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Abstract

We develop a class of demand models for differentiated products. The new mod-

els facilitate the BLP method (Berry et al., 1995) while numerical inversion of the

demand system is not required. They can accommodate rich patterns of substitution

and complementarity while being easily estimated with standard regression techniques

and allowing very large choice sets. We use the new models to describe markets for

differentiated products that exhibit segmentation according to several dimensions and

illustrate their application by estimating demand for cereals in Chicago.
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1 Introduction

This paper develops a class of discrete choice demand models, applicable for estimating

the demand for differentiated products, using the BLP method (Berry et al., 1995) to han-

dle endogeneity issues, while avoiding the numerical inversion of the demand system. The

new models are capable of accommodating rich patterns of substitution and complementar-

ity.1 Nevertheless, they may be estimated using just standard regression techniques, which

means that it is feasible to handle very large choice sets.

The new models build on new insights regarding the relationship between the additive

random utility model (ARUM) and the perturbed utility model (PUM). ARUM rely on the

single-unit purchase assumption that each consumer buys one unit of the alternative that

gives her the highest utility and impose the structure that utilities are the sum of determin-

istic and random utility terms.2 In contrast, PUM assume that each consumer chooses the

probability distribution over the alternatives that maximizes her utility given by the sum of

an expected utility and a perturbation, which is a nonlinear concave function.3

Despite this fundamental difference, the two models are closely linked. Hofbauer and

Sandholm (2002) showed that the choice probabilities generated by any ARUM can be

derived from a PUM with a deterministic perturbation. The concept of entropy plays an

important role in this relationship: it is well known that the logit probabilities can be ob-

tained from a PUM when the perturbation is the Shannon entropy (Anderson et al., 1988);

and similarly, that the nested logit probabilities can be obtained using an entropy-type per-

turbation (Verboven, 1996).4

In this paper, we develop this relationship, defining a class of generalized entropies

(GE) that can serve as perturbations in the PUM. GE generalize the Shannon entropy by

1In this respect, they possess the main features making them appealing for merger evaluation and studying
vertically markets, as highlighted by Pinkse and Slade (2004).

2ARUM have been widely used in the empirical industrial organization literature since the seminal paper
of McFadden (1974).

3PUM have been used to model optimization with effort (Mattsson and Weibull, 2002), stochastic choices
(Fudenberg et al., 2015) and rational inattention (Matejka and McKay, 2015; Fosgerau et al., 2017).

4The concept of entropy was invented by Rudolf Clausius in 1865 in the field of thermodynamics and
was first introduced in economics by Podolinsky in 1880. Since Shannon (1948), the Shannon entropy and
its generalizations has found applications in several fields of economics (e.g., economic growth (Georgesçu-
Roegen, 1971), transport economics (Erlander, 1977), income inequality (Shorrocks, 1980), social choice
and inequality (Cowell, 2000), decision theory (Mattsson and Weibull, 2002), demographic economics (Ed-
wards and Tuljapurkar, 2005), urban and regional economics (Wilson, 2011), rational inattention (Matejka
and McKay, 2015), and international trade (Mrazova et al., 2017)). The concept of entropy also appears in
Galichon and Salanié (2015) who study matching models with transferable utility and unobserved hetero-
geneity, and in Chiong et al. (2016) who study identification and estimation of dynamic ARUM.
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relaxing its symmetry property and take the form Ω (q) = −q⊺ lnS (q), with q being a

vector of choice probabilities and S a function that satisfies some mild conditions. GE

models (GEM) are thus a special kind of PUM in which the perturbation is specified to be

a GE.

The class of GEM is large. We show that we can always find a GEM that leads to the

same choice probabilities as any given ARUM. The contrary, however, does not hold: some

GEM combine substitutability and complementarity and, therefore, cannot be rationalized

by any ARUM.5 This means that our class of GEM is strictly larger than the class of ARUM.

In their seminal paper, Berry et al. (1995) provide a method for estimating the demand

for differentiated products, while accounting for price endogeneity due to the presence

of an unobserved characteristics term, which is the structural error of the model.6 They

propose a generalized method-of-moments (GMM) estimator, together with an estimation

algorithm to compute it. To construct the GMM objective function, they need to invert the

demand system to get the structural error as a function of the data and parameters, which

cannot be done analytically in general. They suggest inverting the system numerically

using a contraction mapping, which may be time consuming and requires using a tight

convergence tolerance and a good starting value for the BLP estimator to produce reliable

estimates (see e.g., Dubé et al., 2012; Knittel and Metaxoglou, 2014).

In contrast, with GEM, we obtain the structural error term directly as a known function

of the data and parameters, meaning that we can easily implement the BLP method with

standard regression techniques. This is because GE models are formulated in the space

of consumption, and not in the dual space of indirect utilities, making the inverse demand

system directly available.7 Existence and uniqueness of the inverse system relies on the

invertibility of the generator S, which is shown using Gale and Nikaido (1965). Our invert-

ibility result supplements, and in some cases extends, other results on demand invertibility

5In this paper, complementarity (resp., substitutability) is defined by a negative (resp., positive) cross
derivative of demand with respect to alternative-specific characteristics, which can be the prices or any non-
price characteristics (see Allen and Rehbeck, 2016, for more details on complementarity in PUM). When the
characteristic is the price, this is the standard definition of complementarity (Samuelson, 1974). Note that
there are different ways of defining complementarity and that the definition we use is related but different
from the definition based on random utility used by Gentzkow (2007).

6We use the wider term "alternative" in the theoretical parts of the paper and the more narrow term
"product" in the empirical parts.

7In this respect, GE models are alternatives to Dubé et al. (2012)’s and Lee and Seo (2015)’s algorithms.
Dubé et al. (2012) transform the BLP’s GMM minimization into a mathematical program with equilibrium
constraints (MPEC), which minimizes the GMM objective function subject to the constraint that observed
market shares be equal to predicted market shares. Lee and Seo (2015) approximate by linearization the non-
linear system of market shares for the random coefficient logit model, and, in turn, do inversion analytically.
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in different settings (see e.g., Berry, 1994; Beckert and Blundell, 2008; Chiappori and Ko-

munjer, 2009; Berry et al., 2013).

GEM lead to demands with a tractable and familiar form that generalizes the logit

demand in a nontrivial way. Different specifications of the generator S lead to different

GEM. We propose a family of generators that lead to models that extend the multi-level

nested logit models by allowing the nests to overlap in any way. This allows us to build

GEM that are similar in the spirit to existing generalized extreme value (GEV) models

that have already proved useful for demand estimation purposes. We show how to build

ordered models describing markets having a natural ordering of alternatives (see Small,

1987; Grigolon, 2017) and nested models that generalize multi-level nested logit models in

the spirit of Bresnahan et al. (1997).

Specifically, we propose a family of models that extend the nested logit model by al-

lowing nests to overlap in any way. This allows us to build and estimate a generalized

nested entropy (GNE) model that describes markets for differentiated products that exhibit

segmentation according to several dimension. We illustrate their application by estimating

demand for cereals in Chicago in 1991–1992. The GNE model provides rich patterns of

substitution and complementarity, while being parsimonious, computationally fast and very

easy to estimate. In particular, it can be estimated by a linear regression model of market

shares on alternative-specific characteristics and terms related to segmentation.8 9

Section 2 introduces the class of GE demand models and provides general methods for

building them. Section 3 studies the linkages between choice models. Section 4 shows

how to estimate GEM with aggregate data and discusses identification of GEM. Section 5

introduces the GNE model and demonstrates its use by estimating the demand for cereals

in Chicago.

Notation. We use italics for scalar variables and real-valued functions, boldface for vec-

tors, matrices and vector-valued functions, and script for sets. By default, vectors are col-

umn vectors.

Let q = (q0, . . . , qJ)
⊺ ∈ R

J+1 and δ = (δ0, . . . , δJ)
⊺ ∈ R

J+1 be two vectors. |q| =
∑J

j=0 |qj| denotes the 1-norm of vector q and δ · q =
∑J

j=0 δjqj denotes the vector scalar

product.

8In this paper, the words "market share" and "demand" are used interchangeably. Note, however, that we
use "market shares" in the empirical parts and "demands" in the theoretical parts.

9Practically, it is easily implemented using, e.g., the ivregress or ivreg2 commands of the software
package STATA.
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Let Ω : RJ+1 → R. Then, Ωj (q) = ∂Ω(q)
∂qj

denotes its partial derivative with respect

to its jth entry and ∇qΩ (q) denotes its gradient with respect to the vector q. A univariate

function R → R applied to a vector is a coordinate-wise application of the function, e.g.,

ln (q) = (ln (q0) , . . . , ln (qJ)).

Let S : RJ+1 → R
J+1 be a function composed of functions S(j) : RJ+1 → R: S (q) =

(

S(0) (q) , . . . , S(J) (q)
)

. Then, its Jacobian matrix JS (q) has elements ij given by ∂S(i)(q)
∂qj

.

A⊺ ∈ R
J×J denotes the transpose matrix of A ∈ R

J×J . 0J = (0, . . . , 0)⊺ ∈ R
J

and 1J = (1, . . . , 1)⊺ ∈ R
J denote the J-dimensional zero and unit vectors, respectively.

IJ ∈ R
J×J and 1JJ ∈ R

J×J denote the J × J identity matrix and unit matrix (where every

element equals one), respectively.

Let RJ
+ = [0,∞)J and R

J
++ = (0,∞)J . ∆ =

{

q ∈ R
J+1
+ :

∑J
j=0 qj = 1

}

denotes the

J-dimensional unit simplex, with int (∆) = ∆∩RJ+1
++ its interior and bd (∆) = ∆\int (∆)

its boundary.

2 The Class of Generalized Entropy Models

2.1 Definitions

A consumer faces a choice set J = {0, 1, . . . J} of J+1 alternatives. Let δ = (δ0, . . . , δJ)
⊺,

where δj is the alternative j-specific utility component. The consumer chooses a vector of

choice probabilities q = (q0, . . . , qJ)
⊺ ∈ ∆ to maximize her utility function

J
∑

j=0

δjqj + Ω (q) , (1)

defined as the sum of an expected utility component, which is linear in q and δ, and a

function Ω, which is a nonlinear and deterministic function of q. When Ω is concave, it

is referred to as a perturbation function. This is then a perturbed utility model (hereafter,

PUM).10

We build the class of generalized entropy models (hereafter, GEM) by specifying a

functional form for Ω, which we call generalized entropy (hereafter, GE). Specifically, we

require that Ω has a specific form defined in terms of a function S, which we call generator

and define as follows.
10See Hofbauer and Sandholm (2002), McFadden and Fosgerau (2012) and Fudenberg et al. (2015).
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Definition 1 (Generator). The function S =
(

S(0), . . . , S(J)
)

: RJ+1
+ → R

J+1
+ is a generator

if it is twice continuously differentiable and linearly homogeneous, and the Jacobian of

lnS, JlnS, is positive definite and symmetric on int (∆).

A GE Ω : RJ+1
+ → R ∪ {−∞} is defined in terms of a generator S by

Ω (q) = −
J
∑

j=0

qj lnS
(j) (q) , q ∈ ∆, (2)

with Ω (q) = −∞ when q /∈ ∆.

A GEM is then defined as follows.

Definition 2 (GEM). A GEM is a demand system that maximizes a utility of the form (1)

over the unit simplex ∆, where Ω (q) is a GE (2) and S is a generator.

The characterization of GEM in Definition 2 does not rule out zero demands in general.

These are situations in which some alternatives are inferior to others so that they are never

consumed. The following additional condition on S does rule out zero demands.11 We

retain Assumption 1 in the remainder of the paper, except when otherwise stated.

Assumption 1 (Positivity). | lnS(q)| approaches infinity as q approaches bd (∆).

We show below that the GE (2) is concave, which implies that any GEM is also a PUM.

The converse, however, does not hold: there are PUM that are not GEM.12 Nevertheless,

the class of GEM remains large: we show in Section 3 that it incorporates all ARUM as

duals. As we will show, the GEM structure turns out to be very useful in applications.

It allows us to implement the BLP method with standard regression techniques, without

having to invert demand numerically. At the same time, it allows us to tailor models to

specific applications and accommodates rich patterns of substitution and complementarity.

11Hofbauer and Sandholm (2002) and Fudenberg et al. (2015) require similar conditions. Hofbauer and
Sandholm (2002) assume that their perturbation function V : int (∆) → R has a positive definite Hessian for
all q that |∇V (q) | approaches infinity as q approaches the boundary of ∆. Their perturbation V plays the
same role as the negative of our GE −Ω. Similarly, Fudenberg et al. (2015) assume that their cost function
c : [0, 1] → R∪ {∞} is strictly convex and continuously differentiable over (0, 1) and limq→0 c

′ (q) = −∞.
12Hofbauer and Sandholm (2002) discuss the concave perturbation function

∑J
j=0 ln qj . The correspond-

ing candidate generator S(j) (q) = q
1/qj
j is not linearly homogeneous and is hence not a generator.
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2.2 Demand

The following lemma shows that a GE is indeed a concave function, such that a GEM is

actually a PUM.

Lemma 1. Assume that S is a generator. Then S is invertible on int (∆) and satisfies the

modified generalized Euler equation

J
∑

j=0

qj
∂ lnS(j) (q)

∂qk
= 1, k ∈ J , q ∈ int (∆) , (3)

and its corresponding GE Ω is strictly concave on int (∆).

The utility maximizing demand in the GEM exists, since the utility function is con-

tinuous on the compact set ∆. The strict concavity of Ω ensures that demand is unique

and Assumption 1 ensures that it is interior. The modified generalized Euler equation (3),

together with the invertibility of S, allow us to derive a tractable and familiar demand form

in Theorem 1. We denote the inverse of S by H = S−1.

Theorem 1. Let S be a generator. Under Assumption 1, GEM lead to non-zero GE de-

mands

qi (δ) =
H(i)

(

eδ
)

∑J
j=0 H

(j) (eδ)
, i ∈ J . (4)

where H(i)
(

eδ
)

= S−1(i)
(

eδ
)

.

Utility δ and demand q are related through the generator S and its inverse H by

δi = lnS(i) (q) + ln

(

J
∑

j=0

H(j)
(

eδ
)

)

, i ∈ J , q ∈ int (∆) . (5)

Equation (4) gives the mapping from demands q to utility δ, which can also be obtained

using Roy’s identity (see Proposition 1 below). This equation shows that GE demands have

a tractable and familiar form that generalizes the logit demand in a nontrivial way.

Conversely, Equation (5) gives the inverse mapping from utility δ to demands q, which

is unique up to a constant. This shows that GEM generate demands with an explicit inverse

which, after specifying the functional form of the generator S, can be used as basis for

demand estimation.

For example, in the simplest possible case, the generator is the identity S (q) = q

which implies that the inverse generator is also the identity H
(

eδ
)

= eδ. In this case,

7



the GE reduces to the Shannon entropy Ω (q) = −
∑J

j=0 qj ln (qj) and we obtain the logit

demand (see Anderson et al., 1988):

qi (δ) =
eδi

∑J
j=0 e

δj
. (6)

In accordance with (5), utility δ and demand q satisfy the relations

δi = ln (qi) + ln

(

J
∑

j=0

eδj

)

, i ∈ J .

Let G(δ) =
∑J

j=0 δjqj(δ) + Ω (q(δ)) be the consumer’s surplus, or indirect utility,

associated with the perturbed utility (1). Proposition 1 shows that, as in the logit model,

the consumer’s surplus is simply the log of the denominator of GE demands.

Proposition 1. The consumer’s surplus is given by

G (δ) = ln

(

J
∑

j=0

H(j)
(

eδ
)

)

. (7)

GE demands (4) are consistent with Roy’s identity, i.e., qi =
∂G(δ)
∂δi

for all i ∈ J .

GE demands qj given by (4) are increasing in their own utility component δj .13 Propo-

sition 2 provides an expression for the whole matrix of demand derivatives.

Proposition 2. The matrix of demand derivatives ∂qj/∂δi is given by

Jq = [JlnS (q)]
−1 [I− 1q⊺] , (8)

where q = q (δ) given by Equation (4).

Since GEM are defined without explicit reference to income, complementarity (resp.,

substitutability) between alternatives is just understood as a negative (resp., positive) cross

derivative of GE demands. Proposition 2 does not allow to know whether complementarity

may or may not arise in GEM. Example 3 below exhibits a GEM in which alternatives are

sometimes complements.

13This property holds for all PUM (see McFadden and Fosgerau, 2012) and is due to the concavity of the
perturbation function, hence it also holds for all GEM. When the δj are decreasing functions of prices pj , this
is equivalent to stating that demands are decreasing in their own prices.
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2.3 Construction of GEM

To construct a GEM, it suffices to construct a generator that satisfies Definition 1.14 We

here propose a family of generators that lead to models that extend the nested logit (NL)

model in a very intuitive way as follows.15

We first observe that the nested logit (NL) model can be cast as a GEM. Suppose that

the choice set is partitioned into non-overlapping sets, usually called nests. Let gj be the

nest that contains alternative j. Then the generator that leads to the NL demands is given

by

S(j) (q) = qµj





∑

i∈gj

qi





1−µ

,

where µ ∈ (0, 1) is the nesting parameter.16

The multi-level NL models generalize the NL model. They are obtained by partitioning

the choice set into nests and then further partitioning each nest into subnests, and so on (see

e.g., Goldberg, 1995; Verboven, 1996). This hierarchical structure implies that each choice

alternative belongs to only one (sub)nest at each level, meaning that nests are not allowed

to overlap by construction.

The following proposition generalizes the NL model by giving a construction of gener-

ators through a nesting operation that allows the nests to overlap in any way.

Proposition 3 (General nesting). Let G ⊆ 2J be a finite set of nests with associated

nesting parameters µg , where µ0 +
∑

{g∈G |j∈g} µg = 1 for all j ∈ J with µg ≥ 0 for all

g ∈ G and µ0 > 0. Let S be given by

S(j) (q) = qµ0

j

∏

{g∈G |j∈g}

qµg
g , (9)

where qg =
∑

i∈g qi. Then S is a generator.17

14Similarly, different GEV models (see McFadden, 1981) are obtained from different specifications of a
choice probability function (Fosgerau et al., 2013).

15In Appendix D, we provide a range of general methods for building generators along with illustrative
examples.

16The corresponding GE is given by the sum of two Shannon entropies since Ω (q) =

−µ
∑

j∈J qj ln (qj)− (1− µ)
∑G

g=1 qg ln (qg).
17Without the term qµ0

j , S is twice continuously differentiable and linearly homogeneous, and JlnS is
symmetric, but not necessarily positive definite. The general nesting operation leads to the following GE

Ω (q) = −µ0

∑

j∈J qj ln (qj) −
∑

{g∈G |j∈g}

[

µg

∑

j∈J qj ln (qg)
]

, where the first term is the Shannon

9



Proposition 3 allows building GEM that are similar in spirit to the well-known GEV

models based on nesting (see e.g., Train, 2009, Chapter 4 for details).

As an example, we construct here a model describing a market having a natural ordering

of alternatives, where alternatives that are nearer each other in the ordering are closer sub-

stitutes. This is true, for example, for hotels that can be ordered according to their number

of stars and for breakfast cereals according to sugar content. The example below provides

GEM that is similar to the GEV ordered models of Small (1987) and Grigolon (2017).

Example 1 (Ordered model). Let alternative 0 be the outside option, and alternatives

1, . . . , J be ordered in ascending sequence. We make the ordering circular, letting alter-

native 1 follow alternative J . Let µ0 > 0 and µ1, µ2, µ3 ≥ 0 with µ0 + µ1 + µ2 + µ3 = 1.

The function S given by

S(j) (q) =







q0, j = 0

qµ0

j qµ1

σ1(j)
qµ2

σ2(j)
qµ3

σ3(j)
, j > 0,

with qσ1(j) = qj−2 + qj−1 + qj , qσ2(j) = qj−1 + qj + qj+1, qσ3(j) = qj + qj+1 + qj+2, is a

generator.

In Example 2, similarly to the Product-Differentiation Logit (PDL) model of Bresnahan

et al. (1997), we build a nested model describing markets that exhibit product segmentation

along several dimensions (see Section 5 for more details).

Example 2 (Nested model). Let µ0 > 0 and µ1, µ2 ≥ 0 with µ0 + µ1 + µ2 = 1. Let σc (j)

be the set of alternatives that are grouped together with alternative j on dimension c = 1, 2

and qσc(j) =
∑

i∈σc(j)
qi. The function S given by

S(j) (q) =







q0, j = 0

qµ0

j qµ1

σ1(j)
qµ2

σ2(j)
, j > 0.

is a generator.

The next example shows that GEM allow alternatives to be complements.

entropy that expresses consumer’s taste for variety over all alternatives and the second term expresses con-
sumer’s taste for variety over alternatives belonging to group g (see Verboven, 1996).

10



Example 3. Let S be defined by

S (q) =



















qµ0
(

q0 +
1
2
q1
)1−µ

,

qµ1
(

q0 +
1
2
q1
)

1−µ
2
(

1
2
q1 + q2

)
1−µ
2 ,

qµ2
(

1
2
q1 + q2

)1−µ
,

with µ ∈ (0, 1). Then S is a generator.

Differentiating the first-order conditions of the utility maximization problem with re-

spect to δ0, we find that ∂q2/∂δ0 > 0 if and only if

µ <
q1

4q0q2 + 3q1q2 + 2q21 + 3q0q1
.

At δ such that q0 = q1 = q2 = 1/3, the condition becomes µ < 1/4, thereby showing

that there exists combinations of parameters µ and utilities δ at which some alternatives are

complements.

As all alternatives are substitutes in an ARUM, Example 3 proves the following result.

Proposition 4. Some GEM lead to demand systems that cannot be rationalized by any

ARUM.

We show in Subsection 3.1 that any ARUM has a GEM counterpart that leads to the

same choice probabilities. Combining this with Proposition 4 shows that the class of GEM

is strictly larger than the class of ARUM.

3 Linkages between Choice Models

In this section, we study first the relation between GEM and ARUM, finding that the choice

probabilities of any ARUM can be obtained as the demand of some GEM. Then we intro-

duce income and prices to bridge between representative consumer models and GEM.

3.1 ARUM as GEM

We begin by setting up the additive random utility model (ARUM). Consider a consumer

who faces a choice set J = {0, 1, . . . , J} of J +1 alternatives and chooses the alternative

that gives her the highest (indirect) utility uj = δj + εj , j ∈ J , where δj is a deterministic

11



utility term and εj is a random utility term. The following assumption on ε is standard in

the discrete choice literature.

Assumption 2. The random vector ε = (ε0, . . . , εJ) follows a joint distribution with finite

means that is absolutely continuous, independent of δ = (δ0, . . . , δJ), and has full support

on R
J+1.

Assumption 2 implies that utility ties ui = uj , i 6= j, occur with probability 0 (because

the joint distribution of ε is absolutely continuous), meaning that the argmax set of the

ARUM is almost surely a singleton, the choice probabilities are all everywhere positive

(because ε has full support) and that random coefficients are not allowed (because the joint

distribution of ε is independent of δ).

Let G : RJ+1 → R given by

G (δ) = E

(

max
j∈J

uj

)

(10)

be the expected maximum utility. Let P = (P0 (δ) , . . . , PJ (δ)) : R
J+1 → ∆ be the vector

of choice probabilities with Pj (δ) being the probability of choosing alternative j.

From the Williams-Daly-Zachary theorem (McFadden, 1981), the choice probabilities

and the derivatives of G (δ) coincide, i.e.,

Pj (δ) =
∂G (δ)

∂δj
. j ∈ J , (11)

Let H =
(

H
(0)
, . . . , H

(J)
)

, with H
(i)

: RJ+1
++ → R++ defined as the derivative of the

exponentiated surplus with respect to its ith component, i.e.,

H
(i) (

eδ
)

=
∂eG(δ)

∂δi
. (12)

Note that
∑

j∈J H
(i) (

eδ
)

= eG(δ).18 Then the ARUM choice probabilities may be

written as

Pi (δ) =
H

(i) (
eδ
)

∑J
j=0 H

(j)
(eδ)

, i ∈ J , (13)

18This follows since (12) may be written as H
(i) (

eδ
)

= ∂G(δ)
∂δi

eG(δ) for all j ∈ J . Then by (11),

H
(i) (

eδ
)

= Pj (δ) e
G(δ) for all j ∈ J . Finally, sum over j ∈ J and use that choice probabilities sum to

one.
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which is exactly the same form as the GEM demand (4) if H = H. To establish that the

ARUM choice probabilities (13) can be generated by a GEM, it then only remains to show

that H has an inverse S = H
−1

and that this inverse is a generator. This is established in

the following lemma.

Lemma 2. The function H is invertible, and its inverse S = H
−1

is a generator.

Then the function −G
∗

given by

−G
∗
(q) = −

J
∑

j=0

qj lnS
(j)

(q) , q ∈ ∆, (14)

and −G
∗
(q) = +∞ when q /∈ ∆ is a GE. Fosgerau et al. (2017) show that −G

∗
is the

convex conjugate of G.19

Theorem 2 below summarizes the results as follows.

Theorem 2. The ARUM choice probabilities (13) with surplus function G given by (10)

coincide with the GE demand system (4) with GE function −G
∗
, where G

∗
is the convex

conjugate of G given by (14).

According to Theorem 2, all ARUM have a GEM as counterpart that leads to the same

demand. However, as shown in Example 3, the converse is not true: the class of GEM is

strictly larger than the class of ARUM. When a GEM corresponds to an ARUM, the surplus

function (7) and the maximum expected utility (10) coincide, i.e., G = G; and similarly

for their generators, i.e., S = S. Figure 1 illustrates how ARUM and GEM are linked and

shows how, beginning with some ARUM, we can determine a GEM with a corresponding

demand that is equal to the ARUM choice probabilities.

3.2 Link to standard consumer theory

In this section we discuss briefly how a PUM and hence also a GEM may be specified as a

standard consumer demand model including income and prices. Distinguishing price from

quality in the utility associated with a product will be useful in empirical applications in

19The latter result is well-known in the special case of the logit model, i.e. that the convex conjugate

of the negative entropy f (q) =
∑

j qj ln (qj) is the log-sum f∗ (δ) = ln
(

∑

j e
δj
)

(see e.g., Boyd and

Vandenberghe, 2004).
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Figure 1: LINKAGES BETWEEN GE MODELS AND ARUM

industrial organization, since prices must generally be considered as endogenous (Berry,

1994; Berry et al., 1995).

Consider a variety-seeking consumer facing choice set of J +1 differentiated products,

J = {0, 1, . . . J}, and a homogeneous numeraire good, with demands for the differenti-

ated products summing to one. Let pj and vj be the price and the quality of product j ∈ J ,

respectively. We normalize the price of numeraire good to 1 and assume that the consumer’s

income y is sufficiently high, y > maxj∈J pj , that consumption of the numeraire good is

strictly positive (i.e., not all income is spent on the differentiated products).

Let q = (q0, . . . , qJ)
⊺ be the vector of quantities consumed of the differentiated prod-

ucts and z be the quantity consumed of the numeraire good. The consumer’s direct utility

function u, which is quasi-linear in the numeraire, is given by

u (q, z) = αz +
J
∑

j=0

vjqj + Ω (q) , (15)

where α > 0 is the marginal utility of income, and Ω is a GE defined by (2).

The utility in (15) consists of three components: the first describes the utility derived

from the consumption of the numeraire good, the second describes the net utility derived

from the consumption of the products in the absence of interaction among them, and the

14



third expresses the consumer’s taste for variety in terms of a GE.

The consumer chooses q ∈ ∆ and z ∈ R+ so as to maximize her utility (15) subject to

her budget constraint. She solves

max
(q,z)∈∆×R+

u (q, z) , subject to
J
∑

j=0

pjqj + z ≤ y. (16)

The budget constraint is binding,20 so that (16) can be rewritten as follows

max
q∈∆

{

αy +
J
∑

j=0

δjqj + Ω (q)

}

, (17)

where δj = vj − αpj is the net utility that the consumer derives from consuming one unit

of product j.21

This shows that such a model can be cast as a GEM with prices entering the perturbed

utility linearly. Then, under Assumption 1, the implied demand system is given by (4) and

the indirect utility by w (δ, y) = αy+G (δ), where G is the surplus function (7). Note that

the demand system is consistent with Roy’s identity, i.e., qi = −∂w(δ,y)
∂pi

/∂w(δ,y)
∂y

, i ∈ J .

The quasi-linearity of the direct utility function 15 has two implications. First, GEM

demands for the differentiated products are independent of income, so that all the income

effects are captured by the numeraire.

Second, in the GEM, as in any model with quasi-linear direct utility (see e.g., Vives,

2001), the assumption of a representative consumer is not restrictive. Indeed, consider a

population of utility-maximizing consumers all with quasi-linear direct utility of the form

(15), and assume that they all have the same constant marginal utility of income α >

0. Then individual indirect utilities have the Gorman form and can thus be aggregated

across consumers, meaning that consumers can be treated as if they were a single consumer,

regardless of the distribution of unobserved consumer heterogeneity or of income.22

20This is because α > 0 and y > maxj∈J pj .
21In the empirical industrial organization literature, δj is referred to as the mean utility of product j.
22Consider a population of N consumers. Suppose that each consumer n’s direct utility function takes

the form un (qn, zn) = αzn +
∑J

j=0 vjqjn + Ωn (qn). Then consumer n’s indirect utility is given by

vn (δ, yn) = αyn + ln
(

∑J
j=0 H

(j)
n

(

eδ
)

)

and has the Gorman form vn (p, yn) = b (p) yn + an (p) with

b (p) = α that is identical for all consumers and an (p) = ln
(

∑J
j=0 H

(j)
n

(

eδ
)

)

that differs from consumer
to consumer.
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4 Estimation of GEM

We are now able to estimate GEM. In Subsection 2.3, we proposed some general methods

for constructing generators. The generators thus constructed can be written as functions of

the data and some parameters to be estimated with individual-level or aggregate data. In

this section, we show how to estimate GEM with aggregate data. The main finding is that

GEM are easily estimated by standard regression techniques.

4.1 Econometric Model

The aggregate data required to estimate GEM consists of the market shares, prices and

characteristics for each product in each market (see e.g., Nevo, 2001).

Consider T markets (t = 1, . . . , T ) with J inside products (j = 1, . . . , J) and an outside

option (j = 0). Let ξjt be the unobserved characteristics term of product j in market t: this

take into account the fact that the product characteristics used in estimation do not include

all the product characteristics that consumers care about. We fix ξ0t = 0 for all markets t.

In addition, assume that net utility is parametrized as

δjt (Xjt, pjt, ξjt;θ1) = β0 +Xjtβ − αpjt + ξjt,

where θ1 = (α, β0,β) is the vector of the linear parameters that enter the linear part of the

utility, and pjt and Xjt are the price and (any function of) the characteristics of each product

j in each market t that vary both across products and across markets, respectively. The

intercept β0 captures the value of consuming an inside product instead of the outside option;

the parameter vector β represents the consumers’ taste for the Xjt’s; and the parameter

α > 0 is consumers’ price sensitivity (i.e. the marginal utility of income).

Let θ2 be a parameter vector that enters the nonlinear part of the utility and parametrize

the generator as S(j) (qt;θ2). Then using (5) we have

lnS(j) (qt;θ2) = δjt (Xjt, pjt, ξjt;θ1) + ct, j = 0 . . . J, t = 1 . . . T,

where ct ∈ R denotes the log-sum term that is common across products on the same market,

and qt = (q0t, . . . , qJt)
⊺.

We impose the normalization that δ0t = 0 for all t = 1 . . . T , ensuring that δt is uniquely

determined on each market t.
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Subtracting the equations for the outside good, we end up with the J × T demand

equations ξjt = ξjt (θ) where the market-specific constant terms ct have dropped out, and

with

ξjt (θ) = lnS(j) (qt;θ2)− lnS(0) (qt;θ2)− (β0 +Xjtβ − αpjt) , (18)

where θ = (θ1,θ2) are the demand parameters to be estimated.

After transformation, GEM are nonlinear regression models, where the error is non-

additive. Such models can be estimated using standard regression techniques. Thus, there

is no need to use numerical inversion of market shares and simulation techniques that are

associated with problems of global convergence (Knittel and Metaxoglou, 2014), of numer-

ical integration (Skrainka and Judd, 2011), and of accuracy of BLP’s contraction mapping

(Dubé et al., 2012).

4.2 Identification

Prices and market shares form two different sets of endogenous variables and require dif-

ferent sources of exogenous variation for the model be identified. Prices are endogenous

due to the presence of the unobserved product characteristics ξjt. Indeed, price competition

models with differentiated products typically assume that firms consider both observed and

unobserved product characteristics when setting prices, and that they make prices a func-

tion of marginal costs and a markup term. Since the markup term is a function of the (entire

vector of) unobserved product characteristics, which constitute the error terms in Equations

(18), prices are likely to be correlated with the error terms. Market shares are endogenous

because demands are defined by a system of equations, where each demand depends on the

entire vectors of endogenous prices and of unobserved product characteristics.

GE models provide a system of demand equations (18) where each equation has one

unobservable ξjt and, under the standard assumption that products characteristics are ex-

ogenous, depends on (J + 1) endogenous variables, namely all the market shares qt and

one price pjt. The main identification assumption is the existence of as many excluded

(from the demand equations) instruments zt as there are endogenous variables. Instru-

ments are variables that are correlated with the endogenous variables (relevance) but are

not correlated with the error term ξjt (exogeneity). We propose a GMM estimator based

on the conditional moment restrictions E [ξjt (θ) |zt] = 0, which lead to the unconditional

moment restrictions E [ztξjt (θ)] = 0.

We require instruments for prices and for some (functions of) market shares, where
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the need for instruments for market shares depends on the structure of the generator. For

example, in the case of the NL model,

ξjt = ln

(

qjt
q0t

)

− µ ln
(

qjt|gj
)

+ αpjt − (Xjtβ + β0) ,

where qjt|gj is the share of product j within its corresponding nest gj . This requires only

two instruments, one for price pjt and one for the share qjt|gj .

Following the prevailing literature (Berry and Haile, 2014; Reynaert and Verboven,

2014; Armstrong, 2016), both cost shifters and BLP instruments are required. Cost shifters

(i.e., input prices) separate exogenous variation in prices due to exogenous cost changes

from endogenous variation in prices from unobserved product characteristics changes.

They are valid under the assumption that input price variations are correlated with price

variations, but not with changes in unobservable product characteristics. However, they are

not sufficient on their own, because costs affect the endogenous market shares only through

prices.

BLP instruments are functions of the characteristics of competing products and are

valid instruments under the assumption that Xjt is exogenous (i.e., ξjt is independent of

Xjt). They separate exogenous variation in prices due to changes in Xjt from endogenous

variation in prices from unobserved product characteristics changes. They are commonly

used to instrument prices with the idea that characteristics of competing products are cor-

related with prices since the (equilibrium) markup of each product depends on how close

products are in characteristics space (products with close substitutes will tend to have low

markups and thus low prices relative to cost). They are also appropriate instruments for

market shares on the RHS of (18).23 BLP instruments can suffice for identification but cost

shifters are useful in practice (see e.g., Reynaert and Verboven, 2014).

4.3 Relation to Berry Inversion

Berry inversion consists in inverting the system that equates observed market shares to

predicted market shares, in which the terms ξjt enter non-linearly in general, to get a system

of equations in which the terms ξjt enter linearly. Inversion can be done analytically or

23This is because identifying the effects of markets shares in the inverse demand system amounts to iden-
tifying the effects of v on market shares and that BLP instruments directly shifts v.
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numerically, depending on whether the system has a closed form or not.24 The inverse

system thus obtained serves as a basis for demand estimation.

Berry et al. (2013) generalize Berry (1994)’s invertibility result and show that their

“connected substitutes” structure is sufficient for invertibility. They require that (i) products

be weak gross substitutes (i.e., everything else equal, an increase in δj weakly decreases

demand qi for all other products) and (ii) the “connected strict substitution” condition hold

(i.e., there is sufficient strict substitution between products to treat them in one demand

system). Their structure can accommodate models with complementary products, but the

first requirement is not always satisfied in GEM, meaning that Berry et al. (2013)’s results

are not applicable.

GEM provide the system (5) which is just the inverse system obtained by Berry inver-

sion. This is because GEM are formulated in the space of market shares and not in the

space of indirect utilities. In GEM, the inverse system is thus directly available and has

a known and analytic formula. In turn, getting GEM demands (4) requires inverting the

system (5) and amounts to performing Berry inversion but in the opposite direction.

5 Empirical Application: Demand for Cereals

In this section, we apply a GEM to estimate the demand for cereals in Chicago in 1991

– 1992. The cereals market is known to exhibit product segmentation. To take into ac-

count this feature, we build a generalized nested entropy (GNE) model by application of

Corollary 3. As it will become clear, the GNE model is convenient for describing mar-

kets that exhibit product segmentation along several dimensions. It is closely related to the

Product-Differentiation Logit (PDL) model of Bresnahan et al. (1997), which is an instance

of a cross-nested logit model. We find that our GNE is simple and fast to estimate using

standard linear regression techniques.

5.1 Product Segmentation on the Cereals Market

Data. We use data from the Dominick’s Database made available by the James M. Kilts

Center, University of Chicago Booth School of Business. We consider the ready-to-eat

(RTE) cereal category during the period 1991–1992; and we supplement the data with the

24Berry (1994) and Brenkers and Verboven (2006) show that there is such a closed form for the logit and
NL models, and the three-level NL model, respectively. Berry, Levinsohn, and Pakes (1995) show that there
is no longer a closed form for the RCL model, but that the inverse exists.
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nutrient content of the RTE cereals using the USDA Nutrient Database for Standard Ref-

erence (fiber, sugar, lipid, protein, energy, and sodium), and with the sugar monthly price

from the website www.indexmundi.com. Following the prevailing literature, we aggregate

UPCs into brands (e.g., Kellogg’s Special K), so that different size boxes are considered

one brand, where a brand is a cereal (e.g., Special K) associated to its brand name (e.g.,

Kellogg’s). We focus attention on the top 50 brands, which account for 73 percent of sales

of the category in the sample we use. We define a product as a brand, and a market as

a store-month pair. Market shares and prices are computed following Nevo (2001) (see

Appendix E.3 for more details).

Product segmentation. Formulated in general, we consider a market for differentiated

products that exhibits product segmentation according to C dimensions, indexed c. Each

dimension c taken separately potentially provides a source of segmentation and defines a

finite number of nests. Each product belongs to exactly C nests, one for each dimension,

and the nesting structure is exogenous. The dimensions taken together define product types.

Products of the same type are those that are grouped together according to all the dimen-

sions. Each dimension defines a concept of product closeness (or distance), so that products

of the same type will be closer substitutes than products of different types.

For the application, we focus on two dimensions that form 17 product types: one mea-

sures the substitutability between products within the same market segment, where seg-

ments are family, kids, health, and taste enhanced (see e.g., Nevo, 2001); and the other

measures the advantages the brand-name reputation provides to the products, where brand

names are General Mills, Kellogg’s, Quaker, Post, Nabisco, and Ralston.

5.2 The GNE Model

Let σc (j) be the set of products that are grouped with product j according to dimension c

(i.e., a nest), and qσc(j),t =
∑

i∈σc(j)
qit be the market share of nest σc (j) in market t. Let

Θc be the nesting structure matrix for dimension c, having elements

(Θc)ij =







1, if i ∈ σc(j),

0, otherwise,
(19)

and let Θ = (Θ1, . . . ,ΘC) denote the array of nesting structure matrices.
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Based on Corollary 3, we define the generalized nesting entropy (GNE) model as fol-

lows.

Definition 3 (GNE model). The GNE model is a GEM with generator given by

S(j)(q) =







q0, j = 0,

qµ0

j

∏C
c=1 q

µc

σc(j)
, j > 0,

(20)

with µ0 +
∑C

c=1 µc = 1, µ0 > 0, and µc ≥ 0 for all c = 1, . . . , C.

The GNE model satisfies Assumption 1, so that zero demands never arise. Product

j = 0 is the outside option, which defines itself a product type and is the only product

of its type. Let µ = (µ0, . . . , µC) be the vector of nesting parameters. The parameter µ0

measures the consumers’ taste for variety over all products and each µc, c ≥ 1, measures

the consumers’ taste for variety over products of the same nest according to dimension c

(see Verboven, 1996).

The following proposition is useful for understanding the behavior of the GNE model.

Proposition 5. In the GNE model, the IIA holds for products of the same type; but does

not hold in general for products of different types.

Appendix E.2 provides some simulation results investigating the patterns of substitu-

tion and complementarity as the nesting structure and market shares change. In summary,

we find that (i) products of the same type are never complementary, while products of dif-

ferent types may or may not be complementary; (ii) a larger outside option (in terms of

market shares), except if it is extremely large, does not generate complementarity; and (iii)

the size of the cross-elasticities depends on the degree of closeness between products as

measured by the value of the nesting parameters and by the proximity of the products in

the characteristics space used to form product types.

The structure of the GNE model in the present application to cereals is illustrated in

the left panel of Figure 2. Each dot illustrates the location of a product in the nesting

structure and there are 17 non-empty types. The two segmentation dimensions are treated

symmetrically in this model.

The right panel of Figure 2 illustrates one of the two NL models that are possible with

the same two segmentations. The NL models have a hierarchical nesting structure, in which

the second layer of nesting is a partitioning of the first. Both NL models can be represented
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as GNE models and we estimate both for comparison. This is easily done using the same

regression setup while changing only the nesting structure.

Figure 2: PRODUCT SEGMENTATION ON THE CEREALS MARKET

5.3 Estimation

For the GNE model, Equation (18) can be written as

ξjt = µ0 ln (qjt) +
C
∑

c=1

µc ln
(

qσc(j),t

)

− ln (q0t)− (β0 +Xjtβ − αpjt) ,

and using the parameter constraint µ0 +
∑C

c=1 µc = 1, we obtain

ln

(

qjt
q0t

)

= β0 +Xjtβ − αpjt +
C
∑

c=1

µc ln

(

qjt
qσc(j),t

)

+ ξjt, (21)

for j = 1 . . . J and t = 1 . . . T , where θ = (θ1,θ2), with θ1 = (β0,β, α) and θ2 =

(µ1, . . . , µC), are the parameters to be estimated.

Equation (21) is the same as the logit and NL equations (see Berry, 1994; Brenkers and

Verboven, 2006), except for the terms µc ln
(

qjt/qσc(j)

)

; this suggests estimating the GNE

model by a linear instrumental variables regression of market shares on product character-

istics and terms related to market segmentation.

Price pjt is endogenous due to the presence of the unobserved product characteristics
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ξjt. In addition, the C nesting terms ln
(

qjt/qσc(jt)

)

are endogenous by construction: any

shock to ξjt that increases the dependent variable ln (qjt/q0t) will also increase the nesting

terms ln
(

qjt/qσc(jt)

)

. Assuming that product characteristics are exogenous, identification

requires finding at least one instrument for price and each of the C nesting terms.

We define markets as month-store pairs and products as brands. Following Bresnahan

et al. (1997), we include brand name and segment fixed effects, ξs and ξb, and market-

invariant continuous product characteristics xj (i.e., fiber, sugar, lipid, protein, energy, and

sodium). The fixed effects, ξb and ξs, capture market-invariant observed and unobserved

brand name (i.e. company) and segment-specific characteristics. We also include month

and store fixed effects, ξm and ξs, that capture monthly unobserved determinants of demand

and time-invariant store characteristics, respectively. The structural error that remains in

ξjt therefore captures the unobserved product characteristics varying across products and

markets (e.g., changes in shelf-space, positioning of the products among others) that affect

consumers utility and that consumers and firms (but not the modeller) observe so that they

are likely to be correlated with prices.

We use two sets of instruments as sources of exogenous variations in prices and market

shares. First, as cost shifters, we use the (market-level) price of sugar times the sugar

content of the cereals, interacted with segment and brand name fixed effects, respectively.

Multiplying the price of sugar by the sugar content allows the instrument to vary by product;

and interacting this with fixed effects allows the price of sugar to enter the production

function of each firm differently.

Second, we form BLP instruments by using other products’ promotional activity in a

given month, which varies both across stores for a given month and across months for a

given store: for a given product, other products’ promotional activity affects consumers’

choices, and is thus correlated with the price of that product, but uncorrelated with the

error term.25 We use the number of other promoted products of rival firms and the number

of other promoted products of the same firm, which we interact with brand names fixed

effects. We also use these numbers over products belonging to the same segment, which

we interact with segment fixed effects. We distinguish between products of the same firm

and of rival firms, and interact instruments with brand name fixed effects with the idea that

(equilibrium) markup is a function of the ownership structure since multi-product firms set

25The promotional is treated as an exogenous variable since, at Dominick’s, the promotional calendar is
known several weeks in advance of the weekly price decisions. In addition, we do not use functions of the
continuous product characteristics as instruments since by construction of the data, for each product, they are
invariant across markets (see Nevo, 2001).
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prices so as to maximize their total profits. Interaction with segment fixed effects accounts

for within-segment competitive conditions.

A potential problem is weak identification, which happens when instruments are only

weakly correlated with the endogenous variables. With multiple endogenous variables, the

standard first-stage F-statistic is no longer appropriate to test for weak instruments. We

therefore use Sanderson and Windmeijer (2016)’s F-statistic to test whether each endoge-

nous variable is weakly identified. F-statistics are larger than 10, suggesting that we can be

quite confident that instruments are not weak.

5.4 Related Approaches

The logit and NL models are special cases of the GNE model. They are attractive since

they have analytic formulae for both their market shares and their inverse (Berry, 1994).

However, they are restricted in their ability to generate different substitution patterns. In

contrast, the GNE model may generate far richer substitution patterns, it is very easily

estimated; but does not have an analytic formula for its market shares.

The GNE model is similar in spirit to some existing GEV models with (non)overlapping

nests,26 but has two key advantages over these models. First, the GNE has an analytic

formula for the inverse market shares, which means the BLP method can be implemented

while avoiding numerical inversion in the estimation process. Second, while GEV models

restrict products to be substitutes; the GNE model allows also complementarity to occur.

The GNE model is linked to two other approaches. First, Hausman et al. (1994) build a

three-stage demand model. Their model also requires classification of products into groups,

and is estimated by linear regression. However, they treat consumers’ choice as a sequence

of separate but related choices, need a large number of instruments that may be difficult to

find, and cannot handle large choice sets.

Second, Pinkse and Slade (2004) construct a continuous-choice demand model. Their

model is also simple to estimate, allows rich substitution patterns, handles large choice sets,

and makes cross-price elasticities functions of the distance of products in characteristics

space. However, their model is not as parsimonious as the GNE model and requires a large

number of instruments to be used.
26See e.g., the ordered logit models (Small, 1987; Grigolon, 2017); the PDL model (Bresnahan et al.,

1997); and the flexible coefficient MNL model (Davis and Schiraldi, 2014).
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5.5 Empirical results

Demand parameters. Table 1 presents 2SLS estimates of demand parameters from the

GNE model and the three-level NL models with nests for segment on top and with nests

for brand on top, respectively.

Table 1: PARAMETER ESTIMATES OF DEMAND

(1) (2) (3)
GNE 3NL1 3NL2

Price (−α) -1.831 (0.116) -2.908 (0.118) -4.101 (0.156)
Promotion (β) 0.0882 (0.00278) 0.102 (0.00305) 0.144 (0.00365)
Constant (β0) -0.697 (0.0593) -0.379 (0.0645) -0.195 (0.0755)
Nesting Parameters (µ)

Segment/nest (µ1) 0.626 (0.00931) 0.771 (0.00818) 0.668 (0.0109)
Brand/subnest (µ2) 0.232 (0.00944) 0.792 (0.00725) 0.709 (0.00961)

FE Segments (γ)
Health/nutrition (γH) -0.672 (0.00990) -0.855 (0.00751) -0.0693 (0.00538)
Kids (γK) -0.433 (0.00875) -0.529 (0.00869) 0.0705 (0.00522)
Taste enhanced (γT ) -0.710 (0.0102) -0.903 (0.00747) -0.0877 (0.00558)

FE Brand Names (θ)
Kellogg’s (θK) 0.0243 (0.00460) -0.0563 (0.00344) 0.104 (0.00635)
Nabisco (θN ) -0.754 (0.0242) -0.218 (0.0109) -2.105 (0.0201)
Post (θP ) -0.485 (0.0144) -0.187 (0.00830) -1.364 (0.00931)
Quaker (θQ) -0.553 (0.0150) -0.329 (0.0137) -1.508 (0.00653)
Ralston (θR) -0.732 (0.0249) -0.200 (0.0111) -2.131 (0.0211)

Observations 99281 99281 99281
RMSE 0.210 0.242 0.270
Notes: The dependent variable is ln(qjt/q0t). Regressions include fixed effects (FE) for brand
names and segments, months, and stores, as well as the market-invariant continuous product
characteristics (fiber, sugar, lipid, protein, energy, and sodium). Robust standard errors are
reported in parentheses. The values of the F-statistics in the first stages suggest that weak
instruments are not a problem.

Consider first the results from the GNE model. The estimated parameters on the neg-

ative of price (α) and on promotion (β) are significantly positive. The estimated nesting

parameters (0 < µ2 < µ1 < 1) are consistent with the GEM (µ1+µ2 < 1); this provides an

empirical check on the appropriateness of the GEM as the constraint was not imposed on

the estimates. The parameter estimates imply that there is product segmentation along both

dimensions: products with the same brand name are closer substitutes than products with

different brand names; and products within the same segment are closer substitutes than
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products from different segments. Overall, products of the same type are closer substitutes.

The advantages provided by the two dimensions are parametrized by the segment and

brand name fixed effects (the γ’s and θ’s) and the nesting parameters (µ1 and µ2). The fixed

effects measure the extent to which belonging to a nest shifts the demand for the product,

and the nesting parameters measure the extent to which products within a nest are protected

from competition from products from different nests along each dimension.

We find that the brand-name reputation of the cereals confers a significant advantage

on products from General Mills and Kellogg’s (θK > θG = 0 > θP > θQ > θR > θN ); and

cereals for family also benefit from a significant advantage (γF = 0 > γK > γH > γT ). In

addition, we find that µ1 > µ2, i.e., the segments confer more protection from competition

than brand-name reputation does (products within the same segment are more protected

from products from different segments than products with the same brand name are from

products with different brand names).

Turn now to the results from the three-level NL models. They are both consistent with

random utility maximization (µ2 > µ1), which means that it is not possible to decide

between them based on this criterion. However, the Rivers and Vuong (2002) test very

clearly reject both NL models in favor of the GNE. 27

Alternative specification with very large choice set. We have estimated an alternative

model in which all brand-store combinations are considered as products while markets are

taken to be months. The resulting model has more than 4,000 products, but was estimated

very quickly without any issues. This shows the ability of the GNE model to deal with

large choice sets.

The parameter estimates were not significantly affected by this change in specification,

which indicates that the results are fairly robust.

Substitution patterns. Figure 3 presents the estimated density of the own- and cross-

price elasticities of demands of the GNE and NL models (see Tables 9 and 10 for the

estimated own- and cross-price elasticities of demands, averaged over markets and product

types).

27The statistics of the test of the two NL models (model 1) against the GNE model (model 2), 2891.97
and 4879.82, are evaluated against the standard normal distribution. Each statistic is given by TN =√

N
σ̂

(

Q̂1 − Q̂2

)

, where N is the number of observations, Q̂i is the value of the estimated RMSE of model i,

and σ̂2 is the estimated value of the variance of the difference between Q̂i’s. The variance σ̂2 was estimated
using 500 bootstrap replications.
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Figure 3: ESTIMATED ELASTICITIES

The estimated own-price elasticities are in line with the literature (see e.g., Nevo, 2001).

On average, the estimated own-price elasticity of demands is −2.815 for the GNE model.

However, there is an important variation in price responsiveness across product types: de-

mands for cereals for kids produced by General Mills exhibit a much higher own-price

elasticity than cereals for health/nutrition produced by Post (−3.427 vs. −1.524).

Consider the cross-price elasticities. Among the 17×50 different cross-price elasticities

in the GNE model, 48.5 percent (resp., 51.5 percent) are negative (resp., positive), meaning

that some cereals are substitutes, while others are complements. For example, cereals

for families produced by General Mills are complementary with those with taste enhanced

produced by Kellogg’s; but are substitutable with those for kids produced by General Mills.

6 Conclusion

We have formulated the class of generalized utility models (GEM) and shown that have

a number of useful properties. The GEM class belongs to the class of perturbed utility

models and incorporates all additive random utility discrete choice models. GEM demands

have a tractable and familiar form that generalizes the logit demand.

We have shown how GEM can be specified in terms of a generator function. Different

GE models can be obtained from different specifications of the generator. We have pro-
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posed a general nesting operation for constructing generators and demonstrated its use in

an empirical application.

GE models are useful for implementing the BLP method, exploiting its advantages for

handling endogeneity issues, while avoiding the issues involved in the numerical inversion

of demand during estimation. This is because GE models give the structural error term

directly as a known function of the data and parameters, so that only standard regression

techniques are required. At the same time, GEM are able to accommodate a large variety

substitution patterns. In contrast to ARUM and its generalizations such as the mixed logit

model, the class of GEM comprises models that allow alternatives to be complements.

We have built the GNE model, a special case of a GEM, for describing markets with

product segmentation along several dimensions and we employ it to estimate a GNE using

a large real-world dataset. The GNE model is a serious competitor to the multi-level NL

models and the PDL model of Bresnahan et al. (1997): it improves on these models by

allowing rich patterns of substitution and complementarity, while being parsimonious and

computationally fast, and easily estimated by linear regression. In fact, we are able esti-

mate a version of the GNE model with 4,000 products at small computational effort and

encountering no numerical issues.

With the GEM, we have opened the door to a new universe of models. It is is larger

than the universe of ARUM and much remains to be explored. The further development of

GEM provides many opportunities for research, the main two are perhaps the following.

First, it would be desirable to develop ways to estimate GEM using individual-level discrete

choice data. Second, it would be very desirable to develop dynamic GEM parallelling the

dynamic discrete choice model Rust (1987). This would be useful for describing situations

involving forward looking behavior.
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A Preliminaries

Lemma 3. Let φ : R
n
+ → R and F : R → R be two continuous and differentiable

functions. Define f : Rn
+ → R by f (x) = F (φ (x)), with x = (x1, . . . , xn), and h : R →

R by h = F−1. Assume that φ is linearly homogeneous. Then,

a. (Euler equation for homogeneous functions)

φ (x) =
n
∑

i=1

∂φ (x)

∂xi

xi.

b. (Generalized Euler equation for homothetic functions (McElroy, 1969)) If F is non-

decreasing, then f is homothetic, and

n
∑

i=1

∂f (x)

∂xi

xi =
h (y)

h′ (y)
.

Proof. a. See e.g., proof of Theorem M.B.2. in Mas-Colell et al. (1995).

b. Consider h (y) = φ (x). Differentiate with respect to xi and rearrange terms to get

∂y

∂xi

=
1

h′ (y)

∂φ (x)

∂xi

.

Then

n
∑

i=1

∂f (x)

∂xi

xi

y
=

n
∑

i=1

∂y

∂xi

xi

y
=

n
∑

i=1

1

h′ (y)

∂φ (x)

∂xi

xi

y
,

=
1

h′ (y) y

n
∑

i=1

∂φ (x)

∂xi

xi =
h (y)

h′ (y) y
,

where the last equality uses a. applied to the homogeneous function φ. Multiplying both

side by y yields the required equality.

A matrix A ∈ R
n×n is said to be positive quasi-definite if its symmetric part 1

2
(A+A⊺)

is positive definite.
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Lemma 4 (Gale and Nikaido 1965, Theorem 6). If a differentiable mapping F : Θ → R
n,

where Θ is a convex region (either closed or non-closed) of Rn, has a Jacobian matrix that

is everywhere quasi-definite in Θ, then F is injective on Θ.

Lemma 5 (Simon and Blume, 1994, Theorem 14.4). Let F : Rn → R
n and G : Rn → R

n

be continuously differentiable functions. Let y ∈ R
n and x = G (y) ∈ R

n. Consider the

composite function

C = F ◦G : Rn → R
n.

Let JF (x) ∈ R
n×n be the Jacobian matrix of the partial derivatives of F at x, and

let JG (y) ∈ R
n×n be the Jacobian matrix of the partial derivatives of G at y. Then the

Jacobian matrix JC (y) is given by the matrix product of the Jacobians:

JC (y) = JF◦G (y) = JF (x)JG (y) .

Lemma 6 (Chain rule – inverse function). Let F = K−1 and G = K, then C = F ◦G is

the identity function, whose Jacobian matrix is the identity matrix. In this special case, we

have

JC (y) = JF◦G (y) = In = JK−1 (K (y))JK (y) ,

which solving for JK−1 (K (y)) gives

JK−1 (K (y)) = [JK (y)]−1 ,

or equivalently solving for JK (y) gives

JK (y) = [JK−1 (K (y))]−1 .

B Proofs for Section 2

Proof of Lemma 1. Lemma 1 is implied by Lemma 7 below.

Lemma 7. Assume that S is twice continuously differentiable and linearly homogeneous.

Then,

a. JlnS is symmetric on int (∆) if and only if
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J
∑

j=0

qj
∂ lnS(j) (q)

∂qk
= 1, k ∈ J , ∀q ∈ int (∆) . (22)

b. If JlnS is symmetric and positive definite on int (∆), then Ω is strictly concave on

int (∆).

c. If JlnS is positive definite, then S is invertible on int (∆).

Proof of Lemma 7. a. Assume that JlnS is symmetric. S(k) is linearly homogeneous, then

lnS(k) is homothetic.

Let φ (q) = S(k) (q) and F (q) = ln (q), then h (δ) = exp (δ). Define δ = f (q) =

F (φ (q)) = ln
(

S(k) (q)
)

and h (δ) = φ (q) = exp (δ). Then, by Lemma 3, S(k) satisfies

J
∑

j=0

qj
∂ lnS(k) (q)

∂qj
=

exp (δ)

exp (δ) δ
δ = 1.

By symmetry of JlnS, we end up with

J
∑

j=0

qj
∂ lnS(j) (q)

∂qk
= 1.

Assume now that
∑J

j=0 qj
∂ lnS(j)(q)

∂qk
= 1. Then, for each j, k ∈ J ,

∂Ω (q)

∂qj
= − lnS(j) (q)− 1;

∂Ω (q)

∂qk
= − lnS(k) (q)− 1,

so that
∂2Ω (q)

∂qj∂qk
= −

∂ lnS(j) (q)

∂qk
;

∂2Ω (q)

∂qk∂qj
= −

∂ lnS(k) (q)

∂qj
.

Since Ω is twice continuously differentiable, then by Schwarz’s theorem,

∂2Ω (q)

∂qj∂qk
=

∂2Ω (q)

∂qk∂qj
,

i.e.,
∂ lnS(j) (q)

∂qk
=

∂ lnS(k) (q)

∂qj
,

Then JlnS is symmetric as required.
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b. From Part 1, we find that JlnS (q) = ∇2
q (−Ω (q)), for all q ∈ int (∆). Then Ω is strictly

concave by positive definiteness of JlnS.

c. The function lnS is differentiable on the convex region int (∆) of RJ+1. In addition, JlnS

is positive quasi-definite on int (∆), since its symmetric part 1
2
(JlnS + (JlnS)

⊺) = JlnS

is positive definite on int (∆). Then, by Lemma 4, lnS is injective, implying that S is

injective.

Proof of Theorem 1. GE Demands (4). The Lagrangian of the GEM is

L (q, λ, λ0, . . . , λJ) = αy +
J
∑

j=0

δjqj −
J
∑

j=0

qj lnS
(j) (q) + λ

(

1−
J
∑

j=0

qj

)

+
J
∑

j=0

λjqj,

where λ ≥ 0 and λj ≥ 0 for all j ∈ J .

The first-order conditions are

δi − lnS(i) (q)−
J
∑

j=0

qj
∂ lnS(j) (q)

∂qk
− λ+ λi = 0, i ∈ J ,

J
∑

j=0

qj = 1.

Using Lemma 1, we get

δi − lnS(i) (q)− 1− λ+ λi = 0, i ∈ J ,

J
∑

j=0

qj = 1.

Observe that if q ∈ bd (∆), then | lnS(q)| = +∞, by Assumption 1. Hence, q cannot

solve the first-order conditions, since the λi’s must be finite. Therefore the solution must

be interior with λi = 0 for all i ∈ J . Then the first-order conditions reduce to

S (q) = eδ−1−λ > 0, (23)
J
∑

j=0

qj = 1. (24)

The linear homogeneity of S implies that also H = S−1 is linearly homogeneous. Then
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(23) yields

q = S−1
(

eδ−1−λ
)

= H
(

eδ−1−λ
)

= e−(1+λ)H
(

eδ
)

.

Lastly, (24) implies that e1+λ =
∑J

j=0 H
(j)
(

eδ
)

such that any solution to the first-order

conditions satisfies

qi =
H(i)

(

eδ
)

∑J
j=0 H

(j) (eδ)
, i ∈ J . (25)

The strict concavity of the utility u on int (∆) implies that this solution is unique and

is the argmax to the utility maximization problem.

Relation (5) between δ and q. Note that if q is an interior solution to the utility max-

imization problem then it satisfies Equation (4), which, by invertibility and linear homo-

geneity of S implies that

lnS(i) (q) + ln

(

J
∑

j=0

H(j)
(

eδ
)

)

= δi, i ∈ J .

Conversely, if ∀i ∈ J , we have δi = lnS(i) (q) + ln
(

∑J
j=0 H

(j)
(

eδ
)

)

, then q solves

(4).

Proof of Proposition 1. The surplus function G is defined by

G (δ) =
J
∑

j=0

δjqj (δ) + Ω (q (δ)) ,

with qj (δ) given by (4). The log-sum (7) results substituting qj (δ) by (4).

We now show that demands (4) satisfy Roy’s identity, i.e.,

qj (δ) =
∂G (δ)

∂δj
.

Let δ = lnS (q), so that (lnS)−1 (δ) = H ◦ exp (δ) = q. Then, by Lemma 6

JlnS (q) =
[

J(lnS)−1 (lnS (q))
]−1

= [JH◦exp (δ)]
−1 . (26)
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Since JlnS (q) is symmetric, JH◦exp is also symmetric, i.e.,

∂H(i)
(

eδ
)

∂δj
=

∂H(j)
(

eδ
)

∂δi
. (27)

This is because every positive definite matrix is invertible, and the inverse of a symmetric

matrix is also a symmetric matrix. Then,

∂G
(

eδ
)

∂δi
=

∑J
k=0

∂H(k)(eδ)
∂δi

∑J
j=0 H

(j) (eδ)
=

∑J
k=0

∂H(i)(eδ)
∂δk

∑J
j=0 H

(j) (eδ)
,

=

∑J
k=0

∂H(i)(eδ)
∂eδk

eδk
∑J

j=0 H
(j) (eδ)

=
H(i)

(

eδ
)

∑J
j=0 H

(j) (eδ)
,

where the second equality comes from the symmetry of JH◦exp, and the last equality comes

from the Euler equation (in Lemma 3) applied to the linearly homogeneous function H(i).

Proof of Proposition 2. From Theorem, 1 (5) we obtain

I = JlnS(q)Jq + 1q⊺.

This can be solved to obtain the desired result since JlnS(q) is invertible.

Proof of Proposition 4. Consider the generator S in Example 3 and write the correspond-

ing first-order conditions (23) and (24). Differentiating them with respect to δ0, we obtain

the following system of equations:













1

0

0

0













=













µ
q0
+ 1−µ

q0+q1/2
(1−µ)/2
q0+q1/2

0 1
(1−µ)/2
q0+q1/2

µ
q1
+ (1−µ)/4

q0+q1/2
+ (1−µ)/4

q1/2+q2

(1−µ)/2
q1/2+q2

1

0 (1−µ)/2
q1/2+q2

µ
q2
+ (1−µ)

q1/2+q2
1

1 1 1 0

























∂q0
∂δ0
∂q1
∂δ0
∂q2
∂δ0
∂λ
∂δ0













This can be solved to find that ∂q2/∂δ0 > 0 if and only if

µ <
q21 + q0q1 + q1q2

4q0q2 + 3q1q2 + 2q21 + 3q0q1
,

39



and noting that q0 + q1 + q2 = 1, if and only if

µ <
q1

4q0q2 + 3q1q2 + 2q21 + 3q0q1
.

At δ such that q0 = q1 = q2 = 1/3, the condition becomes µ < 1/4, thus showing that

there exists combinations of parameters µ and utilities δ at which some alternatives are

complements.

C Appendix for Section 3

Define Λ =
{

δ :
∑

j δj = 0
}

as the tangent space of ∆. The following lemma collects

some properties of the expected maximum utility G.

Lemma 8. The surplus G has the following properties.

a. G is twice continuously differentiable, convex and finite everywhere.

b. G (δ + c1) = G (δ) + c for any c ∈ R.

c. The Hessian of G is positive definite on Λ.

d. G is given in terms of the expected residual of the maximum utility alternative by

G (δ) =
J
∑

j=0

Pj (δ) δj + E (εj∗ |δ) .

Proof of Lemma 8. McFadden (1981) establishes convexity and finiteness of G as well as

the homogeneity property (b.) and the existence of all mixed partial derivatives up to order

J . This also implies that all second order mixed partial derivatives are continuous, since

J ≥ 2. Hofbauer and Sandholm (2002) show that the Hessian of G is positive definite on

Λ (see the proof of their Theorem 2.1).

Let j∗ be the index of the chosen alternative. The last statement of the lemma follows

40



using the law of iterated expectations:

G (δ) =
J
∑

j=0

E

(

max
j∈J

{δj + εj} |j
∗ = j, δ

)

Pj (δ) ,

=
J
∑

j=0

(δj + E (εj∗ |j
∗ = j, δ)Pj (δ)) ,

=
J
∑

j=0

Pj (δ) δj + E (εj∗ |δ) .

Proof of Lemma 2. Invertibility of H. Note first that H is differentiable.

In addition, the Jacobian of δ → H
(

eδ
)

, labeled JH, is positive quasi-definite on Λ.

The Jacobian JH has elements ij given by

{

eG(δ)Gi (δ)Gj (δ)
}

+
{

eG(δ)Gij (δ)
}

.

The first matrix is positive semi-definite. By part d. of Lemma 8, the second matrix is

positive definite on Λ. The Jacobian is therefore positive definite on Λ. Lastly, since JH

is symmetric, its symmetric part is itself, and thus positive quasi-definiteness of JH is

equivalent to its positive definiteness. Then, by Lemma 4, H is invertible on the range

H(eΛ). Global invertibility follows, since by the homogeneity property we have for δ ∈

R
J+1 that

H(eδ) = e1
⊺δeG(δ−1JJδ)P(δ − 1JJδ).

The range of H is R
J+1
++ since the range of P is the interior of ∆. To conform to

the definition of a generator, we need to extend H continuously to have domain and range

R
J+1
+ . Fosgerau et al. (2017, Proposition 2) show that H does in fact have such a continuous

and invertible extension H.28 We may therefore define a candidate generator S : RJ+1
+ →

R
J+1
+ as the inverse of H.

Generator S. The function S is twice continuously differentiable and linearly homoge-

neous. As shown above, the Jacobian of H is symmetric and positive definite. Then the

same is true of the Jacobian of lnS (see Lemma 6).
28The argument is fairly long, so we do not repeat it here.
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D Construction of GE models

In this section, we provide a range general methods for building generators along with

illustrative examples. According to Definition 1, candidate generators must be shown to

be twice continuously differentiable, linearly homogeneous, and with a Jacobian of their

logarithm that is symmetric and positive definite.

Constructing generators, we will encounter many instances where it is possible to con-

struct a candidate generator that satisfies all the requirements for being a generator except

the Jacobian of the log generator may be only positive semi-definite. We call such a can-

didate an almost generator. The first result in this section shows that averaging such an

almost generator with a generator produces a new generator.

Proposition 6 (Averaging). Let Tk : R
J+1
+ → R

J+1
+ , k ∈ {1, . . . , K}, be almost generators

with at least one being a generator. Let (α1, . . . , αK) ∈ int(∆). Then S : RJ+1
+ → R

J+1
+

given by

S (q) =
K
∏

k=1

Tk (q)
αk (28)

is a generator.

Proof of Proposition 6. S given by (28) is twice continuously differentiable. It is also

linearly homogeneous since for λ > 0

S (λq) =
K
∏

k=1

Tk (λq)
αk =

K
∏

k=1

λαkTk (q)
αk ,

=

(

K
∏

k=1

λαk

)(

K
∏

k=1

Tk (q)
αk

)

,

=
(

λ
∑K

k=1 αk

)

(

K
∏

k=1

Tk (q)
αk

)

= λS (q) ,

where the second equality comes from the linear homogeneity of the functions Tk and the

fourth equality comes from the restrictions on parameters
∑K

k=1 αk = 1.

The Jacobian of lnS, given by JlnS =
∑K

k=1 αkJlnTk
, is symmetric as the linear com-

bination of symmetric matrices; and positive definite as the linear combination of at most

K − 1 positive semi-definite matrices and at least one positive definite matrix.

Proposition 6 has two corollaries: Proposition 3 stated in the main text and Corollary 1
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given below.

Proof of Proposition 3. For each g ∈ G , let Tg =
(

T
(1)
g , . . . , T

(J)
g

)

with T
(j)
g (q) =

q
1{j∈g}
g , and let T (j)

0 (q) = qj . Then the Jacobian of lnTg has elements jk given by
1{j∈g}1{k∈g}

qg
, and thus JlnTg

=
1g1

⊺

g

qg
where 1g = (1 {1 ∈ g} , . . . ,1 {J ∈ g})⊺. Each

Tg, g ∈ G is an almost generator while T0 is the logit generator. Lastly,
∑

{g∈G|j∈g} µg +

µ0 = 1. Then the conditions for application of Proposition 6 are fulfilled.

The following corollary provides another application of Proposition 6, which allows to

build models with analytic formulae for both the demand functions and their inverse, as it is

the case for the logit and NL models. Let un-normalized demands q̃ be demands obtained

before normalizing their sum to 1, i.e., q = q̃/|q̃|.

Corollary 1 (Invertible nesting). Let G = {g0, . . . , gJ} be a finite set of J + 1 nests (i.e.,

the number of nests is equal to the number of products). Let µg > 0, for all g ∈ G , be the

associated nesting parameters where
∑

{g∈G |j∈g} µg = 1 for all j ∈ J , and qg =
∑

i∈g qi.

Let S be given by

S(j) (q) =
∏

{g∈G |j∈g}

qµg
g . (29)

Let W = diag (µg0 , . . . , µgJ ) and let M ∈ R
(J+1)×(J+1) with entries Mjk = 1{j∈gk} (where

rows correspond to products and columns to nests). If M is invertible, then S is a generator,

and the un-normalized demands satisfy

δ = lnS (q̃) ⇔ q̃ =
(

MT
)−1

exp
(

W−1M−1δ
)

.

The generator (29) satisfies Assumption 1 only when there is at least one degenerate

nest (i.e., a nest with a single product). This means that Corollary 1 allows for zero demands

when there is no degenerate nest. Note that zero demands may also arise in an ARUM

where the error terms have bounded support.

Proof of Corollary 1. Following the proof of Proposition 3, the (candidate) generator S

given by (29) is clearly an almost generator. Thus, it remains to show that, if M is invertible,

then the Jacobian of lnS is positive definite.
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Note that

lnS(j) (q) =
J
∑

k=0

µgk1 {j ∈ gk} ln (qgk) ,

=
J
∑

k=0

µgk1 {j ∈ gk} ln

(

J
∑

i=0

1 {i ∈ gk} qi

)

,

and, in turn,
∂ lnS(j) (q)

∂ql
=

J
∑

k=0

µgk

1 {j ∈ gk}1 {l ∈ gk}

qgk
,

which can be expressed in matrix form as

JlnS (q) = MVM⊺,

where V = diag
(

µg0

qg0
, . . . ,

µgJ

qgJ

)

. This is positive definite since all µg are strictly positive

and M is invertible.

Lastly, with M invertible, un-normalized demands solve lnS (q) = MW ln (M⊺q) =

δ and are given by

q = (M⊺)−1 exp
(

W−1M−1δ
)

.

Example 4. Define nests from the symmetric incidence matrix M with entries Mij =

1{i 6=j}, so that each product belongs to J nests. The inverse of the incidence matrix has

entries ij equal to 1
J
− 1{i=j}.

Let µg = 1/J for each nest g = 1, . . . , J . Then the un-normalized demands are given

by q̃ = (M)−1 exp [JM−1δ] which leads to the following demands

qi =
q̃i

∑J
j=0 q̃j

=

∑J
j=0 e

−Jδj − Je−Jδi

∑J
j=0 e

−Jδj
. (30)

These demands are non-negative only for values of δ within some set. To ensure positive

demands, it is possible to average with the simple logit generator, since then Assumption 1

is satisfied and Theorem 1 applies.

Demands (30) are not consistent with any ARUM since they do not exhibit the (re-

strictive) feature of the ARUM that the mixed partial derivatives of qj alternate in sign
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(McFadden, 1981). Indeed, alternatives are substitutes

∂q1
∂δ2

= −J2e−J(δ1+δ2)/

(

J
∑

j=0

e−Jδj

)2

< 0,

but

∂2q1
∂δ2∂δ3

= −2J3e−J(δ1+δ2+δ3)/

(

J
∑

j=0

e−Jδj

)3

< 0.

The following proposition shows how a generator can be transformed into a new gen-

erator by application of a location shift and a bistochastic matrix (i.e., a matrix with non-

negative elements that sum to 1 across rows and columns).

Proposition 7 (Transformation). Let T be a generator and m ∈ R
J+1 be a location shift

vector. Let A ∈ R
(J+1)×(J+1) be an invertible bistochastic matrix, so that aij ≥ 0 and

∑J
i=0 aij =

∑J
j=0 aij = 1. Then S given by

S (q) = exp
(

AT [ln (T (Aq))] +m
)

(31)

is a generator, and the un-normalized demands are given by

q̃ = A−1T−1
(

exp
[

(A⊺)−1 (δ −m)
])

.

Proof of Proposition 7. S defined by (31) is twice continuously differentiable. It is also

linearly homogeneous since for λ > 0,

S (λq) = exp (A⊺ lnT (A (λq)) +m) ,

= exp (A⊺ lnλ+A⊺ lnT (Aq) +m) ,

= exp (lnλ+A⊺ lnT (Aq) +m) = λS (q) ,

where the second equality comes from the linear homogeneity of T, and the third equality

comes from the fact that columns of A sum to 1.

By Lemma 5, the Jacobian of lnS is JlnS = A⊺JlnTA, which is symmetric and positive

definite.

The final conclusion follows from solving lnS (q̃) = δ.

By Proposition 7, if A is an invertible bistochastic matrix and Ω a GE, then q →
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Ω (Aq) is also a GE, since Ω(Aq) = −q⊺A⊺ lnS(Aq). This construction may be useful

if choice alternatives can be viewed as mixtures of another level of choice alternatives. In

addition, similarly to Corollary 1, Proposition 7 allows the construction of models with

analytic formulae for both their demand functions and their inverse. Lastly, it allows for

zero demands: this may arise when the generator T does not satisfy Assumption 1. We

illustrate Proposition 7 with a generator that leads to demands where products may be

complements.

Example 5. Let J + 1 = 3, m = 0, and T (q) = q, and

A =







p 1− p 0

1− p p 0

0 0 1






,

with p < 0.5. Then we obtain

q̃ = A−1
(

exp
[

(

AT
)−1

δ
])

=









p
2p−1e

p
2p−1 δ1−

1−p
2p−1 δ2 − 1−p

2p−1e
p

2p−1 δ2−
1−p
2p−1 δ1

p
2p−1e

p
2p−1 δ2−

1−p
2p−1 δ1 − 1−p

2p−1e
p

2p−1 δ1−
1−p
2p−1 δ2

eδ3









,

so that

q3 =
eδ3

e
p

2p−1 δ1−
1−p
2p−1 δ2 + e

p
2p−1 δ2−

1−p
2p−1 δ1 + eδ3

,

and ∂q3
∂δ1

> 0 if and only if δ2 − δ1 > (2p− 1) ln
(

1−p
p

)

.

E Appendix for Section 5

E.1 Properties of the GNE model

Proof of Proposition 5. Using the relation (5) between δ and q, we get, for any pair of

products j and k,

qj (δ)

qk (δ)
= exp

(

δj − δk
µ0

+
C
∑

c=1

µc

µ0

ln

(

qσc(k) (δ)

qσc(j) (δ)

)

)

. (32)

Then, for products j and k of the same type (i.e., with σc (k) = σc (j) for all c), Ex-
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pression (32) reduces to qj
qk

= exp
(

δj−δk
µ0

)

, and, in turn, the ratio qj/qk is independent of

the characteristics or existence of all other products, i.e., IIA holds for products of the same

type. However, for any two products of different types, this ratio can depend on the char-

acteristics of other products, so that IIA does not hold in general for products of different

types.

E.2 Numerical properties of the GNE model

Using Proposition 2, the matrix of own- and cross-price derivatives for the GNE model is

given by

Jq = -αΨ (Θ;µ) diag (q) [I− 1J+1q
⊺] ,

where

Ψ (Θ;µ) =

[

µ0IJ+1 +
C
∑

c=1

µcΘcQσc

]−1

,

with Θc given by (19) and Qσc
being the diagonal matrix of the market shares of products

within their nest σc (j), i.e., (Qσc
)jj =

qj
qσc(j)

. This means that we cannot obtain an analytic

formula for each entry of the matrix of own- and cross-price derivatives independently.

We therefore perform simulations to better understand substitution and complementarity

patterns the GNE model can accommodate.

To do so, we simulate NS different nesting structures (i.e. allocations of products in

nests) along C dimensions (with M modalities per dimension), NS different vectors of

nesting parameters µ = (µ0, . . . , µC), and NS different vectors of market shares q =

(q0, . . . , qJ). We set NS = 20, C = 3, M = 3, and J = 30, and we end up with

8, 000 market structures by combining these dimensions. We obtain (i) a nesting structure

by simulating a NS × C matrix of binomial random numbers; (ii) a vector of nesting

parameters by simulating a (C + 1) vector of uniformly distributed random numbers where

the first element is µ0, then by normalizing the vector of the other nesting parameters to get

a unit vector µ; (iii) a vector of market shares by simulating a (J + 1) vector of uniformly

distributed random numbers where the first element is q0, then by normalizing the vector

of market shares of inside products to get a unit vector q (the normalization is to simulate

markets with very low and very high values for µ0 and q0).

The following table gives summary statistics on the simulated data:
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TABLE 2: SUMMARY STATISTICS ON THE SIMULATED DATA

Variable Mean Min Max
q0 0.5253 0.0064 0.9906
qj 0.0158 3e-06 0.0697
µ0 0.4662 0.0697 0.9532
µ1 0.2014 0.0135 0.8480
µ2 0.1420 0.0175 0.4036
µ3 0.1904 0.0059 0.5212

Nesting structure. Table 3 shows the distribution of the own- and cross-price derivatives

for the simulated data according to the proximity of the products in the characteristics space

used to form product types.

Table 3: DISTRIBUTION OF PRICE DERIVATIVES ACCORDING TO THE NUMBER OF

COMMON NESTS

Same nests ∇q > 0 Median Min Max Freq.
Own-price derivatives

– 0.00% -0.0222 -0.7781 -3e-06 100.00%
Cross-price derivatives

0 (None) 45.33% -7e-07 -0.1539 0.0251 25.09%
1 90.38% 0.0002 -0.1114 0.2082 43.59%
2 100.00% 0.0006 -1e-09 0.2641 26.47%
3 (All) 100.00% 0.0009 -1e-09 0.3100 4.85%
Total 82.09% 0.0002 -0.1539 0.3100 100.00%
Notes: Column "∇q > 0" gives the percentage of positive cross-price elas-
ticities (i.e., the percentage of substitutable products). Column "Freq." gives
the frequencies (in percentage) of the cross-price elasticities (e.g., 4.85 per-
cent of the cross-price elasticities involve products of the same type).

.

Own-price elasticities are always negative, while cross-price elasticities can be either

negative (complementarity) or positive (substitutability). Products of the same type are

always substitutable. As products become different, products are less likely to be substi-

tutable. Products that are very similar (i.e., that are grouped together according to all the

dimensions, but one) are always substitutable too. However, products that are completely

different can be either substitutable or complementary. To summarize, complementarity

may or may not arise for products that are of different types, while products of the same

type are always substitutable.
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Size of the outside option (q0). Table 4 shows the percentage of positive cross-price

derivatives (substitutes) according to the size of the outside option.

Table 4: PERCENTAGE OF SUBSTITUTES ACCORDING TO THE SIZE OF THE OUTSIDE

OPTION

q0 ∇q > 0 q0 ∇q > 0
0.64% 87.07% 53.42% 84.06%
4.80% 87.06% 63.39% 83.66%
8.99% 86.65% 77.40% 81.82%

13.37% 86.65% 78.09% 81.83%
14.22% 86.39% 79.78% 81.39%
16.65% 86.44% 88.89% 78.30%
17.97% 86.16% 94.35% 76.42%
47.75% 84.31% 96.94% 73.05%
48.13% 84.20% 98.33% 70.94%
48.33% 84.50% 99.06% 70.90%

One concern is that a large outside option could generate complementarity. Table 4

shows that the size of the outside option does not matter for the purpose considered here:

with the simulated data, there are 87 (resp. 84 and 76) percent of substitutable products for

q0 < 1 (resp. q0 ≃ 53 and q0 ≃ 94) percent. However, at the extremes, a higher value value

of the outside option is associated with a higher proportion of complementary products.

Nesting parameters. Table E.2 shows the distribution of cross-price derivative accord-

ing to the level of the closeness of products, as measured by the sum of nesting parameters

µjk =
∑3

c=1 µi1 {j ∈ σc (k)} for two products j and k.
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Table 5: PERCENTAGE OF SUBSTITUTES ACCORDING TO THE VALUE OF µjk

µjk ∇q > 0 Median Min Max
[0, 0.1[ 65.60% 0.0000 -0.1539 0.0286
[0.1, 0.2[ 96.37% 0.0002 -0.0538 0.1462
[0.2, 0.3[ 93.52% 0.0003 -0.1114 0.1670
[0.3, 0.4[ 94.16% 0.0007 -0.0673 0.2082
[0.4, 0.5[ 93.89% 0.0009 -0.0432 0.2049
[0.5, 0.6[ 100.00% 0.0020 1e-08 0.2295
[0.6, 0.7[ 100.00% 0.0026 3e-08 0.2339
[0.7, 0.8[ 100.00% 0.0032 3e-08 0.2641
[0.8, 0.9[ 100.00% 0.0041 6e-08 0.1615
[0.9, 1[ 100.00% 0.0130 2e-07 0.3100

As the parameter µjk increases, we observe first that the size of the derivatives decreases

in their negatives values, and increases in their positive values; then that the share of sub-

stitutable products increases. This comes from the fact that a higher value of µik indicates

that products j and k are perceived as more similar.

E.3 Data

Data. We use data from the Dominick’s Database made available by the James M. Kilts

Center, University of Chicago Booth School of Business. They comprise all Dominick’s

Finer Foods chain stores in the Chicago metropolitan area over the period 1989-1997, and

concern 30 categories of packaged products. They are weekly store-level scanner data at

the UPC level, and include unit sales, retail price, and weekly stores traffic.

We supplement the data with the nutrient content of the cereals using the USDA Nutri-

ent Database for Standard Reference. This dataset is made available by the United States

Department of Agriculture and provides the nutrient content of more than 8,500 differ-

ent foods including ready-to-eat cereals (in particular, we use releases SR11 and SR16

for sugar). We use six characteristics: fiber, sugar, lipid, protein in grams/100g of cere-

als, energy in Kcal/100g of cereals, and sodium in mg/100 g of cereals. We convert each

characteristics into g/serve, Kcal/serve, and mg/serve, respectively.

We supplement the data with the sugar monthly price in dollars/kg. We use this variable

to form a cost-based instrument: the price of the cereal’s sugar content (i.e., sugar content

in g times the sugar monthly price in dollars/g).
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Market shares and prices. Following Nevo (2001), we define market shares of the (in-

side) products by converting volume sales into number of servings sold, and then by divid-

ing it by the total potential number of servings at a store in a given month.

To compute the potential market size, we assume that (i) an individual in a household

consumes around 15 servings per month, and (ii) consumers visit stores twice a week.29

Indeed, according to USDA’s Economic Research Service, per capita consumption of RTE

cereals was equal to around 14 pounds (that is, about 6350 grammes) in 1992, which is

equivalent to serving 15 servings per month (without loss of generality, we assume that a

serving weight is equal to 35 grammes). Then, the potential month-store market size (in

servings) is computed as the weekly average number of households which visited that store

in that given month, times the average household size for that store, divided by two, times

the number of servings an individual consumes in a month. Using the weekly average

number of households itself allows to take into account the fact that consumers visit stores

once a week. The market share of the outside option is then the difference between one and

the sum of the inside products market shares.

Following Nevo (2001), we compute the price of a serving weight by dividing the dollar

sales by the number of servings sold, where the dollar sales reflect the price consumers paid.

Descriptive statistics. The sample we use consists of the six biggest companies men-

tioned above. Brand names seem to play a non-negligible role: Kellogg’s is the biggest

company with large market shares in all segments; and General Mills, the second biggest

one, is especially present in the family and kids segments. Taken together they account for

around 80 percent of the market. As regards market segments, the family and kids segments

dominate and account for almost 70 percent of the market.

Table 7 shows the nutrient content of the cereals according to their market segment

and brand name. We observe that cereals for health contain less sugar, more fiber, less

lipid, and less sodium, and are less caloric. Cereals for kids contain more sugar and more

calories. Nabisco offers cereals with less sugar and less calories, and Quaker and Ralston

offer cereals with more calories.

Implementing the GNE model. We must first select the dimensions along which the

market is segmented. Then, we estimate the GNE model by 2SLS (or GMM) using cost

29As a robustness check, we have also estimated the models with the alternative assumption that consumers
visit stores once a week. Results do not change significantly.
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shifters and BLP instruments as instruments for prices and nesting terms. Lastly, we get the

estimated net utility δ̂, the estimated marginal utility of income α̂, and the estimated nesting

parameters µ̂ = (µ̂1, . . . , µ̂C), which we use to compute the matrix of own- and cross-price

elasticities in two steps. The first step computes the predicted market shares q̂ by solving

for q the system of nonlinear equations lnS (q) = δ + c, with S defined in Equation (20)

and with c = − ln (q0) = − ln
(

1−
∑J

j=1 qj

)

, by normalization δ0 = 0. To do so, we use

the Stata command solvenl or the Matlab command fsolve. The second step computes

the matrix of elasticities η at q̂ and δ̂ using (8) and η = diag (δ)Jqdiag (q)
−1, where Jq

is obtained using Proposition 2.

E.4 Results: Elasticities for the main specifications

Tables 9 and 10 give the estimated average own- and cross-price elasticities of demands

for the main specifications, averaged over markets and product types. Product types are

defined in Table 6.

Table 6: PRODUCT TYPES

Number Product type
1 General Mills – Family
2 General Mills – Health/nutrition
3 General Mills – Kids
4 General Mills – Taste enhanced
5 Kelloggs – Family
6 Kelloggs – Health/nutrition
7 Kelloggs – Kids
8 Kelloggs – Taste enhanced
9 Nabisco – Health/nutrition
10 Post – Health/nutrition
11 Post – Kids
12 Post – Taste enhanced
13 Quaker – Family
14 Quaker – Kids
15 Quaker – Taste enhanced
16 Ralston – Family
17 Ralston – Kids
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Table 7: SAMPLE STATISTICS BY SEGMENT AND BY BRAND NAME

Dimensions Sugar Energy Fiber Lipid Sodium Protein N
g/serve Kcal/serve g/serve g/serve mg/serve g/serve

Segment

Family 7.54 130.41 2.22 0.99 269.66 2.88 17
(5.27) (9.83) (2.61) (0.71) (88.64) (1.03)

Health/nutrition 5.03 122.54 3.16 0.54 168.54 3.84 9
(3.69) (5.78) (1.31) (0.21) (133.62) (1.35)

Kids 13.40 137.75 1.00 1.35 211.38 2.01 16
(4.17) (3.80) (0.69) (0.79) (44.77) (0.87)

Taste enhanced 9.70 129.28 3.32 2.22 166.43 3.16 8
(2.05) (15.50) (1.12) (1.93) (76.38) (0.34)

Brand Name

General Mills 9.92 132.09 1.99 1.51 230.69 2.65 17
(4.67) (7.69) (0.98) (0.82) (60.83) (0.83)

Kellogg’s 9.58 127.50 2.47 0.85 228.49 2.88 18
(5.52) (11.16) (2.81) (0.96) (103.93) (1.43)

Nabisco 0.25 125.48 3.43 0.58 2.10 3.83 2
(0.09) (0.74) (0) (0) (1.98) (0.02)

Post 12.02 130.76 2.09 1.03 212.03 2.49 5
(4.64) (14.83) (2.02) (0.78) (22.31) (1.15)

Quaker 8.50 139.44 2.26 2.43 159.88 3.59 5
(4.04) (9.20) (0.66) (1.86) (94.60) (1.15)

Ralston 7.09 138.48 0.58 0.51 305.43 2.04 3
(6.61) (1.41) (0.08) (0.65) (71.57) (0.39)

Total 9.31 131.16 2.17 1.22 216.29 2.82 50
(5.21) (10.21) (1.92) (1.08) (93.53) (1.15)

Notes: Standard deviations are reported in parentheses.
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Table 8: TOP 50 BRANDS

Nb. Brand Type Brand name Segment Shares (%)
Dollars Volume

1 Apple Cinnamon Cheerios 1 General Mills Family 2.23 2.02
2 Cheerios 1 General Mills Family 7.67 6.76
3 Clusters 1 General Mills Family 1.03 0.89
4 Golden Grahams 1 General Mills Family 2.28 2.12
5 Honey Nut Cheerios 1 General Mills Family 4.82 4.47
6 Total Corn Flakes 1 General Mills Family 0.87 0.59
7 Wheaties 1 General Mills Family 2.59 2.75
8 Total 2 General Mills Health/nutrition 1.29 1.00
9 Total Raisin Bran 2 General Mills Health/nutrition 1.61 1.49

10 Cinnamon Toast Crunch 3 General Mills Kids 2.16 1.94
11 Cocoa Puffs 3 General Mills Kids 1.22 0.98
12 Kix 3 General Mills Kids 1.68 1.29
13 Lucky Charms 3 General Mills Kids 2.35 1.94
14 Trix 3 General Mills Kids 2.43 1.75
15 Oatmeal (Raisin) Crisp 4 General Mills Taste enhanced 2.05 2.09
16 Raisin Nut 4 General Mills Taste enhanced 1.60 1.60
17 Whole Grain Total 4 General Mills Taste enhanced 1.77 1.29
18 All Bran 5 Kellogg’s Family 0.97 1.11
19 Common Sense Oat Bran 5 Kellogg’s Family 0.49 0.46
20 Corn Flakes 5 Kellogg’s Family 4.12 6.96
21 Crispix 5 Kellogg’s Family 1.88 1.70
22 Frosted Flakes 5 Kellogg’s Family 6.01 6.77
23 Honey Smacks 5 Kellogg’s Family 0.85 0.84
24 Rice Krispies 5 Kellogg’s Family 5.58 6.06
25 Bran Flakes 6 Kellogg’s Health/nutrition 0.90 1.16
26 Frosted Mini-Wheats 6 Kellogg’s Health/nutrition 3.35 3.69
27 Product 19 6 Kellogg’s Health/nutrition 1.06 0.86
28 Special K 6 Kellogg’s Health/nutrition 3.07 2.53
29 Apple Jacks 7 Kellogg’s Kids 1.67 1.32
30 Cocoa Krispies 7 Kellogg’s Kids 0.99 0.85
31 Corn Pops 7 Kellogg’s Kids 1.80 1.52
32 Froot Loops 7 Kellogg’s Kids 2.66 2.22
33 Cracklin’ Oat Bran 8 Kellogg’s Taste enhanced 1.91 1.66
34 Just Right 8 Kellogg’s Taste enhanced 1.07 1.12
35 Raisin Bran 8 Kellogg’s Taste enhanced 3.96 4.83
36 Shredded Wheat 9 Nabisco Health/nutrition 0.77 0.88
37 Spoon Size Shredded Wheat 9 Nabisco Health/nutrition 1.59 1.63
38 Grape Nuts 10 Post Health/nutrition 2.27 3.06
39 Cocoa Pebbles 11 Post Kids 1.11 0.92
40 Fruity Pebbles 11 Post Kids 1.14 0.94
41 Honey-Comb 11 Post Kids 1.05 0.90
42 Raisin Bran 12 Post Taste enhanced 0.93 1.10
43 Oat Squares 13 Quaker Family 0.91 1.02
44 CapNCrunch 14 Quaker Kids 1.00 1.10
45 Jumbo Crunch (Cap’n Crunch) 14 Quaker Kids 1.27 1.35
46 Life 14 Quaker Kids 1.73 2.24
47 100% Cereal-H 15 Quaker Taste enhanced 1.42 1.84
48 Corn Chex 16 Ralston Family 0.81 0.72
49 Rice Chex 16 Ralston Family 1.15 1.03
50 Cookie-Crisp 17 Ralston Kids 0.89 0.68
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Table 9: AVERAGE PRICE ELASTICITIES FOR THE GNE MODEL

O
w

n
C

ross

Type
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

1
-3.165

0.241
0.111

0.085
0.092

0.092
-0.038

-0.064
-0.056

0.003
0.013

-0.013
-0.005

0.133
-0.023

-0.016
0.077

-0.079
2

-3.146
0.072

0.379
0.069

0.074
-0.039

0.269
-0.041

-0.037
0.113

0.238
-0.072

-0.064
-0.003

-0.006
-0.002

-0.004
-0.006

3
-3.427

0.066
0.083

0.316
0.076

-0.026
-0.009

0.225
-0.016

0.002
-0.059

0.174
-0.064

-0.100
0.150

-0.090
-0.044

0.206
4

-2.950
0.067

0.083
0.071

0.384
-0.034

-0.018
-0.030

0.282
0.003

-0.035
-0.047

0.255
-0.051

-0.047
0.266

-0.004
-0.000

5
-2.560

0.097
-0.063

-0.035
-0.049

0.211
0.050

0.078
0.065

-0.007
-0.017

0.011
-0.003

0.125
-0.008

-0.021
0.074

-0.058
6

-2.700
-0.028

0.308
-0.008

-0.018
0.035

0.372
0.056

0.046
0.122

0.251
-0.066

-0.072
-0.015

0.005
-0.005

-0.009
0.011

7
-3.366

-0.037
-0.037

0.169
-0.024

0.044
0.044

0.250
0.057

-0.005
-0.062

0.144
-0.046

-0.084
0.122

-0.071
-0.036

0.170
8

-2.531
-0.042

-0.042
-0.016

0.288
0.046

0.046
0.072

0.376
-0.005

-0.056
-0.029

0.265
-0.063

-0.036
0.268

-0.009
0.017

9
-1.949

0.001
0.074

0.001
0.002

-0.003
0.069

-0.003
-0.003

0.909
0.062

-0.011
-0.009

0.005
0.005

0.006
0.005

0.005
10

-1.524
0.008

0.225
-0.047

-0.028
-0.010

0.208
-0.065

-0.045
0.090

—
0.399

0.396
0.033

-0.022
-0.002

0.016
-0.038

11
-3.175

-0.006
-0.046

0.092
-0.026

0.004
-0.036

0.102
-0.016

-0.011
0.266

0.404
0.272

-0.029
0.069

-0.050
-0.010

0.087
12

-1.949
-0.003

-0.050
-0.042

0.184
-0.001

-0.048
-0.040

0.186
-0.011

0.337
0.344

—
-0.005

-0.044
0.182

0.013
-0.026

13
-2.337

0.050
-0.002

-0.048
-0.027

0.045
-0.008

-0.053
-0.032

0.005
0.020

-0.025
-0.004

—
0.233

0.254
0.040

-0.058
14

-2.273
-0.011

-0.004
0.090

-0.030
-0.003

0.003
0.098

-0.022
0.005

-0.016
0.079

-0.040
0.285

0.387
0.266

-0.013
0.089

15
-1.778

-0.008
-0.001

-0.056
0.177

-0.010
-0.003

-0.059
0.174

0.006
-0.003

-0.058
0.170

0.326
0.277

—
0.012

-0.037
16

-2.607
0.028

-0.002
-0.019

-0.002
0.026

-0.005
-0.021

-0.004
0.005

0.009
-0.008

0.009
0.038

-0.009
0.008

0.808
0.759

17
-3.382

-0.021
-0.003

0.072
-0.000

-0.014
0.004

0.078
0.006

0.003
-0.017

0.057
-0.014

-0.041
0.051

-0.021
0.581

—
N

o
tes:

E
lasticities

are
averaged

over
producttypes

and
over

m
arkets.
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Table 10: AVERAGE PRICE ELASTICITIES FOR THE THREE-LEVEL NL MODELS

Type 3NL1 3NL2

Own Cross Own Cross

Same Same Different Same Same Different
subgroup group group subgroup group group

1 -3.528 0.182 0.137 0.005 -3.524 0.208 0.147 0.007
2 -3.414 0.426 0.257 0.004 -3.530 0.332 0.104 0.005
3 -3.778 0.300 0.228 0.004 -3.876 0.226 0.129 0.006
4 -3.228 0.403 0.302 0.004 -3.398 0.255 0.117 0.006
5 -2.840 0.178 0.145 0.006 -2.868 0.169 0.124 0.008
6 -2.994 0.353 0.282 0.004 -3.181 0.186 0.089 0.006
7 -3.678 0.261 0.172 0.003 -3.763 0.199 0.080 0.005
8 -2.781 0.386 0.296 0.004 -2.971 0.215 0.092 0.006
9 -2.804 0.309 0.169 — -2.030 1.102 — 0.003

10 -1.930 — 0.244 0.003 -1.605 — 0.507 0.005
11 -3.671 0.229 0.111 0.002 -3.435 0.488 0.329 0.003
12 -2.295 — 0.201 0.003 -2.028 — 0.396 0.004
13 -2.584 — 0.059 0.002 -2.270 — 0.298 0.003
14 -2.685 0.213 0.129 0.002 -2.480 0.434 0.321 0.004
15 -2.064 — 0.203 0.003 -1.845 — 0.357 0.004
16 -3.494 0.226 0.058 0.002 -2.713 1.029 0.800 0.003
17 -3.929 — 0.089 0.002 -3.236 — 0.667 0.002

Notes: Elasticities are averaged over product types and over markets.
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