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A rigorous theory of the inverse scattering transform for the defocusing
nonlinear Schrödinger equation with nonvanishing boundary values q± ≡ q0eiθ±

as x → ±∞ is presented. The direct problem is shown to be well posed for
potentials q such that q − q± ∈ L1,2(R±), for which analyticity properties
of eigenfunctions and scattering data are established. The inverse scattering
problem is formulated and solved both via Marchenko integral equations, and
as a Riemann-Hilbert problem in terms of a suitable uniform variable. The
asymptotic behavior of the scattering data is determined and shown to ensure
the linear system solving the inverse problem is well defined. Finally, the
triplet method is developed as a tool to obtain explicit multisoliton solutions
by solving the Marchenko integral equation via separation of variables.

1. Introduction

Nonlinear Schrödinger (NLS) systems have attracted the attention of the
physical and mathematical communities since the 1950s, with the early
work of Ginzburg, Landau, and Pitaevskii on the macroscopic theories
of superconductivity and superfluidity [1–3]. Nonetheless, it was not until
the works of Chiao et al. [4] and Talanov [5, 6] that the wider physical
importance of NLS equations became evident, especially in connection with the
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phenomena of self-focusing/self-defocusing and the conditions under which
an electromagnetic beam can propagate in nonlinear media without spreading.
Equations of NLS-type have since then been derived in such diverse fields
as deep water waves (cf. [7, 8]), plasma physics [9], nonlinear fiber optics
[10, 11], magnetic spin waves [12, 13], Bose-Einstein condensates [14], etc.
As a matter of fact, most dispersive energy preserving systems give rise, in
appropriate limits, to the scalar NLS, which explains the keen interest in NLS
as a prototypical integrable system and motivates the effort put into advancing
our mathematical understanding of this equation.

The inverse scattering transform (IST) as a method to solve the initial-value
problem for the scalar NLS equation

iqt = qxx − 2σ |q|2q (1)

(subscripts x and t denote partial differentiation throughout) has been extensively
studied in the literature, both in the focusing (σ = −1) and in the defocusing
(σ = 1) dispersion regimes (see, for instance, [7, 15–18] for detailed accounts
of the IST in the case of potentials q(x, t) rapidly decaying as |x | → ∞).
The situation is quite different when one is interested in potentials that do
not decay as |x | → ∞. This class of potentials is particularly important for
the defocusing NLS, since it admits soliton solutions with nonzero boundary
conditions (NZBCs), the so-called dark/gray solitons, which have the form:

q(x, t) = q0e2iq2
0 t [ cosα + i(sinα) tanh [q0(sinα) (x − 2q0 t cosα − x0)] ] (2)

with q0, α, and x0 arbitrary real parameters. Dark soliton solutions are such
that |q(x, t)| → q0 as x → ±∞, and appear as localized dips of intensity
q2

0 sin2 α on the background field q0. The IST for the defocusing NLS equation
with NZBCs was first studied in 1973 [19]; the problem was subsequently
clarified and generalized in various works [20–27], and a detailed study can be
found in the monograph [28].

Even though the IST for the defocusing NLS with NZBCs was first presented
almost 40 years ago, many important issues still remain to be clarified, i.e.,: (i)
No attempt has been made so far to identify the most suitable functional class
of nondecaying potentials where the direct and inverse scattering problems can
be solved, or to rigorously establish the analyticity properties of eigenfunctions
and scattering data. In that respect, (the analog of) Schwartz class is usually
assumed for the potential (cf., for instance, [23, 28, 29]), which is clearly
unnecessarily restrictive. In [24, 25] the issue of establishing the analyticity of
the eigenfunctions was addressed by reformulating the scattering problem in
terms of a so-called energy dependent potential, but the drawback of that
approach is a very complicated dependence of eigenfunctions and data on the
scattering parameter. (ii) For the focusing NLS in the vanishing case, it has
been shown in [30, 31] that there are no discrete eigenvalues and no spectral
singularities if ‖q‖1 < π/2, where the π/2 bound is optimal. Whether the
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existence of discrete eigenvalues for the defocusing NLS in the nonvanishing
case can be related to the equivalent of an area theorem for the initial profile of
the solution as a dip of intensity on the background field is still an open issue.
(iii) As far as the inverse problem is concerned, it was first formulated (but not
solved) as a Riemann-Hilbert problem in [28], without any investigation on its
well-posedness.

In this work we will address all the above mentioned open issues, and also
some related important topics. The plan of the paper is outlined below. We
study the IST for the scalar defocusing NLS [Equation (1) with σ = 1]:

iqt = qxx − 2|q|2q (3)

with NZBCs

q(x, t) → q±(t) = q0e2iq2
0 t+iθ± as x → ±∞, (4)

where q0 > 0 and 0 ≤ θ± < 2π are arbitrary constants. Sections 2 and 3
are devoted to the study of the direct scattering problem. We will prove
that it is well defined for potentials q such that q − q± ∈ L1,2(R±), L1,s(R)
being the complex Banach space of all measurable functions f (x) for which
(1 + |x |)s f (x) is integrable. We will obtain integral representations for the
scattering data, and establish analyticity of eigenfunctions and scattering data for
potentials in this class. Moreover, we will prove that, under the assumption that
q − q± ∈ L1,4(R±), the discrete eigenvalues are finite in number and belong to
the spectral gap k ∈ (−q0, q0) (see Appendix B for details). In Section 4 we will
formulate and solve the inverse problem as a Riemann-Hilbert problem (RHP)
in terms of a suitable uniform variable, and we will show that the asymptotic
behavior of the scattering data ensures the algebraic-integral system of equations
providing the solution of the inverse problem is well defined. Finally, in Section 5
we will formulate the inverse problem in terms of Marchenko integral equations,
and we will develop the triplet method as a tool to obtain explicit multisoliton
solutions by solving the Marchenko equations via separation of variables
[32–35]. The crux of the method is to represent the Marchenko kernel as
Ce−(y+z)A B, where (A, B,C) is a suitable matrix triplet. The NLS solutions
obtained in this way will not contain anything more complicated than matrix
exponentials and solutions of Lyapunov equations, and, if necessary, can hence
be “unzipped” into (lengthy) expressions containing elementary functions, or
used as input to numerical calculations. More technical proofs will be deferred
to the Appendices, while for results that are already well established in the
literature, such as, for instance, the time evolution of eigenfunctions and
scattering data, we will simply refer the reader to the appropriate references.

Some of the results presented in this paper will be relevant in the context of
recent theoretical studies and experimental observations of defocusing NLS in
the framework of dispersive shock waves in optical fibers [see, for instance,
[36] regarding the appearance and evolution of dispersive shock waves when an
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input (reflectionless) pulse containing a large number of dark or gray solitons
is injected in the fiber]. Importantly, the present work will pave the way for
generalizing similar results to the defocusing vector NLS equation, for which
the IST with NZBCs was recently developed (cf. [37] for the two-component
vector NLS and [38] for vector NLS with an arbitrary number of components).

2. Direct problem: k, λ variables

It is well known that Equation (3) can be associated to the so-called ZS-AKNS
scattering problem [8], [15]:

∂X

∂x
(x, k) = (−ikσ3 + Q(x)) X (x, k), x ∈ R, (5)

where

σ3 =
(

1 0
0 −1

)
, Q(x) =

(
0 q(x)

q∗(x) 0

)
, (6)

q(x) is the potential, and k is a complex spectral parameter. We start off by
assuming that q(x) − q± belongs to L1(R±), although in the course of this
article we will somewhat strengthen the integrability requirements.

The direct problem for the system (5) with boundary conditions (4) is more
complicated than the counterpart with vanishing boundary conditions [i.e.,
q(x, t) → 0 as x → ±∞]. In fact, when looking for asymptotic eigenvalues
and eigenvectors of the scattering problem, one has to deal with the new spectral
variable λ =√

k2−q2
0 (see, for instance, [19, 28, 37]). The variable k is then

thought of as belonging to a Riemann surface K consisting of a sheet K
+ and a

sheet K
− which both coincide with the complex plane cut along the semilines

� = (−∞,−q0] ∪ [q0,∞) (7)

with its edges glued in such a way that λ(k) is continuous through the cut.
The variable λ is thought of as belonging to the complex plane consisting
of the upper half complex plane 	+ and the lower half complex plane 	−

glued together along the full real line. The transformation k �→ λ maps K
±

onto 	±, the cut � onto the real line, and the points ±q0 to zero. Moreover,
{λ+ k, λ− k} ⊂ 	± for any k ∈ K

±.
For later convenience, we write (5) in the form

∂X

∂x
(x, k) = A±(k)X (x, k) + (Q(x) − Q±) X (x, k), (8)

where

A±(k) = −ikσ3 + Q± ≡
(−ik q±

q∗
± ik

)
, Q± =

(
0 q±

q∗
± 0

)
, (9a)
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such that

A±(k) = −σ3 A†
±(k∗)σ3, (9b)

A∗
±(k∗) = σ1 A±(k)σ1. (9c)

Here the dagger and asterisk denote, respectively, the complex conjugate
transpose and the complex conjugate, and σ1 is the first Pauli matrix

σ1 =
(

0 1
1 0

)
.

We remark that (8) is equivalent to the following scattering problem:

∂X

∂x
(x, k) = A(x, k)X (x, k) + (Q(x) − Q f (x))X (x, k), (10)

where we have defined

A(x, k) = θ (x)A+(k) + θ (−x)A−(k), Q f (x) = θ (x)Q+ + θ (−x)Q−. (11)

Q f (x) is the analog of the free potential, and θ (x) denotes the Heaviside
function [θ (x) = 1 for x ≥ 0 and zero otherwise]. We also point out that the
scattering problem (10) is continuous at x = 0 if X (x, k) and Q(x) are,
and it coincides with (5). Since we only study solutions to (10) satisfying
certain asymptotic conditions, these solutions are defined in the weak sense as
solutions of “equivalent” integral equations.

Clearly, the ZS-AKNS Hamiltonian operator H = iσ3(d/dx − Q) is
selfadjoint on the orthogonal direct sum of two copies of L2(R). It is convenient
to introduce the free Hamiltonian

H f = iσ3

(
d

dx
− Q f

)
,

and to formulate the scattering theory as a result of the potential difference
Q − Q f occurring in the full Hamiltonian H .

When studying Equation (5) with vanishing boundary conditions, it is
customary to define Jost solutions as particular, asymptotically free column
vector solutions and to group them together as columns of fundamental
eigensolutions. The generalization of these definitions to Equation (5) with
NZBCs (4) is more involved. In the next two subsections, we will define
fundamental solutions and Jost solutions, point out how they are related, and
determine their analyticity properties. Alongside, we will define the transition
coefficient matrices coupling the fundamental eigensolutions as x → ±∞, as
well as the scattering coefficients.
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2.1. Fundamental eigenfunctions

Taking k ∈ � as in (7), we define the fundamental eigenfunctions 
̃(x, k)
from the right and �̃(x, k) from the left as those square matrix solutions to (5)
[or (10)] satisfying


̃(x, k) = ex A+(k)[I2 + o(1)], x → +∞, (12a)

�̃(x, k) = ex A−(k)[I2 + o(1)], x → −∞. (12b)

Here Ip denotes the identity matrix of order p.
For later use, we determine the fundamental matrix G(x, y; k) for the

scattering problem with generator A(x, k) defined in (11). In other words, we
look for the weak solution G(x, y; k) of the system (5) [or (10)] with potential
Q(x) = Q f (x) such that

∂

∂x
G(x, y; k) = A(x, k)G(x, y; k),

G(x, x ; k) = I2.

As shown in Appendix A (see also [39]), one has

G(x, y; k) =

⎧⎪⎪⎨
⎪⎪⎩

e(x−y)A+(k), x, y ≥ 0,
e(x−y)A−(k), x, y ≤ 0,
ex A+(k)e−y A−(k), x,−y ≥ 0,
ex A−(k)e−y A+(k), x,−y ≤ 0.

(13)

In particular, from (13) it follows

G(x, 0; k) = θ (x)ex A+(k) + θ (−x)ex A−(k), (14a)

G(0, y; k) = θ (y)e−y A+(k) + θ (−y)e−y A−(k). (14b)

As a result, G(x, y; k) is a square matrix which depends continuously on
(x, y, k) ∈ R

2 ×� and satisfies (5) with the free potential Q f . Recalling
(9), for k ∈ � we have the symmetry relations

G†(x, y; k) = −σ3G(y, x ; k)σ3, (15a)

G∗(x, y; k) = σ1G(x, y; k)σ1. (15b)

Moreover, A±(k) have the two distinct imaginary eigenvalues ±iλ if
k ∈ � \ {±q0}, and are nondiagonalizable with a double zero eigenvalue
if k = ±q0. Further, the matrix groups ex A±(k) are bounded in x ∈ R if
k ∈ � \ {±q0}, and grow linearly in x ∈ R in any matrix norm if k = ±q0. In
particular, one has

ex A±(q0) =
(

1 − iq0x q±x
q∗

±x 1 + iq0x

)
, ex A±(−q0) =

(
1 + iq0x q±x

q∗
±x 1 − iq0x

)
, (16)
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and thus there exists a constant C ≥ 1 (independent of (x, y) ∈ R
2) such that

‖G(x, y; k)‖ ≤
{

C, k < −q0 or k > q0,

C(1 + |x |)(1 + |y|), k = ±q0.
(17)

PROPOSITION 1. Suppose the entries of Q(x) − Q f (x) belong to L1(R)
(equivalently, q(x) − q± ∈ L1(R±)). Then for k ∈ � \ {±q0} the Volterra
integral equations


̃(x, k) =G(x, 0; k) −
∫ ∞

x
dy G(x, y; k)[Q(y) − Q f (y)]
̃(y, k), (18a)

�̃(x, k) =G(x, 0; k) +
∫ x

−∞
dy G(x, y; k)[Q(y) − Q f (y)]�̃(y, k), (18b)

have the fundamental eigenfunctions defined by (12) as their unique solutions.
The same conclusion holds for k = ±q0 if the entries of Q(x) − Q f (x) are in
L1,2(R), i.e., if (1 + |x |)2[q(x) − q±] belong to L1(R±).

Proof . According to (17), if k ∈ � \ {±q0}, the iterates of (18a) are
bounded above in the matrix norm by the iterates of the integral inequality

‖
̃(x, k)‖ ≤ C + C

∫ ∞

x
dy ‖Q(y) − Q f (y)‖‖
̃(y, k)‖,

which, by Gronwall’s inequality, implies

‖
̃(x, k)‖ ≤ C exp

(
C

∫ ∞

x
dy ‖Q(y) − Q f (y)‖

)
≤ C eC‖Q−Q f ‖1 < +∞.

For k = ±q0, by using the second inequality in (17) we have instead

‖
̃(x, k)‖
C(1 + |x |) ≤ 1 + C

∫ ∞

x
dy(1 + |y|)2‖Q(y) − Q f (y)‖ ‖
̃(y, k)‖

C(1 + |y|) .

Then, by Gronwall’s inequality,

‖
̃(x, k)‖ ≤ C(1 + |x |) exp

(
C

∫ ∞

x
dy (1 + |y|)2‖Q(y) − Q f (y)‖

)
.

We recall that the unique solution of (18a) can be obtained by considering the
iterative (uniformly convergent) scheme:


̃(x, k) =
∞∑

n=0


̃n(x, k)
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with


̃0(x, k) =G(x, 0; k),


̃n+1(x, k) =−
∫ ∞

x
dy G(x, y; k)[Q(y) − Q f (y)]
̃n(y, k),

where

‖
̃n(x, k)‖ ≤ C(1 + |x |) 1

n!

(
C

∫ ∞

x
dy (1 + |y|)2‖Q(y) − Q f (y)‖

)n

.

The statement for (18b) is proved analogously. �

Proposition 1 implies that for k ∈ �

̃(x, k) = G(x, 0; k)[Al(k) + o(1)], x → −∞, (19a)

�̃(x, k) = G(x, 0; k)[Ar (k) + o(1)], x → +∞, (19b)

where the transition coefficient matrices Al(k) and Ar (k) are given by

Al(k) = I2 −
∫ ∞

−∞
dy G(0, y; k)[Q(y) − Q f (y)]
̃(y, k), (20a)

Ar (k) = I2 +
∫ ∞

−∞
dy G(0, y; k)[Q(y) − Q f (y)]�̃(y, k), (20b)

obtained using the multiplication property (A.5). The transition coefficient
matrices are continuous for k ∈ � \ {±q0} if the entries of Q(x) − Q f (x)
belong to L1(R), and for k ∈ � if the entries of (1 + |x |)2[Q(x) − Q f (x)]
belong to L1(R).

Using that Q∗(x) = σ1 Q(x)σ1 and σ3σ1 = −σ1σ3, we easily derive that
σ1 X∗(x, k∗) is a solution to Equation (5) if X (x, k) is. From (9c) and the
boundary conditions (12) we thus get the symmetry relations

σ1
̃
∗(x, k∗)σ1 = 
̃(x, k), σ1�̃

∗(x, k∗)σ1 = �̃(x, k). (21)

We can also easily prove the following.

PROPOSITION 2. For k ∈ �
Al(k) = A

−1
r (k) = σ3A

†
r (k)σ3, Ar (k) = A

−1
l (k) = σ3A

†
l (k)σ3, (22a)

Al(k) = σ1A
∗
l (k)σ1, Ar (k) = σ1A

∗
r (k)σ1. (22b)

The above relations also hold for k ∈ K, with the arguments of A
†
l,r and A

∗
l,r

replaced by k∗, whenever the involved transition coefficients can be continued
off �.
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Proof . Let Z (x, k) and Z̃ (x, k) be two square matrix solutions of (5). For
k ∈ R we obviously have

∂ Z̃ †

∂x
− Z̃ †Q = ik Z̃ †σ3.

As a result,

∂

∂x
[Z̃ †σ3 Z ] = Z̃ †σ3

∂Z

∂x
+ ∂ Z̃ †

∂x
σ3 Z

= Z̃ †σ3(−ikσ3 + Q)Z + Z̃ †(ikσ3 + Q) σ3 Z
= Z̃ †(σ3 Q + Qσ3)Z = 0,

(23)

which implies that Z̃ †(x, k)σ3 Z (x, k) is independent of x ∈ R. Using the
asymptotic properties of the two fundamental eigenfunctions as x → ±∞,
(22a) follow. Equations (22b) follow directly from (19), (21), and (15b). The
result for k /∈ � follows from Schwarz reflection principle. �

Let us denote the transition matrices as follows:

Al(k) =
(

Al1(k) Al2(k)
Al3(k) Al4(k)

)
, Ar (k) =

(
Ar1(k) Ar2(k)
Ar3(k) Ar4(k)

)
. (24)

Then Equations (22a) imply that for k ∈ � we have

|Al1(k)| ≥ 1, |Ar1(k)| ≥ 1, Al1(k) = A∗
r1(k), (25a)

|Al4(k)| ≥ 1, |Ar4(k)| ≥ 1, Al4(k) = A∗
r4(k). (25b)

To prove (25) we proceed as follows. First of all, we observe that from
(22a) we can write

σ3 = Al(k)σ3A
†
l (k).

As a consequence, we get

Al(k)σ3A
†
l (k) =

(
Al1(k) Al2(k)
Al3(k) Al4(k)

)(
A∗

l1(k) A∗
l3(k)

−A∗
l2(k) −A∗

l4(k)

)
=
(

1 0
0 −1

)
and the last equation implies that

|Al1|2 = 1 + |Al2|2 ≥ 1, |Al4|2 = 1 + |Al3|2 ≥ 1.

The proof for the entries of Ar (k) can be carried out in a similar way.
Using (23), we easily prove that for each x ∈ R


̃†(x, k)σ3
̃(x, k) = �̃†(x, k)σ3�̃(x, k) = −σ3.

As a result, the diagonal entries of the transition matrices cannot vanish for
k ∈ �.

It is worth mentioning that instead of deriving the fundamental eigenfunctions
of (5) from those pertaining to the free Hamiltonian, we can also derive them
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as perturbations of ex A±(k) as x → ±∞. In that case, we obtain the integral
equations


̃(x, k) = ex A+(k) −
∫ ∞

x
dy e(x−y)A+(k)[Q(y) − Q+]
̃(y, k), (26a)

�̃(x, k) = ex A−(k) +
∫ x

−∞
dy e(x−y)A−(k)[Q(y) − Q−]�̃(y, k). (26b)

Equations (18a) and (26a) coincide if x ≥ 0, whereas (18b) and (26b)
coincide if x ≤ 0. In all other cases, the corresponding integral Equations (18)
and (26) are quite different, though their solutions coincide (in fact, 
̃(x, k)
and �̃(x, k) both satisfy (10) with the asymptotic conditions (12a) and (12b),
respectively). Equations (26), however, are not suitable for investigating the
behavior of the eigenfunctions as x → ∓∞. In fact, the iterates of (26a) (resp.,
(26b)) are continuous functions of x ∈ R which converge uniformly to 
̃(x, k)
(resp., �̃(x, k)) for x ≥ x0 > −∞ (resp., x ≤ x0 < +∞), but nothing can be
said about the limit as x → −∞ (resp. x → +∞).

2.2. Jost solutions

The fundamental eigenfunctions introduced in Section 2.1 are not scattering
eigenfunctions, in the sense that their asymptotic behavior as x → ±∞
couples both asymptotic eigenvalues ±iλ of the scattering problem. In this
subsection we introduce the Jost solutions as column vector solutions to (10)
and establish their analyticity properties. To this aim, we multiply from the
right the fundamental eigensolutions 
̃(x, k) and �̃(x, k) by the eigenvectors
of A±(k) corresponding to the eigenvalues iλ and −iλ, i.e., by the columns of

W±(k) =
(
λ+ k λ− k
iq∗

± −iq∗
±

)
, (27)

with det W±(k) = −2iq∗
±λ and

A±(k)W±(k) = W±(k) diag(−iλ, iλ). (28)

Moreover, it is easily verified that for k ∈ � \ {±q0} we have

[W±(k)D−1/2(k)]† = σ3[W±(k)D−1/2(k)]−1σ3, (29)

where D(k) = diag (2λ(λ+ k), 2λ(k − λ)). We now call the columns of


̃(x, k)W+(k) = (ψ̄(x, k) ψ(x, k)), (30a)

�̃(x, k)W−(k) = (φ(x, k) φ̄(x, k)), (30b)
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the Jost solutions from the right and the left, respectively. In fact, for the Jost
solutions we get

ψ̄(x, k) ∼ e−iλx

(
λ+ k
iq∗

+

)
, ψ(x, k) ∼ eiλx

(
λ− k
−iq∗

+

)
, x → +∞, (31a)

φ(x, k) ∼ e−iλx

(
λ+ k
iq∗

−

)
, φ̄(x, k) ∼ eiλx

(
λ− k
−iq∗

−

)
, x → −∞. (31b)

Using that σ1 X∗(x, k∗) is a solution to Equation (5) if X (x, k) is, we easily
derive the symmetry relations

φ̄(x, k) = −iq∗
−

λ+ k
σ1φ

∗(x, k∗), ψ(x, k) = −iq∗
+

λ+ k
σ1ψ̄

∗(x, k∗). (32)

Moreover, replacing k ∈ K
± by the “same” k ∈ K

∓ and hence replacing
λ ∈ 	± by −λ ∈ 	∓, we convert ψ̄(x, k) into −ψ(x, k) and φ(x, k) into
−φ̄(x, k) (symmetries will be discussed in more detail in Section 3.1).

It is worth mentioning that the normalization in (31) for the Jost solutions
differs from the one considered, for instance, in Refs. [19, 28], where, instead
of W±(k), the asymptotic eigenvectors are taken to be

U±(k) =
(
λ+ k −iq±
iq∗

± λ+ k

)
.

The latter choice, however, turned out not to be convenient for the generalization
to the vector NLS (cf. [37, 38]), and therefore in the following we will adopt
(31) as our normalization for the Jost solutions.

PROPOSITION 3. Suppose the entries of Q(x) − Q f (x) belong to L1(R).
Then for each x ∈ R the Jost solutions e−iλxψ(x, k) and eiλxφ(x, k) are
continuous for k ∈ K+ \ {±q0} and analytic for k ∈ K

+, while the Jost solutions
eiλx ψ̄(x, k) and e−iλx φ̄(x, k) are continuous for k ∈ K− \ {±q0} and analytic
for k ∈ K

−. In addition, if Q(x) − Q f (x) belongs to L1,2(R), then e−iλxψ(x, k)
and eiλxφ(x, k) are continuous for k ∈ K+ and analytic for k ∈ K

+,while the
Jost solutions eiλx ψ̄(x, k) and e−iλx φ̄(x, k) are continuous for k ∈ K− and
analytic for k ∈ K

−.

Proof . Let us consider, for k ∈ � \ {±q0}, the matrices P±
−iλ and P±

iλ
defined as follows:

P±
−iλ(k) = Resζ=−iλ (ζ I2 − A±(k))−1 = 1

2λ

(
λ+ k iq±
iq∗

± λ− k

)
, (33a)

P±
iλ (k) = Resζ=iλ (ζ I2 − A±(k))−1 = 1

2λ

(
λ− k −iq±
−iq∗

± λ+ k

)
. (33b)
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P±
−iλ and P±

iλ are complementary projections in the sense that

(P±
iλ )2 = P±

iλ, (P±
−iλ)

2 = P±
−iλ, P±

iλ P±
−iλ = P±

−iλP±
iλ = 02×2,

P±
iλ + P±

−iλ = I2.

Moreover, they commute with A±(k) and satisfy

A±(k)P±
−iλ(k) = −iλP±

−iλ(k), A±(k)P±
iλ (k) = iλP±

iλ (k).

We can also write for any x ∈ R

ex A±(k) = e−iλx P±
−iλ(k) + eiλx P±

iλ (k). (34)

For k ∈ � \ {±q0}, multiplying (26a) from the right by either column of
W+(k), and (26b) by either column of W−(k), we obtain the integral equations

eiλx ψ̄(x, k)

=
(
λ+ k

iq∗
+

)
−
∫ ∞

x
dy[P+

−iλ + e2iλ(x−y) P+
iλ ][Q(y) − Q+]eiλyψ̄(y, k), (35a)

e−iλxψ(x, k)

=
(
λ− k
−iq∗

+

)
−
∫ ∞

x
dy[e2iλ(y−x) P+

−iλ + P+
iλ ][Q(y) − Q+]e−iλyψ(y, k), (35b)

eiλxφ(x, k)

=
(
λ+ k

iq∗
−

)
+
∫ x

−∞
dy[P−

−iλ + e2iλ(x−y) P−
iλ ][Q(y) − Q−]eiλyφ(y, k), (35c)

e−iλx φ̄(x, k)

=
(
λ− k
−iq∗

−

)
+
∫ x

−∞
dy[e2iλ(y−x) P−

−iλ + P−
iλ ][Q(y) − Q−]e−iλyφ̄(y, k). (35d)

The projections P±
−iλ(k) and P±

iλ (k) admit a natural continuation to
k ∈ K \ {±q0} [i.e., to λ ∈ C \ {0}]. Taking into account that these projections
are singular matrices, we can prove that for k ∈ � their spectral norms are
given by

‖P±
−iλ(k)‖ = ‖P±

iλ (k)‖ = |λ+ k| + |λ− k|
2|λ| = |k|

|λ| , (36)

where we have used |λ+ k| + |λ− k| = 2max{|λ|, |k|} for λ, k ∈ R. For
k /∈ �, we use (D.2) instead. Thus the expression P±

−iλ(k) + e2iλ(x−y) P±
iλ (k)

appearing in (35a) is bounded above in the norm by twice the amount in (36)
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if y ≥ x and λ ∈ 	− ∪ R \ {0}. Iterating (35a) we get

‖eiλx ψ̄(x, k)‖≤
√

|λ+ k|2 + q2
0

+ 2|k|
|λ|

∫ ∞

x
dy ‖Q(y) − Q+‖‖eiλyψ̄(y, k)‖.

Assuming that Q − Q+ is in L1 on any right half-line, which follows from
Q − Q± ∈ L1(R±), we see that the series resulting by iteration is absolutely
convergent, uniformly in (x, λ) on each set of the type

{(x, λ) : x ≥ x0 > −∞, |λ| ≥ ε > 0, λ ∈ 	− ∪�}.
Since each term is continuous in k ∈ K

− ∪� \ {±q0} and analytic in k ∈ K
−

for each x ∈ R, we arrive at the same continuity and analyticity properties for
eiλx ψ̄(x, k).

To extend the continuity properties to k = ±q0, we write the left factor
under the integral sign of (35a) as follows:

I2 + [e2iλ(x−y) − 1] P+
iλ,

where we have used the complementarity of the projections P+
±iλ. This

expression we then estimate in the norm for k ∈ K
− ∪� by

1 + |e2iλ(x−y) − 1| |k|
|λ|≤ 1 + 2|x − y||k|

≤ max(1, 2|k|)(1 + |x |)(1 + |y|).
The proof then proceeds as before, but under the strengthened integrability
condition that Q(x) − Q f (x) belongs to L1,2(R). This completes the proof for
the Jost solution ψ̄(x, k). The proof for the other three Jost solutions can be
carried out in a similar way. �

Note that the analyticity domains of the Jost solutions are subsets of only
one sheet. Further, the proportionality of the inhomogeneous terms in (35a)
and (35b) and in (35c) and (35d) for k = ±q0 implies the proportionality of
their solutions, so it is

ψ(x,±q0) = −ψ̄(x,±q0), φ(x,±q0) = −φ̄(x,±q0). (37)

2.3. Transition and scattering coefficients

We define below two types of scattering coefficients: the transition coefficients
which express the proportionality of the fundamental eigensolutions, and the
scattering coefficients which realize the proportionality of the Jost solutions.
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Since 
̃(x, k) and �̃(x, k) are square matrix solutions of the homogeneous
first order system (10), we necessarily have, in view of (12) and (19),


̃(x, k) = �̃(x, k)Al(k), �̃(x, k) = 
̃(x, k)Ar (k), (38)

where Al(k) and Ar (k) are the transition coefficient matrices. In order to
decompose Al(k) and Ar (k) into elements that are analytic in λ ∈ 	+ and
λ ∈ 	−, we need to apply the similarity transformation used for the same
purpose with the fundamental eigensolutions. As a result of (30) and (38), for
k ∈ � we get

(φ(x, k) φ̄(x, k)) = (ψ̄(x, k) ψ(x, k))S(k), (39a)

(ψ̄(x, k) ψ(x, k)) = (φ(x, k) φ̄(x, k))S̄(k), (39b)

where [19, 28]

S(k) = W −1
+ (k)Ar (k)W−(k) =

(
a(k) b̄(k)

b(k) ā(k)

)
, (40)

and S̄(k) = W −1
− (k)Al(k)W+(k) = S−1(k). Comparing the asymptotic behavior

of the Jost solutions as x → ±∞ and taking into account (23), yields
the following quasi-unitarity relation for the scattering coefficients for
k ∈ � \ {±q0}:

a(k)ā(k) − b(k)b̄(k) = ei�, (41)

where � = θ+ − θ−. As a consequence, one also has

S̄(k) = e−i�

(
ā(k) −b̄(k)

−b(k) a(k)

)
. (42)

As a result of (29), we easily find

[D1/2(k)S(k)D−1/2(k)]† = σ3[D1/2(k)S(k)D−1/2(k)]−1σ3. (43)

Observe that (40) becomes singular for k = ±q0, due to the noninvertibility of
W±(q0) and W±(−q0).

Note that using (20) in (40) and taking into account (30) and (28), we get
the following integral representations for the scattering coefficients:(

a(k) b̄(k)

b(k) ā(k)

)
=
∫ ∞

0
dy eiλyσ3 W −1

+ (k)[Q(y) − Q+](φ(y, k) φ̄(y, k))

+ W −1
+ (k)W−(k)

[
I2 +

∫ 0

−∞
dy eiλyσ3 W −1

− (k)

× [Q(y) − Q−](φ(y, k) φ̄(y, k))

]
.
(44)
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We can now establish the analyticity properties of the scattering coefficients.

PROPOSITION 4. Suppose the entries of Q(x) − Q f (x) belong to L1(R).
Then a(k) is continuous in k ∈ K+ \ {±q0} and analytic in k ∈ K

+, while ā(k) is
continuous in k ∈ K− \ {±q0} and analytic in k ∈ K

−. The functions b(k), b̄(k)
are continuous in k ∈ � \ {±q0}, but in general cannot be continued off �.

Proof . By using (39) we can represent the scattering coefficients as
Wronskians of the Jost solutions:

a(k) = Wr (φ(x, k), ψ(x, k))

Wr (ψ̄(x, k), ψ(x, k))
, ā(k) = − Wr (φ̄(x, k), ψ̄(x, k))

Wr (ψ̄(x, k), ψ(x, k))
,

b(k) = − Wr (φ(x, k), ψ̄(x, k))

Wr (ψ̄(x, k), ψ(x, k))
, b̄(k) = Wr (φ̄(x, k), ψ(x, k))

Wr (ψ̄(x, k), ψ(x, k))
.

Here the Wronskian Wr (u, v) of the two column vectors u and v is defined as
Wr (u, v) = uTσ3σ1v = u(1)v(2) − u(2)v(1). Given two column solutions u(x, k)
and v(x, k) of Equation (5), it easy to show that Wr (u, v) does not depend on
x . As a consequence, from (31a) one has

Wr (ψ̄(x, k), ψ(x, k)) = −2iλq∗
+ (45)

and therefore

a(k) =−Wr (φ(x, k), ψ(x, k))

2iλq∗+
, ā(k) = Wr (φ̄(x, k), ψ̄(x, k))

2iλq∗+
, (46a)

b(k) = Wr (φ(x, k), ψ̄(x, k))

2iλq∗+
, b̄(k) = −Wr (φ̄(x, k), ψ(x, k))

2iλq∗+
. (46b)

From the analyticity properties of the Jost solutions established in Proposition
3, and since λ �= 0 if k �= ±q0, the proof follows. �

With the help of Proposition 3 and Equations (46), we easily prove the
following.

COROLLARY 1. Suppose the entries of Q(x) − Q f (x) belong to L1,2(R).
Then λ(k)a(k) is analytic in k ∈ K

+ and continuous in k ∈ K+, λ(k)ā(k) is
analytic in k ∈ K

− and continuous in k ∈ K−, and λ(k)b(k) and λ(k)b̄(k) are
continuous for k ∈ R.

Taking into account the analyticity properties of the Jost solutions, we are
interested in determining the 2 × 2 matrices

T (k) =
(

tl(k) r (k)

ρ(k) tr (k)

)
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and

T̄ (k) =
(

t̄r (k) ρ̄(k)

r̄ (k) t̄l(k)

)

which allow us to formulate the Riemann-Hilbert problems

(φ(x, k) ψ(x, k)) = (ψ̄(x, k) φ̄(x, k))σ3T̄ (k)σ3, (47a)

(ψ̄(x, k) φ̄(x, k)) = (φ(x, k) ψ(x, k)
)
σ3T (k)σ3, (47b)

where the scattering coefficients tl(k), tr (k), t̄l(k), t̄r (k) are called the (left and
right) “transmission coefficients,” while ρ(k), ρ̄(k), r (k), r̄ (k) are the (left
and right) “reflection coefficients.” Note that the matrix (φ(x, k) ψ(x, k))
is analytic for k ∈ K

+ and continuous for k ∈ K+, whereas the matrix
(ψ̄(x, k) φ̄(x, k)) is analytic for k ∈ K

− and continuous for k ∈ K−. A
comparison between (39) and (47) gives us the following expressions for the
scattering coefficients:

tl(k) = 1/a(k), tr (k) = ei�/a(k),

ρ(k) = b(k)/a(k), r (k) = −b̄(k)/a(k),
(48a)

t̄r (k) = ei�/ā(k), t̄l(k) = 1/ā(k),

ρ̄(k) = b̄(k)/ā(k), r̄ (k) = −b(k)/ā(k).
(48b)

Using (43), we easily obtain that D1/2(k)T (k)D−1/2(k) is unitary for
k ∈ � \ {±q0}.

3. Direct problem: z variable

Before we proceed further discussing the properties of the scattering coefficients
and posing and solving the inverse problem, it is convenient to introduce a
uniformization variable z (cf. [28]) defined by the conformal mapping:

z = k + λ(k),

and inverse mapping given by

k = 1

2

(
z + q2

0

z

)
, λ = z − k = 1

2

(
z − q2

0

z

)
.

We observe that

• the two sheets K
+, K

− of the Riemann surface K are, respectively,
mapped onto the upper and lower half-planes C

± of the complex z-plane;
• the cut � on the Riemann surface is mapped onto the real z axis;
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• the segments −q0 ≤ k ≤ q0 on K
+ and K

− are mapped onto the upper
and lower semicircles of radius q0 and center at the origin of the z-plane.

From Proposition 3 it then follows that the Jost solutions φ(x, z)eiλx ,
ψ(x, z)e−iλx are analytic in the upper half-plane of z, while φ̄(x, z)e−iλx ,
ψ̄(x, z)eiλx are analytic in the lower half-plane. Moreover, by Proposition 4
and Corollary 1, za(z) and a(z)/z are analytic in z ∈ C

+ and continuous in
z ∈ C+, zā(z) and ā(z)/z are analytic in z ∈ C

− and continuous in z ∈ C−,
and zb(z), zb̄(z) are continuous in z ∈ R. We will determine the asymptotic
behavior of a(z), ā(z), b(z) and b̄(z) in Section 3.2.

3.1. Symmetries and discrete eigenvalues

It is well known that the scattering problem admits two involutions:
(k, λ) → (k∗, λ∗) and (k, λ) → (k,−λ), or, in terms of the uniformization
variable z: z → z∗ and z → q2

0/z. Writing the considerations around (32) in
terms of z, we obtain the corresponding symmetry relations between the
eigenfunctions

φ̄(x, z) = − iq∗
−

z
σ1φ

∗(x, z∗), ψ(x, z) = − iq∗
+

z
σ1ψ̄

∗(x, z∗), (49a)

φ(x, z) =−φ̄(x, q2
0/z
)
, ψ̄(x, z) = −ψ(x, q2

0/z
)
. (49b)

Correspondingly, from (46) (rewritten in terms of the uniform variable) and
(49), one can obtain the symmetries of the scattering coefficients:

a(z) = ei�ā∗(z∗), a(z) = ā
(
q2

0/z
)
, Im z ≥ 0, (50a)

and

b(z) = ei� z2

q2
0

b̄∗(z), b(z) = b̄
(
q2

0/z
)
, z ∈ R, (50b)

where we recall � = θ+ − θ−. It is also well known [19] that there is a
one-to-one correspondence between the poles of the transmission coefficients
tl(z) = 1/a(z) and t̄r (z) = ei�/ā(z) and discrete eigenvalues of the scattering
problem (5). Taking into account the symmetries (50), the quasi-unitarity
relation (41) becomes:

|a(z)|2 − q2
0

z2
|b(z)|2 = 1, z ∈ R \ {±q0}. (51)

Note that the above equation also makes sense for z → 0, as in Section 3.2 we
will show b(z)/z = o(1/z). Using (51), we see that a(z) �= 0 for z ∈ R, which
means that there are no spectral singularities (sometimes called embedded
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eigenvalues). Equation (51) also implies

0 <
1

|a(z)|2 = |tl,r (z)|2 = 1 − q2
0

z2
|ρ(z)|2. (52)

Note that (51) can also be obtained directly from (23), taking Z = Z̃ = (ψ̄ ψ
)

and comparing the limits of Z †σ3 Z at both space infinities. Equation (51),
together with the self-adjointness of the scattering problem, ensure that
the transmission coefficients can only have poles at z = ζn = kn + iνn and
z = ζ ∗

n = kn − iνn , with −q0 < kn < q0 and νn = √
q2

0 −k2
n > 0. In Ref. [28] it

is shown that all poles are simple. In addition, in Appendix B we will prove
that if q − q f ∈ L1, 4(R) there is a finite number of poles, all of which belong
to the spectral gap k ∈ (−q0, q0).

For any pair of eigenvalues {ζn, ζ
∗
n }N

n=1 on the circle C0 := {z ∈ C : |z| = q0}
[i.e., for any pair of zeros of a(z) and ā(z) on the circle C0], the Wronskian
representations (46a) yield:

φ(x, ζn) = cnψ(x, ζn), φ̄(x, ζ ∗
n ) = c̄nψ̄(x, ζ ∗

n ), (53)

for some complex constants cn , c̄n , with cn = c̄n due to the symmetries (49)
between the Jost solutions. Finally, we mention that even though the Jost
solutions are continuous at the branch points ±q0 for the class of potentials in
Proposition 3, the scattering coefficients generically have simple poles when
z = ±q0. In fact, from (46a) it follows that if φ and ψ are linearly independent
at z = q0 or z = −q0 (i.e., at λ = 0), then a(z) has a singularity of the form

a(z)|z=±q0
= a±

λ
+ O(1), a± = i

Wr (φ(x,±q0), ψ(x,±q0))

2q∗+
. (54)

However, it may also happen that φ(x, z) andψ(x, z) become linearly dependent
at either z = q0 or z = −q0, or both. In this case, either a+ or a−, or both,
vanish, so that a(z) is nonsingular near the corresponding branch point. When
this happens, in scattering theory z = −q0 or z = q0 is called a virtual level
[28]. The behavior of b(z) in the neighborhood of z = ±q0 is the same as that
of a(z). Indeed, from (37) and (46) it immediately follows that

b(z)|z=±q0
= a±

λ
+ O(1). (55)

The behavior of ā(z) and b̄(z) at the branch points simply follows using the
symmetries (50). When a± �= 0, we have the asymptotic relations

ρ(z)|z=±q0
= 1 + o(1), ρ̄(z)|z=±q0

= 1 + o(1).

In Appendix B, higher order asymptotic expansions at the branch points will
be considered.
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3.2. Asymptotic behavior of eigenfunctions and scattering data

In order to properly pose and solve the inverse problem, one has to determine
the asymptotic behavior of eigenfunctions and scattering data both as z → ∞
and as z → 0. Standard Wentzel-Kramers-Brillouin (WKB) expansions in
terms of the uniformization variable z in the scattering problem (see Appendix
C) yield the following asymptotic behaviors for the eigenfunctions in the
upper-half plane (UHP) of z:

• as z → ∞:

φ(x, z)eiλx ∼
(

z
iq∗(x)

)
, ψ(x, z)e−iλx ∼ −

(
q∗

+q(x)/z
iq∗

+

)
, (56a)

• as z → 0:

φ(x, z)eiλx ∼
(

zq(x)/q−
iq∗

−

)
, ψ(x, z)e−iλx ∼ −

(
q2

0/z
iq∗(x)

)
. (56b)

Similarly, in the lower-half plane (LHP) of z we obtain:
• as z → ∞:

φ̄(x, z)e−iλx ∼ −
(

q∗
−q(x)/z

iq∗
−

)
, ψ̄(x, z)eiλx ∼

(
z

iq∗(x)

)
, (57a)

• as z → 0:

φ̄(x, z)e−iλx ∼ −
(

q2
0/z

iq∗(x)

)
, ψ̄(x, z)eiλx ∼

(
zq(x)/q+

iq∗
+

)
. (57b)

Note that, unlike the expressions given in Ref. [28], the derivation in
Appendix C shows that even the leading order terms of the asymptotic
expansions for the eigenfunctions explicitly depend on the potential q(x), not
merely on its asymptotic values q±. Using the Wronskian representations (46a)
for the scattering data for z in the UHP yields:

a(z) ∼ 1 as z → ∞, a(z) ∼ q+/q− as z → 0, (58a)

as well as:

ā(z) ∼ q+/q− as z → ∞, ā(z) ∼ 1 as z → 0, (58b)

for z in the LHP. Similarly, the Wronskian representation of b(z) provides its
asymptotic behavior for z ∈ R. Specifically, for (q − q±) ∈ L1(R±) one has:

lim
z→∞ z b(z) = 0, lim

z→0

b(z)

z2
= 0, (59)

and consequently

lim
z→∞ z ρ(z) = 0, lim

z→0

ρ(z)

z2
= 0. (60)
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The asymptotic behaviors for b̄(z) and ρ̄(z) can be obtained analogously, or by
simply using the symmetry (50b).

3.3. Trace formula and area theorem

Taking into account the analyticity properties of a(z) in the UHP, the location
of its zeros, as well as (51), one can obtain the following representation
(sometimes referred to as trace formula) for a(z) for z in UHP:

a(z)=
N∏

n=1

(
z−ζn

z−ζ ∗
n

)
exp

[
− 1

2π i

∫ ∞

−∞

log
(
1−q2

0 |ρ(ζ )|2/ζ 2
)

ζ−z
dζ

]
. (61)

Recalling that, according to (58), a(z) ∼ q+/q− as z → 0, we conclude that
the potential satisfies

q+
q−

=
N∏

n=1

ζn

ζ ∗
n

exp

[
− 1

2π i

∫ ∞

−∞

log
(
1 − q2

0 |ρ(ζ )|2/ζ 2
)

ζ
dζ

]
. (62)

Note that the argument of the logarithm is positive, due to the unitarity of
D1/2(z)T (z)D−1/2(z) for z ∈ R\{0} (see (52)). Following Ref. [28], we refer
to (62) as �-condition, since q+/q− gives the asymptotic phase difference
� ≡ θ+ − θ− of the potential. In particular, in the reflectionless case one has
that the asymptotic phases and the soliton amplitudes and velocities are not
independent from each other. Specifically, they are related via the following
condition

q+
q−

=
N∏

n=1

kn + iνn

kn − iνn
. (63)

If one breaks the integral in (62) into (
∫ −q0

−∞ +
∫ 0
−q0

+
∫ q0

0 +
∫ +∞

q0
) and in the two

integrals
∫ ±q0

0 performs the change of variable u = q2
0/ζ , taking into account

the two symmetries (50) yielding

ρ(z) = z2

q2
0

ρ∗(q2
0/z
)
,

one obtains∫ ∞

−∞

log
(
1 − q2

0 |ρ(ζ )|2 /ζ 2
)

ζ
dζ

= 2
∫ −q0

−∞

log
(
1 − q2

0 |ρ(ζ )|2 /ζ 2
)

ζ
dζ + 2

∫ ∞

q0

log
(
1 − q2

0 |ρ(ζ )|2 /ζ 2
)

ζ
dζ.

Since 1 ≥ 1 − ( q2
0

ζ 2 |ρ(ζ )|2) > 0, we see that the first term on the RHS is positive
and the second term is negative. Since the two integrals on the RHS are not
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related to each other by any symmetry, this suggests that in general the radiative
part of the spectrum yields a nontrivial contribution to the asymptotic phase
difference of the potential.

4. Riemann-Hilbert problem

In order to formulate the inverse scattering problem as an RHP, one needs a
representation of eigenfunctions that are meromorphic in the UHP of z in
terms of a combination of eigenfunctions that are meromorphic in the LHP, via
suitably defined jump conditions on the real z-axis. Explicitly, we can write

φ(x, z)

a(z)
eiλx − ψ̄(x, z)eiλx = ρ(z)e2iλxψ(x, z)e−iλx , (64a)

φ̄(x, z)

ā(z)
e−iλx − ψ(x, z)e−iλx = ρ̄(z)e−2iλx ψ̄(x, z)eiλx , (64b)

where the reflection coefficients ρ(z) and ρ̄(z) are defined as in (48). This set
of equations will be considered as a matrix RHP on the real z-axis, with poles
at the zeros of a(z) in the UHP of z and of ā(z) in the LHP. Below we solve
the RHP by reducing it to a linear system of algebraic-integral equations.

From the asymptotic behavior of eigenfunctions and scattering data, in the
UHP we have:

φ(x, z)

a(z)
eiλx ∼

(
z

iq∗(x)

)
as z → ∞,

φ(z)

a(z)
eiλx ∼

(
z q(x)/q+

iq∗
+

)
as z → 0.

Similarly, in the LHP:

φ̄(x, z)

ā(z)
e−iλx ∼ −

(
q∗

+q(x)/z
iq∗

+

)
as z → ∞,

φ̄(x, z)

ā(z)
e−iλx ∼ −

(
q2

0/z
iq∗(x)

)
as z → 0.

In order to take into account the behavior of the eigenfunction at z = 0, it is
convenient to rewrite (64) as

φ(x, z)

za(z)
eiλx − ψ̄(x, z)

z
eiλx = ρ(z)e2iλx ψ(x, z)

z
e−iλx , (65a)

φ̄(x, z)

ā(z)
e−iλx − ψ(x, z)e−iλx = ρ̄(z)e−2iλx ψ̄(x, z)eiλx , (65b)
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so that the functions will be bounded at infinity, though having an additional
pole at z = 0. Taking into account the asymptotic behaviors summarized
above, as well the relationships (53) between the eigenfunctions at the discrete
eigenvalues, the above system can be written as:

[
φ(x, z)

za(z)
eiλx −

(
1
0

)
− 1

z

(
0

iq∗
+

)
−

N∑
n=1

φ(x, ζn)

(z − ζn)ζna′(ζn)
e−νn x

]

−
[
ψ̄(x, z)

z
eiλx −

(
1
0

)
− 1

z

(
0

iq∗
+

)
−

N∑
n=1

cnψ(x, ζn)

(z − ζn)ζna′(ζn)
e−νn x

]

= ρ(z)e2iλx ψ(x, z)

z
e−iλx ,[

φ̄(x, z)

ā(z)
e−iλx −

(
0

−iq∗
+

)
− 1

z

(−q2
0

0

)
−

N∑
n=1

φ̄(x, ζ ∗
n )

(z − ζ ∗
n )ā′(ζ ∗

n )
e−νn x

]

−
[
ψ(x, z)e−iλx −

(
0

−iq∗
+

)
− 1

z

(−q2
0

0

)
−

N∑
n=1

c̄nψ̄(x, ζ ∗
n )

(z − ζ ∗
n )ā′(ζ ∗

n )
e−νn x

]

= ρ̄(z)e−2iλx ψ̄(x, z)eiλx ,

where a′(z), ā′(z) denote derivatives with respect to z, and we have also used
eiλ(ζn)x = e−iλ(ζ ∗

n )x = e−νn x . We now introduce the Cauchy projectors:

�±( f )(z) = 1

2π i

∫ +∞

−∞

f (ζ )

ζ − (z ± i0)
d ζ,

which are well defined for any function f (ζ ) that is integrable on the real axis.
�±( f )(z) is analytic in the upper/lower half plane and, if f± admit analytic
continuation in the upper/lower half plane, one has:

�±( f±)(z) = ± f±(z), �∓( f±)(z) = 0.

Applying the projector �− to the first equation and �+ to the second equation,
we obtain

ψ̄(x, z)eiλx =
(

z
iq∗

+

)
+

N∑
n=1

z

(z − ζn)
Cnψ(x, ζn)e−νn x

− z

2π i

∫ +∞

−∞

ρ(ζ )

ζ

ψ(x, ζ )

ζ − (z − i0)
eiλ(ζ )x dζ,

(67a)
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ψ(x, z)e−iλx = −
(

q2
0/z

iq∗
+

)
+

N∑
n=1

C̄n

(z − ζ ∗
n )
ψ̄(x, ζ ∗

n ) e−νn x

+ 1

2π i

∫ +∞

−∞

ρ̄(ζ )

ζ − (z + i0)
ψ̄(x, ζ )e−iλ(ζ )x dζ,

(67b)

where we have introduced the norming constants:

Cn = cn

ζna′(ζn)
, C̄n = c̄n

ā′(ζ ∗
n )
. (68)

Recalling that c̄n = cn , the symmetries (50) yield the following constraints for
the norming constants:

C̄n = −ζ ∗
n Cn, C̄∗

n = −C̄n. (69)

The system (67) is closed by evaluating the first equation at z = ζ ∗
n and the

second at z = ζn .
From (57b), the limit as z → 0 of the first component of ψ̄(x, z)eiλx gives:

q(x) = q+

[
1 −

N∑
n=1

Cn

ζn
ψ (1)(x, ζn)e−νn x

− 1

2π i

∫ +∞

−∞

ρ(ζ )

ζ 2
ψ (1)(x, ζ )eiλ(ζ )x dζ

]
,

(70)

where ψ (1)(x, z) denotes the first component of the Jost solution ψ(x, z).
In the reflectionless case, i.e., when ρ(z) ≡ 0 for all z ∈ R, the linear system

(67) reduces to a linear algebraic system of equations, and the potential is then
reconstructed simply as

q(x) = q+

⎡
⎣1 −

N∑
j,n=1

C̄n

ζn
(A−1(x))n, j e

−2νn x

⎤
⎦ , (71)

where A−1(x) is the inverse matrix of A(x), with entries

A j,n(x) = δ j,n + C̄n

ζ j − ζ ∗
n

e−2νn x j, n = 1, . . . , N . (72)

Finally, we mention that the asymptotic behaviors determined in Section 3.2
ensures that the integrals in (67) and (70) are well defined.

5. Marchenko equations and reconstruction of potentials

In this section we formulate the inverse problem in terms of the Marchenko
equations. We solve explicitly these equations in the reflectionless case (ρ(z) ≡ 0
for all z ∈ R) by using a suitable triplet of matrices and matrix exponentials.
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As a result, we get an explicit compact formula for the representation of the
multisoliton solutions to (3).

5.1 Solving the Marchenko equations

It is well known (see Equations (7.37) and (7.44) in Chapter 2 of Ref. [28])
that the inverse scattering theory of (5) can be formulated in terms of the
Marchenko equations.

Let us introduce the triangular representations of the Jost solutions (cf. [28],
with a different normalization) as:

ψ̄(x, z) =
[

e−iλ(z)x I2 +
∫ ∞

x
ds K (x, s)e−iλ(z)s

]
w1,+(z), (73a)

ψ(x, z) =
[

eiλ(z)x I2 +
∫ ∞

x
ds K (x, s)eiλ(z)s

]
w2,+(z), (73b)

where w1,+(z) and w2,+(z) denote the column vectors of W+ in Equation (27),
expressed in terms of the uniform variable z. Also here K (x, y) is a 2 × 2
matrix function which has to satisfy the following Marchenko equation:

K (x, y) + G(x + y) +
∫ ∞

x
ds K (x, s)G(s + y) = 0, (74)

where K (x, y) and G(s + y) are defined as

K (x, y) = (K̄ (x, y) K (x, y)) =
(

K11(x, y) K12(x, y)
K21(x, y) K22(x, y)

)
, (75a)

G(s + y) =
(

F1(s + y) F∗
2 (s + y)

F2(s + y) F∗
1 (s + y)

)
, (75b)

with

F1(x) = F1,c(x) + i F ′
2,c(x) − ζ ∗

n

2
F1,d(x), (76a)

F2(x) = −iq∗
+
[
F2,c(x) + 1

2 F1,d(x)
]
, (76b)

where

F1,c(x) = 1

2π

∫ ∞

−∞
dζ eiζ x

ρ
(√
ζ 2 + q2

0 , ζ
)

+ ρ
(

−
√
ζ 2 + q2

0 , ζ
)

2
, (77a)

F2,c(x) = 1

2π

∫ ∞

−∞
dζ eiζ x

ρ
(√
ζ 2 + q2

0 , ζ
)

− ρ
(

−
√
ζ 2 + q2

0 , ζ
)

2
√
ζ 2 + q2

0

, (77b)
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F1,d(x) = −i
N∑

n=1

Cn e−νn x , (77c)

ζn = kn + iνn are the discrete eigenvalues and Cn are the norming constants
introduced in Equation (68).

Observe that the matrices K (x, y) and G(x + y) both have the following
symmetry properties:

σ1Tσ1 = T ∗.

In analogy with the method developed in Refs. [32–35], we now solve
explicitly the Marchenko equation (74) in the reflectionless case, i.e., when
ρ(z) ≡ 0 for all z ∈ R, and a finite number of discrete eigenvalues ζn (see
Appendix B for more details). In order to do so, let us represent the 2 × 2
matrix Marchenko kernel as follows:

G(z) = Ce−z A B, (78)

where A is a p × p matrix having only eigenvalues with positive real part, B
is a p × 2 matrix, and C is a 2 × p matrix. We recall that there are many
different triplets (A, B,C) which lead to the same representation (78) of the
2 × 2 matrix kernel G(z). Among these representations, we point out the
so-called minimal representations, where the triplet is such that A has minimal
matrix order among all triplets leading to a representation of the same
Marchenko kernel (see [40] for more details). Two triplets (A, B,C) and
( Ã, B̃, C̃) leading to minimal representations of the same 2 × 2 Marchenko
kernel G(z) are similar, in the sense that there exists a unique invertible matrix
S such that

Ã = SAS−1, B̃ = SB, C̃ = C S−1,

(cf. [40, Theorem 19.4]).
To get explicit solutions of (74), let us consider Equation (78) in which the

minimality of the triplet (A, B,C) is assumed and A is a p × p matrix having
only eigenvalues with positive real part. Then the Marchenko equation (74)
can be written as

K (x, y) = −[Ce−x A + L(x)] e−y A B,

where

L(x) =
∫ ∞

x
ds K (x, s)Ce−s A.

Let P denote the unique solution of the Sylvester equation

AP + P A = BC, (79)
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i.e., P = ∫∞
0 dz e−z A BCe−z A. Then

L(x) = −Ce−2x A Pe−x A[Ip + e−x A Pe−x A]−1,

where Ip denotes the p × p identity matrix. Consequently,

K (x, y) = −Ce−x A[Ip + e−x A Pe−x A]−1e−y A B, (80)

provided the inverse matrix appearing in this expression exists for each x ∈ R.
It is well known that the potential (see [19]) can be reconstructed by means

of one of the entries of the Marchenko kernel (75a) as follows:

q(x) = q+ − 2K12(x, x),

which implies that q(x) → q+ as x → +∞. If we write

C =
(

C (1)

C (2)

)
, B = (B(1) B(2)

)
,

where C (1) and C (2) are rows of length p and B(1) and B(2) are columns of
length p, we get

q(x) = q+ + 2C (1)e−x A[Ip + e−x A Pe−x A]−1e−x A B(2)

= q+ + 2C (1)[P + e2x A]−1 B(2).
(81)

We observe that the above equation yields

q− = q+ + 2C (1) P−1 B(2)

in the limit x → −∞. Of course, this last conclusion requires knowing that P
is invertible.

Note that for fixed x ∈ R, the existence of the inverse e2x A + P (which
appears in (81)) is equivalent to the unique solvability of the Marchenko
equation. Therefore, the invertibility of e2x A + P for every x ∈ R is equivalent
to the existence of a unique reflectionless potential with given bound states
and norming constants.

It is also worth stressing that in the previous papers where the method of the
triplets (A, B,C) is used [32–35], the invertibility of the matrix P (solution of
the Sylvester equation) is guaranteed by assuming the minimality of the triplet
(A, B,C), and that all the eigenvalues of the matrix A have positive real parts.
In the present case, this is not true. In fact, it is not difficult to construct
examples where the matrix P is not invertible although the triplet (A, B,C) is
minimal and all the eigenvalues of A have positive real parts. We provide one
such example in Appendix D. This example suggests that the formula (81)
still makes sense when P is not invertible, but the corresponding solution
blows up as |x | → ∞. Then, in order to have solutions of (3) satisfying
the nonvanishing boundary conditions, we have to assume the minimality of
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the triplet (A, B,C), the invertibility of the matrices e2x A + P and P , and the
positivity of the real parts of the eigenvalues of the matrix A. On the other
hand, it is easy to prove the following [cf. Appendix E].

THEOREM 2. If P is an invertible matrix, then (A, B,C) is a minimal triplet.

We mention that matrix triplets to obtain NLS solutions also appear in a
non-Marchenko context [41–43].

5.2. Time evolution

So far we have obtained solutions of (3) (in the reflectionless case) when
t = 0. In order to get time-dependent solutions, one simply has to insert the
time evolution of the scattering data, which is well-known in the literature
(see, for instance, Equations (25), (26), and (34) in Ref. [19]), in the equations
reconstructing the potential, such as (71) or (81). In particular, the discrete
eigenvalues −q0 < kn < q0 are time-independent, while the time dependence
of the reflection coefficients and the norming constants in terms of the original
variables (k, λ) is given by:

ρ(t) = ρ(0)e−4ikλt , Cn(t) = Cn(0)e4knνn t .

Recalling that ζn = kn + iνn , with νn = √
q2

0 −k2
n > 0, in the reflectionless case,

we can write (77) as

F1(x, t) = i

2

N∑
n=1

Cn(t)ζ ∗
n e−νn x , F2(x, t) = −q∗

+
2

N∑
n=1

Cn(t)e−νn x ,

and

G(x, t) = 1

2

N∑
n=1

e−νn x

(
iCn(t)ζ ∗

n −q+(t)C∗
n (t)

−q∗
+(t)Cn(t) −iζnC∗

n (t)

)
= C(t)e−x A B(t), (82)

where A = diag (ν1, . . . , νN ),

B(t) = 1

2

⎛
⎜⎝

iζ ∗
1 C1(t) −q+(t)C∗

1 (t)
...

...
iζ ∗

N CN (t) −q+(t)C∗
N (t)

⎞
⎟⎠, (83)

C(t) =
(

1 . . . 1
iζ1

q+(t) . . .
iζN

q+(t)

)
. (84)

As a consequence,

P(t) =
∫ ∞

0
dx e−x A B(t)C(t)e−x A. (85)
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Finally, to obtain solutions q(x, t) of (3) at the generic time t (in the reflectionless
case), it suffices to write down (81) using the triplet (A, B(t),C(t)) and the
matrix P(t), instead of (A, B,C) and P .

We can derive the explicit expression of the Jost eigenfunctions in terms of
the triplet A, B,C. Inserting the expression of (80) into (73), we get

ψ̄(x, z)

= e−iλ(z)x{I2 + i Ce−x A[Ip + e−x A Pe−x A]−1e−x A(λ(z)Ip − i A)−1 B}w1,+(z)

= e−iλ(z)x{I2 + i C[e2x A + P]−1(λ(z)Ip − i A)−1 B}w1,+(z), (86a)

ψ(x, z)

= eiλ(z)x{I2 − i Ce−x A[Ip + e−x A Pe−x A]−1e−x A(λ(z)Ip + i A)−1 B}w2,+(z)

= eiλ(z)x{I2 − i C[e2x A + P]−1(λ(z)Ip + i A)−1 B}w2,+(z). (86b)

If we are interested in the temporal evolution of the Jost solutions, it is sufficient
to make the following substitutions (A, B,C, P) → (A, B(t),C(t), P(t)) in
(86) where B(t),C(t), P(t) are defined in (83), (84), and (85).

In the one soliton case, the expressions (for t = 0) of the Jost solutions (86)
and the potential (81) are obtained choosing the triplet (A, B,C) as:

A = (ν1), B = 1

2

(
iC1ζ

∗
1 −q+C∗

1

)
, C =

(
1

iζ1

q+

)
.

As a result, P = (iC1ζ
∗
1 − iC∗

1ζ1)/(4ν1). After straightforward calculations
and by using the symmetry relations of the norming constants (69), we get

ψ(x, z) = −e
i
2 (z−q2

0/z)x

⎡
⎣(q2

0/z
iq∗

+

)
− C̄1

z − ζ ∗
1

e−2ν1x

1 + C̄1
ζ1−ζ ∗

1
e−2ν1x

(
ζ ∗

1
iq∗

+

)⎤⎦ ,
(87a)

ψ̄(x, z) = e− i
2 (z−q2

0/z)x

⎡
⎣( z

iq∗
+

)
− z

z − ζ1

C1 e−2ν1x

1 + C̄1
ζ1−ζ ∗

1
e−2ν1x

(
ζ ∗

1
iq∗

+

)⎤⎦ .
(87b)

These expressions are exactly the same one can find solving the linear,
algebraic system (67) following from the RHP in the reflectionless case.
Moreover, the one soliton solution of (3) is given by:

q(x, t) = q+(t)

⎡
⎣1 − C̄1(0)

ζ1

e−2ν1x+4k1ν1t

1 + C̄1(0)
2ν1

e−2ν1x+4k1ν1t

⎤
⎦ . (88)

Note that Equation (88) coincides with Equation (2), with ζ1 = q0eiα and x0 =
1

2ν1
log( C̄1(0)

2ν1
), up to an overall factor e−iα.
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Appendix A. Fundamental Matrices

Let us consider the matrices A±(k) introduced in (9a), but allowing k ∈ K. For
A(x, k) defined as in (11) one then has

β(k) := ‖A(x, k)‖ =
⎧⎨
⎩

q0 + |k|, k ∈ R[
q2

0 + |k|2 +
√(

q2
0 + |k|2)2 − |λ|4

] 1
2
, k ∈ K \ R.

Consider the initial-value problem

∂

∂x
G(x, y; k) = A(x, k)G(x, y; k), (A.1a)

G(y, y; k) = I2, (A.1b)

where x, y ∈ R. Then G(x, y; k) is defined as a weak solution in the sense that
it is the solution of the integral equation

G(x, y; k) = I2 +
∫ x

y
dz A(z, k)G(z, y; k). (A.2)

Clearly,

‖G(x, y; k)‖ ≤ 1 + β(k)
∫ max(x,y)

min(x,y)
dz ‖G(z, y; k)‖,

so that, by iteration or by Gronwall’s inequality,

‖G(x, y; k)‖ ≤ eβ(k)|x−y|.

This argument also proves the existence of a unique weak solution; this solution
exists globally in (x, y, k) ∈ R

2 × K.
Let us now consider the integral equation

G ′(x, y; k) = I2 +
∫ x

y
dz G ′(x, z; k)A(z, k). (A.3)

We obviously get

‖G ′(x, y; k)‖ ≤ 1 + β(k)
∫ max(x,y)

min(x,y)
dz ‖G ′(z, y; k)‖,

so that, by iteration or by Gronwall’s inequality,

‖G ′(x, y; k)‖ ≤ eβ(k)|x−y|.

Writing down the n-th iterates of (A.2) and (A.3) it is immediate to see that
they coincide. As a result,

G(x, y; k) = G ′(x, y; k).
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Differentiability of G(x, y; k) for x �= y yields the initial-value problem

∂

∂y
G(x, y; k) = −G(x, y; k)A(y, k), (A.4a)

G(x, x ; k) = I2, (A.4b)

where x, y ∈ R and k ∈ K.
We have the following multiplication property:

G(x, z; k)G(z, y; k) = G(x, y; k), (A.5)

where (x, y, z) ∈ R
3 and k ∈ K. Indeed, for fixed z ∈ R, the matrix function

G ′′(x, y; k) = G(x, z; k)G(z, y; k) is easily seen to be a solution of (A.1) and, in
the weak sense, this solution is unique. Next, the product rule (A.5) implies
the invertibility of G(x, y; k), with inverse

G−1(x, y; k) = G(y, x ; k). (A.6)

The general form of G(x, y; k) is easy to find. For x, y ∈ R
+ we have

G(x, y; k) = e(x−y)A+(k); for x, y ∈ R
− we have instead G(x, y; k) = e(x−y)A−(k).

We then easily get

G(x, y; k) =

⎧⎪⎪⎨
⎪⎪⎩

e(x−y)A+(k), x ≥ 0, y ≥ 0,
e(x−y)A−(k), x ≤ 0, y ≤ 0,
ex A+(k)e−y A−(k), x ≥ 0 ≥ y,
ex A−(k)e−y A−(k), x ≤ 0 ≤ y.

(A.7)

For each k ∈ K, G(x, y; k) is Lipschitz continuous in y for fixed x and in x
for fixed y. We just prove one case. Taking x < y1 < y2, and using (A.5) and
the mean value theorem, we get

‖G(x, y1; k) − G(x, y2; k)‖
β(k)

≤ ‖G(x, y1; k)‖

∥∥∥∫ y2

y1
dz A(z, k)G(z, y2; k)

∥∥∥
β(k)

≤ eβ(k)(y1−x)
∫ y2

y1

dz eβ(k)|z−y2| = eβ(k)(η−x)(y2 − y1),

for a suitable η ∈ (y1, y2). As a result, the first order partial derivatives of
G(x, y; k) exist almost everywhere in the following sense: (a) For fixed y ∈ R,
∂
∂x G(x, y; k) exists for almost every y ∈ R; (b) For fixed x ∈ R, ∂

∂yG(x, y; k)
exists for almost every x ∈ R. We can in fact say a bit more. Since A(x, k) is
continuous for all x ∈ R and differentiable for all x ∈ R \ {0}, the two partial
derivatives exist in all (x, y) ∈ R

2 where x �= y.
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Appendix B: On the Number of Bound States

In this appendix we identify conditions on the potential that guarantee that
there are at most finitely many bound states, all of them belonging to the
spectral gap k ∈ (−q0, q0). In particular, this allows us to exclude that poles of
the transmission coefficient can accumulate at the branch points ±q0.

Let us first prove that the left-hand sides of (35a) and (35d) are differenti-
able with respect to λ = λ(k) for every k ∈ K− \ {0} if q − q f ∈ L1,4(R).
Similarly, the left-hand sides of (35b) and (35c) are differentiable with respect
to λ = λ(k) for every k ∈ K+ \ {0} if q − q f ∈ L1,4(R). Indeed, differentiating
(35a) with respect to λ and using dk/dλ = λ/k, we obtain the integral equation

∂

∂λ
[eiλx ψ̄(x, λ)]

=
( k+λ

k

0

)
−
∫ ∞

x
dy F(y − x, λ)[Q(y) − Q+]eiλyψ̄(y, λ)

−
∫ ∞

x
dy[I2 + {e2iλ(x−y) − 1}P+

iλ ][Q(y) − Q+]
∂

∂λ
[eiλyψ̄(y, λ)],

(B.1)

where

F(y − x, λ) = ∂

∂λ
[I2 + {e2iλ(x−y) − 1}P+

iλ ]

= e2iλ(x−y) − 1 − 2iλ(x − y)

2λ2

(
q2

0
k iq+

iq∗
+ − q2

0
k

)

+ i(x − y)

{(
k−λ

k 0
0 k+λ

k

)
+ e2iλ(x−y) − 1

λ

(
λ− k −iq+
−iq∗

+ λ+ k

)}
.

Estimating the two fractions containing exponentials in absolute value by
(x − y)2 and 2|x − y|, respectively, we see that the inhomogeneous terms
in (B.1) are bounded above by C(1 + |x |)2 if q − q f ∈ L1,2(R), where the
constant C does not depend on λ for |k ∓ q0| < 1

2q0.1 To get the iteration of
(B.1) to converge uniformly in λ for |k ∓ q0| < 1

2q0, we replace (B.1) by an
inequality by pulling the absolute values under the integral signs and dividing
either side by (1 + |x |)2. Then the iteration converges uniformly in λ for
|k ∓ q0| < 1

2q0 and x in bounded real intervals if q − q f ∈ L1,4(R). A similar
argument can be applied to (35b), (35c), and (35d).

1 This neighborhood of the branch points is chosen small enough to exclude k = 0, to avoid trouble with
the factors k in the denominators.
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Assuming now q − q f ∈ L1,4(R), we can use an expansion about λ = 0,
and obtain as k → ±q0:

Wr (φ(x, k), ψ(x, k)) = Wr (φ(x,±q0), ψ(x,±q0))

+ λ
[
∂

∂λ
Wr (φ(x, k), ψ(x, k)

]
k=±q0

+ o(λ).

As a result of (46) we get

a(k) = a±
λ

+ α± + o(1), k → ±q0. (B.2a)

In the same way we prove that as k → ±q0

b(k) = b±
λ

+ β± + o(1), (B.2b)

ā(k) = ā±
λ

+ ᾱ± + o(1), (B.2c)

b̄(k) = b̄±
λ

+ β̄± + o(1). (B.2d)

From (54), (55), and (50) it is clear that a± = b± and ā± = b̄±.

PROPOSITION 5. If q − q f ∈ L1,4(R) the 2 × 2 transition matrices T (k)
and T̄ (k) are continuous for k ∈ �.

Proof . Let us consider the asymptotic expansions (B.2) and start off by
assuming a± �= 0 [then ā± �= 0, according to (50a)]. From the definitions (48)
it then follows

T (k) =
⎛
⎝ λ

a±

[
1 − α±

a±
λ+ o(λ)

]
b̄±
a±

[
1 + λ

(
β̄±
b±

− α±
a±

)
+ o(λ)

]
− b±

a±

[
1 + λ

(
β±
b±

− α±
a±

)
+ o(λ)

]
λei�

a±

[
1 − α±

a±
λ+ o(λ)

]
⎞
⎠,

and similarly for T̄ (k). On the other hand, if a± = 0 and α± �= 0, we have
b± = ā± = b̄± = 0 and ᾱ± �= 0 [cf. (50a), (54), and (55)]. It is then easily
verified that

T (k) =
(

1
α±

+ o(1) − β̄±
α±

+ o(1)
β±
α±

+ o(1) ei�

α±
+ o(1)

)
,

and similarly for T̄ (k).
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To prove that the case a± = α± = 0 cannot occur, we now observe that for
a± = 0

a(k) = −Wr (φ(x, k), ψ(x, k))

2iλq∗+
→
[
−

∂
∂λ

Wr (φ(x, k), ψ(x, k))

2iq∗+

]
λ=0

, (B.3)

as k → ±q0 from within �. Since tl(k) = (1/a(k)) is the (1, 1)-element of the
unitary 2 × 2 matrix D1/2(k)T (k)D−1/2(k), the limit in (B.3) must be ≥ 1 in
absolute value and hence cannot vanish. As a result, a± and α± cannot vanish
simultaneously. �

Under the hypothesis of Proposition 5, the number of bound states is finite.
This is easily understood as follows: If their number were not finite, then
there would be a sequence {kn}∞n=1 of bound states converging to one of the
branch points, q0 say. In other words, there would exist a sequence {kn}∞n=1 in
(−q0, q0) converging to q0 such that a(kn) = 0 (n = 1, 2, 3, . . .). In that case
the diagonal elements of T (k) become infinite in absolute value as k → q0,
which contradicts the conclusions of Proposition 5.

Appendix C: The WKB Expansion of the Jost Solutions

In the following we will determine the asymptotic behavior of the eigenfunctions
as z → 0 and as z → ∞ in the proper half-plane. We will derive the WKB
expansions for the eigenfunction

N (x, z) = ψ(x, z)e−iλ(z)x

in the UHP of z. The expansions of the other Jost solutions can be obtained in
a similar way.

Based on the boundary condition (31a), we consider the following ansatz
for the expansion of the eigenfunction N (x, z) as z → ∞:

N (x, z) =
n∑

j=0

1

z j
N ( j)

∞ (x) + O(z−(n+1)), N ( j)
∞ (x) =

(
N 1,( j)

∞ (x)

N 2,( j)
∞ (x)

)
. (C.1)

Substituting these expressions into the scattering problem (5) written in the
uniformization variable z and matching the O(1) terms yields:

N 1,(0)
∞ (x) = 0, N 2,(0)

∞ (x) = −iq∗
+, (C.2)

where the constant value of N 2,(0)
∞ (x) is fixed by the asymptotic behavior (31a).

The other coefficients are then determined recursively by matching the terms
with the same order of z− j :

N 1,( j)
∞ (x) = i∂x N 1,( j−1)

∞ (x) − iq(x)N 2,( j−1)
∞ (x), (C.3a)
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∂x N 2,( j)
∞ (x) = iq∗(x)∂x N 1,( j−1)

∞ (x) + i
(
q2

0 − |q(x)|2)N 2,( j−1)
∞ (x). (C.3b)

For instance, from (C.3) with j = 1, we have:

N 1,(1)
∞ (x) = −q∗

+q(x), N 2,(1)
∞ (x) = −q∗

+ I0(x), (C.4)

where

I0(x) =
∫ +∞

x

(
q2

0 − |q(x ′)|2)dx ′. (C.5)

and in the second of (C.4) the constant of integration has been put zero, again
based on the asymptotic behavior (31a).

The recurrence relations (C.3) with j = 2 give:

N 1,(2)
∞ (x) = iq∗

+ [q(x)I0(x) − ∂xq(x)] , (C.6a)

N 2,(2)
∞ (x) = iq∗

+
[

1
2 (I0(x))2 + I1(x)

]
, (C.6b)

where

I1(x) =
∫ +∞

x
q∗(x ′)∂x ′q(x ′)dx ′, (C.7)

and so on and so forth. Note that, at each step, solving (C.3b) involves an
integration from x to +∞, which then requires stronger integrability conditions
on the right half-line for q − q+ and its x-derivatives.

Similarly, we can obtain the asymptotic expansion of N (x, z) as z → 0
putting

N (x, z) =
n∑

j=−1

z j N ( j)
0 (x) + O(zn+1), N ( j)

0 (x) =
(

N 1,( j)
0 (x)

N 2,( j)
0 (x)

)
. (C.8)

Proceeding as before, we get the following recurrence relations

N 2,( j)
0 (x) = i

q2
0

[
q∗(x)N 1,( j−1)

0 (x) − ∂x N 2,( j−1)
0 (x)

]
, (C.9a)

∂x N 1,( j)
0 (x) = i

q2
0

[(|q(x)|2 − q2
0

)
N 1,( j−1)

0 (x) − q(x)∂x N 2,( j−1)
0 (x)

]
, (C.9b)

and the recursion anchored at

N 1,(−1)
0 (x) = −q2

0 , N 2,(−1)
0 (x) = 0. (C.10)

For instance, from (C.9) with j = 0, 1, we have:

N 2,(0)
0 (x) = −iq∗(x), N 1,(0)

0 (x) = −i I0, (C.11a)



IST for Defocusing Nonvanishing NLS 35

N 2,(1)
0 (x) = 1

q2
0

[q∗(x)I0(x) − ∂xq∗(x)] ,

N 1,(1)
0 (x) = 1

q2
0

[
1

2
(I0(x))2 + I ∗

1 (x)

]
, (C.11b)

and so on and so forth.

Appendix D: On the Noninvertibility of P

In this Appendix we discuss one example in which the triplet (A, B,C) is
minimal and the eigenvalues of A have positive real parts, but the matrix P
satisfying the corresponding Sylvester equation is not invertible.

Consider the matrix triplet (A, B,C), where

A =
(

2 i
−i 2

)
, B =

(
4 4 + 2i

4 − 2i 4

)
, C = I2,

where I2 is the 2 × 2 identity matrix. Then A, B, and C satisfy the symmetry
conditions

A∗ = σ1 Aσ1, B∗ = σ1 Bσ1, C∗ = σ1Cσ1,

where T ∗ is the complex conjugate of the matrix T . Then A has the eigenvalues
1 and 3 and the triplet (A, B,C) is minimal. In fact,

G(x) = Ce−x A B

= e−2x

(
4 cosh(x) − (2 + 4i) sinh(x) (4 + 2i) cosh(x) − 4i sinh(x)

(4 − 2i) cosh(x) + 4i sinh(x) 4 cosh(x) − (2 − 4i) sinh(x)

)
.

It is easily verified that the Sylvester equation AP + P A = BC has the
unique solution

P = σ1 P∗σ1 = σ1 + I2.

This matrix P is NOT invertible, in spite of the minimality of the triplet
(A, B,C). Also,

e2x A + P =
(

1 + e4x cosh(2x) 1 + ie4x sinh(2x)
1 − ie4x sinh(2x) 1 + e4x cosh(2x)

)
,

[e2x A + P]
−1 = e−8x

1+2e−4x cosh(2x)

(
1+e4x cosh(2x) −1− ie4x sinh(2x)

−1+ ie4x sinh(2x) 1+e4x cosh(2x)

)
,

det [e2x A + P] = e8x [1+2e−4x cosh(2x)].
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Consequently, letting C (1) be the first row of C = I2 and B(2) the second
column of B, we get

q(x) = q+ + 2C (1)[e2x A + P]−1 B(2)

= q+ + 4ie−2x 1 − ( 1
2 + i

)
e6x + ( 3

2 − i
)
e2x

1 + e4x + e6x
,

which tends to q+ as x → +∞ and blows up as x → −∞.
We conclude giving a simple condition of noninvertibility for the matrix

P when the matrix BC has rank one. In fact, if BC has rank one, writing
BC = bcT for suitable column vectors b and c and letting A = diag(a1, . . . , ap)
for distinct numbers a1, . . . , ap in the right-hand plane, then [43] (see also
[45, Ex. IQ.7.3])

Pjl = b j cl

a j + al
,

det P = b1 . . . bpc1 . . . cpdet

(
1

a j + al

)p

j,l=1

= b1 . . . bpc1 . . . cp

p∏
j=1

1

2a j

∏
s<l

(
as − al

as + al

)2

.

Thus det P is nonzero iff none of the 2p entries of the column vectors b and c
vanishes (i.e., iff BC does not have zero rows or zero columns). The results in
[43], with the exact value of det P , extend to the situation where A is in
Jordan normal form, A and −A do not have eigenvalues in common, and BC
has rank one. There are no known results if BC has rank ≥ 2.

Appendix E: Proof of Theorem 2

If (A, B,C) is not a minimal triplet, there exists a minimal triplet ( Ã, B̃, C̃)
such that:

G(x) = Ce−x A B = C̃e−x Ã B̃, x ∈ R,

A =
⎛
⎝A11 A12 A13

0 Ã A23

0 0 A33

⎞
⎠, B =

⎛
⎝B1

B̃
0

⎞
⎠, C = (0 C̃ C3

)
, (D.6)

where A11 and A33 (and hence A) have only eigenvalues with positive real
parts. Let us write the solution P̃ of the Sylvester equation Ã P̃ + P̃ Ã = B̃C̃
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in the form

P =
⎛
⎝P11 P12 P13

0 P̃ P23

0 0 P33

⎞
⎠.

Then, AP + P A = BC implies

A11 P11 + P11 A11 = 0,

A33 P33 + P33 A33 = 0,

P12 Ã + A11 P12 = B1C̃ − A12 P̃,

P23 A33 + ÃP23 = B̃C3 − P̃ A23,

P13 A33 + A11 P13 = B1C3 − P12 A23 − A12 P23.

We now use that the Sylvester equation A1 P + PA2 = Z has a unique solution
P for each right-hand side Z iff the matrices A1 and −A2 do not have
eigenvalues in common [40, Theorem 18.5]. Thus, P11 = 0 and P33 = 0, while
there exist unique solutions P12, P23, and P13. Hence,

P =
⎛
⎝0 P12 P13

0 P̃ P23

0 0 0

⎞
⎠,

which is not invertible.
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45. G. PÓLYA and G. SZEGŐ, Aufgaben und Lehrsätze aus der Analysis, II, Springer, Berlin
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