
TRANSACTIONS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 274, Number 1, November 1982

THE INVERSE OF A
TOTALLY POSITIVE BI-INFINITE BAND MATRIX1

BY

CARL DE BOOR

Abstract. It is shown that a bounded bi-infinite banded totally positive matrix A is
boundedly invertible iff there is one and only one bounded sequence mapped by A
to the sequence ((-)')■ The argument shows that such a matrix has a main diagonal,
i.e., the inverse of A is the bounded pointwise limit of inverses of finite sections of A
principal with respect to a particular diagonal; hence ((—)'+^4~ (j, 7» or its inverse
is again totally positive.

0. Introduction. This paper is a further step in a continuing effort to understand
certain linear spline approximation schemes. Convergence of such processes is
intimately tied to their stability, i.e., to their boundedness, as maps on C, say. Use of
the B-spline basis shows this question to be equivalent to bounding the inverse of
certain totally positive band matrices. The calculation of bounds on the inverse of a
given matrix is in general a difficult task. It is hoped that the present investigation
into the consequences of bandedness and total positivity for the structure of the
inverse may ultimately prove helpful in obtaining such bounds.

The results in this paper were obtained in the study of a conjecture due to C. A.
Micchelli [7]. In connection with his work on the specific approximation scheme of
interpolation at a (strictly increasing) point sequence t by elements of Sm t, i.e., by
splines of some order m with some knot sequence T = (/,), Micchelli became
convinced that every bounded function has one and only one bounded spline
interpolant iff the particular function which satisfies /(t,) = (-)', all /', has a
bounded spline interpolant in Sm,. If (N¡) = (N¡ mt) denotes the corresponding
B-spline basis for Sm,, then Micchelli's conjecture can be phrased thus: The matrix
A : = (Nj(Tj)) is boundedly invertible iff the linear system

(1) Ax = ((-)'")

has a bounded solution. Micchelli points out that, for a finite A, this conjecture is
indeed true and can be established using the total positivity of A.

Whether A = (N(t¡)) is finite or not, it is not difficult to see that A fails to be
invertible unless A is ///-banded, i.e., unless t and t so harmonize that at most m + 1
consecutive bands of A are not identically zero. It is then a small step to the
conjecture
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4G CARL DE BOOR

"A totally positive m-banded matrix A is boundedly invertible iff (1) has a
bounded solution"

whose truth Micchelli demonstrated to me for the case that A is a (bi-infinite)
Toeplitz matrix and which was proved recently in Cavaretta, Dahmen, Micchelli and
Smith [8] for the case that A is a block banded Toeplitz matrix.

As it turns out, this conjecture is incorrect; it fails unless one assumes, more
strongly, that (1) has a unique bounded solution. This uniqueness plays a crucial role
in the proof of the (corrected) conjecture given below. The proof is first given for
strictly z/z-banded matrices and is then extended to a general ///-banded matrix by a
limit argument, using a 'smoothing' result from [4].

In outline, our argument is as follows: We show that the nullspace

9?:= %iA := {/ERz:yl/=0}

of a strictly m-banded matrix A is Haar' in the sense that, for every / G 9Í \ 0, /' has
less than m = dim 3c weak sign changes. Here,/' is obtained from/by changing the
sign of every other entry,/'(/') : = (-)'/(/), all i. This makes it possible to interpolate
the bounded solution x to (1) at any m-set I '■= {/,,... ,/m} by some y, E 9Î. The
next (and hardest) step consists in showing that, for k = m+ '■ = dim 9l+ with

K+:={/E3l:  Urn |/(/') |<oo),

y, lies between x and 0 on the interval I(k) '■— ]ik,ik+x[, if we assume that
/, < • • • < im. This implies that x, ■= x — y, satisfies \\x* .k)\\ < \\x\\. We use this
fact as follows. If / is any integer interval, and A} J+k is the corresponding section of
A having the A:th band as its main diagonal, then

((-)% = (Axfh = AJ.J+k(xi]J+k)

provided we choose I = [J U (J + m)]\(J + k). But then, because of the total
positivity of A, \\(AJJ+k)~x\\ — llx^+JI and this is bounded by ||x|| since I(k) —
J + k in this case. This uniform boundedness of the inverses of all sections which
are principal with respect to the kth band is sufficient for the bounded invertibility
of A itself.

In this way, we show not only that existence and uniqueness of a bounded
solution for (1) implies bounded invertibility of A, but gain structure information
about the inverse: The inverse is the pointwise bounded limit of the inverses of finite
sections principal with respect to one particular band. In the terms of [1,2], A has a
main diagonal. This, in turn, permits the conclusion that the inverse of a totally
positive band matrix is checkerboard, a statement conjectured in [5, p. 319].

1. Preliminaries. In this section, we list certain notational conventions for easy
reference.

We use lower case letters to denote elements of R', i.e., real functions on some
integer set /, with /(/') the value at / of the function (or sequence) /. If / never
vanishes, then S(f) denotes the number of sign changes in/, i.e.,

S(f):=\{iEl:f(i)f(s(i))<0}\,
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THE INVERSE OF A BAND MATRIX 47

with s(i) ■— min{/ E I: j > /'} the successor to / if we think of / as an ordered
sequence. Here, | J1 denotes the cardinality of the set /. If / vanishes somewhere,
then it is customary to distinguish between strong and weak sign changes. These are
given by

£"(/):= inf{5(t3):t3Gsign/},       S+ (f) : = sup{S(v): v E sign /}

respectively, with sign / : = {v E {-1,1}': v( i )/( /' ) — | /( / ) | , all /}. In the sequel, an
unqualified "sign change" will always mean "weak sign change". It is convenient to
supplement the definition of 5" and S+ by setting S~(f) ■= -1, S+ (/) := | /| if
/ = 0. It is then easy to check that

5-(/) + 5+(/')=|/|-l,    forall/GR7,
with /={/„...,/„}, i, <•••<!„, and /'(/,):= (-)*/(',). s=l,...,n. We also
employ the prime to indicate a signature change in every other entry in case I = Z.
To be definite, we set

/'(0 := (-)'/(<),    all/, all/G Rz.

In particular, 1' denotes the bi-infinite sequence given by l'(z') : = (-)', all /'.
If / is a subset of /, then /¡y denotes the restriction of / G R' to J. In this

connection, \f '.= I\J denotes the complement of J in /. We write y instead of
\{/}. Further, J + k:= {j + k: j E J}, and [/', /'] := {k E Z: i < k <j). More
generally, [J] denotes the smallest integer interval containing J.

Correspondingly (though not completely in the same way), we denote by AK L the
restriction of the "matrix" A G R/xy to the subset KX L of I XJ. If K =
{kx,...,kp} andL = {/„..., lp), with kx < • • • < kp, /, < • • • < lp, then

detA^L:=det{A(k„lj))Pij=v

All norms are sup-norms. Explicitly, II / II := sup,e/1/(/) | , all/ G R7 and

Mil :=sup{M/||/||/||:/GR/, ||/|| < oo} = sup 2 \A(itj)\ ,
«e/ j£j

for A G R/xy.

Further, /„ := IJZ) := {/e Rz: U/H < oo}. We call A G Rz bounded if A maps
lx to itself, or, equivalently, if Mil < oo. If need be, we distinguish between the
bounded matrix A and the linear map induced by it on lx by calling the latter A,, .

The matrix A G R/xy is totally positive ( = '■ tp) if

det AKL >0   for all K X L C I X J with \K\ = \L\ .
See Karlin's comprehensive book [6] for details.

Finally, if ix,...,ip and /,,... J are sequences in / and J, respectively, and
A G R/xy, then we use the customary abbreviations

:=(i(w,)K,=,'iv-';
J\,---Jp
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48 CARL DE BOOR

and

p

2. The nullspace of a strictly m-banded bi-infinite matrix. The r th diagonal or bana
of a matrix /I is, by definition, the sequence (A(i, i + r)). As in [1], we call a matrix
A m-banded if all nonzero entries of A can be found in at most m + 1 consecutive
bands. Explicitly, the matrix A is m-banded if, for some /, A(i + I, j) ¥= 0 implies
/<_/</+ m. Unless otherwise indicated (e.g., by context), we will always assume
that / = 0. For a bi-infinite matrix A, this is merely a normalization achieved by
considering E~'A instead of A, with E the shift,

(£/)(/):= /(/+ 1),    all/, all/G Rz,

an invertible operator which preserves more or less all interesting structures in Rz.
The m-banded matrix A is called strictly m-banded if

A(i, i)A(i,i + m) ¥= 0,    all/,

i.e., the first and last nontrivial band is never zero. In case of a bi-infinite matrix A.
this nontrivial assumption insures that, for every m-interval I — {i + l,...,i + m),
every a E R' gives rise to one and only one sequence / with Af — 0 and f, = a. To
put it differently, with 9l:=$lA:={fERz: Af = 0} denoting the kernel or
nullspace of A, strict m-bandedness insures that, for every / := [i + 1, / + m], the
map 9Î -» Rm: fy->f\, is 1-1 and onto.

We now prove this statement to be true for every m-set / in case A is also tp. We
begin with the following

Lemma 2.1. If A is strictly m-banded and tp, andix < • • • < ip,jx < ■ ■ ■ <jp, then

A\\"  "*'] >0    ///   ir^jr^ir + m,allr.
\J\'v -dp j

Proof. Proof of the 'if part is by induction onp, it being true for/3 = 0 with the
customary convention that A(%) = 1. If /, =jx, then, A being m-banded, we have

\JU---Jpj \Jl)       \h,---rJp)

and this is strictly positive, the first factor by the strict m-bandedness of A and the
second by induction. The corresponding argument applies when/, = /', + m.
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THE INVERSE OF A BAND MATRIX 49

Otherwise /', <_/,</, 4- m. But then, A being m-banded and tp, we have

q<aIJi ~m'   '"•■"'"1 ;
\      h* J»>~J,I XX®®

(.       .i , X       X        X       X'■   / U--W :x  x  x  x

-¿I .'   A  "   .       U
.'l/     \     Vi      /     \72.---^

with the subtrahend strictly positive by the strict m-bandedness of A  and the
induction hypothesis, and this implies that the factors of the minuend must be
strictly positive, too.

As to the 'only if part,
"j i
<!>••• dp

7i >■ • • Jp

has zeros in columns (rows) 1,...,/" and rows (columns) r,...,p in case ir>jr
(jr> it + m), hence is then singular.    D

Corollary. If A is strictly m-banded and tp, and J, K are integer intervals with
K - [J U (J + m)], then x{K ¥= 0 and (Ax\j = 0 imply 5"(x|Ar) >\J \ .

Proof (an adaptation of the argument for Theorem 5.1.2 in [6, p. 219f]). The
assumption that/3 : = S~(x^K) <\J\ leads to a contradiction as follows.

Let K0,... ,Kp be a corresponding partition of K, i.e., (without loss of generality)

(2) 0 *(-)'*,*, ><>,       / = 0,...,/3.

Then 0 = 2f=0(-)'u, with

(3) t3,:=    2   \x(k)\A(-,k)v,       / = 0,...,//,
k£K,

showing that (v¡)j¡ is linearly dependent. This implies, with V '■— [t>0 | ■ ■ ■ \vp], that,
for any ;0 < • ■ • < i  in J,

Q=li0,...,lp\ 2 2    u(iCo)|...|x(ííjMfV    iJlii...u/t^l  '•'•"''*

and all summands on the right are nonnegative by the tp of A. On the other hand,
we can, by (2), choose /c, G iV,, all /, so that |x(/c0)| • •■ | x(kp) \¥^ 0 and will
therefore have reached a contradiction as soon as we exhibit a corresponding choice
for /0 < • • • < /  in J for which

(4) a\ -   >o.
Ko>- ■ ■ >Kp

»o.'p
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50 CARL DE BOOR

This we can do as follows. Define (ir)fx+x by

['-!• Vh]i-:= j>    >r '■- max{/_, + r, kr - m},    r-0,...,p.

Then /0 < • • • < i since both sequences (/_, + r)r and (kr — m)r are strictly
increasing. Also, z0,...,/„ G J since trivially /_, < ir, while

?; = näx{/_, + r,kr-m} <ip+i

since r =£/> <\J | and kr E K — [/'_,, ip+x + m\. Finally, kr — m < z'f < /cr, since
/_i ^ ^o < ' ' ' < kr implies that i_, + r < /cr; hence

/cr — m < max{/_, + r, /cr — m} *S A:r.

The lemma now gives (4) and thereby the desired contradiction.    D
Remark. We have proved here a particular instance of the statement: "If B is tp

and  of  full  rank,  then x ¥= 0  implies S'(x)> S+ (Bx)",  provided  we  define
S+ (0) : = length of 0, as we did earlier.

We conclude that if y E 9c and y,K =/=■ 0, then

S+(y'lK)=\K\-l-S-(ylK)<\K\-l-\J\=m-\;
hence

Proposition 2.5. If A is strictly m-banded and tp, then y E 9c \ 0 implies S+ ( y') «
m - 1.

Since S+ (/) >| {/: /(/') = 0} | , this shows that 9c is then a Haar space, i.e.,
9? -> Rm: y \-+y>, is 1-1 and onto whenever \I\= m. Further, this shows that any
nontrivial y' G 5c' with m — 1 zeros changes sign across each of these zeros and
nowhere else, i.e.,

Corollary. If A is strictly m-banded and tp, and y G 9Î \ 0 vanishes at ix < ■ ■ ■ <
L-1 -then (with >o:= - °o. L : = °°)>

(6) /(/, -1)(-)V(0 > 0   forir<i<ir+l,r = 0,...,m-l.

We make use below of the two subspaces <Jl+ and 9Î" of 9?. These are defined by

9c*:={/G9c:    Urn"   |/(i) |< oo}, • = +,-.

Their intersection consists of all bounded solutions to the homogeneous problem
Ay — 0. The intersection is therefore trivial iff (0.1) has at most one bounded
solution. See [2] for conditions on A equivalent to having 9? = 9Î+ ©9?".

3. The algorithms L and R. Let x be a bounded sequence satisfying Ax — V. In
this section, we investigate y,, the sequence in 9Î = SflA which matches x at the m-set
/ = {/,,... ,im} with z'| < • • • < im. For k = 0,... ,m, the interval k of such an m-set
is, by definition, the integer interval I(k) '■= ]ik, ik+x[, with z0 := -oo, im+x '■= oo.

Our ultimate goal is to show that, for k — m+ : = dim 9Î + , y, on Fk) lies between
x' and 0. The proof of this fact involves certain manipulations which are conveni-
ently described in terms of two algorithms, given below. For their analysis, the
following fact is useful.
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THE INVERSE OF A BAND MATRIX 51

Proposition 3.1. Let A be strictly m-banded and tp, and let z — x — y, for some
m-set I. Then

(2) z(/)^0   for all i El- ■
More precisely,

(3) (-)V(/)>0   foriEl(k),k = 0,...,m.

Proof. Let J be an integer interval containing / in its 'interior'. Since A is
m-banded, we have

l']J = (Az)[J = AJJzlL),    withL:= [jU(J + m)]\I,

and, since A is strictly banded, Aj L is invertible, by Lemma 2.1. Thus (Aj L)~x is
checkerboard, and zjL = (Aj L)'x(l'^). It follows that z,£ changes sign strongly at
every slot, with z(j)(-)J > 0 for all/ G J and to the left of /. Since J is essentially
arbitrary, we conclude that z' > 0 near -oo and that z,N/ strongly changes sign at
every slot.    D

Corollary. If the m-set J = {jx,... ,jm) is obtained from the m-set I = {/,,... ,im]
by moving the leftmost k points to the left, i.e., jr< ir, r = 1,... ,k, while jr = z'r,
r = k + 1,... ,m, then, on [ik, oo[, yj lies between x' andyj, with equality only at the
points ik + x,-..,im( unless J = I).

Proof. The assertion follows by repeated application of the special case

The proof for this special case goes as follows. By (3),

(-)*(*,' -y¡)U) = (-)k(x' -y¡)U) <o.

On the other hand, y} and y, agree at the m-1 points of / \ ik; hence their difference
changes sign strongly across each point of / \ ik and nowhere else, by the corollary to
Proposition 2.1. Consequently,

(4a) (-rU-v'./'XOX)    for/, </</r+,,r = A:,...,m,
while, again by (3),

(4b) (-)'(x' -»')(/) >0    foTir<i<ir+x,r = k,...,m.    D

What is to follow is based on the proposition and its corollary and the following
attempt at constructing a nontrivial element of 9Î".

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



52 CARL DE BOOR

By the proposition, 5+ (x') < m; hence x' has constant sign near -oo. Let

(5) e := sign *'(/)    for/near-oo

and let k E [1, m ] be even or odd depending on whether e is 1 or -1. Choose an
m-set / so that ik+x lies to the left of all sign changes of x' (if any). Then, on I(k\ ey¡
lies below ex', by (3). We then consider what happens to y, on Fk) as we move
/,,...,ik to the left. By the corollary, ey¡ must then decrease. There are two
possibilities:

(i) No matter how far we move /,,... ,ik to the left, ey¡ remains positive on Fk).
Then we obtain as a limit point some y G 9c which agrees with x at ik+x,.. .,im,
hence is not just 0, and for which ey' lies between ex' and 0 on ]-oo, ik+x[. But this
implies that y E 9? "\0 since x is bounded by assumption. A refinement of the limit
process actually gives dim 9c "^ m — k.

(ii) Eventually, ey¡ becomes nonpositive somewhere in Fk\ hence has (at least)
two sign changes there. We would then decrease k by 2 and try again. By the
corollary, the two sign changes of y, just acquired would not be affected by
subsequent moves.

In this way, we either obtain some nontrivial element of 9Î " or else find ourselves
once again at (ii) but with k = 1 or 2, making further decreases in k impossible. The
current y[ must then have two sign changes for every time we passed through (ii).
Since S+ (y¡) < m, this limits the number of times we can pass through (ii). In
particular, if we start with k = m or m — 1, we must eventually reach (i).

This allows us to talk about the smallest k we manage to arrive with at (i) as we
vary the initial k and / in the above procedure; call it kL. Analogously, we define kR
as the largest k we manage to arrive with at (i) as we play the game to the right
rather than the left. The extremality of kh and kR and the fact that then dim 9c"3*
m — kL, dim 9Î+ > kR lead to the desired conclusion in ways to be made precise
below.

We now give a formal description of the game just played.

Algorithm L. Input. The integer kin E [0, m] and the m-set 7in = {/,,...,im)
with /,<•••< im. Also, recall e : = sign x'(z') for / near -oo.

Step0.k:= *„,/:= /in.
Step 1. If (-)ke < 0, or if x' changes sign to the left of I{k\ then EXIT 1.
Step 2. Let Ir : = {/', ~ r,.. .,ik - r, ik+x,... ,/J, r = 0,1,2,....
Step 3. If, for all r, ey'K > 0 on /„<*>, then EXIT 2.
Step 4. Pick an r for which ey/ < 0 somewhere in Frk) and replace / by Ir.
Step 5.Uk< 2, then EXIT 3.'
Step 6. Decrease k by 2 and return to Step 2.

We now analyse the output from this algorithm.
EXIT 1 is a failure exit which allows us to be less careful about the input than we

might otherwise have to be. In the applications of the algorithm, it will be obvious
that we do not exit via EXIT 1.

EXIT 2 is the most interesting of the three, because of the following
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THE INVERSE OF A BAND MATRIX 53

Lemma L. If k is as on exit from Algorithm L via EXIT 2, then
dim 9c"3* m — k.

Proof. For k = m, there is nothing to prove, so assume k < m. Then we have in
hand a sequence (yr) '■= (y, ) in 9c for which 0 < ey'r+x(i) < ey,(i) < ex'(i) for all
iE]ik — r, ik + x[. Now let Ir k ■ = Ir and, for r > 0,/ > k, consider

{< r,... ,ij,      r,ik,... ,ly_l, <y+i,- • • ><„,}•

Let y    : — J/   be the corresponding interpolants to x from 9Î ; see figure.

r']+1       yr+l,j'

j-1
l»

- r<i<i.

Then, by the corollary to the proposition,

0 < £y'r,k{i) < *j£*+i(0 < < ey/.Ji) < ex'(í') for ik- r^t^ik

while yrj(z) = x(z') for / = ij+x,...,im, and yrj(ij) moves away from x(i.¡) as r
increases. Since 9c is finite dimensional and independent over any m-set (by
Proposition 2.1), it now follows that (yrj)r has limit points in 9c and any such limit
pointy satisfies 0 < eyl < ex' on ]-oo, ik[, andyi/) = x(i), i = ij+x,... ,im. Since x
is bounded, this implies that zs := ys — ys_x is in 9c~, vanishes at /J+,,... ,/m, but
does not vanish at is, i.e., the matrix (zs(i,))'?l=k+x is triangular with nonzero
diagonal, hence invertible. This shows (zs)k+x to be independent; hence dim 9c >
m- k.    D

Finally, if / is obtained via EXIT 3, then we are now certain that y, has a weak
sign change in each of the intervals 0,2,... ,/cin of / in case e = 1, or in each of the
intervals l,3,...,kin in case e == -1. This is so because once a sign change is
obtained, in Step 4, in the current interval k, this sign change persists, by the
corollary to the proposition. Further, since ex' > 0 on that interval (we would have
exited via EXIT 1 otherwise), it follows that y¡ has two sign changes in each of the
intervals kin — 2/ with kin — 2/ > 0, and one in interval 0 if kin is even, for a total
of k¡n + 1 sign changes. Since a nontrivial y G 9Î can have at most m — 1 sign
changes, an input of kin = m or m — 1 (depending on the sign of e) together with an Iin
which lies to the left of all sign changes of x' (to avoid EXIT 1) is guaranteed to bring
us to EXIT 2. In particular, it makes sense to define

and then

(6)
follows.

min{k: k obtained as output via EXIT 2 from Algorithm L}

dim 9c1 > m
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54 CARL DE BOOR

Algorithm R is constructed just as Algorithm L, except that all moves are made
toward the right rather than the left. For completeness, we give the full description.

Algorithm R. Input. The integer A:in G [0, m] and the m-set Iin = {/',,...,/„,}
with z'| < • • • < im. Also, set e := sign x'(i) for i near oo.

Step0.k:= km,I: = Iin.
Step 1. If (~)ke < 0, or if x' changes sign to the right of Fk\ then EXIT 1.
5/e73 2. Let/r := {ix,. ■-,ik, ik+x + r,...,im + /-},/• = 0,1,2,....
Step 3. If, for all r, ey/ > 0 on /r<*>, then EXIT 2.
Step 4. Pick an r for which ey¡ < 0 somewhere in I^k) and replace / by Ir.
Step 5. If k > m - 2, then EXIT 3.
Step 6. Increase k by 2 and return to Step 2.

A discussion very close to that following Algorithm L would establish the
following facts.

Lemma R. // k is as on exit from Algorithm R via EXIT 2, then dim 9c+ > /c.
Further, the number

kR '■= max{/c: & obtained as output via EXIT 2 from Algorithm R}

is we// defined, and

(7) dim 9c+ > feR
/0//c3WÍ.

We are now ready to prove the main result of this section.

Theorem 3.8. If x is the unique bounded solution to the linear system Ax = I', with
A a strictly m-banded bi-infinite tp matrix, then, for k = m+ '■= dim 9c+ and for any
m-set I = {/,,...,i'm} with /, < • • • < im, y¡ lies between 0 and x' on the interval
Fk)=]ik, ik+x[. In particular, then

(9) \x-y,\<\x\    onFkK

Proof. Let j0 < • ■ • <ys+(i) be points on which x' alternates in sign, with
x(j0) t^ 0. Let / be any m-set with ik +r =jr, r = 0,1,... ,s, and

s '■= min{5+ (x'), m — kL).

If kL > 1, then, because of the minimality of kL, an application of Algorithm L to
the input kL — 2,1 is bound to end via EXIT 3; hence y¡ (with a possibly changed /)
has two sign changes in each of the intervals kL — 2, kL — 4,..., and one sign
change in the interval 0 in case kh is even, for a total of kL — 1 sign changes. In
addition,y¡ alternates in sign on the points ik ,.. .,ik +s since it agrees there with x'
and x' does, giving an additional s sign changes. We conclude that

(10) y'j has at least kL — 1 + 5 sign changes to the left of ik +s,

and this conclusion holds trivially in case kL < 1.
We now prove that s = S+ (x'). Suppose that s < S+ (xr). Then s = m — kL, and

we now know that y, has m — 1 sign changes on ]-oo, ik +s[, hence does not change
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sign on [ikL+s,oo[, yet matches x' at the points ikL+s,-..,ik +s+(X') on which x'
alternates in sign, a contradiction.

We conclude that x' has no sign changes to the right of ik +s; hence an
application of Algorithm R to the input kL + s, I is bound to terminate via EXIT 2
(because of (10)) with some k =-k, which is at least as big as /cL + s, yet no bigger
than kR by the maximality of kR. In symbols,

(11) kL + s < kr *£ kR

and therefore, with (6) and (7),
(12) dim 9c" + dim 9c+ > (m - kL) + kR > m + s = dim 9c + S+ (x').

This proves that
dim9rn9c+>S+(x').

Thus, if now x is the only bounded solution of Ax = V, then 9c~n9c + = {0}; hence
then s — S+ (x') = 0, and dim 9Í > dim 9c" + dim 9î+ . This shows that there must
be equality throughout (12). This implies equality in (7), i.e., m+ = kR and equality
in (11) (with s = 0), i.e.,

kL = k, = kK,

and thus shows (9) to hold for the original /. But now, since S+ (x') = 0, this could
have been any m-set /.    D

Corollary I. If A is strictly m-banded and tp, and x is a bounded sequence
satisfying Ax = 1', then S+ (x') < dim 9c-n9c+ .

Corollary 2. The conclusions of Theorem 3.8 and Corollary 1 remain valid if, in
the hypotheses, I' is replaced by any strictly alternating sequence u.

Here, we call u strictly alternating iî u(i)u(i + 1) < 0 for all /.

4. The main result.

Theorem 4.1. If A is a bounded strictly m-banded bi-infinite tp matrix, and x is the
unique bounded sequence mapped by A to 1', then A is boundedly invertible on lx and
M"lll = llxll.

Proof. For any integer interval /, let / : = [J U (J + m)]\(J + k). Then / is an
m-set, / = {/„... ,im) with /, < • • • < im, say. Let z}:= x — y„ withy¡ G 9Î = 1RA
and x = y, on /. Then we conclude from Theorem 3.8 that

(2) |z,(/)|<lx(/)|,    alljEJ+k
while

v\j = (Ax-y,))\j = AJ(zJlJ+k)

with Aj '■= Aj J+k. Since A} is tp, this implies that Aj is invertible (as a general
result, though the invertibility of A} could in the present circumstance be derived
directly from Lemma 2.1); hence its inverse is checkerboard and so takes on its norm
on the vector l'(7, i.e.,
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Combine this with (2) to get

(3) KiNKz + JMHI,    for all intervals 7.
Since A is bounded and banded, it carries c0 := c0(Z) := (G Rz: lim^^, |/(/)|
= 0} to itself, and the bounded invertibility of A,Cf¡ follows now by a standard
argument: Let P} be the truncation projector,

-■//CO.   ¿e;,(Pjf)(i)--- {0, otherwise.
Then Pj -> 1 pointwise on c0; therefore PjAPJ+k -» A pointwise on c0 as J -» Z.
Now/ly = Aj J + k represents the interesting part of PjAPJ + k, i.e., the map' PjA\ranP .
Therefore, for u G c0 and «y := /l/'PMzz G ran iy+A, we have

\\uj - u\\=\\Aj-x(PjAu - PjAPJ+ku)\\

<||x|||M||||M-/^+,u||^rz0

since My"'II < \\x\\ and ||P,/1|| < Mil. Thus Aj'xPj converges pointwise on ran A^Cg
to a left inverse of A,,.. Further,Ko

\\u\\=lim\\uj\\^ïhn~\\Aj-x\\\\Au\\<\\x\\\\Au\\,

i.e., Aic is bounded below; hence ran A\ is closed. The same argument shows that
also (A,,. )* = ATU is bounded below; hence ran A,,, is also dense. We conclude thatv     Ko' l'i Ko
Ay.a is 1-1 and onto c0, hence boundedly invertible. Its inverse is therefore again
(representable as) a matrix, i.e., (A,c )"' = A'x. for some matrix A~x whose rows are
uniformly in /,, and (A,c )"' = lim j^z(PjAPJ+k)~xPj pointwise on c0; hence

(4) A'x = lim Aj~x    entrywise.

But then A'x provides the inverse of A on lx — (c0)**, and M~'|l = llxll since
ll/T'll < llxll from (3) and (4), while/T'(l') = x.    D

The assumptions of Theorem 4.1 can be weakened in two ways.
As already pointed out earlier, the results of §3 do not depend on having a

bounded sequence x satisfying Ax = V. It is sufficient to consider bounded se-
quences for which u '■= Ax is strictly alternating, i.e., u(i)u(i + 1) < 0, all /. For the
results of Theorem 4.1, we need, more strongly, that u is uniformly alternating, i.e.,
strictly alternating and with inf | tz(z') |> 0. In that case, the diagonal matrix

D:= f...,(_)'„(/),...J
is bounded (since u = Ax is) and boundedly invertible, while D'XA is still strictly
m-banded and tp and carries the bounded sequence x to D~xu = V; hence D'XA is
invertible on lx and IK/JM)"1!! = ||x||. Therefore A = D(D~XA) is invertible and
M-'ll< IK/J-Ur'llll/Jr'll = sup„7|x(/)/M(/)|.

Secondly, the assumption of strict m-bandedness, though essential for part of the
argument, is not essential for the conclusion. For, according to [4], a bounded
m-banded tp matrix A, whose rows and columns are linearly independent, is the
uniform limit of strictly m-banded tp matrices A   (as e — 0, say). In our case, the
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linear independence of the columns follows from the assumed uniqueness of the
bounded solution to Ax = u, while the linear independence of the rows follows from
the assumed total positivity of A and the assumed existence of x with Ax strictly
alternating. Existence and uniqueness of a bounded solution to the equation Ax — u
(with a uniformly alternating w) therefore implies existence and uniqueness of a
bounded solution x to the equation Aex = uc, with uc '■= u — (A — Ae)x again
uniformly alternating for all sufficiently small e. Consequently, Ae is then boundedly
invertible on lx and

\\A;l\]<sup\x(i)/ut(j)\ -   sup|x(i)/«(/)|.
i,J f^°    i,j

Thus A must be boundedly invertible on lx and \\A~X\\ < sup, y | x(i)/u(j) \ .

Corollary. The conclusions of Theorem 4.1 remain true if A is only m-banded and
Y is replaced by a uniformly alternating sequence u.

The proof of Theorem 4.1 shows more than just the invertibility of A on lx. It
shows that A has its /cth diagonal as main diagonal in the sense introduced in [1]:
The sections Aj = Aj J+k are invertible as/ -> Z and the corresponding set (Ad~x) is
bounded. Hence A~x is the bounded entrywise limit of these finite matrices A/1.
Again, this conclusion persists if A is only m-banded since it is then the uniform
limit of strictly m-banded tp matrices.

Theorem 4.5. Let A be an m-banded bi-infinite tp matrix which is bounded and
boundedly invertible. Then A has a main diagonal, i.e., for some k and all intervals J,
Aj J+k is invertible and A~x is the bounded entrywise limit of(AJJ+k)~x.

Consequently, with D the diagonal matrix

(-)kD'xA~xD is again tp. In particular, A~x is checkerboard,

(-)i+J+kA-l(i,j)>Q,   alli,j.

5. Concluding remarks. S. Friedland, in reaction to a presentation of these results,
suggested that a tp matrix, whether banded or not, must map lx onto itself if its
range on lx contains 1', since it is then possible to generate a preimage for every
u E lx as a limit point of minimal solutions of (PjA)y = PjU, using the checker-
board nature of the inverses of finite sections of A. Further, A. Pinkus showed how
to establish the sign regularity of DA~XD, with A~x the bounded inverse of a tp
matrix A, without assuming that the inverse is the limit of inverses of finite sections.
These matters are made precise in [3],
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