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Abstract. The Shabat—Mikhailov model is treated in the framework of the
quantum inverse scattering method. The Baxter’s R-matrix for the model is
calculated.

1. Introduction

In this paper we consider the Shabat—Mikhailov model. This model was introdu-
ced in [1]. This model was investigated in detail for the first time in [2]. The solu-
tion of the equation of motion by means of the inverse scattering method was given
in [3]. The S-matrix approach to the quantum version of the model was applied
in [4], where the scattering matrix for the physical particles was calculated.

Here we consider the quantum version of the model, our approach being based
on the quantum inverse scattering method [5]. This method is a generalization
to the quantum case of the classical inverse scattering method proposed in [6].

The quantum inverse scattering method was successfully applied to the sine-
Gordon model [7] which is somewhat similar to the model under consideration.
The Hamiltonian structure of the model is of special interest for us. The angle-
action variables in the framework of the classical inverse scattering method can
be given in terms of scattering data [8]. One can easily express the scattering data
by the monodromy matrix elements, the Poisson brackets of these elements being
readily calculated by means of the classical #-matrix [9]. In Section 2 we list the
main properties of the classical model and calculate the r-matrix.

In the quantum inverse scattering method, the Baxter’s “quantum” R-matrix
determining the commutation relations of the quantum monodromy matrix
elements is important. The knowledge of these relations allows in principle the
construction of all eigenfunctions of the Hamiltonian operator [5]. We propose
a method of calculation of the R-matrix for the integrable field theory models
based on the Yang—Baxter relations [10-14], the explicit form of the classical
r-matrix, and the symmetry group of the models. For the classical version of the
model considered, the corresponding symmetry group was introduced in [3].
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In Sect. 3 we calculate the R-matrix for the Shabat—Mikhailov model. This
R-matrix is the main result of the paper. Note that the Yang—Baxter relations
are widely discussed in the literature, the solutions of these equations being of
importance for the problems of quantum field theory and statistical physics (see
[5, 14]). In Sect. 4 the quantum monodromy matrix is considered. In Sect. 5 the
further properties of the R-matrix are discussed. We construct an integrable spin
model associated with the R-matrix. The connection between this model and the
Shabat—Mikhailov model is the same as between the X X Z and the sine-Gordon
models.

It should be noted that the existence of the R-matrix means that the quantum
version of the Shabat—Mikhailov model is also completely integrable. This model
and the sine-Gordon one are the only integrable relativistic models containing one
scalar field. The previous version of our results was published in [15].

2. The Classical Model

In this Section we represent the properties of the model in the form helpful for
quantization. The Shabat—Mikhailov model is a relativistic model of one scalar
field in two space-time dimensions. The Lagrangian and the equation of motion
read as follows:

¥ = y‘ljdx[é(aﬂu)z —m*(exp(u) + L exp(—2u) - 2)];
Cu + m*(exp(u) — exp(—2u))=0; [1=07—202. (1

This equation is valid if and only if the following operators X (1) and M(1) com-
mute at any value of the spectral parameter A[3]:

[X(4), M(2)]=0 2
X(A)=0,+0(4); QM) =0,()+ Q,(A)+ Q;(1);
M(2) =0, + M, (3) + M, (1) + M, (3). 3)

The matrices Q,, M, are the 3 x 3-matrices, their nonzero elements being equal to:
Q)= —(Q )33 = —30u
i, i
(Q,),; = Emi Lexp(—u)5(Q,)5, = — Emi exp(—u);

(Q3)12:(Q3)3 —*-I’I’l), leXP< > (Q )13 (Q )21 miexP(g)

M)y, = —(M,)y3 = —70,u; “)

X

=lmlexp(—u);

i
(M2)23:Eml_lexp(_”);(Mz)sz )

(M), = (M,);, = i mi- exp< >(M ), =(M,),, = mzeXp(g>

Note that operators X, M naturally contain the corresponding operators for
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the Liouville equation. Namely the commutativity condition for the operators

X0 =0,+0,+0,:MP =0,+ M, + M, )
gives the equation [Ju — m? exp( — 2u) = 0 and the operators
XP=0+0Q0,+0,;MP=08+M,+M, (6)

lead to the equation [Ju + m? exp(u) = 0.
Define now the monodromy matrix T(x, y|A)(x > y):

X(XH)T(XDJ}M):O:T(y’yu')zl’ (N

the matrix I being the unit 3 x 3-matrix. The specific form of the operator X
results in the existence of the symmetry group:

T*(x,y|4) = T(x,y| — 2%); (8)
qT(x,y|q_Mg~ ' = T(x, y|4); )
pT™ ' (x,y| = Dp = T(x, y|A). (10)
The 3 x 3-matrices p and g are:

1 00 .

. 2mi
p=(0 0 1 ;q=dlag(1,q+,q);qi=e><p<i-3w>. (11)

010

This symmetry group will be essential for quantization. It follows from Egs. (2), (7)
that lim tr T(x, y|4) at x— oo, y > — oo is time independent, hence In tr T(x, y|4)
is a generating functional for the conservation laws. The coefficients of In tr
T(x, y| A} in a power expansion in 4 are the Jocal conservation laws, the Hamilton-
ian being among them. To quantize the system, it is enough to find all the eigen-
functions of the trace of the monodromy matrix [5].

Let us now study the Hamiltonian aspects of the classical model. The basic
Poisson brackets (PB) are:

{n(x), u(y)} = 6(x — y); mlx) =y~ 0, u(x). (12)

Our aim is to calculate the PB of the monodromy matrix elements. It is convenient
to use the notations given below. The direct product of 3 x 3-matrices A and B
we define as usual

ij Tkt

So we label matrix elements of 9 x 9-matrices by the “block™ indices i, j(i labels
the block lines, j the block columns) and by the internal indices k, Z(k labels the
internal lines, Z the internal columns). Define also the PB of the direct product of
the 3 x 3-matrices A and B:

{Agf)B};cjz: {Aij’Bk/}' (14)

The right-hand side (r.h.s.) of Eq. (14) represents the PB of the two matrix elements
of matrices 4, B. The matrix product of two 9 x 9-matrices C and D in these
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notations can be written as:
(CD), = Ci Dy (15)

The summing up by the repeated indices is implied here.

To calculate the required PB we use the trick based on the classical r-matrix.
If one succeeds in representing the PB of the matrix elements of Q (Eq. (3)) as
follows:

{0([H) @ Q(y[w} = 73(x — ) [r(4, 1), x| H ST + 1 ® O(x| W] (16)

then the PB of the monodromy matrix elements can be written as:

{Tx, [ D@ TCx, y[w} = —y[r(d 1), Tlx, y|H® T(x, y[w)]- (17)

We give a particularly simple derivation of this formula in Appendix I. The square
brackets at the r.h.s. of (16), (17) denote the commutator of two 9 x 9-matrices;
r is a numerical 9 x 9-matrix with elements depending on A and u. The existence
of the r-matrix in (16) is not a priori evident. The direct calculation by means of
(3), (4), (12) confirms, however, the validity of (16). We put the matrix r into the

form:
3
_ ik
r= Z Fom€ix @ €4y
ikfm=1

The 3 x 3-matrices e, form the standard basis, their matrix elements being equal
to:

(€1)s = 0:40s (18)

The matrix r depends on A/p = exp(f) only: r(A, ) = r(f). The non-zero matrix
elements are:

i1 =2 —exp(3f) —exp(—35))g(h);
=y =11 =ril = — Q2+ exp(h) +exp( - 35))g(B);

r33 =133 = —2(exp(3) + exp(— 35))g();

r3t =13 = 2(exp(2h) + exp(— f)g(B);

ri3=r31 = 2(exp(2p) — exp(— B))g (); (19)

r3; =113 =2(exp(B) + exp(— 28))g(B);

ri3 =131 = 2exp(—28) — exp(§))g (B);

r33 =4exp(2f)g(B); r33 =4 exp(— 2P)g(p);

g(B)=[4(exp(3f) —exp(—3B))] ",
The classical r-matrix is defined up to the addition of the arbitrary matrix
proportional to the unit 9 x 9-matrix E (see Eq. (16)).

The expression for the PB of the monodromy matrix elements is the main
result of this Section. These formulae also determine the PB of the scattering data.

r

3. The Quantum R-Matrix

In this Section we consider the quantum version of the Shabat—Mikhailov model
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in the framework of the quantum inverse scattering method. The quantum model
is given by the Lagrangian in (1) and the following commutation relations (CR)
of the operators u(x) and n(x) =y~ 0,u(x):

[7(x), u(y)] = — id(x — y). (20)

We will pay attention to the CR of the elements of the quantum monodromy
matrix 7(x, y|4), this matrix being of importance also in the quantum inverse
scattering method. For completely integrable quantum systems the following
relation is valid [11, 5]:

RO, w(T(x, y|2) @ T(x, y|w) = (T(x, y| W)@ T(x, y | )R (4, ). 1)

This relation is similar to (17) for the classical model. The elements of the 3 x 3-
matrix T are quantum operators and R(4, 1) is a numerical 9 x 9-matrix, depending
also on y.

Our purpose in this Section is to calculate the quantum R-matrix for the model.
Note that (21) results in the following system of equations for R(4, u) (see
Appendix 2):

(I @ R(Z, W)(R(ALV® I @ R(u, v))
= (R(u, V)@ DI @ R(Z, v))(R(Z, W) @ I). (22)
The 27 x 27-matrix (I ® R) is a direct product of the 3 x 3-unit matrix I and 9 x 9-

matrix R. Hence the Lh.s. and r.h.s. of Eq. (22) contain the ordinary matrix product
of three 27 x 27-matrices. Eq. (22) can be written in the explicit form as follows:

R (A, R (A, VIR (1, v) = R, VYRS (A, v)RE: (A, ). (23)

azcs cic2 c3b3 asbs c3ba

These equations are the famous Yang—Baxter relations. Equations (22) and (23)
are the basic ones for the calculation of the R-matrix.

A number of additional restrictions should be imposed on the R-matrix. The
relativistic invariance implies that

R(4, 1) = R(A/p). (24)

The quasiclassical limit of R is determined by the classical r-matrix. Comparing
(17) and (21) one can obtain:

R(Z/p) ~ R (A/p);

y—0
R (4/1) = P(E — iyr(4/p)). (25)
The 9 x 9 permutation matrix P is defined by
Plicjé’=5i(5jk;P2=E (26)

and has the following properties
P(C® D)P=(D ® C).

Here C, D are the numerical 3 x 3-matrices. Notice that the symmetries (Egs. (8),
(9), (10)) of the matrix T result in the existence of the symmetry properties of the
matrix R_. We require these symmetries to be the same for the exact quantum
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matrix R :
@' ®q HRAW/Wg®q) = R(A/p); @7
(I®q HRA/wg®I)=Rlq_4/u); (28)
PR*(A/W)P = R(p*/2*); (29)
PR(A/WP = (p ® p)RT(A/1)(p ® p). (30)

This requirement means that the classical sympetries survive after quantization.
It is shown in Sect. 4 that the symmetries of T'(x, yM) agree with Egs. (27)-(30).
Eq. (21) shows that the R-matrix is determined up to a scalar factor [ (4, u). We
choose this function fimplying the conditions:

R(A/w)= R~ (u/2);R(1) = E;R35(A/w) = 1. (3D

Now we have written down all the equations which determine matrix R.
We succeeded in finding the R-matrix satisfying all these equations [15]. This
matrix can be represented as the product of five 9 x 9-matrices:
R(W/u;0) = (I ® a(A/w))U™" () D(A/u; @) Ul)a™ H(A/m) ® I);
@ =17/8. (32)
We use the following notations. The elements of the diagonal matrix D is equal to
D1} = cosh((38/2) + 3ig)/cosh((3/2) — 3ip);
Dl =D =D
= — sinh((35/2) + 2ip)/sinh({35/2) — 2i¢p);
Dy, = D33 = D33 = D17 = D33 = L:4/u = exp(B).

(33)

The nonzero elements of the matrix U(gp) are:
U - VB = U= U=~ U =1
Uy =—Uli=Uyu=U{=Uj=explio);
Usi = = U = =~ Ui = = UL, = Ujs = exp(—ig); (34)
U35 = exp(2ig); U3 = exp(— 2ip);
U2l =2cos ¢; U3 = —2isin ¢.

The diagonal 3 x 3-matrix a(x) is:
a(x) = diag(l, x, x~');a(#/p) = a(x)| (35)

The nonzero matrix elements of the matrix R are situated at the same places as
the nonzero matrix elements of the matrix U.

The explicit expression for the matrix R is our principal result.

Let us make now some remarks. It follows from the explicit expression of the
R-matrix that it also possesses the following additional symmetries:

R"=R; (36)
(a(x) ® a(x))R(A/p; @) = R(A/u; 9)(a(x) @ alx)); xeC. (37)

x=Ai/u’
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One can show using this property that the following matrix R_(4/u; ¢) is also the
solution of the Yang—Baxter equations:

R, (Wu;0) =T @a™ (W NRG/ ;s o)al(2/w7*) @ D). (38)

So we present the two-parameter solution of Eq. (22), the parameters being z
and ¢. The matrix R_at z = 1is particularly simple:

R, (Ap;0)= U~ @)D(W/u; 0) U(p). (39)

This matrix is a meromorphic function of (4/u)*. The sine-Gordon R-matrix
possesses the analogous properties (see Appendix 3). Equation (39) means that
the eigenvectors of the matrix R, are (4/u)-independent; the eight-vertex model
R-matrix [ 11] has the same property. Note that in spite of the fact that our R-matrix
is somewhat similar to the R-matrix [11], it is also has some new features. For
example it can not be represented in the form

9
= E: W@Iacjla
=1
at any choice of the basic 3 x 3-matrices I .

4. The Quantum Monodromy Matrix
A).

The Hamiltonian, as in the classical case, is simply expressed in terms of the
monodromy matrix. We define T(x, y|1) as usual

T,y =L WLy (D)...L, (2. (40)

Here the interval [x, y] is supposed to be divided into N small segments of the
length A(N4 = x — y). The operator L is the monodromy matrix for the i-th
small segment. The CR of the matrix elements of the matrix L are given by the
same formula (21) as the CR of the elements of T [5]:

R4, W(L,AQL, W) = L, ® L, ()R 1. (41)

The matrix elements of the matrices L and L at n #+ m commute. In the classical
case the form of the matrix L, is quite clear To construct the explicit form of the
quantum operator, L ,is a dynamlcal problem. This problem is connected to the
ultraviolet regular1zat10n problem, ie. with the behavior of quantum local
operators at small distances. In our case it would have been difficult to define the
exact form of Ln before the calculation of the R-matrix (unlike the sine-Gordon
model [ 7]). Now we are able to do this.

We will use Eq. (41) to find out the explicit form of the quantum operator
Ln. The matrix elements (Ln)ik ={, depend on A in the same way as the matrix
clements of the potential Q(4) (Egs. (3), (4)). The diagonal elements ¢, = O(1),
the nondiagonal elements 7, = O(4). It follows from Eq. (41) that:

[£11:0u]=0;[7;,.4531=0;
2 =t L=, exD(—i@);l  l,, ={ . C,,exp(—i¢);

22733°711712
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{11051 =0530pexp(— i)l 4,y =105,0,, exp(—i@);

1

£l 15 ="01,0 0¥ {(— 1" 12ip};

oalor = o1 fagexp{(— 1) 12ip};

/a/ f23 L EXP1(— 1)14ip}; (42)
ol sy =03, exp{(— 1)\4io};

1,k-1,2,3,a,b—-2,3.

These CR can be realized as follows:

i i u Py,
/11=1;/12=—§m/1 1Aexp<—7>exp<§>exp<z>,

¢ u P .
15 —m/M exp( 2>exp<2>exp( 4>, g =—A,; (43)

£y, = exp(%);/23 = — %mi”A exp(—u);

14
£3y=—A" /13’ 32 '1/23’ 33—exp<——§>;

Xp+d4 Xp+ 4

u=A"" | uydy;p= | du(y)dy;[p,u]=—8iop.

The operators £, are defined up to terms O(42). So we have found the explicit
form of the quantum monodromy matrix for a small segment 4. Using the fact
that the quasiclassical limit of the operator exp(p)is equal to 1+ 06,u(x,)4 [7],
one can easily prove that the quasiclassical limit of the operator L is correct.

Let us make now two remarks. The first one is that the matrlx R_ (Eq. (38))
“interlaces” the operators L

L,(1) = a™ ') L(A)a(22);
R (/LML w) =L, (L ()R, (4.

The operator L corresponding to R, (Eq. (39)) is also a meromorphic function
of A3, Secondly, the quantum operators LM, L@(), corresponding to the
Liouville equations, can be constructed out of the same matrix elements of the
operator L ,(4) (Eq. (43)) as in the classical case (5), (6). Our R-matrix (32) inter-
twines separately the operators I and the  operators 1% in the sense of (41).

Now we return to the symmetries of 7. Direct calculations bring one to the
following formulae

Ly (= i9=1,0): (44)
aL,(q_ANq '=L,0); 45)

p(L; (=) p=ale )L, (1e*®)a" (e ),
p(EI(=)p "= ae®)L, (e~ %) a1 (™). o)

The cross in (44) means the hermitian conjugation acting on the quantum operators
and not on the matrix structure of the matrix L . The matrix a(x) is defined by (35).
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It follows from Eq. (40) that the monodromy matrix T possesses literally the same
involutions as the matrix i The action of the symmetry group (44), (45), (46)
turns into the classical one (8 ) (9), (10) in the quasiclassical limit ¢ — 0. The sym-
metry properties of the R-matrix (Eqgs. (27)—(30)) and of the matrix T (Egs. (44)—
(46)) agree with the Eq. (21) due to Eqgs. (37), (24).

In this paper we will not discuss the properties of the quantum monodromy
matrix in more detail, expecting to return in another paper to the construction
of Bethe Ansatz, the physical vaccum and mass spectrum for the model.

5. The Properties of the R-Matrix

In this Section we describe the lattice model associated with the R-matrix defined
by (32) and construct the Zamolodchikov—Cherednik operators A°%(4) for this
matrix.

First of all we describe the completely integrable lattice model, the construction
of this model being similar to the construction of Baxter’s eight-vertex model
[11, 14]. For this purpose we rewrite the “trilinear” relation (22) in the “bilinear”
form similar to (41). Let us introduce nine 3 x 3-matrices 1’; (the indices a, b =
1, 2, 3 enumerate the matrices as a whole). We shall regard each individual matrix
I? as the “quantum operator”. The matrices L® are defined as follows:

(L, (), = R (D). 47)

Here i,k =1,2,3 are matrix (quantum) indices of the matrix ff; . Using these
notations one can put Eq. (22) into the form similar to (41):
RE G T (VT () = T (0 T2 (D REE: (). 48)

Equation (48) shows that the operators Lb form in a natural way the 3 x 3-matrix L
which is similar to the matrix L from (40) (43). It should be noted that it was
convenient for us to prove the Vahdlty of Eq. (22) in the form (48).

Equation (48) shows that the following model on the square N x M periodic
two-dimensional lattice is integrable; the transfer-matrix t of the model is defined
as

= ¥ T Ly ) 2 Ly 49)

ap.ay
The main property of this transfer-matrix is
[¢(2), ()] = 0.
The partition function Z is expressed as usual:
Z=Sp™
(our notation for the transfer matrix differs from the notation in [14]). 7 is an
operator in the “quantum” space, in other words 7 is the 3¥ x 3¥-matrix.

This lattice model generates in a standard way [16] the integrable spin model
on the one-dimensional periodic lattice with N sites. The Hamiltonian of the
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model reads:

Y=g (50)

=1

d
H = 4sinh 2 cosh 3¢<rld—;>

H can be readily expressed through dR(A)/dA at A = 1. This Hamiltonian is real
and bounded below at the real . To put it down in the explicit form we introduce
eight “spin” matrices I” at each site (u=1,...,8;n=1,...,N), the spin I" acting
nontrivially only at the n-th site:

I =Q2e, —e,,— 333)/\/8;12 = (€5 — 633)/\/5;

Iy=e,l =e3ils=e, 3 g =ey530, = ey

Ig= €355 (€s)ap = 0140y

The Hamiltonian (50) can be then rewritten as:

N 8 N
H=Y Y w,I""'I+h Y It + const, (51)
=1

n=1a,p=1 n=

the nonzero coefficients being equal to
h= 2\/5(2 cosh 51 — 3 cosh 3y + cosh lﬁ)/\/gQ
w,, = cosh 5§ — 3 cosh 3y — 4 cosh y;
w,, = — 3(cosh 5y + cosh 3y);
W,, = —Ww,, = —+/3(sinh 5 + sinh 3y);

Wys =Wy =W,, =w,, = — 6cosh 3y,
Wy, = Ws, = 6exp(— 2¢)sinh 2¢;

Wy, =W, = — 6exp(2y)sinh 2 ;

Wgg = Wge = — 6 COsh i

The first term in the expression for H is the interaction of spins at the neighbor
sites. The second term represents the interaction of the spin I, with the fixed
homogeneous magnetic field.

To conclude we will construct the operators 4%(A) for the Shabat—Mikhailov
model. The definition of these operators reads

AW AP (W) = Ryg (/W) A () A°(). (52)

Using the direct product symbol one can rewrite this definition in the following
form:

(4(4) ® A(w)) = R(u/A) (AW ® A(4)). (53)

It is shown in papers [ 17, 18] that under some assumptions Eq. (53) implies Eq. (22).
We present the corresponding arguments in Appendix 2. The operators A(4)
for the Baxter’s model are constructed in [18]. The explicit form of the operators
for the sine-Gordon model is given in Appendix 3.

In the Shabat—Mikhailov model the operators A form the 3-component
column, (4 ® A) being the 9-component column. We take the A-dependence of



Quantum Shabat—Mikhailov Model 313

A(4) in the following form:

A()=A,;
A,(4) = al + bA™?;
A (A =ci™t,

Equation (53) is then reduced to the following relations:
Aa=aA expip); A, b=>bA, exp(—2i¢p);
Ac=cA, exp(—2ip); bc=chbexpldio);
ac = caexp(—4ip); ab=ba;
A? = (exp(3i@) + exp(ig))ac.

These relations can be realized by means of operators acting on the scalar functions
of one variable, f(x):

A fx)=mexp(z,x)f(x+a,);
A, f(x)=Aexp(z,x)f(x + a,) + pA~ 2 exp( — z,X) f(x — a,); (54)
Ayf(x) = A" exp(z;x) [ (x + a,);

m* = (exp(3i@) + exp(ip)) exp(a,z, — a, z,).

Here p is an arbitrary constant and the parameters a,, z, satisfy the following
equations:

2a, =a,tay; 2z, =z,+zy; z,a,—a,z;="4i@.

The formula (54) gives the explicit realization of the operators A%

Appendix 1

The monodromy matrix T(x,y|4) depends on dynamical variables u(x), n(x)
through the potential Q(x|4) only. So one can express the Poisson brackets of
the monodromy matrix elements as follows:

{T,,(, T, ()} = }dzlfdzu(éTij(x, VA)/8Q,4 (2,1 7))
'(6Tk/(x: y|,u)/5Q£d(zu} /‘)){Qab(zg )L)a ch (Zu}ﬂ)} (Al)

One can calculate the variational derivative of T(4) with respect to Q(1) by means
of the perturbation theory:

ST (x, y|A) = — }CT(x,z 2)8Q(z| ) T(z, y| A)dz. (A2)

Now it is possible to rewrite (A1) by means of (A2) and (13), (14), (15) in the elegant
form:

{70 91 ® T ¥} = [dz, [d2,(T(x, 2 H® Tlx, 2, 1)
{00, ) @ 0z, | WHT . YA O Tz, ). (A3
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Using (16)
{0E,1HQQz,jw ) =0z, — 2,)[r, Qz, | AR T +1® Q(z,[1)] (Ad)

one obtains

W)} =] d=(T e, 2| ) ® T, ) (AS)
([ 1, Q) ® I + 1® Q| ](T (2, y ) ® Tz ¥ ).

{T(x,y

AQT(x,y

To transform this expression we write (7) in the form:

0, T(x,y|A) = — Qx| ) T(x, y|2);
3, T(x, y|y) = T(x, y)Q|; Ty, y|4) = I. (A6)

Excluding the potential Q(z|4) in (A5) by means of (A6) one gets:

N® T(x, z|w)
1))). (A7)

Tod
{TC.y W@ T, y|w)} = — pfdz(Tlx, 2
14 (T (z YD) @ Tz, y

Calculating the integral one comes to Eq. (17):
{TCe y[ D@ T(x, ylw)} = = y[r (4 ), TCx, y| A ® Tlx, y| )]

This way of evaluating the Poisson brackets is rather similar to the standard
calculations by means of the “fourth power” identities [ 19].

Appendix 2
Let us write the definition (53) of the operators A(4):
(AW ® A(4)) = R(4, W)(4 (1) @ A(w)). (A8)

Here A%(2) is the operator column. Consider the direct product of three such
columns: A(v)® A(1) ® A(L). One can transform this expression to the form
AL} ® A(r) ® A(v) by means of Eq. (A8) in two different ways:

(A ® AW ® A4))
= (R, v) @ DI ® R(4, V)R, W) @ D) (A1) ® Al) ® A(v))

— I ® RU, )(R(, @D ® Rt )(AR) ® AG) ® AG)). (A%
Equation (22) is a consequence of (A9) provided that all the 27 components of
the column A® A® A are linearly independent. It should be noted that our
operators A“(1) from (54) are not of this type. So we had to prove the validity of
Eq. (22) by means of direct calculations.

Another way to obtain Eq. (22) is to use (21) to transform the expression
T(A)® T(w) ® T(v) to the form T(v) ® T(¢) ® T(4) in two different ways.
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Appendix 3
The sine-Gordon R-matrix can be represented in the form

R(e; ) =U"'D(a; U

Dl =D2=1; D;;:cosh<~——a_2w>/cosh<a-;w>;
. o — iy . o+ Iy
D32 = —sinh (—2—>/s1nh< 3 );

11 _ prll _ 7722 _ pr22 _ p7i2 _ pr21 _
U =Us=-Uii=U;=U,1=U=1

Here

This R-matrix generates the one-parametric family of solutions of Eq. (22):

R (@;7) =T ®a; " (¢*))R(2:7) (2 (e”™) ® I);
a (x) = diag(x,x~1).

We will put down also the operators A%(a)(a = 1, 2) satisfying Eq. (53) for the
sine-Gordon R-matrix. Take the a-dependence of the operators A4 in the form:

A'() = exp(2u)a, + a, + exp(—2w)a_,;
A*(o) = exp(o)b, + exp(— )b _,.

The operators a, b can be realized as follows:

afzf(x):p—zexp(z_zx)f(x+k_2);
b_lf(x)=9~1eXP(Z_lx)f(x+k_1);
a,=p,a"5; ag=p,a_,+p; a5 b, =pb_y;
k iz ,—k_,z_,=iy.

Here p, are the arbitrary constants.
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