The inverse of a certain block matrix

V.N. Singh

A simple formula for the inverse of a block matrix with non-zero blocks in the principal diagonal and the first sub-diagonal only is proved. The matrix had arisen in an investigation of a difference equation.

During an investigation of the general homogeneous linear difference equation

$$
\sum_{s=0}^{r} a_{s}(n) u_{n-s}=0, n \geq r
$$

with $a_{0}(n) \neq 0$ for all $n \geq r$, it was found [2, equation (6)] that the solution involved the inverse of a non-singular block lower triangular matrix of the following type

$$
A_{(N)}=\left[\begin{array}{ccccccc}
A_{1} & 0_{r} & 0_{r} & \cdots & o_{r} & 0_{r} & 0_{r, s} \\
B_{2} & A_{2} & 0_{r} & \cdots & o_{r} & 0_{r} & 0_{r, s} \\
0_{r} & B_{3} & A_{3} & \ldots & 0_{r} & 0_{r} & 0_{r, s} \\
\cdots & \ldots & \ldots & \cdots & \ldots & \ldots & \cdots \\
0_{r} & 0_{r} & 0_{r} & \cdots & B_{N-1} & A_{N-1} & 0_{r, s} \\
0_{s, r} & 0_{s, r} & 0_{s, r} & \cdots & 0_{s, r} & B_{N} & A_{N}
\end{array}\right] .
$$

Here N is the integral part of n / r, and $O_{p, \dot{q}}$ denotes the null matrix of dimension p by q with $0_{r, r} \equiv 0_{r}$; the matrices A_{k}, B_{k} have the
order r for $k=1, \ldots, N-1$, while the dimensions of A_{N} and B_{N} are s by s and s by r respectively with $l \leq s \leq r$.

In this note, we prove that the above matrix $A_{(N)}$ has the following inverse:
(1)

$$
A_{(N)}^{-1}=\left[L_{i j}\right], i, j=1, \ldots, N,
$$

where

$$
\begin{aligned}
& L_{i i}=A_{i}^{-1}, \quad i=1, \ldots, N, \\
& L_{i j}=0_{r}, \quad i<j \leq N-1, \quad L_{i N}=0_{r, s}, \quad 1 \leq i<N,
\end{aligned}
$$

and

$$
L_{i j}=(-1)^{i+j}\left\{\prod_{k=i}^{j+1}\left\{A_{k}^{-1} B_{k}\right)\right\} A_{j}^{-1}, \quad i=2, \ldots, N, j=1, \ldots, i-1 .
$$

The proof is by induction on N. For $N=2$, formula (1) takes the form

$$
A_{(2)}^{-1}=\left[\begin{array}{cc}
A_{1}^{-1} & 0_{r, s} \tag{2}\\
-A_{2}^{-1} B_{2} A_{1}^{-1} & A_{2}^{-1}
\end{array}\right],
$$

which is a special case of a well-known result [1, p. 109].
Suppose that (1) holds for a block matrix of order m; that is, for $N=m$. Then, for a matrix of order $m+1$, by (2) we have

$$
A_{(m+1)}^{-1}=\left[\begin{array}{cc}
A_{(m)}^{-1} & 0 \\
0_{m r, s} \\
-A_{m+1}^{-1}\left[0_{s, r} s_{s, r} \cdots B_{m+1}\right] A_{(m)}^{-1} & A_{m+1}^{-1}
\end{array}\right] .
$$

Since

$$
-A_{m+1}^{-1}\left[0_{s, r}^{0}{ }_{s, r} \cdots B_{m+1}\right] A_{(m)}^{-1}=-A_{m+1}^{-1} B_{m+1}\left[L_{m 1} L_{m 2} \cdots L_{m m}\right],
$$

it is easy to see that, on account of the induction hypothesis, (1) holds for $N=m+1$. The proof of (1) is thus complete.

References

[1] George F. Hadley, Linear algebra (Addison-Wesley, Reading, Massachusetts; London; 1961).
[2] V.N. Singh, "Solution of a general homogeneous linear difference equation", submitted.

Department of Mathematics and Astronomy, University of Lucknow,
Lucknow,
India.

