, we split it as

F+
k,n(x) = (x0 − x)Jk,n(x0, r) + Lk,n(x0, r)

where we set

Jk,n(x0, r) :=
1

An+1

∫

Sn−1

ψr(t)Pk(ω) dS(ω),

Lk,n(x0, r) :=
1

An+1

∫

Sn−1

ψr(t) ω Pk(ω) dS(ω)

and

ψr(t) :=
1

(x2
0 + 1 + r2 − 2rt)(n+1)/2

, where t := 〈I, ω〉, (15)

To compute F+
k,n(x) we proceed by steps.

First we calculate Jk,n(x0, r) and Lk,n(x0, r) by Theorem 3.3 (Funk-Hecke).

We have

Jk,n(x0, r) =
An−1

An+1
Pk(I)

∫ 1

−1
ψr(t)Pk,n(t)(1 − t2)(n−3)/2 dt, (16)

and

Lk,n(x0, r) =
An−1

An+1
IPk(I)

∫ 1

−1
ψr(t)Pk+1,n(t)(1 − t2)(n−3)/2 dt. (17)

If we set

Qk,n(x0, r) :=
An−1

An+1

∫ 1

−1
ψr(t)Pk,n(t)(1 − t2)(n−3)/2 dt, (18)

then we can write Jk,n(x0, r) and Lk,n(x0, r) as

Jk,n(x0, r) = Qk,n(x0, r)Pk(I) (19)

and
Lk,n(x0, r) = Qk+1,n(x0, r)IPk(I), (20)

so we obtain

F+
k,n(x) =

((x0 − x)

rk
Qk,n(x0, r) +

x

rk+1
Qk+1,n(x0, r)

)

Pk(x) = S+
k,n(x)Pk(x).

This proofs the factorization of F+
k,n(x) given in (12) and that, by its definition, S+

k,n(x) ∈ N (U).

Let us now calculate the limit

lim
r→0

((x0 − x)

rk
Qk,n(x0, r) +

x

rk+1
Qk+1,n(x0, r)

)

where the non trivial term is only

lim
r→0

x0

rk
Qk,n(x0, r).
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To this end, we must study the function Qk,n(x0, r) defined in (18) for r → 0.

First of all, we expand in power series the function ψr(t) defined in (15) using the binomial series

ψr(t) =
1

(x2
0 + 1 + r2)(n+1)/2

∞
∑

j=0

(−(n + 1)/2

j

)

( 2rt

x2
0 + 1 + r2

)j
;

using the orthogonality properties of the Legendre polynomials we get

Qk,n(x0, r) =
An−1

An+1

1

(x2
0 + 1 + r2)(n+1)/2

(−(n + 1)/2

k

)

( 2r

x2
0 + 1 + r2

)k

×
∫ 1

−1
tkPk,n(t)(1 − t2)(n−3)/2 dt (21)

=
An−1

An+1
2k rk

(x2
0 + 1 + r2)k+(n+1)/2

(−(n + 1)/2

k

)
∫ 1

−1
tkPk,n(t)(1 − t2)(n−3)/2 dt.

To explicitly compute the last integral, we use formula (21) and the well known (see [17]) integral

∫ 1

−1
(1 − t2)q dt =

√
π

Γ(q + 1)

Γ(q + 3
2)

for q ∈ R
+,

so we get

∫ 1

−1
tkPk,n(t)(1 − t2)(n−3)/2 dt =

1

2k
k!

√
π

Γ((n − 1)/2)

Γ(k + (n − 1)/2)

Γ(1 + k + (n − 3)/2)

Γ(3/2 + k + (n − 2)/2)

=
1

2k
k!

√
π

Γ((n − 1)/2)

Γ(k + n/2)
.

Moreover we have
(−(n + 1)/2

k

)

=
(−1)k

k!

Γ(n+1
2 + k)

Γ(n+1
2 )

which follows from
(−(n + 1)/2

k

)

=
1

k!

(

− n + 1

2

)(

− n + 3

2

)

....
(

− n + 2k − 1

2

)

=
(−1)k

k!

(n + 1

2

)(n + 1

2
+ 1

)(n + 1

2
+ 2

)

....
(n + 1

2
+ k − 1

)

=
(−1)k

k!

Γ(n+1
2 + k)

Γ(n+1
2 )

.

Finally we get

Qk,n(x0, r) =
An−1

An+1
2k rk

(x2
0 + 1 + r2)k+(n+1)/2

(−(n + 1)/2

k

)
∫ 1

−1
tkPk,n(t)(1 − t2)(n−3)/2 dt

=
An−1

An+1
2k rk

(x2
0 + 1 + r2)k+(n+1)/2

× (−1)k Γ(n+1
2 + k)

k!Γ(n+1
2 )

× 1

2k
k!

√
π

Γ((n − 1)/2)

Γ(k + n/2)

with some simplifications we obtain

Qk,n(x0, r) = Ck,n
rk

(x2
0 + 1 + r2)k+(n+1)/2
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where

Ck,n :=
(−1)k

√
π

Γ(k + n+1
2 )

Γ(k + n
2 )

.

Finally, we compute

lim
r→0

x0

rk
Qk,n(x0, r) = Ck,n

x0

(x2
0 + 1)k+(n+1)/2

,

from which we deduce the limit in (13), that is limx→0 S+
k,n(x). The above computations allows

us to determine also the factorization for F−
k,n(x) and the limit for S−

k,n(x). In fact

F−
k,n(x) =

1

An+1

∫

Sn−1

x0 − x + ω

(x2
0 + 〈x − ω, x − ω〉)(n+1)/2

ωPk(ω) dS(ω)

= (x0 − x)Lk,n(x0, r) − Jk,n(x0, r).

With analogous calculations, we deduce the factorization F−
k,n(x) = S−

k,n(x)Pk(x) with S−
k,n(x) ∈

N (U) and the limit

lim
x→0

S+
k,n(x) = −Ck,n

1

(x2
0 + 1)k+(n+1)/2

.

This concludes the proof.

4 The Fueter primitives of the kernels F+
k,n(x) and F−

k,n(x)

The definition of Fueter’s primitive and the factorization property of the kernels F+
k,n(x) and

F−
k,n(x), see Theorem (3.6), require the determination only of the functions S+

k,n(x) and S−
k,n(x).

Definition 4.1. Let n be an odd number. Let Pk(x) be an inner left spherical monogenic
polynomial of degree k ∈ N0. We will denote by W+

k,n(x)Pk(x) and W−
k,n(x)Pk(x) the Fueter

primitives of F+
k,n(x) and F−

k,n(x), that is W+
k,n(x)Pk(x) and W−

k,n(x)Pk(x) satisfying

∆k+n−1
2 (W+

k,n(x)Pk(x)) = F+
k,n(x), ∆k+n−1

2 (W−
k,n(x)Pk(x)) = F−

k,n(x).

Remark 4.2. Let us observe that thanks to Theorem 3.6 we also have

∆k+n−1
2 (W+

k,n(x)Pk(x)) = S+
k,n(x)Pk(x), ∆k+n−1

2 (W−
k,n(x)Pk(x)) = S−

k,n(x)Pk(x).

Theorem 4.3 (The explicit structure of the functions W+
k,n(x) and W−

k,n(x)). Let n be an odd

number and let k ∈ N0. If S+
k,n(x) and S−

k,n(x), are the functions in (12), then we have

W+
k,n(x0) =

Ck,n

Hk,n
D−(2k+n−1) x0

(x2
0 + 1)k+(n+1)/2

,

W−
k,n(x0) = − Ck,n

Hk,n
D−(2k+n−1) 1

(x2
0 + 1)k+(n+1)/2

,

where the symbol D−(n−1+2k) stands for the (2k+n−1) integrations with respect to x0. Replacing
now x0 by x in W+

k,n(x0) and in W−
k,n(x0) we get W+

k,n(x) and W−
k,n(x), respectively. Moreover,

the functions W+
k,n(x) and W−

k,n(x) belong to N (U).
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Proof. Let us observe that the kernels S+
k,n(x) and S−

k,n(x) defined in (10) are axially monogenic,

they satisfy the Vekua system which is elliptic so S+
k,n(x) and S−

k,n(x) are determined by their
restrictions to x = 0. From Theorem 3.6 we have that

lim
x→0

S+
k,n(x) = Ck,n

x0

(x2
0 + 1)k+(n+1)/2

, lim
x→0

S+
k,n(x) = −Ck,n

1

(x2
0 + 1)k+(n+1)/2

,

where the constants Ck,n are explicitly determine by (14). Now recall that if W ∈ N (U), defined
on an axially symmetric s-domain in R

n+1, from Proposition 2.4, recalling that Pk(x) are inner
left spherical monogenic polynomials of degree k ∈ N0, we have that, for x → 0,

∆k+(n−1)/2
x (W (x)Pk(x)) = Hn,kV

(2k+n−1)(x0)Pk(x) + R(x0, x)Pk(x),

where W (x)|x=0 := V (x0) and Hn,k are explicitly determined by (8). If we set

D(2k+n−1)W+
k,n(x0) =

Ck,n

Hk,n

x0

(x2
0 + 1)k+(n+1)/2

and we integrate the function
x0

(x2
0 + 1)k+(n+1)/2

for (2k + n − 1) times we get

W+
k,n(x0) =

Ck,n

Hk,n
D−(2k+n−1) x0

(x2
0 + 1)k+(n+1)/2

where the symbol D−(2k+n−1) stands for the (2k + n − 1) integrations with respect to x0. By
replacing now x0 by x in S+

k,n(x0) we get S+
k,n(x). We observe that it is the required function

since

lim
x→0

∆k+(n−1)/2
x (W+

k,n(x)Pk(x)) =
Ck,n

Hk,n
Hk,nV (2k+n−1)(x0) lim

x→0
Pk(x)

= Ck,n
x0

(x2
0 + 1)k+(n+1)/2

lim
x→0

Pk(x).

Analogously we set

D(2k+n−1)S−
k,n(x0) := − Cn

Kn

1

(x2
0 + 1)k+(n+1)/2

and we integrate the function 1
(x2

0+1)k+(n+1)/2 for (2k + n − 1) times we get

W−
k,n(x0) := − Ck,n

Hk,n
D−(2k+n−1) 1

(x2
0 + 1)k+(n+1)/2

.

Replacing now x0 by x in W−
k,n(x0) we get W−

k,n(x) which is the required function. Finally we
observe that the functions

x0 7→ x0

(x2
0 + 1)k+(n+1)/2

, x0 7→ 1

(x2
0 + 1)k+(n+1)/2

,

can be integrated by parts in closed form an arbitrary number of times. Such primitives contain
rational functions of x0 and arctanx0 of the real variable x0.

When we replace in such functions the real variable x0 by the paravector variable x we clearly
obtain that the functions W−

k,n and W+
k,n belong to N (U).
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5 The inverse Fueter mapping theorem in integral form

We now recall the Cauchy’s integral formula for monogenic functions that with the results of
the previous section is the main tool to prove our main result.

Theorem 5.1 (Cauchy’s integral representation theorem for monogenic functions). Let f̆ be a
left monogenic function in U ⊆ R

n+1. Then, for every M ⊂ U and for x ∈ M , we have

f̆(x) =

∫

∂M
G(y − x)dσ(y)f̆(y), (22)

where ∂M is supposed to be an n-dimensional compact smooth manifold in U , the differential
form dσ(y) is given by dσ(y) = η(y)dS(y) where η(y) is the outer unit normal to ∂M at point
y and dS(y) is the scalar element of surface area on ∂M .

We are now in position to state and prove the main result of this paper.

Theorem 5.2 (The inverse Fueter mapping theorem). Let n be an odd number and let Pk(x)
be an inner left spherical monogenic polynomial of degree k ∈ N0. Let

f̆(x)Pk(x) = (A(x0, ρ) + ωB(x0, ρ))Pk(x)

be an axially monogenic function of degree k defined on an axially symmetric open set U ⊆ R
n+1.

Let Γ be the boundary of an open bounded subset V of the half plane R + ωR
+ and let V ⊂ U be

the open set in R
n+1 induced by V. Moreover suppose that Γ is a regular curve whose parametric

equations y0 = y0(s), ρ = ρ(s) are expressed in terms of the arc-length s ∈ [0, L], L > 0 and
consider the manifold

Σ := {y0 + ωρ | (y0, ρ) ∈ Γ, ω ∈ S
n−1}.

Then the function

f(x)Pk(x) =

∫

Γ
W−

k,n

(x − y0

ρ

)

Pk

(x − y0

ρ

)

ρ2k+n−2[dy0 A(y0, ρ) − dρB(y0, ρ)]

−
∫

Γ
W+

k,n

(x − y0

ρ

)

Pk

(x − y0

ρ

)

ρ2k+n−2[dy0B(y0, ρ) + dρA(y0, ρ)]. (23)

is a Fueter’s primitive of f̆(x)Pk(x) on V .

Proof. We represent axially monogenic functions f̆ by the Cauchy formula (22) using the man-
ifold Σ as follows. We specify the notations: ds is the infinitesimal arc-length, dS(ω) is the
infinitesimal element of surface area on S

n−1; t = d
ds(y0 + ωρ) is the unit tangent vector in a

point of Γ, while the normal unit vector is given by

n = −ωt =
d

ds
[ρ(s) − ωy0(s)].

The scalar infinitesimal element of the manifold Σ, express in terms of ds and dS is given by

dΣ = ρn−1 ds dS(ω),

finally the oriented infinitesimal element of manifold dσ(s, ω) is given by

dσ(s, ω) = ndΣ =
d

ds
[ρ(s) − ωy0(s)] ρ

n−1 ds dS(ω)
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so finally we get
dσ(s, ω) = [dρ(s) − ωdy0(s)]ρ

n−1dS(ω).

Thanks to the above considerations we have:

f̆(x0 + Ir)Pk(I) =

∫

Γ

∫

Sn−1

G(y0 + ωρ − x0 − rI) dσ(s, ω) f̆(y0 + ωρ)Pk(ω).

So we can split the integral in the following way

f̆(x0+Ir)Pk(I) = −
∫

Γ

[

∫

Sn−1

G(y0+ωρ−x0−rI)ωPk(ω) dS(ω)
]

ρn−1[dy0 A(y0, ρ)−dρB(y0, ρ)]

+

∫

Γ

[

∫

Sn−1

G(y0 + ωρ − x0 − rI)Pk(ω) dS(ω)
]

ρn−1[dy0B(y0, ρ) + dρA(y0, ρ)]

keeping in mind the property G(tx) = t−nG(tx) for t > 0, with a change of variables, we have

f̆(x0+Ir)Pk(I) =

∫

Γ

[

∫

Sn−1

ρ−nG
(x0 − y0

ρ
+

r

ρ
I−ω

)

ωPk(ω) dS(ω)
]

ρn−1[dy0 A(y0, ρ)−dρB(y0, ρ)]

−
∫

Γ

[

∫

Sn−1

ρ−nG
(x0 − y0

ρ
+

r

ρ
I − ω

)

Pk(ω) dS(ω)
]

ρn−1[dy0B(y0, ρ) + dρA(y0, ρ)]

recalling the definitions of F+
k,n and F−

k,n we get

f̆(x0 + Ir)Pk(I) =

∫

Γ
F−

k,n

(x0 − y0

ρ
+

r

ρ
I
)

ρ−1[dy0 A(y0, ρ) − dρB(y0, ρ)]

−
∫

Γ
F+

k,n

(x0 − y0

ρ
+

r

ρ
I
)

ρ−1[dy0B(y0, ρ) + dρA(y0, ρ)].

Let us observe that, since x = x0 + Ir, we have

f̆(x0 + Ir)Pk(I) =

∫

Γ
F−

k,n

(x − y0

ρ

)

ρ−1[dy0 A(y0, ρ) − dρB(y0, ρ)]

−
∫

Γ
F+

k,n

(x − y0

ρ

)

ρ−1[dy0B(y0, ρ) + dρA(y0, ρ)].

By setting

x′ :=
x − y0

ρ

by Definition (4.1), we obtain

f̆(x0 + Ir)Pk(I) =

∫

Γ
∆

k+(n−1)/2
x′ (W−

k,n(x′)Pk(x
′)) ρ−1[dy0 A(y0, ρ) − dρB(y0, ρ)]

−
∫

Γ
∆

k+(n−1)/2
x′ (W+

k,n(x′)Pk(x
′)) ρ−1[dy0B(y0, ρ) + dρA(y0, ρ)]

and since ∆
k+(n−1)/2
x′ = ρ2k+n−1∆

k+(n−1)/2
x we get:

f̆(x0 + Ir)Pk(I) = ∆k+(n−1)/2
x

[

∫

Γ
W−

k,n

(x − y0

ρ

)

Pk

(x − y0

ρ

)

ρ2k+n−2[dy0 A(y0, ρ) − dρB(y0, ρ)]
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−
∫

Γ
W+

k,n

(x − y0

ρ

)

Pk

(x − y0

ρ

)

ρ2k+n−2[dy0B(y0, ρ) + dρA(y0, ρ)]
]

where

f(x)Pk(x) =

∫

Γ
W−

k,n

(x − y0

ρ

)

Pk

(x − y0

ρ

)

ρ2k+n−2[dy0 A(y0, ρ) − dρB(y0, ρ)]

−
∫

Γ
W+

k,n

(x − y0

ρ

)

Pk

(x − y0

ρ

)

ρ2k+n−2[dy0B(y0, ρ) + dρA(y0, ρ)]. (24)

From the proof on the above theorem one can easily see that the following result holds.

Corollary 5.3. Under the hypothesis of the above theorem, the Cauchy integral formula for
axially monogenic functions f̆ of degree k can be written on V in the form

f̆(x)Pk(x) =

∫

Γ
F−

k,n

(x − y0

ρ

)

ρ−1[dy0 A(y0, ρ) − dρB(y0, ρ)]

−
∫

Γ
F+

k,n

(x − y0

ρ

)

ρ−1[dy0B(y0, ρ) + dρA(y0, ρ)].

Another consequence is the following corollary which needs some more notations in order
to be stated. Let us denote by AMk(U) the set of axially symmetric functions on the axially
symmetric open set U and let us introduce the set

Nk(U) = {ϕk =

mk
∑

j=0

fj(x)Pk,j(x) | fj ∈ N (U), Pk,j spherical monogenic of degree k},

where mk = dimAMk.

Corollary 5.4. Let n be an odd number and let U be an axially symmetric open set in R
n+1.

There is a map of Rn-modules
AMk(U) → Nk(U),

such that, given (Ak + ωBk)Pk ∈ AMk(U), we have (Ak + ωBk)Pk = ∆k+n−1
2 ((αk + ωβk)Pk),

with αk + ωβk ∈ N (U), and a map

M(U) →
⊕

k

∆kNk(U),

such that, given f̆ =
∑

k f̆k ∈ M(U), fk ∈ AMk(U), there are ϕk ∈ Nk such that

f̆ = ∆
n−1

2

∑

k

∆kϕk.

Proof. It is a consequence of the inverse Fueter mapping theorem and of Theorem 1.4.
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