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THE INVERSE PROBLEM OF THE CALCULUS

OF VARIATIONS FOR SCALAR FOURTH-ORDER ORDINARY

DIFFERENTIAL EQUATIONS

M. E. FELS

Abstract. A simple invariant characterization of the scalar fourth-order ordi-
nary differential equations which admit a variational multiplier is given. The
necessary and sufficient conditions for the existence of a multiplier are ex-
pressed in terms of the vanishing of two relative invariants which can be as-
sociated with any fourth-order equation through the application of Cartan’s
equivalence method. The solution to the inverse problem for fourth-order
scalar equations provides the solution to an equivalence problem for second-
order Lagrangians, as well as the precise relationship between the symmetry
algebra of a variational equation and the divergence symmetry algebra of the
associated Lagrangian.

1. Introduction

Solving the inverse problem of the calculus of variations for scalar differential
equations consists of characterizing those equations which may be multiplied by a
non-zero function such that the resulting equation arises from a variational prin-
ciple. Specifically in the case of scalar fourth-order ordinary differential equations
we will determine for which equations
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there exist smooth functions g 6= 0 (the variational multiplier) and Lagrangian L
such that
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is an identity, where E(L) = 0 is the Euler-Lagrange equation for the Lagrangian
L.

A complete solution to the inverse problem for the simplest possible case of a
scalar second-order ordinary differential equation has been know since Darboux
[9]. Darboux determined that every second-order ordinary differential equation
admits a multiplier and we will find that this is far from the case for a fourth-order
equation. Thus the inverse problem for fourth-order scalar equations is the simplest
non-trivial case which admits a complete solution.
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5008 M. E. FELS

The formulation of the variational multiplier problem for scalar equations is eas-
ily extended to systems of differential equations where the problem is to determine
whether it is possible to multiply a system of equations by a non-singular matrix of
functions such that the result is a variation of some Lagrangian. In particular the
multiplier problem for a system of two second-order ordinary differential equations
has been thoroughly analyzed in the famous work of J. Douglas [10]. Recently
Anderson and Thompson [4] have also studied this problem using the variational
bicomplex (see section 2 below). Our solution for the scalar fourth-order equations
will be based on ideas from these two articles.

The first step in Douglas’s solution to the inverse problem involved showing
that necessary and sufficient conditions for the existence of a multiplier could be
expressed in terms of the existence of solutions to a system of partial differential
equations, which arise from the Helmholtz conditions, and where the unknowns are
the multipliers (for a discussion of the Helmholtz conditions see [13]). Solving this
system of partial differential equations would then provide the multiplier matrix
for certain pairs of second-order ordinary differential equations. By using Riquier
theory to analyze the existence and degree of generality of the solution space of the
system of partial differential equations for the multipliers, Douglas discovered that
there exist pairs of second-order equations which admit no multipliers, some which
admit finitely many different multipliers (with distinct Lagrangians) as well as pairs
of equations which admit infinitely many different multipliers (and Lagrangians).
Unfortunately due to the overwhelming complexity of the analyses, Douglas some-
times was only able to determine the degree of generality of the solution space
to the partial differential equations for the multipliers and was unable to find a
pair of ordinary differential equations with the specified degree of generality of the
multipliers.

The solution to the inverse problem given by Douglas emphasizes an important
aspect in solving the inverse problem for the fourth-order equation (1.2). To find
a complete solution to the inverse problem we must not only determine which
equations admit a multiplier, but we must also determine how unique the multiplier
and associated Lagrangian is. Fortunately we will find in the fourth-order inverse
problem that if an equation admits a variational multiplier so that (1.2) is satisfied,
then the multiplier and the associated Lagrangian are essentially unique. The
uniqueness of a variational structure for a variational fourth-order equation will
subsequently be used to solve an equivalence problem for second-order Lagrangians
as well as provide the relationship between the symmetry group of a variational
scalar fourth-order equation and the divergence symmetries of its Lagrangian.

The approach we take in solving the fourth-order inverse problem follows a re-
fined version of Douglas’s solution to the multiplier problem given by Anderson and
Thompson [4]. Anderson and Thompson derive the system of determining equations
for the multiplier in a natural way using the variational bicomplex. They showed
that the existence of a multiplier was in direct correspondence with the existence
of special cohomology classes arising in the variational bicomplex associated with
a differential equation. The advantage in this formulation of the inverse problem
is that the invariant nature of the problem is clearly emphasized. Anderson and
Thompson proceeded to study the existence problem for the cohomology classes
using exterior differential systems which was considerably easier than the intricate
analysis of Douglas, and subsequently they were able to determine some of the
exceptional examples which had eluded Douglas.
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THE INVERSE PROBLEM FOR FOURTH-ORDER ODE’S 5009

Our solution to the multiplier problem will use in an essential way the formu-
lation of the inverse problem of Anderson and Thompson. In the next section we
will recall the theory of the variational bicomplex as it applies to problem (1.2).
In particular by using the cohomology formulation of the multiplier problem we
determine the exterior differential system which must be integrated in order that
a cohomology class and hence a multiplier as in (1.2) exists. The novelty of our
solution to the problem relies in writing the exterior differential system in terms
of an invariant coframe obtained through Cartan’s equivalence method. In section
3 we provide the details of the equivalence method calculations for a fourth-order
ordinary differential equation under contact transformations and obtain the asso-
ciated {e}-structure and hence the invariant coframe. In section 4 we use this
coframe to analyze the exterior differential system for the cohomology class and
this provides the solution to the inverse problem which can be described solely in
terms of vanishing conditions on two of the relative invariants (torsion) found in
section 3. Lastly, in section 5 we consider two applications of the solution to the
inverse problem.

2. the variational bicomplex

The variational bicomplex was initially introduced in order to formulate and solve
the inverse problem in the calculus of variations, and so we recall the basic theory
of the bicomplex which allows us to solve the multiplier problem for fourth-order
equations.

The infinite jet space (see [1]) J∞(R,R), while not a manifold in the stan-
dard sense, does admit local coordinates (x, ux, uxx, ..., ur, ...) and a contact ideal
C(J∞(R,R)) generated by the one-forms

θ0 = du− uxdx , θ1 = dux − uxxdx , ... , θr = dur − ur+1dx , ... .(2.1)

The one-forms in (2.1) along with the differential form dx form a basis for the
exterior algebra of differential forms on J∞(R,R). From this basis of forms we
define the vector-field d

dx on J∞(R,R) by the conditions

d

dx
dx = 1 ,

d

dx
θr = 0 , r = 0, 1, ...,

so that the component form of d
dx is

d

dx
=

∂

∂x
+
∞∑
a=0

ua+1
∂

∂ua
.(2.2)

d
dx is called the total x-derivative.

We now define two subspaces Ω0,p(J∞(R,R)) and Ω1,p−1(J∞(R,R)), for p ≥ 1,
of the set of p-forms on J∞(R,R). The first space is defined inductively by

Ω0,1(J∞(R,R)) = {aiθi, ai ∈ C∞(J∞(R,R)) , 0 ≤ i <∞},
Ω0,p(J∞(R,R)) = {αi∧ θi, αi ∈ Ω0,p−1(J∞(R,R)) , 0 ≤ i <∞ , p ≥ 1 }

where the summation convention is used here and will be assumed from now on.
The second subspace, Ω1,p−1(J∞(R,R)), is then defined as

Ω1,p−1(J∞(R,R)) = {α∧ dx, α ∈ Ω0,p−1(J∞(R,R)), p ≥ 1 } .
These subspaces provide a direct sum decomposition of the p-forms on J∞(R,R)

Ωp(J∞(R,R)) = Ω0,p(J∞(R,R))⊕ Ω1,p−1(J∞(R,R))(2.3)
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5010 M. E. FELS

and thus every differential form ω ∈ Ωp(J∞(R,R)) may be written

ω = ω0,p + ω1,p−1

where

ω0,p ∈ Ω0,p(J∞(R,R)) , ω1,p−1 ∈ Ω1,p−1(J∞(R,R)) .

We also define Ω0,0(J∞(R,R)) to be the smooth functions C∞(J∞(R,R)), and for
convenience we take Ω2,p(J∞(R,R)) = 0.

The direct sum decomposition in (2.3) induces a splitting of the exterior deriv-
ative into a direct sum of two derivative operators

d = dH + dV .(2.4)

The operator dH acts on smooth functions h ∈ Ω0,0(J∞(R,R)) by

dH h(x, ux, ...ur) =
d

dx
(h)dx ∈ Ω1,0(J∞(R,R))

where

d

dx
(h) =

∂h

∂x
+

r∑
a=0

ua+1
∂h

∂ua

where d
dx is the total derivative operator in (2.2), while the operator dH on forms

is

dH ω = dx∧L d
dx
ω, ω ∈ Ωr,s(J∞(R,R)) , r = 0, 1 ; s ≥ 0,

where L d
dx

is the Lie-derivative along d
dx . The operation of dV = d − dH on a

smooth function h is given in coordinates by

dV h(x, ux, ...ur) =
a=r∑
a=0

∂h

∂ua
θa ∈ Ω1,0(J∞(R,R)) ,

and the action of dV extends easily to forms. The two derivative operations are
then operators

dH : Ωr,s(J∞(R,R)) → Ωr+1,s(J∞(R,R)),

dV : Ωr,s(J∞(R,R)) → Ωr,s+1(J∞(R,R)) , r = 0, 1; s ≥ 0,

where dH is called the horizontal exterior derivative while dV is the vertical exterior
derivative. These two derivatives satisfy the properties

d2
H = 0 , d2

V = 0 , dHdV + dV dH = 0 .(2.5)

Finally the variational bicomplex is defined to be the double complex

{Ωr,s(J∞(R,R)), dH , dV }r=0,1,2;s≥0.

The reader should consult [1] for a thorough treatment of the variational bicomplex.
A Lagrangian is represented in the bicomplex by a one-form λ ∈ Ω1,0(J∞(R,R))

whose local coordinate expression is

λ = L(x, ux, ..., ul)dx ,(2.6)

and where the order of the Lagrangian λ is defined to be the highest derivative
dependence of L in (2.6); i.e. the Lagrangian in (2.6) has order l. The first varia-
tional formula in the calculus of variations can be conveniently expressed using the
variational bicomplex formalism as
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THE INVERSE PROBLEM FOR FOURTH-ORDER ODE’S 5011

Lemma 2.1. Let λ ∈ Ω1,0(J∞(R,R)) be an lth-order Lagrangian as in (2.6). Then

dV λ = E(λ) + dH η(2.7)

where E(λ) ∈ Ω1,1(J∞(R,R)) is the Euler-Lagrange form

E(λ) =

[
∂L

∂u
+

(
− d

dx

)
∂L

∂ux
+

(
− d

dx

)2
∂L

∂uxx
+ ...+

(
− d

dx

)l
∂L

∂ul

]
θ0∧ dx

and η ∈ Ω0,1(J∞(R,R)) is

η = Arθ
r , Ar =

l−r−1∑
s=0

(−1)s+1

(
d

dx

)s(
∂L

∂ur+s+1

)
, 0 ≤ r ≤ l − 1 .(2.8)

Setting the coefficient of θ0∧ dx in the differential form E(λ) to zero generates
the Euler-Lagrange equations for λ which we denote by E(L). The Poincaré-Cartan
form associated with a Lagrangian λ, which is important in the geometry of varia-
tional problems (see [14]), is the one-form defined by

Θ = η − λ(2.9)

where η is given in (2.8).
There is a simple procedure, which we will now describe, that allows us to asso-

ciate a variational bicomplex with a fourth-order ordinary differential equation. A
fourth-order ordinary differential equation

uxxxx − f(x, u, ux, uxx, uxxx) = 0(2.10)

defines a 5-dimensional sub-manifold R of J4(R,R) by the inclusion

i : (x, u, ux, uxx, uxxx)→ (x, u, ux, uxx, uxxx, f(x, ux, uxx, uxxx) ) ⊂ J4(R,R)(2.11)

where (x, u, ux, uxx, uxxx) are local coordinates for R. We call R the equation man-
ifold for equation (2.10). The map i in (2.11) extends to a map i : R → J∞(R,R)
by prolongation

uxxxxx =
d

dx
f , ... , u4+r =

dr

dxr
f , .... .

The variational bicomplex associated with the differential equation (2.10) whose
equation manifold is R will be denoted by {Ωr,s(R), dH , dV }r=0,1;s≥0; this bicom-
plex is defined to be the pullback of the complex {Ωr,s(J∞(R,R)), dH , dV }r=0,1;s≥0

by the inclusion i : R→ J∞(R,R). For example, the contact ideal on R is

C(R) = {θ0 = du− uxdx , θ1 = dux − uxxdx , θ2 = dux − uxxxdx ,
θ3 = dux − f(x, u, ux, uxx, uxxx)dx}

(2.12)

while the total derivative of a function h ∈ C∞(R), which we will write as dh
dx , has

the coordinate expression

dh

dx
=
∂h

∂x
+ ux

∂h

∂u
+ uxx

∂h

∂ux
+ uxxx

∂h

∂uxx
+ f(x, u, ux, uxx, uxxx)

∂h

∂uxxx
.

If we consider those fourth-order ordinary differential equations which admit a
multiplier, so that (1.2) is satisfied, then the pullback of the variational formula
(2.7) to the equation manifold R yields

dV λ = dH(i∗η)(2.13)
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5012 M. E. FELS

( i∗E(λ) = 0 by the assumption that the equation admits a multiplier ). The
essential idea underlying the solution to the inverse problem now lies in defining a
differential two-form ω ∈ Ω0,2(R) by

ω = dV (i∗η)(2.14)

which from equations (2.13) and (2.4) is found to be closed. The closed differential
two-form ω, which may also be written in terms of the Poincaré-Cartan form as
ω = i∗dΘ using (2.9), when written out explicitly is

ω = − ∂2L

∂uxx2
(θ0∧ θ3 − θ1∧ θ2) +

d

dx

∂2L

∂uxx2
θ2∧ θ0

+

(
d

dx

∂2L

∂uxx∂ux
+ 2

∂2L

∂uxx∂u
− ∂2L

∂ux2

)
θ1∧ θ0 .

(2.15)

The differential form ω in (2.14) provides the proof of necessity in the first part
of the following key theorem ([4] Theorem 2.6 page 20, as it applies to our case),

Theorem 2.2. The fourth-order differential equation (2.10) admits a multiplier
and a non-degenerate Lagrangian of order 2, if and only if there exists a differential
form ω ∈ Ω0,2(R) having the algebraic structure

ω = a3θ
0∧ θ3 + a2θ

0∧ θ2 + a1θ
0∧ θ1 + a0θ

1∧ θ2(2.16)

with a3 non-vanishing, and where ω satisfies the closure condition

dω = 0 .

Moreover there is a one-to-one correspondence between these closed two-forms and
non-degenerate second-order Lagrangians λ, modulo the addition to λ of a total
derivative dHh where h ∈ C∞(J∞(R,R)), and depends on at most first derivatives.

A non-degenerate Lagrangian λ satisfies by definition

∂2L(x, u, ux, uxx)

∂uxx2
6= 0,

and comparing this condition with equation (2.15) gives rise to the non-vanishing
condition on a3 in (2.16). We will often identify two non-degenerate Lagrangians
λ1 and λ2 if

λ1 = λ2 + dH h(x, u, ux)(2.17)

where h ∈ C∞(J1(R,R)). By using this identification the second part of Theorem
2.2 states that the correspondence between λ and ω described in the equations
(2.13) and (2.14) is one-to-one.

Theorem 2.2 reduces the multiplier problem to a simple geometric condition
on the equation manifold R. In fact this interpretation of the closed form ω in
Theorem 2.2 is a special case of a more general phenomenon. That is the entire
space of closed two-forms

ω ∈ Ω0,2(R) , dω = 0(2.18)

can be interpreted in terms of variational operators [2]. An equation is said to admit
a variational operator if there exists a total differential operator whose action on
the original equation results in an equation which is variational. The existence of
a closed form (2.18) implies by a generalization of Theorem 2.2 that the equation
determining R admits a variational operator. A variational multiplier is of course
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a special case of a variational operator where the total differential operator has no
derivative terms.

In order to simplify the description of the solution to the inverse problem we
define a submodule of V (R) ⊂ Ω0,2(R), by

V (R) = {ω ∈ Ω0,2(R) |ω = a3θ
0∧ θ3 + a2θ

0∧ θ2 + a1θ
0∧ θ1 + a0θ

1∧ θ2}(2.19)

where (ai)i=0..3 ∈ C∞(J∞(R,R)). We also define a subspace V (R) ⊂ V (R) by

V (R) = {ω ∈ V (R) | dω = 0} .(2.20)

Theorem 2.2 now states that solving the inverse problem corresponds to determining
for which equations with corresponding manifolds R do there exist ω ∈ V (R)
with a3 6= 0. We will find that V (R) is a contact invariant subspace of Ω0,2(R)
which demonstrates, by Theorem 2.2, that whether or not an an equation admits
a variational multiplier is a contact invariant problem. This motivates us to study
the contact geometry of R by using Cartan’s equivalence method [7].

3. The {e}-structure for fourth-order ordinary

differential equations

In this section we use the equivalence method of E. Cartan to associate an
invariant coframe with any fourth-order scalar ordinary differential equation. In
principle the relative invariants arising in the structure equations for this coframe
can be used to distinguish between non-equivalent equations. We identify two of the
relative invariants which will be used in section 4 to characterize the fourth-order
equations which admit a multiplier.

A convenient description of the equivalence method is given in [11], while our
calculations in this section are found to be similar to those for the third-order
scalar ordinary differential equation case presented in [8]. To begin let (x, u, ux)

and (x̄, ū, ūx̄) be local coordinates on J1(R,R) and J
1
(R,R) respectively. Two

fourth-order scalar ordinary differential equations

uxxxx = f(x, u, ux, uxx, uxxx), ūx̄x̄x̄x̄ = f̄(x̄, ū, ūx̄, ūx̄x̄, ūx̄x̄x̄)(3.1)

are defined to be contact equivalent (in the classical sense) if there exist a contact
transformation

Ψ1 : J1(R,R)→ J
1
(R,R),

which is given in local coordinates by

x = φ(x, u, ux) , u = ψ(x, u, ux) , ūx̄ = ψ1(x, u, ux) ,(3.2)

and a (nowhere vanishing) smooth function h(x, u, ux, uxx, uxxx) such that

(Ψ4)∗
[
ūx̄x̄x̄x̄ − f̄(x̄, ū, ūx̄, ūx̄x̄, ūx̄x̄x̄)

]
= h(x, u, ux, uxx, uxxx) [uxxxx − f(x, u, ux, uxx, uxxx)]

(3.3)

where Ψ4 : J4(R,R)→ J
4
(R,R) is the prolongation of Ψ1. In other words the two

differential equations (3.1) are contact equivalent if there exists a contact preserving
change of variables of the form (3.2) which transforms one equation into a multiple
of the other.

We now express the relation of contact equivalence between the two equations
in (3.1) as an equivalence relationship between coframes so that the equivalence
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method may be applied. This is done by considering each differential equation in
(3.1) as defining a smooth submanifold

(x, u, ux, uxx, uxxx)→ J4(R,R) , (x, u, ūx̄, ūx̄x̄, ūx̄x̄x̄)→ J̄4(R,R)

as in equation (2.11), and then choosing the particular coframes on R and R by
taking the canonical basis for the contact module C(R) and that for C(R) as given
in equation (2.1) together with the differential forms σ = dx and σ = dx. That is,
we have the coframes (

σ = dx
θi

)
,

(
σ = dx

θ
i

)
(3.4)

onR andR respectively. By canonically identifying R with J3(R,R), the prolonga-

tion of a contact transformation Ψ3 : J3(R,R)→ J
3
(R,R) defines a diffeomorphism

Ψ3 : R→ R. This identification allows us to express the equivalence condition (3.3)
as

Lemma 3.1. Two fourth-order ordinary differential equations (3.1) are contact
equivalent if and only if there exists a contact transformation Ψ1 : J1(R,R) →
J

1
(R,R) such that

(Ψ3)∗

(
σ

θ
i

)
= S

(
σ
θi

)
,(3.5)

where S : R → H is a smooth function on R taking values in the Lie subgroup
H ⊂ GL(5,R) defined by

H =




a u v 0 0
0 b 0 0 0
0 c1 a−1b 0 0
0 c2 c3 a−2b 0
0 c4 c5 c6 a−3b

 , a, b ∈ R∗, u, v, c1, c2, c3, c4, c5, c6 ∈ R

 .

(3.6)

We may now apply the equivalence method by using Lemma 3.1 and lifting the
forms in (3.4) to R×H and R×H by defining the one-forms,(

σ̂

θ̂i

)
= S

(
σ
θi

)
(3.7)

(with the analogous definition on R×H) where S is the local parameterization of
H in equation (3.6). By taking the exterior derivative of equation (3.7) we have
the first set of structure equations(

dσ̂

dθ̂
i

)
= (dS)S−1

(
σ̂

θ̂i

)
+ S

(
dσ

dθi

)
(3.8)

where (dS)S−1 is a Maurer-Cartan form for H. The Maurer-Cartan form we use is

(dS)S−1 =


α µ ν 0 0
0 β 0 0 0
0 γ1 β − α 0 0
0 γ2 γ3 β − 2α 0
0 γ4 γ5 γ6 β − 3α

(3.9)
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where α, µ, ν, β, γa are right invariant one-forms on H (with the analogous defi-
nitions on R × H) and where S is the local parameterization of H in equation
(3.6).

With the lifted forms in (3.7) and the Maurer-Cartan form (3.9) the equivalence
method can be applied to find

Theorem 3.2. Solutions Ψ3 : R → R to the equivalence problem for fourth-order
ordinary differential equations are in one-to-one correspondence with the solutions
of an equivalence problem for an 8 dimensional {e}-structure on R×G where G is a
three dimensional Lie subgroup of H. The essential part of the structure equations
of the coframe are given by

dσ = α∧σ + T1 θ
0∧ θ1 + T2 θ

0∧ θ2 + T3 θ
0∧ θ3

+ T4 θ
1∧ θ2 + T5 θ

1∧ θ3,

dθ0 = β∧ θ0 + σ∧ θ1,

dθ1 = (β − α)∧ θ1 + γ∧ θ0 + σ∧ θ2,

dθ2 = (β − 2α)∧ θ2 +
4

3
γ∧ θ1 + σ∧ θ3,

dθ3 = (β − 3α)∧ θ3 + γ∧ θ2 + I0σ∧ θ
0 + I1σ∧ θ

1

+ T6 θ
0∧ θ1 + T7 θ

0∧ θ2 + T8 θ
1∧ θ2

(3.10)

where Ta, a = 1, . . . , 8, and Is, s = 1, 2, are smooth functions on R×G.

The reader who is interested in the characterization of the variational fourth or-
der equations (and applications) may skip the derivation of the structure equations
and proceed to section 4. In the remainder of this section we derive the structure
equations along with some of the parametric forms of some of the invariants.

Proof. The initial structure equations in (3.8) on R×H are determined from the
equations

d(dui − ui+1dx) = dx∧ dui+1 , i = 0, 1, 2,

d(du3 − fdx) = dx∧ df(3.11)

to be (after absorption of torsion [11])

dσ = α∧σ + µ∧ θ0 + ν∧ θ1,

dθ0 = β∧ θ0 + σ∧ θ1,

dθ1 = (β − α)∧ θ1 + γ1∧ θ
0 + σ∧ θ2,(3.12)

dθ2 = (β − 2α)∧ θ2 + γ2∧ θ
0 + γ3∧ θ

1 + σ∧ θ3 +K1 σ∧ θ
2,

dθ3 = (β − 3α)∧ θ3 + γ4∧ θ
0 + γ5∧ θ

1 + γ6∧ θ
2 +K2 σ∧ θ

3 .

By taking the exterior derivative of the second and third equation in (3.12) above
we also have the equations

dβ − µ∧ θ1 + γ1∧σ ≡ 0 mod(θ0),

dα+ 2γ1∧σ − γ3∧σ + ν∧ θ2 ≡ 0 mod(θ0, θ1) .(3.13)

We can now determine the group action on the torsion elements K1 and K2 in
(3.12) by computing d2θ2∧ θ0∧ θ1∧ θ3 and d2θ3∧ θ0∧ θ1∧ θ2 and using (3.13) to get

dK1 + αK1 + γ6 + 3γ1 − 3γ3 ≡ 0 mod(base),

dK2 + αK2 − γ6 − 3γ3 + 5γ1 ≡ 0 mod(base) .(3.14)
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The action of the structure group on K1 and K2 allows us to translate K1 and K2

to zero by using the group elements corresponding to γ6 and γ3. The reduced group
H1 (which is easily obtained by exponentiation) will have the Maurer-Cartan form
of (3.9) subject to the relations

γ6 = γ1, γ3 =
4

3
γ1 .(3.15)

We will make the substitution γ1 = γ from now on.
The new structure equations with group H1 will have the same first three struc-

ture equations of (3.12) (with γ1 = γ) while the last two are

dθ2 = (β − 2α)∧ θ2 + γ2∧ θ
0 +

4

3
γ∧ θ1 + σ∧ θ3

+ L1 σ∧ θ
1 + L2 θ

2∧ θ1 + L3 θ
3∧ θ1,

dθ3 = (β − 3α)∧ θ3 + γ4∧ θ
0 + γ5∧ θ

1 + γ∧ θ2 + L4 σ∧ θ
2 + L5 θ

3∧ θ2 .

(3.16)

In the first of these equations we may still absorb L2 by letting

α = α̂+
1

2
L2 θ

1 , ν = ν̂ +
1

2
L2σ , γ5 = γ̂5 −

3

2
L2θ

3 .(3.17)

As well we have equations (3.13) along with d2θ1∧ θ1 = 0 giving (dropping the )̂

dβ − µ∧ θ1 + γ∧σ ≡ 0 mod(θ0),

dα+
2

3
γ∧σ + ν∧ θ2 + L3 σ∧ θ

3 ≡ 0 mod(θ0, θ1),(3.18)

dγ + α∧ γ − µ∧ θ2 + γ2∧σ ≡ 0 mod(θ0, θ1) .

It now follows from setting d2θ2∧ θ0∧ θ1 = 0 and (3.18) that

L5 = 3L3 .(3.19)

The action of the reduced group on the independent torsion elements L1, L3 and L4

is obtained by taking d2θ2∧ θ0∧ θ2 and d2θ3∧ θ0∧ θ1∧ θ3 while using (3.18) to find

dL1 + 2L1 α+ γ5 −
7

3
γ2 ≡ 0

dL3 + L3 (β − 2α)− ν ≡ 0 mod(base).(3.20)

dL4 + 2L4 α− γ5 − γ2 ≡ 0

These equations imply that the torsion elements L1, L4 and L3 can be translated
to zero using γ2, γ5 and ν. The new structure group H2 ⊂ H1 resulting from
this reduction will have the Maurer-Cartan form of H1 subject to the conditions
γ2 = 0, γ5 = 0, and ν = 0.

The new structure equations with group H2 are (after absorption of torsion)

dσ = α∧σ + µ∧ θ0 +M1 θ
1∧ θ2 +M2 θ

1∧ θ3,

dθ2 = (β − 2α)∧ θ2 +
4

3
γ∧ θ1 + σ∧ θ3 +M3 σ∧ θ

0(3.21)

+M4 θ
1∧ θ2 +M5 θ

3∧ θ0,

dθ3 = (β − 3α)∧ θ3 + γ4∧ θ
0 + γ∧ θ2 +M6 σ∧ θ

1 +M7 θ
1∧ θ3 .

where dθ0 and dθ1 are the same as in (3.12) (with γ1 = γ). The M4 term arises in
these equations because the absorption in (3.17) is no longer possible. The action
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of the structure group on the terms M3 and M5 is found by taking d2θ2∧ θ1∧ θ2

resulting in

dM3 + 3M3 α+ γ4 ≡ 0 mod(base),

dM5 +M5 (β − α)− µ ≡ 0 mod(base) .

Thus we may translate M3 and M5 to zero further reducing the group to the
subgroup G ⊂ H2 which is three dimensional. The Maurer-Cartan form of G is
obtained from that of H2 with the extra conditions µ = 0, γ4 = 0. The structure
equations then read

dσ = α∧σ +N1 θ
1∧ θ2 +N2 θ

1∧ θ3 +N3 θ
1∧ θ0 +N4 θ

2∧ θ0 +N5 θ
3∧ θ0,

dθ2 = (β − 2α)∧ θ2 +
4

3
γ∧ θ1 + σ∧ θ3 +N6 θ

1∧ θ2,

dθ3 = (β − 3α)∧ θ3 + γ∧ θ2 + I0σ∧ θ
0 + I1σ∧ θ

1 +N7 θ
1∧ θ3 +N8 θ

1∧ θ0

+N9 θ
2∧ θ0 +N10 θ

3∧ θ0 +N11θ
2∧ θ1,

where again dθ0 and dθ1 are the same as in (3.12) (with γ1 = γ). At this point we
have an {e}-structure on U × G. The torsion coefficients N6, N7 and N10 in the
{e}-structure vanish as seen by the following calculations:

d2θ2∧ θ1∧ θ2 = N10 σ∧ θ
0∧ θ1∧ θ2∧ θ3,

d2θ3∧ θ0∧ θ1 = N7 σ∧ θ
0∧ θ1∧ θ2∧ θ3,

d2θ2∧ θ0∧ θ2 = N6 σ∧ θ
0∧ θ1∧ θ2∧ θ3 .

By relabeling the non-zero torsion the structure equations in (3.10) are obtained.

This theorem is well known [5] but the {e}-structures in Theorem 3.2 and [5]
have a different form.

In section 4 we will the following information about the structure equations for
dα and dβ.

Corollary 3.3. The forms dα and dβ satisfy

dβ + γ∧σ + T2 θ
2∧ θ1 + T3 θ

3∧ θ1 ≡ 0 mod(θ0),

dα+
2

3
γ∧σ − T5 θ

3∧ θ2 ≡ 0 mod(θ0, θ1).(3.22)

This calculation easily follows from the equations in Theorem 3.2. The two
torsion coefficients T5 and I1 also play an important role in the next section and
by a simple consequence of the structure equations in Theorem 3.2 we find

Corollary 3.4. The torsion coefficient T5 and I1 are relative invariants. They
satisfy

dT5 + T5(2β − 5α) ≡ 0 mod(base),

dI1 + 3I1α ≡ 0 mod(base).

This corollary implies that the vanishing of T5 and I1 is an invariant property
of a fourth-order differential equation. In section 4 we will show that the invariant
subclass of fourth-order equations defined by the vanishing of T5 and I1 are precisely
those equations which admit a variational multiplier. We compute the parametric
values of these relative invariants to be
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Lemma 3.5. The parametric value of relative invariants T5 and I1 (at the identity
of G) are

T5 =
1

6

∂3f

∂u3
xxx

,

I1 =
∂f

∂ux
+

1

2

d2

dx2

∂f

∂uxxx
− d

dx

∂f

∂uxx
− 3

4

∂f

∂uxxx

d

dx

∂f

∂uxxx

+
1

2

∂f

∂uxx

∂f

∂uxxx
+

1

8

(
∂f

∂uxxx

)3

.

Proof. In order to determine the parametric values of the torsion elements we use
some of the intermediate calculations from Theorem 3.2 and restrict to the identity
of the group in question. By using equations (3.11) we have

K1 = 0 , K2 =
∂f

∂uxxx
.(3.23)

The modification in the coframe obtained by the translating K1 and K2 to zero in
(3.14) is by setting

c6 = −1

2

∂f

∂uxxx
, c3 =

1

3
c6 .

The resulting coframe on R is given by

dx , θ0
0 = du− uxdx , θ1

0 = dux − uxxdx

together with the twisted forms

θ2
0 = duxx − uxxxdx−

1

6

∂f

∂uxxx
θ1

0 ,

θ3
0 = duxxx − fdx−

1

2

∂f

∂uxxx
(duxx − uxxxdx)(3.24)

= duxxx − fdx−
1

2

∂f

∂uxxx
(θ2

0 +
1

6

∂f

∂uxxx
θ1

0) .

To find the torsion in equations (3.16) we take the exterior derivative of the forms
in (3.24) to get

dθ2
0∧ θ

0
0∧ θ

2
0∧ θ

3
0

=

[
−duxxx∧ dx−

1

6

d

dx

∂f

∂uxxx
dx∧ θ1

0 +
1

6

∂f

∂uxxx
duxx∧ dx

]
∧ θ0

0∧ θ
2
0∧ θ

3
0,

dθ3
0∧ θ

0
0∧ θ

1
0∧ θ

3
0

=

[
− ∂f

∂uxx
duxx∧ dx−

1

2

d

dx

∂f

∂uxxx
dx∧ θ2

0 +
1

2

∂f

∂uxxx
duxxx∧ dx

]
∧ θ0

0∧ θ
1
0∧ θ

3
0,

dθ3
0∧ θ

0
0∧ θ

1
0∧ dx = −1

2

∂2f

∂u2
xxx

duxxx∧ θ
2
0∧ θ

0
0∧ θ

1
0∧ dx,
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which after substituting from (3.24) easily gives

L1 =
1

18

(
∂f

∂uxxx

)2

− 1

6

d

dx

∂f

∂uxxx
,

L4 =
∂f

∂uxx
+

1

4

(
∂f

∂uxxx

)2

− 1

2

d

dx

∂f

∂uxxx
,

L5 = −1

2

∂2f

∂u2
xxx

.

In order to determine the twist in the coframe on R corresponding to translating
L1 and L4 to zero in (3.14) we solve the equations

c5 −
7

3
c2 = L1 , c2 + c5 = −L4,

which along with the translation of L5 = 3L3 to zero in (3.20) gives the coframe

σ1 = dx +
1

6

∂2f

∂u2
xxx

θ1
0 , θ0

1 = θ0
0 , θ

1
1 = θ1

0,

θ2
1 = θ2

0 −
3

10
(L4 + L1)θ0

0 , θ
3
1 = θ3

0 + (
3

10
L1 −

7

10
L4)θ1

0 .(3.25)

We are now in a position to compute T5 from

dσ1∧σ1∧ θ
0
1∧ θ

2
1 =

1

6

∂3f

∂u3
xxx

σ1∧ θ
3
1∧ θ

1
1∧ θ

0
1∧ θ

2
1

which gives the expression for T5 as stated in the lemma. Next we compute M3 in
equation (3.21) by

dθ2
1∧ θ

1
1∧ θ

2
1∧ θ

3
1

=

[
−duxxx∧ dx+

1

6

∂f

∂uxx
duxx∧ dx−

3

10

d

dx
(L4 + L1)dx∧ θ0

0

]
∧ θ1

1∧ θ
2
1∧ θ

3
1

which upon substitution from (3.24) and (3.25) gives

M3 =
1

5

d2

dx2

∂f

∂uxxx
− 3

10

d

dx

∂f

∂uxx
− 1

4

∂f

∂uxxx

d

dx

∂f

∂uxxx

+
1

10

∂f

∂uxx

∂f

∂uxxx
+

11

360

(
∂f

∂uxxx

)3

.

In a similar manner we compute M6 to be

M6 =
∂f

∂ux
+

3

10

d2

dx2

∂f

∂uxxx
− 7

10

d

dx

∂f

∂uxx
− 1

2

∂f

∂uxxx

d

dx

∂f

∂uxxx

+
2

5

∂f

∂uxx

∂f

∂uxxx
+

17

180

(
∂f

∂uxxx

)3

.

The relative invariant I1 is then computed by noting from equation (3.21) that

dM6 − γ4 ≡ 0 mod(base)

so

I1 = M6 +M3

which is the expression for I1 in the statement of the lemma.
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4. The variational multiplier problem

At the end of section 2 we described necessary and sufficient conditions for a
fourth-order scalar ordinary differential equation

uxxxx − f(x, u, ux, uxx, uxxx) = 0 ,(4.1)

with equation manifold R, to admit a multiplier as being equivalent to the existence
of a closed differential two-form ω̃ ∈ V (R). Specifically ω̃ had to be of the form

ω̃ = a3 θ̃
0∧ θ̃3 + a2 θ̃

0∧ θ̃2 + a1 θ̃
0∧ θ̃1 + a0 θ̃

1∧ θ̃2, a3 6= 0 ,(4.2)

where {ai}i=0,...,3 ∈ C∞(R) and {θ̃i}i=0,...,3 are the contact forms on the manifold
R defined in (2.12). If we subject the differential form ω̃ in (4.2) to a contact
transformation of R, then by using Lemma 3.1 to transform the differential forms
(θ̃i)i=0,...,3, it is clear that the algebraic form of ω in (4.2) is invariant. Thus the

module V (R) in (2.19) and the subspace V (R) in (2.20) are invariant with respect to
contact transformations. The fact that the space V (R) is invariant implies through
Theorem 2.2 that determining whether an equation admits a multiplier is a contact
invariant problem. The invariant nature of determining which scalar fourth-order
ordinary differential equations admit a multiplier will allow us us to demonstrate
that the vanishing of the relative invariants in Corollary 3.4 (or Lemma 3.5) asso-
ciated with a fourth-order equation (4.1) characterizes variational equations.

In analogy with definitions (2.19) and (2.20) at that end of section 2, we define
the spaces

V (R×G) = {ω ∈ Ω2(R×G) |ω = a3θ
0∧ θ3+a2θ

0∧ θ2

+ a1θ
0∧ θ1 + a0θ

1∧ θ2} ,
V (R×G) = {ω ∈ V (R×G) | dω = 0}

(4.3)

where {ai}i=0,...,3 ∈ C∞(R×G), and {θi}i=0,...,3 are the components of the invari-
ant coframe determined in Theorem 3.2. We may express Theorem 2.2 in terms of
conditions on the geometry of the {e}-structure R×G, by using definitions (4.3),
as

Lemma 4.1. A fourth-order equation admits a variational multiplier if and only
if there exists a (closed) two-form ω ∈ V (R×G) with a3 non-vanishing.

The proof of this lemma is a consequence of the geometric relationship between
the spaces V (R) and V (R × G). In fact if we let ω ∈ V (R × G) and X be any
infinitesimal generator of the left action of G on R×G, we have X ω = 0 and so

LXω = 0 .

Thus every closed differential form ω ∈ V (R×G) is invariant with respect to the
left action of G on R×G, and consequently there exists a unique closed differential
ω̃ ∈ V (R) such that

ω = π∗ω̃ ,(4.4)

where π is the projection π : R×G→R. The correspondence in (4.4) is one-to-one
and the spaces V (R) and V (R×G) are canonically isomorphic. This being so we
let

ν = dimension V (R×G) = dimension V (R)(4.5)

and we may re-express Lemma 4.1 as
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Corollary 4.2. Equation (4.1) admits a variational multiplier if and only if ν 6= 0.

The partial differential equations dω = 0 for the unknowns {ai}i=0,...,3 which
arise in Lemma 4.1 can be written in terms of the invariant coframe in Theorem
3.2. The existence of a solutions to dω = 0 will then be expressed in terms of the
relative invariants. Fortunately the partial differential equations dω = 0 for the
unknowns {ai}i=0,...,3 dramatically simplify due to several algebraic relationships
which must hold amongst the terms {ai}i=0,...,3 in order for the dimension ν in
(4.5) to be non-zero. We find

Lemma 4.3. If there exists a non-zero differential form ω ∈ V (R × G) then ω
must have the algebraic structure

ω = a(θ0∧ θ3 − θ1∧ θ2) .(4.6)

Proof. We work with the structure equations (3.10) modulo (α, β, γ). By taking
the exterior derivative of an arbitrary ω ∈ V (R×G) (using the structure equations
(3.10)) and concentrating on terms which contain σ, we find

dω∧ θ0∧ θ2 = −(a3 + a0)σ∧ θ0∧ θ1∧ θ2∧ θ3 ,

which demonstrates that ω can be closed only if it has the algebraic form

ω = a3(θ0∧ θ3 − θ1∧ θ2) + a1θ
0∧ θ1 + a2θ

0∧ θ2 .

In a similar manner we compute

dω∧ θ1∧ θ2 = (ȧ3 + a2)σ∧ θ0∧ θ1∧ θ2∧ θ3,

dω∧ θ0∧ θ3 = (−ȧ3 + a2)σ∧ θ0∧ θ1∧ θ2∧ θ3(4.7)

where

ȧ3σ ≡ da3 mod(θ0, θ1, θ2, θ3) .

The equations in (4.7) clearly imply that ω could be closed only if a2 = 0. Lastly
we find

dω∧ θ1∧ θ3 = a1 σ∧ θ
0∧ θ1∧ θ2∧ θ3

and so a1 must be zero in order for ω to be closed, which proves the lemma.

The lemma implies that the partial differential equations dω = 0 contain only
the single unknown function a. The differential equations for a are obtained by
setting the exterior derivative of ω in (4.6) to zero giving

da ∧ (θ0∧ θ3 − θ1∧ θ2) + a d(θ0∧ θ3 − θ1∧ θ2) = 0.(4.8)

Dividing this equation by a leads immediately to the following lemma.

Lemma 4.4. If there exists a non-zero solution a to (4.8) then there exists a one-
form λ ∈ Ω1(R×G) such that

d(θ0∧ θ3 − θ1∧ θ2) = λ∧ (θ0∧ θ3 − θ1∧ θ2) .(4.9)

The contact invariant condition (4.9) is not necessarily satisfied by an arbitrary
{e}-structure on R × G from section 3. In fact the next lemma shows that being
able to solve equation (4.9) provides the first non-trivial condition on the geometry
of R×G which must be satisfied in order to be able to find a closed two-form ω as
in Lemma 4.1. The result is
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Lemma 4.5. There exists a one-form λ ∈ Ω1(U×G) such that equation (4.9) holds
if and only if the relative invariant I1 in the structure equations (3.10) vanishes. If
I1 = 0 then

λ = 2β − 3α .(4.10)

Proof. Using the structure equations in (3.10) we find

d(θ0∧ θ3 − θ1∧ θ2) = (2β − 3α)∧ (θ0∧ θ3 − θ1∧ θ2)

+ I1σ∧ θ
0∧ θ1 − T8θ

0∧ θ1∧ θ2
(4.11)

and we may immediately conclude that the vanishings of I1 and T8 are necessary
conditions for (4.9) to hold. If we now assume that I1 = 0 the computation

d2θ3∧ θ0∧ θ2 +
3

2
d2θ2∧ θ0∧ θ3 +

1

2
d2θ0∧ θ2∧ θ3 = −5

2
T8σ∧ θ

0∧ θ1∧ θ2∧ θ3

implies that T8 vanishes as a consequence of the assumption I1 = 0. This proves
that the vanishing of I1 is both necessary and sufficient for (4.9) to be satisfied
which proves the first part of the lemma. Substituting the hypothesis I1 = 0, which
implies T8 = 0, into the computation in (4.11) we obtain equation (4.10) which
finishes the proof of the lemma.

This lemma in conjunction with Lemma 4.1 implies that any fourth-order ordi-
nary differential equation satisfying I1 6= 0 will not admit a multiplier.

From now on we consider only those geometries R × G in Theorem 3.2 which
satisfy the invariant condition I1 = 0 so that equation (4.10) holds. The differential
equations for a in (4.8) are then

(da+ a(2β − 3α )) ∧ (θ0∧ θ3 − θ1∧ θ2) = 0 .(4.12)

It is now easy to check that given any ρ ∈ Ω1(R × G) with ρ∧ω = 0 then ρ = 0.
We then conclude that the differential equations (4.12) for a are

da+ a(2β − 3α ) = 0 .(4.13)

The degree of generality of the possible space of solutions a to this equation is

Lemma 4.6. If there exists a non-zero solution a to the partial differential equa-
tions (4.13), then the solution a is unique up to multiplication by a non-zero real
scalar.

A simple but important consequence of this lemma is

Corollary 4.7. ν = 0 or 1. Equation (4.1) is variational if and only if ν = 1.

At this point we may conclude that if a fourth-order ordinary differential equation
admits a variational multiplier then the Lagrangian (and multiplier) are unique up
to scaling.

We continue studying the integrability conditions for the first-order partial dif-
ferential equations (4.13) for a by taking the exterior derivative of (4.13). An
application of the Poincaré lemma proves

Lemma 4.8. There exists a (non-zero) solution a to the partial differential equa-
tion (4.13) if and only if

2dβ − 3dα = 0 .(4.14)
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Thus equation (4.14) together with the hypothesis that I1 = 0 finally provides
necessary and sufficient conditions in terms of the geometry of {e}-structures of
Theorem 3.2 which would guarantee the existence of the closed form ω as in Lemma
4.1.

Continuing with the assumption I1 = 0 and using the equations (3.22) in Corol-
lary 3.3, the integrability conditions in (4.14) could in general have the form

2dβ − 3dα = Bij θ
i∧ θj + Ci θ

i∧ω = 0(4.15)

where the functions Bij , Ci ∈ C∞(R × G) can be written in terms of the struc-
ture functions of the {e}-structure and their covariant derivatives. However the
integrability conditions (4.15) simplify because the functions Bij and Ci are not all
independent. In fact under the assumption I1 = 0 if we take the exterior derivative
of (4.9) to get

(2dβ − 3dα)∧ (θ0∧ θ3 − θ1∧ θ2) = 0

and then substitute from (4.15) it follows that we can write

2dβ − 3dα = b1θ
0∧ θ1 + b2θ

0∧ θ2 + b3(θ1∧ θ2 + θ0∧ θ3) + b4θ
1∧ θ3 + b5θ

2∧ θ3

(4.16)

where (br)r=1,...,5 ∈ C∞(R×G). Thus there are at most five independent integra-
bility conditions for the partial differential equations (4.13). This simplification of
the integrability conditions in (4.14) allows us to prove the theorem

Theorem 4.9. The condition ν = 1 is satisfied if and only if the two relative
invariants T5 and I1 vanish.

Proof. We have already established from the arguments above that the vanishing
of I1 and (br)r=1,...,5 are necessary and sufficient conditions for the existence of a
closed form (4.2). The coefficient b5 in (4.16) can be expressed in terms of the
torsion in the structure equations (3.22) using Corollary 3.3 to give

b5 = 3T5 .(4.17)

This implies that T5 = 0 and I1 = 0 are necessary conditions for the existence of a
closed form ω. In order to establish that the vanishing of T5 and I1 guarantees that
the form ω is closed , we need to show these two conditions imply (br)r=1,...,5 = 0.
First the assumption T5 = 0 and equation (4.17) trivially imply that b5 = 0 so that
equation (4.16) becomes

2dβ − 3dα = b1θ
0∧ θ1 + b2θ

0∧ θ2 + b3(θ1∧ θ2 + θ0∧ θ3) + b4θ
1∧ θ3 = 0.

Taking the exterior derivative of this equation and concentrating on terms which
contain σ we find

(2d2β − 3d2α)∧ θ0∧ θ1∧α∧ β∧ γ = b4σ∧ θ
0∧ θ1∧ θ2∧ θ3∧α∧ β∧ γ ,

which implies b4 = 0. In a similar manner we also have

(2d2β − 3d2α)∧ θ0∧ θ2α∧ β∧ γ = 2b3σ∧ θ
0∧ θ1∧ θ2∧ θ3∧α∧ β∧ γ

which implies b3 = 0. Again by similar arguments we have b1 = 0 and b2 = 0 which
proves that the assumptions T5 = 0 and I1 = 0 imply (br)r=1,...,5 = 0.

By using Lemma 3.5 the characterization of fourth-order scalar ordinary dif-
ferential equations which admit a multiplier can then be expressed parametrically
as:
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Corollary 4.10. A fourth-order ordinary differential equation admits a variational
multiplier and non-degenerate second-order Lagrangian such that (1.2) is satisfied
if and only if

T5 =
1

6

∂3f

∂u3
xxx

= 0,

I1 =
∂f

∂ux
+

1

2

d2

dx2

∂f

∂uxxx
− d

dx

∂f

∂uxx
− 3

4

∂f

∂uxxx

d

dx

∂f

∂uxxx

+
1

2

∂f

∂uxx

∂f

∂uxxx
+

1

8

(
∂f

∂uxxx

)3

= 0.

We also have as a corollary of Lemma 4.6 and Theorem 2.2

Corollary 4.11. If a fourth-order ordinary differential equation admits a varia-
tional multiplier and non-degenerate second-order Lagrangian such that (1.2) is sat-
isfied then the multiplier, Lagrangian, and associated closed two-form ω are unique
up to multiplication by a non-zero real scalar.

The uniqueness of the Lagrangian in Corollary 4.11 is of course subject to the
identification in (2.17). Corollary 4.10 and 4.4 provide a complete solution to the
multiplier problem for fourth-order scalar ordinary differential equations.

As a final remark to conclude this section we would like to point out that the
proof of Theorem 4.9 could be shortened by simultaneously trying to solve the
equivalence method and determining the necessary and sufficient conditions for
the existence of the form ω. This would require one less step in the equivalence
method in section 3. For our particular problem it was easy enough to obtain the
final {e}-structure in Theorem 3.2, but for more complicated problems the shorter
solution would be preferred. The technique of running the equivalence method
while imposing the conditions which control the existence of ω is used in [6] to
characterize the second-order parabolic partial differential equations in the plane
which admit multiple conservation laws.

5. Applications

In this section we provide two simple applications of the characterization of vari-
ational fourth-order ordinary differential equations given in section 4. Our first
application is based on the fact that the solution to the problem of determining
whether two {e}-structures are equivalent is well known [11]. With this in mind,
we define an equivalence relation on the set of non-degenerate second-order La-
grangians such that we can associate a unique {e}-structure with each Lagrangian
equivalence class thus solving the equivalence problem. The {e}-structure we as-
sociate with a given Lagrangian λ is of course the {e}-structure in Theorem 3.2
defined by the Euler-Lagrange equations of λ.

Let

λ = L(x, u, ux, uxx) dx ∈ Ω1,0(J∞(R,R)) ,

λ = L(x̄, ū, ūx̄, ūx̄x̄) dx̄ ∈ Ω1,0(J
∞

(R,R))
(5.1)

be two non-degenerate second-order Lagrangians with corresponding Euler-
Lagrange equations E(L) = 0 and E(L) = 0. We define the two Lagrangians
in (5.1) to be equivalent if there exists a classical contact transformation Ψ1 :
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J1(R,R)→ J
1
(R,R) with prolongation Ψ : J∞(R,R)→ J

∞
(R,R), such that

Ψ#(λ) = c λ+ dH µ(x, u, ux)(5.2)

where c ∈ R∗, µ ∈ C∞(J1(R,R)), and Ψ# is the projected pullback [3]. The
projected pullback in equation (5.2) can be written as

Ψ#(λ) = Ψ∗(λ) mod(θ0, θ1) ,

and this formula for Ψ#(λ) is the standard definition for the transformation law of
a Lagrangian.

The equivalence relation (5.2) on the space of Lagrangians along with the defi-
nition of equivalence for fourth-order ordinary differential equations given in (3.3)
allows us to prove

Theorem 5.1. There exists a one-to-one correspondence between the equivalence
classes of non-degenerate second-order Lagrangians and the equivalence classes of
the associated Euler-Lagrange equations.

Proof. Two Lagrangians as in (5.1) satisfying (5.2) clearly have equivalent Euler-
Lagrange equations (in the sense of (3.3)), so that we need to only prove sufficiency.
Suppose λ = Ldx and λ = Ldx are two non-degenerate second-order Lagrangians
with equivalent Euler-Lagrange equations. Let Ψ : J∞(R,R) → J

∞
(R,R) be the

map that provides the equivalence between E(L) = 0 and E(L) = 0 and define the
Lagrangian

λ̂ = Ψ#(λ) .

The condition that the two Euler-Lagrange equations for λ and λ are equivalent
simply implies

E(λ̂) = ψE(λ)

for some ψ ∈ C∞(J∞(R,R)). Using this in the first variational formula (2.7), which

in terms of λ̂ is

dV λ̂ = E(λ̂) + dH η̂

where η̂ ∈ Ω0,1(J∞(R,R)), leads to

dV λ̂ = ψE(λ) + dH η̂ .

Pulling this equation back to the equation manifold i : R → J∞(R,R) defined by

E(L) = 0, as described in equations (2.13) and (2.14), we associate with λ̂ the
two-form

ω̂ = dV i∗η̂ .(5.3)

The form ω̂ is closed on the equation manifold R and hence by Corollary 4.11 we
may conclude

ω̂ = c ω

where c ∈ R∗ and ω is the closed two-form on R associated with λ. If we now define
the Lagrangian λ′ = c−1λ̂, the above procedure produces the two-form ω′ = c−1ω̂
associated with λ′ and clearly ω′ = ω. The second part of Theorem 2.2 then implies
that (5.2) holds.
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Thus in summary Theorem 5.1 allows us to answer the question of whether
two Lagrangians are equivalent by determining whether the corresponding Euler-
Lagrange equations are equivalent. As a direct application of Theorem 5.1 combined
with Theorem 4.9 we state

Corollary 5.2. The equivalence classes of non-degenerate second-order Lagran-
gians are in one-to-one correspondence with the equivalence classes of {e}-structures
given in Theorem 3.2 which satisfy I1 = 0 and T5 = 0.

This provides a complete solution to the equivalence problem for non-degenerate
second-order Lagrangians with respect to the equivalence relationship (5.2), and
completes our first application.

In our second application we determine the relationship between the symmetry
algebra of a fourth-order Euler-Lagrange equation and the divergence symmetry
algebra of the corresponding Lagrangian.

An infinitesimal symmetry of a fourth-order scalar ordinary differential equation

uxxxx − f(x, u, ux, uxx, uxxx) = 0(5.4)

with corresponding equation manifold R is a vector-field X̃ on J1(R,R) which
preserves the contact structure on J1(R,R) and whose evolutionary representative
(see [13])

X = φ
∂

∂u
(5.5)

satisfies

X∞ (uxxxx − f(x, u, ux, uxx, uxxx)) = ψ (uxxxx − f(x, u, ux, uxx, uxxx))(5.6)

for some ψ ∈ C∞(J∞(R,R)), and where X∞ is the prolongation of X to J∞(R,R).
On the other hand, an infinitesimal divergence symmetry of a Lagrangian λ is a
vector-field X̃ on J1(R,R) which preserves the contact structure on J1(R,R) and
whose evolutionary representative as in (5.5) satisfies

LX∞λ = dHµ

for some µ ∈ C∞(J∞(R,R)). It is a classical result [13] that every infinitesimal
divergence symmetry of a Lagrangian λ is an infinitesimal symmetry of the associ-
ated Euler-Lagrange equations; however the converse of this theorem is often not
true. That is, an infinitesimal symmetry of an Euler-Lagrange equation need not
define a divergence symmetry of the associated Lagrangian. This discrepancy can
be precisely described in the case of fourth-order scalar Euler-Lagrange equations.

Let λ = Ldx be a non-degenerate second-order Lagrangian with Euler-Lagrange
equation E(L) = 0 which defines the equation manifold i : R → J∞(R,R). Fur-
thermore let g be the Lie algebra of infinitesimal symmetries of the fourth-order
ordinary differential equation E(L) = 0. We then find

Theorem 5.3. Let X be an evolutionary representative of an infinitesimal sym-
metry X̃ ∈ g. There exists a constant c ∈ R such that

LX∞λ− c λ = dHµ(5.7)

for some µ ∈ C∞(J∞(R,R)).

Note that if c = 0 in this theorem then the symmetry X̃ is, by definition, a
variational symmetry.
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Proof. Let X̃ ∈ g and define the Lagrangian

λ̂ = LX∞λ .
The symmetry condition (5.6) implies

LX∞E(λ) = κE(λ)

for some κ ∈ C∞(J∞(R,R)). Substituting these two equations into the Lie de-
rivative with respect to X∞ of the first variation equation in (2.7) and using the
standard properties of evolutionary vector-fields [1] we get

dV λ̂ = κE(λ) + dH η̂

where η̂ = LX∞η. We may use this equation to define the two-form on R
ω̂ = dV i∗η̂

and, as usual, ω̂ ∈ V (R) (ω is closed and has the appropriate algebraic form). We
conclude from Corollary 4.11 that

ω̂ = c ω(5.8)

where c ∈ R and ω ∈ V (R) is the closed form associated with λ through Theorem
2.2. There are now two possibilities to consider depending on whether the constant
c in (5.8) is zero or not. First assume that c 6= 0 in equation (5.8), and define

λ′ = c−1λ̂. The differential two-form ω′ associated with λ′ satisfies

ω′ = ω

where again ω is the closed form associated with λ. This equation along with the
second part of Theorem 2.2 allows us to conclude that (5.7) holds. The case c = 0
is similar.

Let h be the Lie algebra of infinitesimal divergence symmetries of λ. The Lie
algebra h is a subalgebra of g and the precise relationship between these two sym-
metry algebras is

Theorem 5.4. The Lie algebra g splits as a direct sum of vector-spaces

g = h⊕ s

where s is a vector-space of dimension 0 or 1. Thus g = h + s where g = dimg,
h = dimh, and s = dim s . The dimension of s is 1 if and only if there exists a
symmetry X̃ ∈ g and a constant c ∈ R∗ such that

LX∞λ− c λ = dHµ .

Proof. Let {Xa}a=1,...,g be a set of evolutionary vector-fields corresponding to a
basis for the Lie algebra g. According to Theorem 5.3 we have a collection of
constants ca ∈ R and functions µa ∈ C∞(J∞(R,R)) such that

LX∞a λ− caλ = dHµa , a = 1, . . . , g .

If ca = 0 for a = 1, . . . , g, then the theorem is true and g = h. Thus we as-
sume, without loss of generality, c1 6= 0 and define a new basis of g so that the
corresponding evolutionary representatives are

X̂a = Xa −
ca
c1
X1, a = 2, . . . , g .
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By taking the Lie derivatives of λ with respect to these vector-fields we find

L
X̂∞a

λ = dH µ̂a , a = 2, . . . , g,

where µ̂a ∈ C∞(J∞(R,R)). Thus X̂a, a = 2, . . . , g, are the evolutionary form of
divergence symmetries of λ, and the theorem is proved.

This theorem shows that in the case of a scalar fourth-order variational problem
that the symmetry algebra of a variational equation and the corresponding diver-
gence symmetry algebra of the Lagrangian will be isomorphic if and only if there
is no symmetry of the Euler-Lagrange equation which scales the Lagrangian. In
light of Theorem 5.4, if we define a vector-field X̃ to be a divergence symmetry of
a Lagrangian λ if there exist c ∈ R such that

LX∞λ = cλ+ dH µ̂(5.9)

for some µ ∈ C∞(J∞(R,R)), then these divergence symmetries are in one-to-
one correspondence with symmetries of the Euler-Lagrange equations for the La-
grangian.

To conclude this article, we would like to point out that Theorem 5.3 and Theo-
rem 5.4 are true for scalar ordinary differential equations of arbitrary (even) order
[2]. Finally, by using the fact that bounds on the maximal dimension of the point
and contact symmetry groups of scalar ordinary differential equations are known
[14], Theorem 5.3 and 5.4 provide bounds on the maximal dimension of the diver-
gence symmetry algebra of a Lagrangian which are in agreement with [12].
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