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Abstract: We reduce the regular version of the Inverse Galois Problem for any finite group G
to finding one rational point on an infinite sequence of algebraic varieties. As a consequence,
any finite group G is the Galois group of an extension L/P (x) with L regular over any PAC
field P of characteristic zero. A special case of this implies that G is a Galois group over Fp(x)
for almost all primes p.

§0. INTRODUCTION

Many attempts have been made to realize finite groups as Galois groups of extensions of Q(x) that are
regular over Q (see the end of this introduction for definitions). We call this the “regular inverse Galois
problem.” We show that to each finite group G with trivial center and integer r ≥ 3 there is canonically
associated an algebraic variety, Hin

r (G), defined over Q (usually reducible) satisfying the following.

Fundamental Property: There exists a Galois extension of Q(x), regular over Q, with Galois group
isomorphic to G and with r branch points, if and only if Hin

r (G) has a Q-rational point. (This holds if Q is
replaced by any field of characteristic 0).

This is contained in Corollary 1 (in §2.1). Theorem 1, our main result, gives a more general formulation
that applies to any finite group. The Fundamental Property reduces the regular inverse Galois problem to
finding Q-points on certain (reducible) varieties. The first step towards this is to show that (under certain
conditions) there exist absolutely irreducible components ofHin

r (G) that are defined over Q. The components
of Hin

r (G) are in one-one correspondence with the orbits of the Hurwitz monodromy group in its action on
certain classes of generating systems of G (see §1.3).
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Using a theorem of Conway and Parker [CP] on such group actions, we conclude that the space Hin
r (G)

has an (absolutely) irreducible component defined over Q if we allow r to be large and replace G by some
group with quotient G (see §2.2). The Q-components that we construct this way are generalizations of the
classical Hurwitz spaces.

It is convenient to introduce the following terminology: A group G is called regular over a field k if G
is isomorphic to the Galois group of an extension of k(x) that is regular over k. The above has the following
immediate corollary for P(seudo)A(lgebraically)C(losed) fields P of characteristic 0: Every finite group is
regular over P (Theorem 2). Another corollary (which can be viewed as a special case of the previous one)
is that every finite group is regular over the finite prime field Fp for almost all primes p (Corollary 2).

In §6 we derive an addendum to our main result that is crucial for the preprint [FrVo]. In that paper
we prove a long-standing conjecture on Hilbertian PAC-fields P (in the case char(P ) = 0): Every finite
embedding problem over P is solvable. For countable P this, combined with a result of Iwasawa, implies
that the absolute Galois group of P is ω-free. That is, G(P̄ /P ) is a free profinite group of countably infinite
rank, denoted F̂ω. By a result of [FrJ, 2], every countable Hilbertian field k of characteristic 0 has a Galois
extension P with the following properties: P is Hilbertian and PAC, and G(P/k) ∼=

∏∞
n=2 Sn (where Sn

is the symmetric group of degree n). From the above, G(k̄/P ) = G(P̄ /P ) ∼= F̂ω, and we get the exact
sequence

1 → F̂ω → G(k̄/k)→
∞∏
n=2

Sn → 1.

Moduli spaces for branched covers of P1 were already considered by Hurwitz [Hur] in the special case
of simple branching (where the Galois group is Sn). Fulton [Fu] showed — still in the case of simple branching
— that the analytic moduli spaces studied by Hurwitz are the sets of complex points of certain schemes.
Fried [Fr,1] studied more generally moduli spaces for covers of P1 with an arbitrary given monodromy group
G ⊂ Sn and with a fixed number of branch points. The new moduli spaces Hin

r (G) studied in the present
paper are coverings of those previous ones, parametrizing equivalence classes of pairs (χ, h) where χ is a
Galois cover of P1 with r branch points and h is an isomorphism between G and the automorphism group
of the cover χ. The extra data of the isomorphism h associated to the points of Hin

r (G) ensures that a Q-
rational point corresponds to a cover of P1 that can be defined over Q such that also all its automorphisms
are defined over Q; the latter condition guarantees that the corresponding function field extension L/Q(x)
is Galois with group G.

The proof of our main result relies on the construction of a family of certain covers of P1 with no
(non-trivial) automorphisms (§4). Then we use the interplay between the spaces Hin

r (G) and moduli spaces
Hab
r (G,U) of equivalence classes of certain covers that are not Galois. Matzat [Ma, 2] has studied the function

fields of the absolutely irreducible components of the spaces Hin
r (G) and Hab

r (G,U) (for U = 1) from another
point of view (using profinite algebraic fundamental groups).

Because of the essential use we make of the unpublished result [CP] (in the applications of our main
result), we supply an appendix where we give a (slightly modified and corrected) proof of the version of [CP]
that is needed here.
Acknowledgements: Moshe Jarden pointed out many of the potential consequences of the Main Theorem
to the first author.
Notations: Throughout x will denote an indeterminate that is transcendental over any particular base
field, usually denoted k. Thus k(x) is the field of rational functions in x with coefficients in k. The algebraic
closure of a field k is denoted by k̄, and we let Gk = G(k̄/k) denote the absolute Galois group of k (in
characteristic 0). A field L is said to be regular over a subfield k if L and k̄ are linearly disjoint over k; in
the case char(L) = 0 this is equivalent to the condition that k is algebraically closed in L. We say that a
finite group G is regular over a field k (with r branch points) if G is isomorphic to the Galois group of an
extension L/k(x) with L regular over k (and with r branch points). When we speak of the branch points of
such an extension L/k(x) (with char(k) = 0), we mean branch points of the corresponding curve cover over
k̄.
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The field of rationals (resp., complexes) is denoted by Q (resp., C). We let P1 denote the Riemann
sphere C ∪ {∞}, viewed according to context as a Riemann surface or as an algebraic curve defined over Q
(in the natural way). The fundamental group of a topological space Y , based at y ∈ Y , is denoted π1(Y, y).
If U is a subgroup of G, then [U ] denotes the conjugacy class of subgroups of G containing U . A subgroup
of G is called self-normalizing if it equals its own normalizer in G.
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1. MODULI SPACES FOR COVERS OF THE RIEMANN SPHERE

Let G be a finite group and U ≤ G a subgroup that does not contain a non-trivial normal subgroup of G.
Let Aut(G,U) be the group of all automorphisms of G that preserve the conjugacy class of U , and let Inn(G)
be the group of inner automorphisms.

§1.1. Nielsen classes and the Hurwitz monodromy group: In this subsection we fix some more
terminology. Let r be an integer > 1, and consider the set

Er = Er(G) = {(σ1, . . . , σr) | σ1, . . . , σr ∈ G \ {1}, < σ1, . . . , σr >= G, σ1 · · ·σr = 1}.

Let Eab
r = Eab

r (G,U) (resp., E in
r = E in

r (G)) denote the quotient of Er by the componentwise action
of Aut(G,U) (resp., of Inn(G)). For any conjugacy class C of G and for any integer m define Cm to be
the conjugacy class of the gm, g ∈ C. Let C = (C1, . . . ,Cr) be an r-tuple of conjugacy classes of G.
We say (C1, . . . ,Cr) is rational if for each integer m prime to the order of G we have (Cm

1 , . . . ,Cm
r ) =

(Cπ(1), . . . ,Cπ(r)) for some π ∈ Sr. This generalizes the usual notion of a rational conjugacy class.
The Nielsen class Ni(C) of C is defined to be the set of all (σ1, . . . , σr) ∈ Er for which there exists a

permutation π ∈ Sr with σi ∈ Cπ(i) for i = 1, ..., r. Define the set Ni(C)ab (resp., Ni(C)in ) to be the image
of Ni(C) in Eab

r (resp., E in
r ).

Embed affine space Ar in Pr by regarding Ar as the space of monic complex polynomials of degree
r, and Pr as the space of all nonzero complex polynomials of degree at most r up to multiplication by a
nonzero constant. Consider the classical discriminant locus in Ar, corresponding to the polynomials with
repeated roots, and denote its closure in Pr by Dr. We will work with the space Ur def= Pr \Dr, which we
view as the space of all subsets of cardinality r of the Riemann sphere P1 = C ∪ {∞}. That is, we identify
a point of Ur with the set of roots of a corresponding polynomial, where we count ∞ as a root if the degree
of the polynomial is less than r (the degree is then necessarily r − 1).

The space Ur has a natural structure as algebraic variety defined over Q. We fix a base point bbb =
{b1, . . . , br} in Ur that is rational over Q (i.e., the bi’s are permuted by GQ); further we assume bi �= ∞
for all i. For the moment we consider Ur only as a complex manifold. The (topological) fundamental group
Hr = π1(Ur, bbb) is called the Hurwitz monodromy group (cf. [BF]). It is a quotient of π1(Ar \Dr, bbb) (via the
map induced from the embedding of Ar in Pr). The latter group is classically known to be isomorphic to
the Artin braid group Br. Thus the “elementary braids” that generate Br yield generators Q1, . . . , Qr−1 of
Hr. In §1.3 we will work with an explicit description of these generators.

§1.2. Moduli Spaces for Covers of P1: From now on ϕ : X → P1 will always denote a (branched)
cover of compact (connected) Riemann surfaces. Two such covers ϕ : X → P1 and ϕ′ : X ′ → P1 are called
equivalent if there exists an isomorphism δ : X → X ′ with ϕ′ ◦ δ = ϕ. We let Aut(X/P1) denote the group
of automorphisms of the cover ϕ : X → P1 (i.e., automorphisms δ of X with ϕ ◦ δ = ϕ). The cover ϕ is
called a Galois cover if Aut(X/P1) is transitive on the fibers of ϕ.

Let a1, . . . , ar ∈ P1 be the branch points of the cover ϕ, and set aaa = {a1, . . . , ar}. Then ϕ restricts
to an (unramified) topological cover ϕ0 of the punctured sphere P1 \ aaa. Choose a base point a0 on this
punctured sphere. By the theory of covering spaces, the equivalence class of ϕ0 corresponds to a conjugacy
class [Uϕ] of subgroups Uϕ of the fundamental group Γ = π1(P1 \aaa, a0). In fact we have a 1-1 correspondence
between the equivalence classes of covers ϕ′ : X ′ → P1 with branch points among a1, . . . , ar, and conjugacy
classes of subgroups of Γ of finite index (see e.g. [Fu, 1.3]). Under this correspondence, the covers with
exactly r branch points correspond to those subgroups of Γ that do not contain the kernel of the natural
map from Γ to Γi

def= π1((P1 \ aaa) ∪ {ai}, a0), for any i. Furthermore, under the above correspondence the
group Aut(X/P1) is isomorphic to NΓ(Uϕ)/Uϕ where NΓ(Uϕ) is the normalizer of Uϕ in Γ.

Let Hab = Hab
r (G,U) be the set of equivalence classes |ϕ| of all covers ϕ : X → P1 with r branch

points for which — in the above notation — there is a surjection f : Γ → G with f−1(U) conjugate to Uϕ.
(This is clearly independent of the choice of base point a0). The 1-1 correspondence between equivalence
classes of the covers ϕ and of their restrictions ϕ0 allows us to say that the point |ϕ| of Hab is represented
by ϕ0 (as well as by ϕ). From the last paragraph:
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(1) Aut(X/P1) = 1 if the class of ϕ : X → P1 belongs to Hab = Hab
r (G,U) and U is self-normalizing in

G.

Let Hin = Hin
r (G) be the set of equivalence classes of pairs (χ, h) where χ : X̂ → P1 is a Galois cover

with r branch points, and h : Aut(X̂/P1)→ G is an isomorphism; two such pairs (χ, h) and (χ′ : X̂ ′ → P1, h′)
are called equivalent if there is an isomorphism δ : X̂ → X̂ ′ over P1 such that h′ ◦ cδ = h, where cδ :
Aut(X̂/P1) → Aut(X̂ ′/P1) is the isomorphism induced by δ. Let |χ, h| denote the equivalence class of the
pair (χ, h).

Note that points of Hin can equally well be thought of as equivalence classes of triples (aaa, a0, f), where
aaa = {a1, . . . , ar} ∈ Ur, a0 ∈ P1 \aaa and f : Γ = π1(P1 \aaa, a0)→ G is a surjection that does not factor through
the canonical map Γ → Γi, for any i. Two such triples (aaa, a0, f) and (ãaa, ã0, f̃) are called equivalent if aaa = ãaa
and there is a path γ from a0 to ã0 in P1 \ aaa such that the induced map γ∗ : π1(P1 \ aaa, a0)→ π1(P1 \ aaa, ã0)
satisfies f̃ ◦ γ∗ = f .

Here is the correspondence between the above pairs and triples. Let χ : X̂ → P1 be a Galois cover
with r branch points a1, . . . , ar, let aaa = {a1, . . . , ar} and a0 ∈ P1 \ aaa. Set Γ = π1(P1 \ aaa, a0) as above.
Depending on the choice of a base point x̂ ∈ χ−1(a0), we get a surjection ι : Γ → Aut(X̂/P1) as follows:
For each path γ representing an element of Γ, let ŷ be the endpoint of the unique lift of γ to X̂ \ χ−1(aaa)
with initial point x̂; then ι sends γ to the unique element ε of Aut(X̂/P1) with ε(x̂) = ŷ. Now h and f are
related by f = h ◦ ι, and Uχ = ker(f) (= ker(ι)). Varying x̂ over χ−1(a0) means composing ι with inner
automorphisms of Aut(X̂/P1). Therefore h and f determine each other up to inner automorphisms of G,
which is compatible with the equivalence of pairs (resp., triples).

We have a natural map Λ : Hin → Hab sending |χ, h| to the class of the cover ϕ : X̂/h−1(U) → P1

induced by χ : X̂ → P1. Then, in the notation of the preceding paragraph, f−1(U) is one of the subgroups
of Γ corresponding to ϕ. Since U does not contain a non-trivial normal subgroup of G, the intersection of
all conjugates of f−1(U) equals the kernel of f . It follows that ϕ has exactly the same r branch points as
does χ (namely, if ker(Γ→ Γi) would lie in f−1(U), then it would also be in ker(f), a contradiction). Thus
|ϕ| lies actually in Hab = Hab

r (G,U), and Λ is well defined. Let Ψ : Hab → Ur and Ψ′ : Hin → Ur be the
maps sending |ϕ| and |χ, h| to the set of branch points of ϕ and χ, respectively. Then Ψ′ = Λ ◦Ψ.

The sets Hab and Hin carry a natural topology such that Ψ,Ψ′ and Λ become (unramified) cover-
ings. For Hab this is classical, going back to Hurwitz (cf. [Fu, 1.3]): To specify a neighborhood N =
N (ppp;D1, . . . , Dr) of ppp = |ϕ| in Hab, choose pairwise disjoint discs D1, . . . , Dr around the branch points
a1, . . . , ar of ϕ. Then N consists of all |ϕ̃| such that ϕ̃ has exactly one branch point in each Di, and the two
covers of P1 \(D1∪· · ·∪Dr) induced by ϕ and ϕ̃ are equivalent. These N form a basis for the neighborhoods
of ppp in Hab.

The analogous topology on Hin is defined as follows: To specify a neighborhood N ′ of the point of Hin

represented by the triple (aaa, a0, f), choose discs Di around ai as above, with a0 �∈ D1 ∪ · · · ∪Dr. Then N ′

consists of all points represented by the triples (ãaa, a0, f̃) such that ãaa has exactly one point in each Di, and f̃
is the composition of the canonical isomorphisms π1(P1 \ ãaa, a0) ∼= π1(P1 \ (D1∪· · ·∪Dr), a0) ∼= π1(P1 \aaa, a0)
with f . Again these N ′ form a basis for the topology.

Through the coverings Ψ and Ψ′, the spaces Hab and Hin naturally inherit a structure of complex
manifold.

§1.3. Monodromy action on the fibers of Hab and Hin: To determine the equivalence class of the
covering Ψ : Hab → Ur one needs to identify the natural permutation representation of Hr = π1(Ur, bbb) on
the fiber Ψ−1(bbb). Recall that this action is defined as follows: The element of Hr represented by a closed
path ω sends a point ppp ∈ ψ−1(bbb) to the endpoint of the unique lift of ω with initial point ppp. Similarly for Ψ′.
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This depends on the choice of generators γ1, . . . , γr for the fundamental group Γ0 = π1(P1 \ bbb, b0),
where b0 is a base point in P1 \ bbb that we fix now once and for all; we choose b0 �= ∞ such that no line
through b0 contains more than one of b1, . . . , br. Choose a disc D centered at b0 such that all the bi’s are
contained in the interior of D. Partition D into sectors S1, . . . , Sr such that bi is in the interior of Si for
i = 1, . . . , r. The numbering of the bi’s should be chosen so that the sectors S1, . . . , Sr appear in this order
in clockwise direction around the disc. Let γi be the path with initial and end-point b0, travelling clockwise
along the boundary of Si. By abuse, we don’t distinguish between the paths γi and their homotopy classes
in Γ0. Then Γ0 is a free group on generators γ1, . . . , γr−1, and γ1 · · · γr = 1. (The latter relation can be seen
especially clearly in the way we chose the γi’s, since the product γ1 · · · γr is equal in Γ0 to a path going from
b0 on a straight line to the boundary of D, travelling once around this bounding circle, and then returning
to b0; this path is clearly trivial in Γ0).

Generating Paths: Paths made from sectors.

b1

bi
bi+1

br
b0

c

d

Let N be the normal subgroup of Γ0 generated by the conjugates of γr. Then Γ0/N is generated by
γ1N, . . . , γr−2N , and the images of these elements under the natural map Γ0/N → π1(P1 \{b1, . . . , br−1}, b0)
are free generators of the latter group. Hence this map is an isomorphism. With r replaced by any i = 1, . . . , r,
we conclude that the kernel of the natural map Γ0 → π1((P1 \bbb)∪{bi}, b0) equals the normal subgroup of Γ0

generated by the conjugates of γi. This implies the following: Assume ϕ′ : X ′ → P1 is a cover with branch
points among b1, . . . , br, and one of the subgroups of Γ0 corresponding to ϕ′ is of the form f−1(U), where
f : Γ0 → G is a surjection. Then ϕ′ has exactly r branch points if and only if f(γi) �= 1 for all i = 1, . . . , r
(cf. §1.2).

If now ϕ is a cover of P1 with |ϕ| ∈ ψ−1(bbb), then by definition there is a surjection f : Γ0 → G
with f−1(U) conjugate to Uϕ. The kernel of f equals the intersection of all subgroups in the class [Uϕ],
hence it depends only on |ϕ|. Thus f is determined by |ϕ| up to composition with elements of Aut(G,U).
Conversely, |ϕ| is determined by f since [Uϕ] = f−1([U ]). Also, each surjection f : Γ0 → G with f(γi) �= 1 for
all i = 1, . . . , r gives rise to some |ϕ| ∈ Ψ−1(bbb) (by the preceding paragraph). Furthermore, f is determined
by the r-tuple (σ1, . . . , σr) = (f(γ1), . . . , f(γr)) ∈ Er(G) (see §1.1 for the definition of Er(G)). Since Γ0 is
free on γ1, . . . , γr−1, each (σ1, . . . , σr) ∈ Er = Er(G) occurs in this way . Thus we get a bijection between the
points |ϕ| in the fiber Ψ−1(bbb) and the set Eab

r (= Er modulo Aut(G,U)) of Aut(G,U)-classes of the r-tuples
(σ1, . . . , σr). Via this bijection, we get an action of Hr = π1(Ur, bbb) on Eab

r .
Similarly, we get a bijection between the points |χ, h| in the fiber (Ψ′)−1(bbb) and the set E in

r (= Er
modulo Inn(G)): Given (χ, h) define f = h ◦ ι : Γ0 → G as in §1.2, and associate with it the class of
(σ1, . . . , σr) = (f(γ1), . . . , f(γr)) in E in

r . This yields the desired bijection, since f is determined by |χ, h| up
to composition with inner automorphisms of G (see §1.2). This bijection induces an action of Hr on E in

r .
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We are going to describe explicitly the action of the generators Q1, . . . , Qr−1 of Hr (from §1.1) on
the sets Eab

r and E in
r . First we need an explicit description of Qi for i = 1, . . . , r − 1 (c.f. [BF], [Fu, 1.4]):

Choose a point c on the line b0bi strictly between bi and the boundary of D, and closer to this boundary
than bi+1; further choose a point d on the line bi+1b0 strictly between bi+1 and b0, and closer to b0 than bi.
We can represent Qi by a path aaa(t) = {a1(t), . . . , ar(t)} in Ur, 0 ≤ t ≤ 1, where aj(t) is the constant path
bj for j �= i, i + 1; and ai(t) is a path going from bi on a straight line to c, then travelling on a circular arc
around b0 in clockwise direction until it meets the line b0bi+1, from where it continues on this line to bi+1;
and ai+1(t) is a path going from bi+1 on a straight line to d, then travelling on a circular arc around b0 in
counter-clockwise direction until it meets the line b0bi, from where it continues on this line to bi.

Having fixed all the above data, the action of Qi on Eab
r and on E in

r is now given by the following rule:
Qi sends the class of (σ1, . . . , σr) ∈ Er to the class of

(2) (σ1, . . . , σi−1, σi+1, σ
−1
i+1σiσi+1, σi+2, . . . , σr).

For the case of Hab, this observation goes back to Hurwitz [Hur] (see also [Fr,1] and [Fu, 1.4]). We give a
proof in §1.4.

By the theory of covering spaces (and the above identifications), the connected components of Hab

and Hin now correspond to the orbits of Hr on Eab
r and E in

r , respectively. Note that for each r-tuple C of
conjugacy classes of G, the subsets Ni(C)ab and Ni(C)in of Eab

r and E in
r , respectively (see §1.1), are invariant

under the action of Hr; hence these subsets are unions of Hr-orbits. Let H(C)ab (resp., H(C)in) denote the
union of the corresponding connected components of Hab (resp. Hin). We call these subspaces H(C)ab and
H(C)in Hurwitz spaces. Each component of Hab (resp., Hin) belongs to such a Hurwitz space.

It is a basic problem to decide when the Hurwitz spaces themselves are connected. That is, when Hr

acts transitively on Ni(C)ab or Ni(C)in. For the case of simply branched covers (i.e., C = (C, . . . ,C) where
C is the class of transpositions in G = Sn (n > 2), and U = Sn−1) this was done by Clebsch [Cl]. In the
Appendix we present a far more general result in this direction, due to Conway and Parker [CP].

§1.4. The action of Qi on Eab
r and E in

r : Here we indicate how the action of Qi gives formula (2). We
represent Qi by the path aaa(t) from §1.3. Choose another disc D′ around b0 that contains the point d in its
interior, and bi, bi+1 are not in D′. (This is possible by the choice of d). Let Ri be the interior of the sector
of D′ cut out by Si ∪ Si+1, and let Ti be the interior of (Si ∪ Si+1) \D′. Let S0

j be the interior of Sj , and
P = P1 \ b. We may assume that the paths ai(t) and ai+1(t) reach the boundary between Si and Si+1 at
the same time t = 1/2, and that ai+1(t) ∈ Ri exactly for 1/4 < t < 3/4. Note that the path ai(t) remains
always in Ti. The inclusions between the respective spaces give canonical isomorphisms:

π1(P1 \ aaa(t), b0) ∼= π1(P \ (S0
i ∪ S0

i+1), b0)
def= Γ(0) for t < 1/2;(3)

π1(P1 \ aaa(t), b0) ∼= π1(P \ (Ri ∪ Ti), b0)
def= Γ(1) for 1/4 < t < 3/4; and(4)

π1(P1 \ aaa(t), b0) ∼= π1(P \ (S0
i ∪ S0

i+1), b0) = Γ(0) for t > 1/2.(5)

From (3) and (4) we get an isomorphism α1 : Γ(0) → Γ(1) for each choice of t with 1/4 < t < 1/2, and
this isomorphism is the same for all these t. Similarly, from (4) and (5) we get an isomorphism α2 : Γ(1) →
Γ(0), independent of the choice of t with 1/2 < t < 3/4. With paths and their respective homotopy classes
identified, one checks easily that the automorphism α = α2 ◦ α1 of Γ(0) is given by

(6) α(γi+1) = γi, α(γi) = γiγi+1γ
−1
i , α(γj) = γj for j �= i, i + 1

The groups Γ(0) and Γ0 are canonically isomorphic, under an isomorphism which identifies the classes of
γ1, . . . , γr in Γ(0) and Γ0, respectively. We let α also denote the automorphism of Γ0 given by (6).
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Now let ppp(t) be a lift of the path aaa(t) to Hab. Then for each t, the point ppp(t) is an equivalence class of
covers of P1 with aaa(t) as its set of branch points. Thus ppp(t) corresponds to a conjugacy class ∆t of subgroups
of π1(P1 \ aaa(t), b0); the image of ∆t under the isomorphisms (3), (4) and (5) is independent of t (under the
respective conditions on t), by the definition of the topology on Hab. Thus the conjugacy classes ∆0 and ∆1

of subgroups of Γ0 corresponding to the initial point ppp(0) and the endpoint ppp(1) of the path ppp(t), respectively,
are related by ∆1 = α(∆0).

Finally, if f0 : Γ0 → G is a surjection with f−1
0 (U) ∈ ∆0, then f1

def= f0 ◦ α−1 is a surjection Γ0 → G
with

f−1
1 (U) = α ◦ f−1

0 (U) ∈ α(∆0) = ∆1.

Thus (σ1, . . . , σr) = (f0(γ1), . . . , f0(γr)) is an r-tuple representing the element of Eab
r corresponding to ppp(0),

and (σ1, . . . , σi+1, σ
−1
i+1σiσi+1, . . . , σr) = (f1(γ1), . . . , f1(γr)) represents the element of Eab

r corresponding to
ppp(1). This proves that the action of Qi on Eab

r is given by formula (2).
Now let ppp′(t) be a lift of the path aaa(t) to Hin. For each t, the point ppp′(t) is represented by a triple

(aaa(t), b0, ft) where ft : π1(P1 \aaa(t), b0)→ G is a surjection. The surjections Γ(0) → G (resp., Γ(1) → G) that
are the composition of the isomorphisms (3) and (5) (resp., (4) ) with ft are independent of t (under the
respective conditions on t), by the definition of the topology on Hin. It follows that the map f0 corresponding
to ppp′(0) and the map f1 corresponding to ppp′(1) are related by f1 = f0 ◦ α−1. From this we conclude—as in
the preceding paragraph—that Qi acts on E in

r via formula (2).

§1.5. The field of definition of a cover : For each cover ϕ : X → P1 (of connected compact Riemann
surfaces) the space X has a unique structure as algebraic variety defined over C (compatible with its analytic
structure) such that ϕ becomes an algebraic morphism. This is Riemann’s existence theorem. We say that
ϕ can be defined over some subfield k of C if X can be given a structure of variety defined over k such that
ϕ becomes a morphism defined over k.

Let aaa = {a1, . . . , ar} ∈ Ur be the set of branch points of ϕ, and k0 = Q(aaa); thus k0 is the field
generated by the coefficients of the polynomial

∏
(x− ai), where the product is over those i = 1, . . . , r with

ai �= ∞. Now let k be any subfield of C over which ϕ can be defined. Then the branch points a1, . . . , ar are
algebraic over k, and the absolute Galois group Gk permutes a1, . . . , ar. Therefore k0 is contained in k.

Conversely, ϕ can be defined over the algebraic closure F of k0 in C, in a unique way [Fr,1; Lemma
1.2]. Thus for each β ∈ Gk0 , we can form the cover ϕβ : Xβ → P1 obtained from ϕ : X → P1 through base
change with β. Let k1 be the fixed field in F of the group of those β for which ϕβ is equivalent to ϕ. We
show that k1 is contained in each subfield k of C over which ϕ can be defined: By the above k0 ⊂ k. If c ∈ C
is algebraic over k0 and not in k, then there exists β′ ∈ Gk with β′(c) �= c. Since ϕ can be defined over k we
have ϕβ′

equivalent to ϕ. Therefore the restriction of β′ to an element of Gk0 must fix k1 elementwise, and
thus c �∈ k1. This proves k1 ⊂ k.

Conversely ϕ can actually be defined over k1 if we have Aut(X/P1) = 1 [Fr,1; Theorem 5.1]. For
completeness we give the argument here. The condition that Aut(X/P1) is trivial implies that for each
β ∈ Gk1 the isomorphism δβ : Xβ → X with ϕ ◦ δβ = ϕβ is unique. This forces the maps δβ to satisfy Weil’s
cocycle condition. By Weil’s criterion [W], X can be defined over k1 such that δβ : X = Xβ → X is the
identity for each β ∈ Gk1 . Then also ϕ : X → P1 is defined over k1.

Also if ϕ is a Galois cover then it can be defined over k1 (but perhaps not together with its automor-
phisms); this was noted in [CHa]. (The proof is similar as above: Fix a point z ∈ X lying over a k1-point
of P1 that is not a branch point, and normalize the δβ such that δβ(zβ) = z). Thus if either ϕ is a Galois
cover or Aut(X/P1) = 1, then ϕ has a unique minimal field of definition k1 ⊂ C.
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2. THE MAIN THEOREM AND SOME CONSEQUENCES

§2.1. The Main Theorem: Define a point ppp = |ϕ| of Hab to be a Q̄-point if the branch points of ϕ are
algebraic over Q. Then ϕ can be defined over Q̄ by §1.5. The notion of a Q̄-point of Hin is defined similarly.
There is a natural action of the absolute Galois group GQ on the Q̄-points of Hab: The element β ∈ GQ
sends |ϕ| to |ϕβ |, where ϕβ : Xβ → P1 is the cover obtained from ϕ : X → P1 through base change with
β. Note that if |ϕ| ∈ Hab = Hab

r (G,U) then also |ϕβ | ∈ Hab
r (G,U), because the pair (G,U) can be recovered

from ϕ as the pair (Aut(X̂/P1),Aut(X̂/X)), where X̂ → X
ϕ−→P1 is a Galois closure of ϕ (i.e., X̂ → P1 is

a minimal Galois cover factoring through ϕ).
Similarly, we get an action of GQ on the Q̄-points of Hin: The element β ∈ GQ sends the point

|χ, h| to |χβ , h ◦ β−1|, where h ◦ β−1 : Aut(X̂β/P1) → G is the isomorphism sending Aβ to h(A) for every
A ∈ Aut(X̂/P1). So it is natural to expect that Hab and Hin have a structure as varieties defined over Q
such that the resulting action of GQ on the Q̄-points is as above. Such a Q- structure on Hab and Hin is
then necessarily unique. Its existence is our main theorem, which will be proved in §3–5:

Theorem 1: Let G be a finite group, and U ≤ G a proper subgroup that does not contain a non-trivial
normal subgroup of G. Let r ≥ 3 be an integer such that G can be generated by r−1 elements. Then the
spaces Hab = Hab

r (G,U) and Hin = Hin
r (G) have a unique structure as (reducible) algebraic varieties defined

over Q (compatible with their analytic structure) so that the maps

Hin Λ−→Hab Ψ−→Ur

are algebraic morphisms defined over Q, and the following hold:

(a) If ppp = |ϕ| is a point of Hab such that the branch points of ϕ are algebraic over some subfield k of C,
then ppp is algebraic over k, and each automorphism β of k̄ sends ppp = |ϕ| to |ϕβ |.

(b) If ppp′ = |χ, h| is a point of Hin such that the branch points of χ are algebraic over some subfield k of
C, then ppp′ is algebraic over k, and each automorphism β of k̄ sends ppp′ = |χ, h| to |χβ , h ◦ β−1| (where
h ◦ β−1 is to be understood as in the preceding paragraph).
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Furthermore, the absolutely irreducible components of Hab and Hin (defined over Q̄) coincide with the
connected components (in the topology from §1.2). Let C be an r-tuple of conjugacy classes of G such that
Ni(C)in is non-empty. Then C is rational (as defined in §1.1) if and only if the subspace H(C)in of Hin is
defined over Q. In addition, H(C)in is absolutely irreducible if and only if the Hurwitz monodromy group
Hr acts transitively on Ni(C)in.

We remark that the subspace H(C)ab of Hab may be defined over Q even for non-rational C. But if
C is rational then H(C)ab is certainly defined over Q. Also, H(C)ab is absolutely irreducible if and only if
Hr is transitive on Ni(C)ab. Here is the significance of Theorem 1 for the Inverse Galois Problem:

Corollary 1: Keep the hypotheses of Theorem 1, and let K be any field of characteristic 0. Assume
additionally that the group G has trivial center. Then G is regular over K with r branch points if and only
if Hin = Hin

r (G) has a K-rational point. More precisely:

(a) For each point ppp = |ϕ| of Hab the field Q(ppp) is the minimal field of definition of the cover ϕ, if either
U = 1 or U is self-normalizing in G (cf. §1.5).

(b) For each point ppp′ = |χ, h| of Hin the field Q(ppp′) is the minimal subfield k′ of C such that the cover
χ : X̂ → P1 together with all its automorphisms can be defined over k′. The resulting function field
extension L/k′(x), where L = k′(X̂), is Galois with Galois group isomorphic to G, and L is regular
over k′.

Proof of Corollary 1: (a) Set k0 = Q(Ψ(ppp)) as in §1.5. Then ppp is algebraic over k0, and clearly k = Q(ppp)
is the fixed field of the group of all β ∈ Gk0 with pppβ = ppp. By Theorem 1, k is the fixed field of the group of
all β ∈ Gk0 with ϕβ equivalent to ϕ. From §1.5, this proves (a) (in view of (1)).

(b) Set k0 = Q(Ψ′(ppp′))). If k′ is a field such that χ together with all its automorphisms is defined over
k′, then (χβ , h ◦ β−1) = (χ, h) for all β ∈ Gk′ , and k0 ⊂ k′. By Theorem 1, Gk′ fixes ppp′ and so Q(ppp′) ⊂ k′.

It remains to show that χ together with all its automorphisms can actually be defined over K ′ = Q(ppp′).
As in §1.5, the cover χ can be defined over k̄0 = K̄ ′. For all β ∈ GK′ , we have (χβ , h ◦ β−1) equivalent to
(χ, h) by Theorem 1. Thus there exist isomorphisms δβ : X̂β → X̂ over P1 with h ◦ β−1(δ−1

β Aδβ) = h(A)
for each A ∈ Aut(X̂/P1). The latter implies that Aβ = δ−1

β Aδβ . In particular, since G has trivial center,
δβ is uniquely determined by β. This uniqueness again forces the δβ to satisfy Weil’s cocycle condition, and
by Weil’s criterion it follows that the cover χ : X̂ → P1 can be defined over K ′ so that δβ : X̂ = X̂β → X̂

becomes the identity. Then Aβ = δ−1
β Aδβ = A for all A ∈ Aut(X̂/P1). That is, all automorphisms of χ are

defined over K ′. This proves the first claim in (b). The second follows immediately.
For the first assertion in Corollary 1, note that if Hin has a point ppp′ over the field K then we may

assume that ppp′ is a complex point (because k′ = Q(ppp′) is finitely generated over Q). Then (b) yields a
regular Galois extension L/k′(x) with group G and with r branch points. Tensoring with K shows that G is
regular over K with r branch points. Conversely, suppose the latter holds. Then there is a finitely generated
subfield K ′ of K such that G is regular over K ′ with r branch points; we may assume that K ′ is a subfield of
C. Hence there is a Galois cover χ : X̂ → P1 with r branch points and an isomorphism h : Aut(X̂/P1)→ G
such that χ together with all its automorphisms is defined over K ′. By (b) it follows that Q(ppp′) ⊂ K ′, where
ppp′ = |χ, h| ∈ Hin. Thus ppp′ is a point of Hin that is rational over K.

Corollary 1 shows that the Q-structure on Hin (and on its Hurwitz subspaces) is crucial for the Inverse
Galois Problem. See [Fr,3] for a discussion in the case r ≤ 4, including a relation between Hurwitz spaces
and modular curves for r = 4. In the following example we determine the Q-structure of Hurwitz spaces
H(C)in for which C satisfies the rigidity condition of Thompson [Th].
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Example: Hurwitz spaces and rigidity. Assume G has trivial center. The r-tuple C = (C1, . . . , Cr) of
conjugacy classes of G is called rigid if the tuples (σ1, . . . , σr) ∈ Er(G) with σi ∈ Ci form a single (non-
empty) orbit under Inn(G). Assume this holds. For simplicity we consider only the case that the Ci’s are
all distinct. (The transition to the general case is immediate). Then the elements of Ni(C)in correspond
to the permutations of C1, ..., Cr, and Qi acts (via formula (2) ) as the transposition (i, i + 1) on these
permutations (for i = 1, . . . , r − 1). Thus the Hurwitz group Hr acts through its natural Sr-quotient
on Ni(C)in, more precisely, through the regular permutation representation of Sr. This determines the
permutation representation of Hr that defines the equivalence class of the cover H(C)in → Ur (cf. §1.3). It
follows that this cover is equivalent over Q̄ to the cover

U (r) def= {(x1, . . . , xr) ∈ (P1)r : xi �= xj for i �= j} → Ur
where the (ordered) tuple (x1, . . . , xr) is mapped to the set {x1, . . . , xr} ∈ Ur.

Fix a Q̄-isomorphism θ : H(C)in → U (r) over Ur. Now assume additionally that the r-tuple C is
rational. Then H(C)in is an absolutely irreducible variety defined over Q (by Theorem 1). For β ∈ GQ,
consider the map θβ : H(C)in → U (r) obtained by base change with β (where U (r) is viewed as Q-variety in
the natural way). Set c(β) = θ−1θβ , an element of Aut(H(C)in/Ur).

Consider a point ppp ∈ H(C)in that lies over the base point bbb = {b1, . . . , br} ∈ Ur (from §1.3). We assume
here that all bi ∈ Q. Then β fixes all points of U (r) that lie over bbb, hence c(β)(ppp) = θ−1(θ(pppβ

−1
))β = pppβ

−1
.

The point ppp corresponds to the Inn(G)-class of some tuple (σ1, . . . , σr) ∈ Ni(C) under the identification from
§1.3. Further, pppβ

−1
corresponds to the class of a tuple (ρ1, . . . , ρr) with ρi conjugate σmi for all i, where m

is given by the condition that β acts on the |G|-th roots of unity as ζ �→ ζm (see §3.2 below).

Part 1: The case that C is rationally rigid. This means that the Ci are rational conjugacy classes (i.e.,
Cm
i = Ci for all integers m prime to |G|). By the rigidity assumption, it follows that (σ1, . . . , σr) and

(ρ1, . . . , ρr) are conjugate under Inn(G). That is, pppβ
−1

= ppp. Then also c(β)(ppp) = ppp, hence c(β) is the
identity (being an automorphism of an unramified cover). Thus θ is defined over Q. Therefore the covers
H(C)in → Ur and U (r) → Ur are equivalent over Q.

Let |χ, h| be any point of H(C)in. It follows from the above and Corollary 1 that the cover χ together
with all its automorphisms can be defined over some field k if and only if the branch points x1, . . . , xr of χ
are rational over k. As usual, then we have a Galois extension of k(x) with group isomorphic to G, regular
over k and with branch points x1, . . . , xr. This is also the conclusion of Thompson’s rigidity criterion [Th].

Part 2: An example with C rigid, but not rationally rigid. Let G = PSL2(p) for a prime p > 3 for which
3 is not a quadratic residue modulo p. Let C1 be the conjugacy class of elements of order 3, and let C2 and
C3 be the two conjugacy classes of G of elements of order p. Let r = 3 and C = (C1,C2,C3). This triple is
rational and rigid [Ma, 1; p. 180], but the single classes C2 and C3 are not rational: An element σ ∈ G of
order p is conjugate to σm if and only if m is a quadratic residue mod p. It follows that c(β) = 1 if and only
if β acts on the p-th roots of unity as ζ → ζm with m a quadratic residue mod p. These β form a subgroup
Γ of GQ of index 2. (Γ = GK with K = Q(

√
(−1)(p−1)/2p). Thus c takes only two values, the non-trivial

value being an involution. Since all involutions in Aut(U (3)/U3) ∼= S3 are conjugate, it follows that the space
H(C)in is Q-isomorphic to that Q-form of U (3) given by the following action of GQ on the Q̄-points: Each
β ∈ Γ sends (x1, x2, x3) to (xβ1 , x

β
2 , x

β
3 ), and each β ∈ GQ\Γ sends (x1, x2, x3) to (xβ1 , x

β
3 , x

β
2 ).

§2.2. Irreducibility of Hurwitz spaces, and full high branching:
Corollary 1 shows that to go further with the inverse Galois problem we need to find Q-points on

Hin. These Q-points lie on absolutely irreducible components of Hin that are defined over Q. The first step,
therefore, is to find such components of Hin. Theorem 1 gives a criterion to decide when a Hurwitz subspace
H(C)in of Hin is such a component. To apply this criterion, the following group-theoretic condition is crucial:

(*) The Schur multiplier of G is generated by commutators (cf. §2.4).
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An (unpublished) theorem of Conway and Parker [CP] shows that the Hurwitz group Hr acts transitively
on Ni(C)in if (*) holds and the r-tuple C contains each non-trivial conjugacy class of G a suitably large
number of times. For the convenience of the reader, we supply a proof of this in the Appendix, adapted
from [CP]. It follows from Theorem 1 that the Hurwitz space H = H(C)in is absolutely irreducible under
the above conditions. If, in addition, C is rational and Ni(C)in is non-empty (this holds, for example, if
each non-trivial conjugacy class of G occurs the same — suitably large — number of times in C), then the
corresponding Hurwitz space is the desired absolutely irreducible Q-component of Hin. Summarizing:

Proposition 1: Assume that G satisfies (*). Then for infinitely many r, there exists an r-tuple C of
conjugacy classes of G with the following property: The Hurwitz space H(C)in is an absolutely irreducible
component of Hin

r (G) that is defined over Q. In particular, the latter is true if C is rational, Ni(C)in is
non-empty and C contains each non-trivial conjugacy class of G a suitably large number of times.

In Lemma 2 below we show that each finite group H is the quotient of a finite group G that satisfies
(*) and has trivial center. Thus, in order to demonstrate that H is regular over Q, by Corollary 1 it suffices
to show the following: One of the absolutely irreducible Hurwitz spaces H defined over Q that are associated
to G has a Q- rational point. At this time we don’t know how to get a rational point on H. But, as far as
we know, it is even possible that for suitably large r, H is a unirational variety. In this case, it has a dense
set of rational points.

It seems natural to conjecture that if a group G can be realized as G(L/Q(x)) with L regular over
Q, then in fact there are such realizations with an arbitrarily large number of branch points (i.e., Hin

r (G)
has Q-points for infinitely many r). Let χ : X → P1 be a cover with r branch points corresponding to the
function field extension L/Q(x), let h : G(L/Q(x)) → G be an isomorphism, and let ppp′ ∈ Hin

r (G) be the
point corresponding to the pair (χ, h). To each branch point of the cover χ there is associated a conjugacy
class of G (via the isomorphism h), represented by the corresponding branch cycle. The conjugacy classes of
G arising that way are exactly those occurring in the r-tuple C with ppp′ ∈ H(C)in. We say that G is regular
over Q with full high branching if for each integer t the group G can be realized as G(L/Q(x)) (with L
regular over Q) in such a way that each non-trivial conjugacy class of G is associated to at least t branch
points.

For an r-tuple C of conjugacy classes of G, let τ(C) ≥ 0 be the minimal number of times that any
non-trivial conjugacy class of G occurs in C. We can arrange all the rational tuples C of non-trivial conjugacy
classes of G in a doubly indexed collection {Ct i}t∈N,i∈It with τ(Ct i) = t. From Corollary 1 and Proposition
1 we get the following result:

Proposition 2: Suppose G satisfies (*) and has trivial center. Then for suitably large t, the Hurwitz spaces
H(Ct i)in are absolutely irreducible varieties defined over Q. And G is regular over Q with full high branching
(as defined above) if and only if for infinitely many values of t there exist such Hurwitz spaces H(Ct i)in that
have Q-points.

§2.3. The application to PAC-fields: A field P is called P(seudo)A(lgebraically)C(losed) if every abso-
lutely irreducible variety defined over P has a P -rational point. Consider a PAC-field P of characteristic
0. It follows from Corollary 1 and Proposition 1 that every finite group G satisfying (*) and having trivial
center is regular over P . But by Lemma 2 below the quotients of these groups G yield all finite groups. Thus
we get the following result.

Theorem 2: If P is a PAC-field of characteristic 0, then every finite group is regular over P . In particular,
if P is also Hilbertian, then every finite group is a Galois group over P .

PAC-fields first appeared in [Ax] and have been studied since then by various authors (cf. [FrJ]).
PAC fields have projective absolute Galois group—a result of Ax [FrJ; Theorem 10.17]. Conversely, if H is
a projective profinite group, then there exists a PAC field P such that H is the absolute Galois group of
P—an observation of Lubotzky and van den Dries ([LD], [FrJ; Corollary 20.16]).

12



There are many examples of Hilbertian PAC fields inside of Q̄. For example, F. Pop [P] has recently
announced that one obtains a PAC-field by adjoining

√
−1 to the field of all totally real algebraic numbers.

This PAC-field is Hilbertian by Weissauer’s theorem [Ws] (which says that any proper finite extension of a
Galois extension of a Hilbertian field is Hilbertian). Thus Theorem 2 applies to it. Furthermore, there are
PAC-fields P with the property that they are Galois over Q, and G(P/Q) ∼=

∏∞
n=2 Sn [FrJ; p. 224, Theorem

16.46]. Again these are also Hilbertian by Weissauer’s theorem.
On the other hand, the abelian closure of any number field has projective absolute Galois group and it

is Hilbertian [FrJ; Theorem 15.6]. But Frey noted that such a field isn’t PAC ([Fy] or [FrJ; Corollary 10.15]).
Shafarevich conjectured that the abelian closure of the rationals has an ω-free absolute Galois group. Our
methods yield an analogue of this (to appear in a sequel to the present paper): Every countable Hilbertian
PAC-field of characteristic 0 has an ω-free absolute Galois group (cf. the Introduction). Now let Fp denote
the finite field with p elements.

Corollary 2: Let G be any finite group. Then G is regular over Fp for all but finitely many primes p.

Corollary 2 can be derived from Theorem 2 as follows: Assume the claim is wrong for infinitely many
primes p. Then there exists a non-principal ultraproduct P of the fields Fp for these primes p. The field
P is a PAC-field by a result of Ax [FrJ; Cor. 10.6] (this was the original motivation for the introduction
of PAC-fields). Also, char(P ) = 0. Thus G is regular over P by Theorem 2. It is easy to give first order
quantified statements equivalent to the statement that G is regular over a given field; it is an elementary
statement. Thus it follows that G is regular over some (in fact, infinitely many) of the fields Fp occurring
in the above ultraproduct—a contradiction. We omit the details, and rather give the following more direct
proof. The underlying idea is the same as for the proof that the above ultraproduct is PAC; it uses the
existence of Fp-rational points on absolutely irreducible varieties defined over Fp, for sufficiently large p (the
Lang-Weil observation). First we need a basic lemma:

Lemma 0: Suppose R is an integral domain, and k is its field of fractions. Let L/k(x) be a finite Galois
extension, regular over k. Then there is some u �= 0 in R with the following property: For any field k′ such
that R admits a homomorphism λ : R → k′ with λ(u) �= 0, there is a Galois extension L′/k′(x′) with x′

transcendental over k′ and L′ regular over k′ and G(L′/k′(x′)) ∼= G(L/k(x)).

Proof: Choose y1 ∈ L with L = k(x, y1). Then there is a polynomial f ∈ R[x, y] of degree n = [L : k(x)] in
y, such that f(x, y1) = 0. By multiplying y1 by the yn-coefficient of f we may assume that f is monic in y.
Then f is absolutely irreducible (as a polynomial in two variables over k) since L is regular over k.

By the Bertini-Noether theorem (e.g., [FrJ, Prop. 8.8]) there is some u0 �= 0 in R with this property:
If λ is a homomorphism from R to a field k′ with λ(u0) �= 0, then the image f ′ ∈ k′[x, y] of f under λ is
again absolutely irreducible. From now on we assume that this condition λ(u0) �= 0 holds.

The map λ extends canonically to a map R[x]→ k′[x′], sending x to some element x′ that is transcen-
dental over k′. This map can further be extended to a place of L: a homomorphism λ̄ from some valuation
ring P of L (containing R[x]) into the algebraic closure of k′(x′). Since P is integrally closed and f(x, y)
is monic in y, the elements y1, . . . , yn ∈ L with f(x, yi) = 0 lie in P . Set L′ = k′(x′, y′1, . . . , y

′
n), where

y′i = λ̄(yi).
Since f ′(x′, y′i) = 0 and f ′ is absolutely irreducible, the element y′i has degree n over k′(x′). Hence for

any b ∈ R[x, yi] we have: λ̄(b) = 0 if and only if λ annihilates all coefficients in the unique expression of b
as an R-linear combination of the xνyµi with ν ≥ 0, 0 ≤ µ ≤ n− 1. We will refer to this fact as the criterion
(C).

Since L is the field of fractions of S1
def= R[x, y1], there is c �= 0 in S1 such that cyi ∈ S1 for all

i = 1, . . . , n. Then b = c
∏

i �=j(cyi − cyj) is a non-zero element of S1, and byi ∈ S1 for all i. By criterion
(C), we can multiply u0 by certain elements of R to obtain some u �= 0 in R with the following property: If
λ(u) �= 0 then λ̄(σ(b)) �= 0 for all σ ∈ G(L/k(x)).

We will show that u is as desired. So assume λ(u) �= 0. Then y′i = λ̄(b)−1λ̄(byi) ∈ k′(x′, y′1) for all
i. Therefore L′ = k′(x′, y′1, . . . , y

′
n) = k′(x′, y′1). Thus [L′ : k′(x′)] = n, and L′ is regular over k′ (since f ′ is

absolutely irreducible). Furthermore, since λ̄(b) �= 0, the y′1, . . . , y
′
n are pairwise distinct.
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It remains to show that L′ is Galois over k′(x′) with Galois group isomorphic to G
def= G(L/k(x)). The

ring S = R[x, y1, . . . , yn] is clearly invariant under G. We claim that also S∩ ker(λ̄) is G-invariant: Namely,
for each s ∈ S the element s1 = bms lies in S1 for some positive integer m. If λ̄(s) = 0 then λ̄(s1) = 0.
By criterion (C) it follows that λ̄(σ(s1)) = 0 for each σ ∈ G. Thus λ̄(σ(b))mλ̄(σ(s)) = 0, which implies
λ̄(σ(s)) = 0.

It follows that G acts naturally on λ̄(S). This yields a homomorphism G → Aut(L′/k′(x′)), which
is injective since G acts transitively on y′1, . . . , y

′
n (and |G| = n). Thus |Aut(L′/k′(x′))| ≥ n = [L′ : k′(x′)],

which shows that L′ is Galois over k′(x′) with group isomorphic to G.

Proof of Corollary 2: By Lemma 2 we may assume that G satisfies (*) and has trivial center.
Part 1: Here we show that there exists a finite extension k′/Q(t), with t transcendental over Q and k′

regular over Q, and a Galois extension L′/k′(x), regular over k′ and with Galois group isomorphic to G.
By Proposition 1 there exists r ≥ 3 such that the spaceHin

r (G) has an absolutely irreducible component
H defined over Q. Let ppp be a generic point of H over Q, and consider k

def= Q(ppp) = Q(H). Corollary 1 gives
a Galois extension L/k(x), regular over k, with Galois group isomorphic to G. Let R ⊂ k be the coordinate
ring of an affine open subset H0 of H defined over Q. Let u be a non-zero element of R with the properties
from Lemma 0, and let H1 be the complement of the vanishing set of u in H0. By [FrJ, Cor. 9.32] there
exists an absolutely irreducible curve C on H1 defined over Q. The restriction homomorphism λ : R → k′,
where k′ = Q(C), satisfies λ(u) �= 0. Therefore, by Lemma 0 there exists a Galois extension L′/k′(x) with
the desired properties. (Indeed, k′ is regular over Q because C is absolutely irreducible).
Part 2: Reduction mod p. As in the proof of Lemma 0 we have k′ = Q(t, z) with f(t, z) = 0, where
f ∈ Z[T,Z] is an absolutely irreducible polynomial, monic and of degree m = [k′ : Q(t)] in Z. By Bertini-
Noether, f remains absolutely irreducible modulo p for all but finitely many primes p. Thus it follows from
the Lang-Weil estimate for the number of rational points on a curve over a finite field (e.g., [FrJ, Th. 3.14])
that the number of pairs (a, b) ∈ (Fp)2 with f(a, b) = 0 goes to infinity as p→∞.

Now let u be an element of R = Z[t, z] ⊂ k′ with the properties from Lemma 0 (with respect to the
extension L′/k′(x) constructed in Part 1). We have u = g(t, z) for a unique polynomial g ∈ Z[T,Z] of degree
< m in Z. By Bezout’s theorem, the number of common solutions of f(a, b) = 0 and g(a, b) = 0 over Fp is
bounded independent of p (since f is absolutely irreducible and g �≡ 0 (mod p) for all but finitely many p).
Hence for all but finitely many primes p there exists (a0, b0) ∈ (Fp)2 with f(a0, b0) = 0 and g(a0, b0) �= 0.
Such a point (a0, b0) yields a homomorphism λ : R→ Fp (sending t to a0 and z to b0) with λ(u) �= 0. Now
the claim follows from Lemma 0.

§2.4. Two group-theoretic Lemmas: The goal of this section is to prove Lemma 2 below: Every finite
group is the quotient of a finite group G with trivial center satisfying (*). These conditions were needed
above to guarantee the existence of absolutely irreducible Q-components of the parameter space Hin.

For any finite group G let G′ denote its commutator subgroup and Z(G) its center. Recall that
a representation group R of G is a group of maximal order with the property that R has a subgroup
M ⊆ R′ ∩ Z(R) satisfying R/M ∼= G. Such an R always exists (but it is not necessarily unique). The
group M is isomorphic to the Schur multiplier M(G) = H2(G, C∗) of G [Hu; p. 631]. We say that M(G) is
generated by commutators (condition (*)) if M ∩ {g−1h−1gh | g, h ∈ R} generates M . This is independent
of the choice of R. Our first lemma shows that representation groups satisfy this condition.

Lemma 1: If H is a finite group and G is a representation group of H, then the Schur multiplier M(G) is
generated by commutators.

Proof: We have a surjection G→ H with kernel MH
∼= M(H) satisfying

MH ≤ G′ ∩ Z(G). Let R be a representation group of G. Then we have a surjection R → G with kernel
M ∼= M(G) satisfying M ≤ R′∩Z(R). Let C be the subgroup of M generated by commutators (from R), and
consider R̄

def= R/C. Then M̄
def= M/C contains no non-trivial commutators (from R̄), and M̄ ≤ R̄′ ∩ Z(R̄).

The map R→ G induces a map ϕ : R̄→ G with kernel M̄ . From MH ≤ G′ we get L
def= ϕ−1(MH) ≤

R̄′M̄ = R̄′. Clearly, R̄/L ∼= H. Furthermore, [R̄, L] ⊂ M̄ . Since M̄ contains no non-trivial commutators,
[R̄, L] = 1. Therefore, R̄ is a central extension of H with kernel L ≤ R̄′. It follows that |L| ≤ |M(H)|. That
is, M̄ = 1 and M = C. This proves the lemma.
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Lemma 2: Every finite group H is the quotient of a finite group G with trivial center such that the Schur
multiplier of G is generated by commutators (Condition (*)).

Proof: By Lemma 1 we may assume that H already has property (*) (Replacing H by a representation
group of H). Let m = |H|, let S be a non-abelian finite simple group with trivial Schur multiplier (e.g.,
S = SL2(8), see [Hu, Satz 25.7]) and set A = Sm, the direct product of m copies of S. The (regular)
wreath-product G of S and H is defined to be the semi-direct product G = A ×sH where H acts on A by
permuting the factors of A sharply transitively (i.e., in its regular permutation representation). Clearly G
has trivial center.

Any central extension of S splits because M(S) = 1. By a simple induction argument, it follows
that also every central extension of A = Sm splits. This implies that every representation group of G has a
normal subgroup isomorphic to A such that the quotient by this subgroup is a representation group of H.
Therefore, M(G) ∼= M(H) is generated by commutators.

3. PROOF OF THEOREM 1 UNDER A CONTINUITY ASSUMPTION

Assume the hypotheses of Theorem 1. The unramified coverings Ψ : Hab → Ur and Ψ′ : Hin → Ur equip
the spaces Hab and Hin with a unique structure as (non-singular, usually reducible) algebraic varieties defined
over C (compatible with their analytic structure) such that the maps Ψ and Ψ′ are algebraic morphisms
defined over C. This follows from the generalized Riemann existence theorem (see [SGA1, exp. XII, Th. 5.1]).
By [Se, Thm. 6.7], the field C can be replaced by Q̄ in the above statement.

From now on we view the spaces Hab and Hin as equipped with this natural structure of a variety
defined over Q̄. The resulting notion of Q̄-points of Hab and Hin is clearly compatible with the definition in
§2.1. Furthermore, Λ : Hin → Hab becomes a morphism defined over Q̄. For each automorphism β of C let
εβ : (Hab)β → Hab be the map sending |ϕ|β to |ϕβ | (where |ϕ| ∈ Hab). Then εβ is well-defined (cf. §2.1) and
bijective, and we have Ψ ◦ εβ = Ψβ .

Similarly, let ε′β : (Hin)β → Hin be the map sending |χ, h|β to |χβ , h◦β−1| (where |χ, h| ∈ Hin). Also ε′β
is bijective, and Ψ′ ◦ε′β = (Ψ′)β . In the remainder of §3 we show that Theorem 1 holds under the assumption
that the maps εβ and ε′β are continuous (in the complex topology). In §4 this assumption is verified in the
special case that U is self-normalizing in G. In §5 we reduce the problem to this special case.

§3.1. The Q-structure on Hab and Hin: Assume that the map εβ : (Hab)β → Hab is continuous (in the
complex topology) for each β ∈ Aut(C). Since εβ is bijective and Ψ ◦ εβ = Ψβ , it follows that εβ is a complex
analytic isomorphism, inducing an equivalence between the coverings Ψ and Ψβ . By the uniqueness of the
algebraic structure of Hab, the map εβ is even an algebraic isomorphism defined over Q̄. Further, εβ depends
only on the restriction of β to Q̄ (since the Q̄-points are dense on Hab, and the corresponding covers ϕ can
be defined over Q̄, see §2.1). Thus we use the notation εβ also for β ∈ GQ. (Because our maps act from the
left, we use the convention ϕαβ = (ϕβ)α.) It is straightforward to check that the εβ (β ∈ GQ) satisfy Weil’s
cocycle condition:

εα ◦ εαβ (|ϕ|αβ) = εα((εβ(|ϕ|β))α) = εα(|ϕβ |α) = |ϕαβ | = εαβ(|ϕ|αβ) (α, β ∈ GQ)

Hence Hab can be defined over Q such that εβ : Hab = (Hab)β → Hab is the identity. Since Ψ ◦ εβ = Ψβ it
follows that also Ψ : Hab → Ur is defined over Q. Further it is clear that condition (a) of Theorem 1 holds.

Assuming that ε′β : (Hin)β → Hin is continuous (in the complex topology) for each β ∈ Aut(C), we
conclude similarly that Ψ′ : Hin → Ur can be defined over Q such that condition (b) of Theorem 1 holds.

§3.2. The remaining part of Theorem 1: We have shown that the spaces Hab and Hin are equipped
with a Q-variety structure such that (a) and (b) of Theorem 1 hold. Then also Λ : Hin → Hab is defined
over Q (c.f. §5.1).

Further, the connected components (in the complex topology) ofHab andHin are irreducible, since they
are complex (nonsingular) manifolds. In §1.3 we have set up a 1-1 correspondence between the components
of Hin = Hin

r (G) and the orbits of the Hurwitz monodromy group Hr on the set E in
r = E in

r (G). The last
assertion in Theorem 1 is a special case of this.
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It remains to show that the Hurwitz space H(C)in is defined over Q if and only if the r-tuple C =
(C1, . . . ,Cr) of conjugacy classes of G is rational. Consider the group Γ0 = π1(P1 \ bbb, b0) = 〈γ1, . . . , γr〉
as in §1.3, and let ppp = |χ, h| be a point in (Ψ′)−1(bbb). As usual, we write χ : X̂ → P1. Let ι : Γ0 →
Aut(X̂/P1) be the surjection from §1.2 (canonical up to inner automorphisms), and set f = h ◦ ι, τi = ι(γi)
for i = 1, . . . , r. Then under the bijection from §1.3, the point ppp corresponds to the class of (σ1, . . . , σr) in
E in
r , where σi = f(γi) = h(τi). By definition, ppp ∈ H(C)in if and only if (σ1, . . . , σr) ∈Ni(C); the latter means

that there exists π ∈ Sr such that σi ∈ Cπ(i) for i = 1, . . . , r.
The branch cycle argument from [Fr,1; p. 63] (see also [Ma,1; p. 47]) yields the following: For a fixed

β ∈ Aut(C), let ι′ : Γ0 → Aut(X̂β/P1) be defined analogously as ι, and set τ ′
j = ι′(γj) for j = 1, . . . , r. Then

the element τβi ∈ Aut(X̂β/P1) is conjugate to (τ ′
j)
m, where the integer m is given by the condition that β

acts on the |G|-th roots of unity as ζ �→ ζm, and the index j is given by β(bi) = bj . (Recall that by our
choice of bbb = {b1, . . . , br} from §1.1, β permutes b1, . . . , br.) Choose an integer n with mn ≡ 1 (mod |G|).
Since pppβ = |χβ , h ◦ β−1| (assertion (b) ), it follows that the element of E in

r corresponding to pppβ is the class
of (h ◦ β−1(τ ′

1), . . . , h ◦ β−1(τ ′
r)); this r-tuple has the property that its j-th entry is conjugate to σni , where

β(bi) = bj . It follows that ppp ∈ H(C)in if and only if pppβ ∈ H(Cn)in, where Cn = (Cn
1 , . . . , Cn

r ) (as above).
We have proved that β maps H(C)in to H(Cn)in. Thus H(C)in is defined over Q if and only if

H(Cn)in = H(C)in for all integers n that are prime to |G|. This is true if and only if Ni(Cn) = Ni(C) for all
n prime to |G|. That is, if and only if C is rational (as defined in §1.1). This concludes the proof of Theorem
1 under the assumption that the maps εβ and ε′β are continuous.

4. FAMILIES OF COVERS

In this section we assume that the hypotheses of Theorem 1 hold, and additionally, that U is self-normalizing
in G. Then, from (1) of §1.2, each cover ϕ : X → P1 representing a point of Hab = Hab

r (G,U) satisfies
Aut(X/P1) = {1}.

We construct a family of affine covers that represent the points of Hab
r (G,U). It is clear how to

construct the family locally, and then the condition Aut(X/P1) = {1} allows one to glue the local families
uniquely. The family of corresponding compact covers was constructed in [Fr,1]. The construction there also
applies to inspect the obstruction for the existence of a total representing family for Hab

r (G,U) even when
Aut(X/P1) �= {1} (the obstruction is in the second étale cohomology group of Hab

r (G,U) with coefficients in
the locally constant “center sheaf”), but we don’t need this here.

Let U be the set of all pairs (aaa, z) ∈ Ur ×P1 with z �∈ aaa. Then U is a Zariski-open subset of Ur ×P1

defined over Q. For the moment, we view U only as an open submanifold of Ur × P1.

§4.1. The topological construction of the family: Here the term ‘covering’ denotes an unramified
topological covering map (of not necessarily connected spaces). We start with the covering Ψ : Hab =
Hab
r (G,U)→ Ur of §1.2. Set

M = {(ppp, z) ∈ Hab × P1 : z �∈ Ψ(ppp) }.

Then M is an open subspace of Hab×P1, and the map (ppp, z) �→ (Ψ(ppp), z) yields a covering F :M→ U . Let
P :M→Hab be the projection on the first coordinate.

Consider a point ppp ∈ Hab and a neighborhood N (ppp) = N (ppp;D1, . . . , Dr) of ppp as in §1.2. Then Ψ
maps N (ppp) homeomorphically onto the set V(D1, . . . , Dr) ∼= D1 × · · · ×Dr of all aaa ∈ Ur with |aaa ∩Di| = 1
for i = 1, . . . , r. In particular, N (ppp) is contractible. Furthermore, F maps the set M(ppp;D1, . . . , Dr) =
M(ppp) def= P−1(N (ppp)) homeomorphically onto the set of all (aaa, z) ∈ U with aaa ∈ V(D1, . . . , Dr). Thus M(ppp)

contains the set N (ppp) × P1 \ (D1 ∪ · · · ∪Dr) as a deformation retract. Choose a base point a0 ∈ P1 \ (D1 ∪
· · · ∪Dr). We have canonical isomorphisms

π1(P1 \Ψ(ppp), a0) ∼= π1(P1 \ (D1 ∪ · · · ∪Dr), a0) ∼=
π1(N (ppp) × P1 \ (D1 ∪ · · · ∪Dr), (ppp, a0)) ∼= π1(M(ppp), (ppp, a0)).
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Now let ϕ : X → P1 be a cover representing the point ppp ∈ Hab, and let [Uϕ] be the associated class
of subgroups of π1(P1 \ Ψ(ppp)) (see §1.2). Under the above isomorphisms, [Uϕ] corresponds to a class of
subgroups of π1(M(ppp), (ppp, a0)), and this class of subgroups gives rise to a covering T (ppp;D1, . . . , Dr) →
M(ppp) = M(ppp;D1, . . . , Dr). This covering has no non-trivial automorphisms, since U is self-normalizing in
G (c.f. (1) in §1.2).

From the lack of non-trivial automorphisms of the above covering it follows that for each inclusion
M(ppp;D1, . . . , Dr) → M(ppp′;D′

1, . . . , D
′
r) of two of the above neighborhoods, there is a unique embedding

T (ppp;D1, . . . , Dr)→ T (ppp′;D′
1, . . . , D

′
r) making the following diagram commute (where the vertical arrows are

the coverings constructed in the last paragraph):

T (ppp;D1, . . . , Dr) −→ T (ppp′;D′
1, . . . , D

′
r)�

�
M(ppp;D1, . . . , Dr) −→ M(ppp′;D′

1, . . . , D
′
r)

From this uniqueness and the fact that the N (ppp) form a basis for the topology of Hab, it follows that
the coverings T (ppp;D1, . . . , Dr) → M(ppp;D1, . . . , Dr) glue together to yield a global covering Φ : T → M.
For each ppp ∈ Hab denote (P ◦ Φ)−1(ppp) by Tppp, and let Φppp : Tppp → P1 \ Ψ(ppp) be the composition of Φ with
projection to P1. By construction it is clear that the covering Φppp represents the point ppp of Hab. Thus we call
Φ : T →M the (partial) family of all covers parametrized by Hab. We apply the attribute ‘partial’ because
the fibers T ppp do not yield the full compact covers of P1 as discussed at the beginning of §4.

§4.2. Uniqueness of the family: Assume we have coverings Ψ′ : H′ → Ur and Φ′ : T ′ → M′, where
M′ = {(qqq, z) ∈ H′ × P1 : z �∈ Ψ′(qqq) }. Define the maps F ′ : M′ → U and P ′ : M′ → H′ analogously as
F and P , respectively. Assume further that for each qqq ∈ H′ the fiber T ′

qqq = (P ′ ◦ Φ′)−1(qqq) has the following
property: The natural map T ′

qqq → P1 \Ψ′(qqq) is a cover that represents a point ε(qqq) of Hab. Then ε : H′ → Hab

is continuous.
To prove the above, note that Ψ ◦ ε = Ψ′ from the definitions. As Ψ′ is a covering, any qqq ∈ H′ has a

neighborhood N ′ such that Ψ′ maps N ′ homeomorphically onto some V(D1, . . . , Dr) (where D1, . . . , Dr are
pairwise disjoint discs on P1 around the elements of Ψ′(qqq)). Then F ′ maps M′(qqq;D1, . . . , Dr)

def= (P ′)−1(N ′)
homeomorphically onto {(aaa, z) ∈ U : aaa ∈ V(D1, . . . , Dr) }. Thus M′(qqq;D1, . . . , Dr) contains N ′×P1 \ (D1∪
· · · ∪Dr) as a deformation retract. Since N ′ is contractible, all covers T ′

qqq′ → P1 \Ψ′(qqq′) for qqq′ ∈ N ′ restrict,
up to equivalence, to the same covering of P1 \ (D1 ∪ · · · ∪Dr). Thus ε(N ′) = N (ppp;D1, . . . , Dr) for ppp = ε(qqq).
This shows that ε is continuous, even a local homeomorphism.

§4.3. The εβ are continuous: As in §3 view Ψ : Hab → Ur as a morphism of algebraic varieties (defined
over C is enough here). Then also F : M → U is such a morphism. Similarly, the unramified covering
Φ : T → M equips T with a unique variety structure defined over C such that Φ becomes an algebraic
morphism.

Now consider some β ∈ Aut(C). It is clear that the maps Ψβ : (Hab)β → Ur and Φβ : T β → Mβ

are again coverings. They satisfy the conditions of §4.2 with ε = εβ , and so εβ is continuous. Thus we have
verified the continuity assumption on the εβ in the case that U is self-normalizing in G.

Remark: With some additional work it is possible to give a direct construction of the variety structure on
Hab, without appealing to the generalized Riemann existence theorem. Consider a point |ϕ| ∈ Hab such that
the set aaa of branch points of ϕ is a generic point of Ur (over Q). Define K as the minimal field of definition of
ϕ. Then the Q-irreducible component of Hab containing |ϕ| can be identified with the normalization of the
variety Ur in the extension field K of Q(aaa) = Q(Ur). To set up this identification, one again needs the above
family T → M, whose respective Q-component can be constructed in that approach as the normalization
of the respective component of M in the field K(X), where ϕ : X → P1. This yields the desired variety
structure defined over Q on the spaces Hab

r (G,U), where U is self-normalizing in G. Proceed as in §5 to
transfer this variety structure to the spaces Hin

r (G), and Hab
r (G,U) for U not self-normalizing.
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5. CONCLUSION OF THE PROOF OF THEOREM 1

Assume the hypotheses of Theorem 1 hold. From §3 it only remains to show that for each automorphism β
of C the maps εβ : (Hab)β → Hab and ε′β : (Hin)β → Hin are continuous.

§5.1. Some reductions: Here we make use of the covering Λ : Hin → Hab with Ψ′ = Ψ ◦Λ. As noted in §3,
we may view Λ as an algebraic morphism (defined over C is enough here). Let β ∈ Aut(C). It is immediate
from the definition of Λ in §1.2 that

εβ ◦ Λβ = Λ ◦ ε′β .

This implies:
(5.1) If ε′β is continuous, then also εβ is continuous.
(5.2) Under the hypothesis Aut(G,U) = Inn(G), the map εβ is continuous if and only if ε′β is continuous.

Note that if Aut(G,U) = Inn(G) then Eab
r (G,U) = E in

r (G) (§1.1); hence the coverings Ψ : Hab
r (G,U) → Ur

and Ψ′ : Hin
r (G)→ Ur are equivalent (§1.3), and therefore Λ is an isomorphism. This proves (5.2).

Combining (5.2) and §4.3 we get:
(5.3) If U is self-normalizing in G and Aut(G,U) = Inn(G), then ε′β is continuous.

§5.2. The ε′β are continuous: By (5.1) it only remains to show that the ε′β are continuous. We will reduce
this to the special case of (5.3), by constructing a finite group G̃ that satisfies the hypothesis of (5.3) and
maps surjectively to G. First we need to study how the spaces Hin behave under surjections λ : G̃ → G of
finite groups.

Let N be the kernel of λ. Define a map Ω from Hin
r (G̃) to the disjoint union

⋃r
s=2Hin

s (G) as follows:
Suppose that we are given |χ̃, h̃| in Hin

r (G̃), where χ̃ : X̃ → P1 and h̃ : Aut(X̃/P1) → G̃ is an isomorphism.
Let χ : X̂ def= X̃/h̃−1(N)→ P1 be the induced cover and let h : Aut(X̂/P1)→ G be the isomorphism making
the following diagram commute (the left vertical arrow is the canonical map):

Aut(X̃/P1) h̃−→ G̃�
�

Aut(X̂/P1) h−→ G

Then Ω maps |χ̃, h̃| to |χ, h|.
Equip

⋃r
s=2Hin

s (G) with the topology of a disjoint union of open (and closed) spaces. Then Ω is
continuous (easy to check from the set-up of §1.2). Further, the number of branch points of Ω(ppp) is locally
constant for ppp ∈ Hin

r (G̃). Thus H̃ = Ω−1(Hin
r (G)) is a union of connected components of Hin

r (G̃). (It could
be empty.) Now assume G̃ can be generated by r − 1 elements. Then a theorem of Gaschütz implies that
for each (σ1, . . . , σr) ∈ Er(G) there exists (τ1, . . . , τr) ∈ Er(G̃) with λ(τi) = σi for all i (e.g., [FrJ, Lemma
15.30]). Since π1(P1 \ aaa, a0) is free of rank r − 1 (where aaa = {a1, . . . , ar} as in §1.2), Ω maps H̃ surjectively
to Hin

r (G). From now on Ω : H̃ → Hin
r (G) denotes the restriction of the above map to H̃.

We have Ψ′ ◦ Ω = Ψ̃, where Ψ̃ : H̃ → Ur is the natural covering that sends |χ̃, h̃| to the set of branch
points of χ̃. Therefore, Ω is a covering since it is continuous. Again it follows that Ω is an algebraic morphism
(defined over C).

Now consider β ∈ Aut(C). With ε̃β : (H̃)β → H̃ defined analogously to ε′β , one checks easily that

Ω ◦ ε̃β = ε′β ◦ Ωβ

Thus if ε̃β is continuous, then also ε′β is continuous. Now choose G̃ as in Lemma 3 below. Then G̃
satisfies the hypothesis of (5.3), hence ε̃β is continuous. Thus also ε′β is continuous, and the proof of Theorem
1 is complete.
§5.3. Another group-theoretic Lemma:

18



Lemma 3: Each finite group that can be generated by r − 1 elements (r ≥ 3) is the quotient of a finite
group G̃ that can be generated by r − 1 elements and has a subgroup Ũ with the following properties:

(i) Ũ contains no non-trivial normal subgroup of G̃.
(ii) Ũ is self-normalizing in G̃.
(iii) Aut(G̃, Ũ) = Inn(G̃).

Proof: Suppose G is a finite group generated by g1, . . . , gn, where n = r − 1 ≥ 2.
Part 1: Reduction to the case that G has trivial center. We need only present G as quotient of a finite group
H with trivial center that can also be generated by n elements. This is quite elementary, but we give the
argument for completeness. Let p be a prime not dividing the order of G. We may assume that the center
of G has a non-trivial element g. Then g acts non-trivially on the regular Fp module M of G (the group
ring over Fp). The module M is completely reducible by Maschke’s theorem. Thus there is an irreducible
summand V of M on which g acts non-trivially.

Now consider the semi-direct product H of G and V . Let q = |V |. There are qn tuples (h1, . . . , hn)
in Hn with hi �→ gi for i = 1, . . . , n. Since V is irreducible, the group < h1, . . . , hn > is either all of H, or
it is a complement to V in H. These complements are all conjugate under V (Schur-Zassenhaus theorem),
hence their number is at most q. And in each such complement there is a unique lift of the gi’s. Since n ≥ 2,
conclude there is a lift (h1, . . . , hn) with H =< h1, . . . , hn >. The center of H maps injectively into the
center of G, but its image does not contain g. Hence H has a center of strictly smaller order than G. By
induction, this completes the argument.
Part 2: Construction of G̃. From now on assume G has trivial center. Let S be a non-abelian finite simple
group with Aut(S) = Inn(S), generated by two elements a, b, and such that S has a collection of pairwise
non-conjugate, self-normalizing proper subgroups Ug indexed by the elements g of G. For example, take S
to be the symplectic group Sp2m(2) for large enough m, whereby the Ug’s can be taken as distinct parabolics
containing a common Borel subgroup [Ca; Chapter 11].

Define G̃ to be the semi-direct product G̃ = A ×sG where A is the group of all (not necessarily
homomorphic) functions α : G → S (with pointwise multiplication) and G acts on A by translation of
functions:

gα(h) = α(hg) for g, h ∈ G.

Clearly A ∼= Sm, the direct product of m = |G| copies of S, and G permutes these factors sharply
transitively (G̃ is the wreath product of G and S). Further, A is minimal normal in G̃, and the centralizer
of A in G̃ is trivial. Since distinct minimal normal subgroups centralize each other, A is the unique minimal
normal in G̃.

Part 3: Conditions (i)-(iii) hold. We define Ũ as the group of all α ∈ A with α(g) ∈ Ug for all g ∈ G. As S

is simple, condition (i) holds. Since G̃ has trivial center, we can identify G̃ with Inn(G̃) ≤ Aut(G̃). We are
going to show that Ũ is self-normalizing in Aut(G̃), which proves (ii) and (iii).

Let h be an element of the normalizer of Ũ in Aut(G̃). Since A is the unique minimal normal
subgroup of G̃, the element h fixes A. Recall that the Ug are pairwise non-conjugate and self-normalizing in
S ∼= Aut(S). From this it follows that h fixes all the simple factors of A, and it acts on A as some element of
Ũ . Thus we may assume that h centralizes A. But the centralizer C of A in Aut(G̃) is normal in Aut(G̃), and
C ∩ G̃ = 1; hence C centralizes G̃, and so C = 1. Thus h = 1, and we have proved that Ũ is self-normalizing
in Aut(G̃).
Part 4: G̃ can be generated by n elements. For i = 1, . . . , n define αi ∈ A by:

αi(1) = a if i = 1, αi(1) = b if i > 1
αi(g) = 1 for g �= 1.

Denote (αi, gi) by g̃i, and let H be the subgroup of G̃ generated by these elements. We are going to show
that G̃ = H =< g̃1, . . . , g̃n >. It suffices to show that A ≤ H. Set B = A ∩H.
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For each i, let ei be the order of gi. Then βi
def= g̃ei

i ∈ B, and we have for any g ∈ G:

βi(g) = αi(g)αi(ggi) · · ·αi(ggei−1
i ).

This equals a for i = 1 and g ∈< gi >; b for i > 1 and g ∈< gi >; and 1 if g �∈< gi >.
We know there exist elements β ∈ B with β(1) �= 1. Among these elements, choose one with the

property the set M = {g ∈ G|β(g) �= 1} has minimal cardinality. Set c = β(1); then c �= 1. Since
S =< a, b > we may conjugate β with products of the βi’s to assume that neither of the commutators [a, c]
and [b, c] is trivial. Then the function β′

i = [β, βi] has β′
i(1) �= 1, and vanishes outside M . By the minimality

of M it follows that β′
i(m) �= 1 for all m ∈M . But, βi, and therefore also β′

i, vanishes outside < gi >. Thus
M ⊂< gi > for i = 1, . . . ,n. Hence M centralizes all gi, and therefore lies in the center of G. Thus M = {1}.

We have found β �= 1 in B with β(g) = 1 for all g �= 1. Since S =< a, b > it is clear that the
conjugates of β by products of the βi’s generate the full group {α ∈ A : α(g) = 1 for all g �= 1}. Thus this
group lies in B. Clearly, the H-conjugates of this group generate A, which proves A ≤ H, as claimed. This
completes the proof of the Lemma.

6. A RESULT FOR LATER USE

The goal of this section is to prove Proposition 3 below. This Proposition is crucial in the paper [FrVo]. Let
G be a finite group with trivial center, satisfying the Schur multiplier condition (*) from §2.2. Take U = {1}.
All the notation such as Hab = Hab

r (G,U), Eab
r , Ni(C)ab, H(C)ab etc. from §1 refers now to this special case

U = {1}. As usual, r ≥ 3 is a fixed integer (to be specified later), and Hin = Hin
r (G).

§6.1. The automorphisms δA of Hin over Hab : This subsection refers only to the (complex) topology
of our moduli spaces. Recall that Hab = Hab

r (G, {1}) is the space of equivalence classes of Galois covers
χ : X → P1 with r branch points and with Aut(X/P1) ∼= G; and Λ : Hin → Hab is the map sending the class
of the pair (χ, h) to the class of χ. Thus on the fibers over the base point bbb ∈ Ur, the covering Λ induces the
canonical map E in

r → Eab
r sending the class of (σ1, . . . , σr) modulo Inn(G) to its class modulo Aut(G) (via

the identifications of §1.3). It follows that the covering Λ : Hin → Hab has degree |Out(G)| (where Out(G) =
Aut(G)/ Inn(G)).
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Indeed, the group Out(G) acts faithfully as a group of automorphisms of the covering Λ: For A ∈
Aut(G), let δA : Hin → Hin be the map sending |χ, h| to |χ,Ah|. One checks that δA is well-defined and
continuous. Clearly Λ ◦ δA = Λ. Thus δA is an automorphism of the cover Λ. Further, δA depends only on
the class of A modulo Inn(G). Hence the δA yield the desired action of Out(G).

Let c be the number of conjugacy classes �= {1} of G. Suppose that r = cs, and that C = (C1, . . . ,Cr)
is an r-tuple containing each conjugacy class �= {1} of G exactly s times. Since Aut(G) permutes C1, . . . ,Cr,
it follows that Ni(C)in is the full inverse image of Ni(C)ab under the canonical map E in

r → Eab
r (see §1.1). This

implies that the Hurwitz space H′ = H(C)in is the full inverse image of H = H(C)ab under Λ (c.f. §1.3).
Thus Λ restricts to a covering Λ′ : H′ → H of degree | Out(G)|, and the group Out(G) also acts faithfully
as a group of automorphisms of this covering. Conclude that if H′ and H are connected then Λ′ is a Galois
covering, and the automorphism group of this covering is isomorphic to Out(G), via the map A �→ δA. From
now on, δA denotes the restriction of the original map to H′.

§6.2. Choosing suitable Hurwitz spaces: By §2.2 we can choose r = cs for suitably large s so that each
(rational) r-tuple C as in the preceding paragraph has the following property: Ni(C)in is non-empty and the
Hurwitz group Hr acts transitively on this set. Then the Hurwitz spaces H′ = H(C)in and H = H(C)ab are
absolutely irreducible varieties defined over Q, and the covering Λ′ : H′ → H is a morphism defined over Q
(by Theorem 1). All complex-analytic automorphisms δA of Λ′ are algebraic and defined over Q̄. Indeed,
they are even defined over Q: Namely, for all β ∈ GQ and |χ, h| ∈ H′ we have

(δA)β(|χ, h|β) = (δA(|χ, h|))β = |χ,A ◦ h|β =

|χβ , A ◦ h ◦ β−1| = δA(|χβ , h ◦ β−1|) = δA(|χ, h|β).

It follows that if ppp is a point of H, rational over some field k, and ppp′ is a point of H′ with Λ′(ppp′) = ppp, then
the field k′ = k(ppp′) is Galois over k.

§6.3. The main result of §6: Fix a point ppp′ = |χ, h| of H′, where χ : X → P1 and h : Aut(X/P1) → G
as usual. Let ppp = Λ(ppp′) = |χ| be its image in Hab, and let k be a field containing Q(ppp). By Corollary 1
the (Galois) cover χ can be defined over k′ = k(ppp′) so that all its automorphisms are defined over k′, and
k′ is the minimal extension of k with this property. The resulting function field L = k′(X) is Galois over
k′(x) = k′(P1), and the group G0

def= G(L/k′(x)) is isomorphic to G, via the isomorphism h0 which is the
composition of the canonical isomorphism G0 → Aut(X/P1) with h. We claim that L is even Galois over
k(x).

Indeed, the cover χ can be defined over k by Corollary 1. Let M denote the corresponding k-form of
the field L̄ = k̄(X). (The field M is not necessarily contained in L = k′(X), thus we do not write M = k(X)
). The field L̄ is Galois over k(x), since k(x) is the fixed field of the group of automorphisms of L̄ generated
by G(L̄/M) and G(L̄/k̄(x)). Since L∩ k̄(x) = k′(x), elementary Galois theory implies that G(L̄/k′(x)) is the
direct product of G(L̄/k̄(x)) ∼= G and G(L̄/L). Therefore, as G has trivial center, G(L̄/L) is the centralizer
of N1 = G(L̄/k̄(x)) in N2 = G(L̄/k′(x)). From §6.2, k′ is Galois over k and so both N1 and N2 are normal
in G(L̄/k(x)). It follows that G(L̄/L) is normal in G(L̄/k(x)). Thus L is Galois over k(x), as claimed.

Set Ω = G(L/k(x)). Let C be the centralizer of G0 = G(L/k′(x)) in Ω. Then C is normal in Ω, and
C ∩ G0 = 1 (since G has trivial center). Let L′′ be the fixed field of C in L; then k′(x) ∩ L′′ = k′′(x) for
some field k′′ between k and k′. It follows that L′′ is a k′′-form of L̄ that is Galois over k′′(x). Thus the
cover χ together with all its automorphisms can be defined over k′′, and so k′′ = k′ (by minimality of k′).
This means L′′ = L, hence C = 1. Thus we have proved that the centralizer of G0 in Ω is trivial. Hence
Ω embeds into Aut(G0) (via conjugation action). Thus the above isomorphism h0 : G0 → G induces an
injection h1 : Ω → Aut(G). The remaining task is to identify the image of Ω in Aut(G).
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Proposition 3: Let G be a finite group with trivial center such that the Schur multiplier of G is generated
by commutators (condition (*)). Then the unramified Galois covering Λ′ : H′ → H constructed above is
a morphism of absolutely irreducible varieties defined over Q, and all automorphisms of this covering are
defined over Q. The group Out(G) acts faithfully on H′, inducing the full automorphism group of the
covering Λ′; for each A ∈ Aut(G), let δA denote the automorphism of H′ induced by the image of A in
Out(G). Then for each point ppp ∈ H, rational over some field k, and for each point ppp′ ∈ H′ with Λ′(ppp′) = ppp,
there is a Galois extension L/k′(x), regular over k′ = k(ppp′), such that the following holds:

L is Galois over k(x), and there is an isomorphism h1 from G(L/k(x)) onto the group ∆ of those
A ∈ Aut(G) for which δA(ppp′) is conjugate to ppp′ under G(k′/k). Furthermore, h1 restricts to an isomorphism
between G(L/k′(x)) and Inn(G).

Proof: It only remains to show that h1(Ω) = ∆ where h1 : Ω → Aut(G) is as defined above. Indeed, it
suffices to show that h1(Ω) ⊂ ∆ because:

|h1(Ω)| = |Ω| = |G0| · |G(k′(x)/k(x))| = |G| · [k′ : k] = |∆|
Since G has trivial center, we can (and will) identify G with the subgroup Inn(G) of Aut(G); similarly

for G0 and for Ḡ
def= G(L̄/k̄(x)). The map h0 : G0 → G extends naturally to an isomorphism Aut(G0) →

Aut(G), which we again denote by h0. The restriction map Ḡ → G0 is an isomorphism; let R : Aut(Ḡ) →
Aut(G0) be its natural extension. Define the isomorphism h̄ : Aut(Ḡ) → Aut(G) by h̄ = h0 ◦ R. Clearly,
the image Ω̄ of G(L̄/k(x)) in Aut(Ḡ) (via conjugation action) corresponds under R to the image of Ω =
G(L/k(x)) in Aut(G0). Thus h1(Ω) = h0R(Ω̄) = h̄(Ω̄). From the previous paragraph, it remains to show
that h̄(Ω̄) ⊂ ∆.

From the definitions, h̄ is induced from the map Ḡ → G that is the composition of the canonical
isomorphism Ḡ→ Aut(X/P1) with h. Thereby, this canonical isomorphism is explicitly given as follows: It
sends B∗ to B, where B is any element of Aut(X/P1) and B∗ ∈ Ḡ = G(L̄/k̄(x)) is defined by B∗(f) = f ◦B−1

(pulling back of functions), for f ∈ L̄ = k̄(X). Therefore:
(7) h̄(B∗) = h(B) for all B ∈ Aut(X/P1).

Now let ᾱ be an element of Ω̄, and let α ∈ G(L̄/k(x)) be a pre-image of ᾱ. Let β ∈ G(k̄/k) be the
image of α−1 under G(L̄/k(x)) → G(k̄(x)/k(x)) ∼= G(k̄/k) (where the first map is restriction). We claim
that the element A = h̄(ᾱ) of Aut(G) satisfies

(8) δA(ppp′) = (ppp′)β .

This means that A = h̄(ᾱ) lies in ∆, and h̄(Ω̄) ⊂ ∆ as desired. Thus it only remains to prove (8).
By Corollary 1(a) the cover χ : X → P1 can be defined over k. This is compatible with the k̄-structure,

but not necessarily with the k′-structure on X considered above. However, the remainder of the proof does
not refer to this k′-structure anymore, so we assume now that X and χ are defined over k. This yields an
action of G(k̄/k) on L̄ = k̄(X), denoted f �→ fσ (f ∈ L̄, σ ∈ G(k̄/k)). The map f �→ fσ acts on the
subfield k̄(x) in the natural way (i.e., through the canonical isomorphism G(k̄(x)/k(x)) → G(k̄/k) ), since
χ is defined over k. Thus the map f �→ fβ and the map α−1 ∈ G(L̄/k(x)) restrict to the same element of
G(k̄(x)/k(x)), and so there is some D ∈ G(L̄/k̄(x)) = Ḡ with fβ = Dα−1(f) for all f ∈ L̄. Replacing α by
αD−1 changes A = h̄(ᾱ) only by the inner automorphism h̄(D−1) of G, and the map δA remains unchanged.
Thus we may assume D = 1, so that fβ = α−1(f) for all f ∈ L̄. Then we have for all B ∈ Aut(X/P1),
f ∈ L̄ :

(Bβ−1
)∗(f) = f ◦ (B−1)β

−1
= [fβ ◦B−1]β

−1
= αB∗α−1(f) = ᾱ(B∗)(f)

hence

(9) (Bβ−1
)∗ = ᾱ(B∗)

Finally, Theorem 1 gives (ppp′)β = |χ, h|β = |χβ , h◦β−1| = |χ, h◦β−1|, where h◦β−1 : Aut(X/P1)→ G

is the isomorphism sending B to h(Bβ−1
). By (7) and (9) we have

h(Bβ−1
) = h̄((Bβ−1

)∗) = h̄(ᾱ(B∗)) = h̄(ᾱ)(h̄(B∗)) = h̄(ᾱ)(h(B)) = A ◦ h(B)

Thus (ppp′)β = |χ,A ◦ h| = δA(ppp′), which proves (8). This completes the proof of Proposition 3.
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APPENDIX
This is a slightly modified exposition on a result of Conway and Parker [CP]. We only consider the case
that the union S of conjugacy classes of G that occurs in [CP] is all of G \ {1}, and that M(G) is gener-
ated by commutators. This is what is needed above. The restriction to this special case allows for some
simplifications. Further, we correct some errors from [CP].

A. Introduction: Let G be a finite group, and let r ≥ 3 be an integer. For i = 1, . . . , r−1 let Qi : Gr → Gr

be given by expression (2) of §1.3.
The Hurwitz class of σσσ = (σ1, . . . , σr) ∈ Gr is defined to be the orbit of σσσ under the group generated

by Q1, ..., Qr−1. Clearly, the evaluation function E(σσσ) = σ1 · · ·σr is constant on Hurwitz classes. The same
is true for the shape function S(σσσ) = (nC(σσσ))C, which maps σσσ to the shape vector containing the numbers
nC(σσσ) = #{i : σi ∈ C}, where C runs through the set of conjugacy classes of G. In certain cases, these
functions form a complete set of invariants for the Hurwitz classes:

Theorem (Conway-Parker): Suppose the Schur multiplier M(G) is generated by commutators (as defined
in §2.4). Then there exists an integer N with the following property: If σσσ = (σ1, ..., σr) ∈ Gr satisfies nC(σσσ) ≥
N for all conjugacy classes C �= {1} of G, then the Hurwitz class of σσσ consists of all τττ = (τ1, . . . , τr) ∈ Gr

with τ1 · · · τr = σ1 · · ·σr and S(τττ) = S(σσσ).

In the remainder of this Appendix we give a proof of this theorem, adapted from [CP].

B. Central Extensions: Let ϕ : Ĝ → G be a central extension (of groups), such that Ĝ is generated by
elements â (a ∈ G) with ϕ(â) = a. Use the notation ab = b−1ab. We assume that the following relations
hold:

(I) âb̂ = b̂âb

Proposition: Suppose M(G) is generated by commutators. If σσσ = (σ1, . . . , σr),
τττ = (τ1, . . . , τr) ∈ Gr satisfy σ1 · · ·σr = τ1 · · · τr and S(σσσ) = S(τττ), then σ̂1 · · · σ̂r = τ̂1 · · · τ̂r.

Proof: Let F be the free group on generators ā (a ∈ G), let R be the kernel of the homomorphism F → G
sending ā to a, and let ψ : F → Ĝ be the homomorphism sending ā to â. We prove:

(II) ψ(R∩ [F ,F ]) = 1

Since ψ(R) ≤ ker(ϕ) ≤ Z(Ĝ), the center of Ĝ, clearly ψ([R,F ]) = 1. By the general theory of
the Schur multiplier (e.g., [Hu; p. 631]) the quotient of R ∩ [F ,F ] by [R,F ] is isomorphic to the Schur
multiplier M(G). The hypothesis that M(G) is generated by commutators means that the group R∩ [F ,F ]
is generated modulo [R,F ] by commutators z = [x, y], x, y ∈ F . Since a = ϕ ◦ ψ(x) and b = ϕ ◦ ψ(y)
commute in G, the relations (I) imply that â and b̂ commute in Ĝ. Since ψ(x) ∈ âZ(Ĝ) and ψ(y) ∈ b̂Z(Ĝ),
we get ψ(z) = [ψ(x), ψ(y)] = [â, b̂] = 1. This proves (II).

¿From (II) the map ψ : F → Ĝ induces ψ̄ : F̄ → Ĝ, where F̄ = F/(R∩[F ,F ]). Clearly R̄∩[F̄ , F̄ ] = 1,
where R̄ is the image of R in F̄ . The kernel of ψ̄ lies in R̄, hence ψ̄(R̄) ∩ [Ĝ, Ĝ] = 1. Let A be the abelian
group Ĝ/[Ĝ, Ĝ]. Since ψ̄(R̄) = ker(ϕ), it follows that Ĝ embeds as a subgroup of G × A, via the map that
sends g ∈ Ĝ to (ϕ(g), g[Ĝ, Ĝ]).

Viewing Ĝ as a subgroup of G × A via this embedding, we have â = (a, ta) for each a ∈ G, where
ta ∈ A. The relations (I) yield ta = tab for all a, b ∈ G. Thus ta depends only on the conjugacy class of a.
Now the Proposition follows:

∏
σ̂i =

∏
(σi, tσi) = (

∏
σi,

∏
tσi) = (

∏
τi,

∏
tτi) =

∏
τ̂i.

The final section produces an equivalence relation on the semigroup of Hurwitz classes of arrays of
elements of G. The quotient by this equivalence relation turns out to be a group Ĝ, satisfying the hypotheses
of the Proposition.
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C. Congruence Classes of Words: Consider the semi-group of words in the symbols ã (a ∈ G\{1}),
under concatenation. Define the Hurwitz class H(w) of a word w = ã1 · · · ãr to be the set of all words that
can be obtained from w by iteration of the operations Qi given by expression (2) of §1.3 (where we now
write ã1 · · · ãr instead of (a1, . . . , ar)). By abuse of notation, we will denote the Hurwitz class H(ã) = {ã}
again by ã. Denote the set of Hurwitz classes by H = H(G). The multiplication H(w1)H(w2) = H(w1w2)
is well-defined and makes H into a semi-group, generated by the elements ã (a ∈ G \ {1}). They satisfy the
relations

(I ′) ãb̃ = b̃ãb

We fix the notation A = ã1 · · · ãr, B = b̃1 · · · b̃s for general elements of H. As in the Introduction,
we have the evaluation function E(A) = a1 · · · ar and the shape function S(A) on Hurwitz classes; both are
semi-group homomorphisms.

Lemma 1: If E(A) = 1 then A ∈ Z(H).

Proof: For b ∈ G we have b̃A = b̃ã1 · · · ãr = ã1b̃a1 ã2 · · · ãr = ã1ã2b̃a1a2 ã3 · · · ãr = · · · = A ˜ba1a2···ar = Ab̃.
Since H is generated by the b̃, the claim follows.

Let o(a) denote the order of an element a ∈ G. Set

U =
∏

a∈G\{1}
ão(a)

The factors in this product are in the center of H by Lemma 1. Therefore the ordering in the product
does not matter. Then also U lies in the center of H, and for any b ∈ G\{1}, we can write U in the form
U = b̃A = Ab̃ for some A. Set A ≡ B iff there exist integers n, k ≥ 0 with UnA = UkB. It is easy to
check that this yields a congruence relation on the semi-group H. We let Ĝ denote the quotient of H by this
congruence relation. The following Lemma allows us to apply the results of the previous section.

Lemma 2: The semigroup Ĝ is in fact a group, which is a central extension of G via the map ϕ : Ĝ → G
induced by the evaluation function E. If we let â denote the image of ã in Ĝ, then ϕ(â) = a, the relations
(I) hold and the elements â generate Ĝ.

Proof: Lemma 1 shows that the semi-group Ĝ is a central extension of G via ϕ. It only remains to show
that Ĝ is in fact a group, the other assertions are clear.

For any b ∈ G\{1} we have U = b̃A = Ab̃ for some A, by the above remark. Thus b̂ is invertible in Ĝ.
Since the b̂ generate Ĝ, all elements of Ĝ are invertible, and Ĝ is a group.

Lemma 3: If g, h ∈ G are conjugate elements of order m > 1, and G =< a1, . . . , ar >, then g̃mã1 · · · ãr =
h̃mã1 · · · ãr.
Proof: By Lemma 1 we have g̃m ∈ Z(H). Hence

g̃mã1 · · · ãr = ã1 · · · ãj−1g̃
mãj · · · ãr = ã1 · · · ãj−1g̃

m−1ãj g̃aj ãj+1 · · · ãr
= · · · = ã1 · · · ãj−1ãj(g̃aj )mãj+1 · · · ãr = (g̃aj )mã1 · · · ãr.

Since a1, . . . , ar generate the finite group G, the claim follows by induction.

Lemma 4: If S(B) ≥ S(XU) (componentwise) for some X ∈ H then B = XV for some V ∈ H. In
particular, if S(B) ≥ S(U2) then B = UV for some V ∈ H.

Proof: By induction it suffices to consider the case X = ã. Let m be the order of a, and Γ the conjugacy
class of a (in G). Since S(B) ≥ S(ãU), there are more than m|Γ| indices i = 1, . . . , s for which bi ∈ Γ
(where B = b̃1 · · · b̃s). Hence there is some g ∈ Γ such that bi = g for more than m indices i. Use (I’) to
conclude that B can be written as B = g̃mw̃1 · · · w̃k with w1 = g. Then each nontrivial conjugacy class
of G contains some wi. Therefore the union of the conjugates of the subgroup < w1, . . . , wk > is all of
G. It is well-known that this implies that G =< w1, . . . , wk > (e.g., [FrJ, 12.4]). Thus Lemma 3 yields
B = g̃mw̃1 · · · w̃k = ãmw̃1 · · · w̃k = ãV for some V .

Let Hi be the set of all V ∈ H with S(V ) = S(U i). By Lemma 4 the map Hi → Hi+1, V �→ UV , is
surjective for i ≥ 1. Since the Hi are finite sets, there must be some integer K such that for all i ≥ K this
map is bijective. Thus for A,B ∈ HK and n ≥ 0 the relation UnA = UnB implies A = B.
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Conclusion: Suppose M(G) is generated by commutators. Let A = ã1 · · · ãr, B = b̃1 · · · b̃r be elements of
H with S(A) = S(B) ≥ S(UK) and a1 · · · ar = b1 · · · br. Then A = B. That is, (b1, . . . , br) is in the Hurwitz
class of (a1, . . . , ar).

Proof: By Lemma 2 and the Proposition of §B, we have
∏

âi =
∏

b̂i. Hence UnA = UkB for some n, k ≥ 0.
Since S(A) = S(B) we have n = k. By Lemma 4 we have A = XW, B = XV for some V,W ∈ HK , X ∈ H.
Since Ĝ is a group, we have Y X = U t for some Y ∈ H, t ≥ 0.

Summarizing, we have UnA = UnB, hence UnXW = UnXV . Multiplying both sides by Y from the
left we get Un+tW = Un+tV . Since W,V ∈ HK this implies W = V by the remarks after Lemma 4. Thus
A = XW = XV = B.

The Theorem of §A now follows from this Conclusion.
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