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Abstract

The principal inverse tangent and cotangent functions for complex arguments can
be defined as formulas involving principal natural logarithms, but these are not odd
on the imaginary axis, which they must be according to their definitions as inverse
functions. These formulas are therefore modified in such a way that they become odd
on the imaginary axis, by choosing the other branch on the lower branch cut, and the
corresponding addition formulas for complex and real arguments are derived. With
these addition formulas their values on their branch cuts are determined, confirming
these modified formulas. Some new formulas for the (hyperbolic) inverse tangent
and cotangent functions for complex arguments and some new addition formulas for
these functions for real arguments are derived. Some new formulas for the inverse sine
and cosine functions and their connections with the inverse tangent and cotangent
functions for complex arguments are provided, and from these some new addition
formulas for the inverse sine and cosine functions for real arguments are derived.
Some duplication and bisection formulas for the inverse tangent, cotangent, sine and
cosine functions are derived.
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1 Definitions and Basic Identities

A complex x can be represented by its absolute value r = |x| and its principal angle with
the positive real axis in the complex plane φ = Arg(x) where −π < Arg(x) ≤ π:

x = reiφ (1.1)

In this paper Arg(x) always means the principal angle here defined. The principal square
root of a complex x is then defined by [1, 9]:

√
x =
√
r eiφ/2 (1.2)

A definition which is used in this paper and in an earlier paper [4] is the function sg(x)
for complex x [8].

Definition 1.1. For complex x, let
√
x be the principal square root of x, then:

sg(x) =

{√
x2

x = x√
x2

if x 6= 0

1 if x = 0
(1.3)

The result of this definition is:

sg(x) =


1 if Re(x) > 0

−1 if Re(x) < 0

1 if Re(x) = 0 and Im(x) ≥ 0

−1 if Re(x) = 0 and Im(x) < 0

(1.4)
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For complex x: 1/sg(x) = sg(x) and for complex x 6= 0: sg(−x) = −sg(x).
For real x, sg(ix) = sg(x).
For real x the function sg(x) reduces to:

sg(x) =

{
1 if x ≥ 0

−1 if x < 0
(1.5)

From these identities follows that for complex x: sg(x)
√
x2 = x, sg(x)x =

√
x2, and

replacing x with ix: sg(ix)
√
−x2 = ix and sg(ix)ix =

√
−x2, and for real x, sg(x)|x| = x

and sg(x)x = |x|. For complex x, sg(
√
x) = 1, and for complex x, (

√
x)2 = x.

Let f(x) and g(x) be complex functions, and let:

g(x) = f2(x) (1.6)

Then: √
g(x) = ±f(x) (1.7)

Because for complex x:
√
x2 = sg(x)x, the sign is sg(f(x)):√

g(x) = sg(f(x))f(x) (1.8)

For real x, sg(x)x = |x|, so for real f(x) and g(x):
√
g(x) = |f(x)|.

For real x, y [1, 9]:

√
x+ iy =

√√
x2 + y2 + x

2
+ i sg(y)

√√
x2 + y2 − x

2
(1.9)

For complex x: √
−x = i sg(ix)

√
x (1.10)

This identity is proved below.
For complex x and real nonnegative α:

√
αx =

√
α
√
x (1.11)

For complex x and real positive α:

sg(αx) = sg(x) (1.12)

Using (1.10) and
√
x2 = sg(x)x and

√
−x2 = sg(ix)ix:

For complex x:
sg(ix2) = sg(x)sg(ix) (1.13)

Replacing x with (1− i)x:
For complex x:

sg(x2) = sg((1 + i)x)sg((1− i)x) (1.14)

The Iverson bracket notation [3, 7] is defined.
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Definition 1.2. Let S be a logical expression, then:

[S] =

{
1 if S is true

0 if S is false
(1.15)

The function sg(x) for complex x can be written as:

sg(x) = [Re(x) > 0]− [Re(x) < 0] + [Re(x) = 0]([Im(x) ≥ 0]− [Im(x) < 0]) (1.16)

For complex x 6= 0 it is clear that:

sg(
1

x
) = sg(x)− 2[Re(x) = 0]sg(Im(x)) (1.17)

For the principal angle with the positive real axis in the complex plane
−π < Arg(x) ≤ π, where Arg(0) = 0 is defined, the following addition formula holds.
For complex x, y:

Arg(x) + Arg(y) = Arg(xy) +


2π if Arg(x) + Arg(y) > π

−2π if Arg(x) + Arg(y) ≤ −π
0 otherwise

(1.18)

The following six identities are evident from the complex plane.
For real x, y:

Arg(x+ iy) = arctan(
y

x
) + π[x < 0]sg(y) (1.19)

where when x = 0, for real y:

arctan(
y

0
) =

π

2
([y > 0]− [y < 0]) (1.20)

because arctan(∞) = π/2, arctan(−∞) = −π/2 and Arg(0) = 0.
For complex x 6= 0:

Arg(−x) = Arg(x) + π sg(ix) (1.21)

For complex x:
Arg(x2) = 2Arg(x) + π(sg(x)− 1)sg(Im(x)) (1.22)

[Arg(x) ≥ 0] =
1

2
(1 + sg(Im(x))) (1.23)

[Arg(x) > 0] =
1

2
(1− sg(ix)) (1.24)

For complex x and real positive c:

Arg(x) + Arg(
c

x
) = 2π[Im(x) = 0][Re(x) < 0] (1.25)

Arg(x) + Arg(− c
x

) = π sg(Im(x)) (1.26)

4



The principal natural logarithm function ln(x) for complex x is defined by [1]:

ln(x) = ln(|x|) + iArg(x) (1.27)

In this paper ln(x) always means the principal natural logarithm function here defined.
For complex x, y, application of (1.18) to this identity gives:

ln(x) + ln(y) = ln(xy) +


2πi if Arg(x) + Arg(y) > π

−2πi if Arg(x) + Arg(y) ≤ −π
0 otherwise

(1.28)

For complex x, application of (1.21) gives:

ln(−x) = ln(x) + πi sg(ix) (1.29)

For complex x, y, because −π/2 < Arg(
√
x) ≤ π/2:

ln(
√
x) + ln(

√
y) = ln(

√
x
√
y) (1.30)

and when x = y because (
√
x)2 = x:

2 ln(
√
x) = ln(x) (1.31)

Identity (1.10) can now be proved.

Theorem 1.1. For complex x:

√
−x = i sg(ix)

√
x (1.32)

Proof. Using (1.29) and (1.31):

√
−x√
x

= eln(
√
−x)−ln(

√
x) = e

1
2 (ln(−x)−ln(x)) = e

1
2πi sg(ix) = i sg(ix) (1.33)

2 The Inverse Tangent and Cotangent Functions which
Must Be Odd on the Imaginary Axis

The principal values of the inverse tangent and cotangent functions can be defined in the
complex plane as the following formulas [1], where ln(x) is the principal natural logarithm
function:

arctan(x) = − i
2

ln(
1 + ix

1− ix
) (2.1)

arccot(x) = arctan(
1

x
) = − i

2
ln(

ix− 1

ix+ 1
) (2.2)
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The power series expansion of the arctan(x) function is odd:

arctan(x) =

∞∑
k=0

(−1)k
x2k+1

2k + 1
(2.3)

which indicates that the principal arctan(x) function should be odd. The functions tan(x)
and cot(x) for complex x are defined as [1, 2]:

tan(x) = −ie
ix − e−ix

eix + e−ix
(2.4)

cot(x) =
1

tan(x)
= tan(

π

2
− x) (2.5)

The principal inverse tangent function arctan(x) for complex x is defined by:

arctan(tan(x)) = x (2.6)

Because both tan(x) and x are odd functions in the complex plane, from this equation
follows that the principal arctan(x) function must also be odd in the complex plane, and
similarly for the principal arccot(x) function for x 6= 0. Replacing x by −x in formulas
(2.1) and (2.2) means replacing x by 1/x in the principal ln(x) function. From definition
(1.27) and (1.25) it is clear that ln(1/x) = − ln(x) except for x on the negative real axis,
which is the branch cut of the principal ln(x) function [1], and where the angle is always
π and never −π. Therefore these formulas are not odd there and must be made odd
there explicitly. The following theorem determines for which arguments of the principal
arctan(x) and arccot(x) functions the arguments of the principal ln(x) function in (2.1)
and (2.2) are on the negative real axis. The branch cuts of the principal arctan(x) and
arccot(x) functions are defined as in [1, 5] and not to include ±i which are singular points
of these functions.

Theorem 2.1. The argument x of the principal ln(x) function in (2.1) and (2.2) is on
the negative real axis if and only if the argument x of the principal arctan(x) or arccot(x)
functions is on their branch cuts [1].

Proof. For the arctan(x) function (2.1), let t be the argument of the principal ln(x) func-
tion in (2.1) and let t be real, then the following identity is solved:

1 + ix

1− ix
= t (2.7)

which is easily checked to be:

x = i
1− t
1 + t

(2.8)

which means that x must be on the imaginary axis. Therefore x can be replaced with ix
where x is real, and because t must be real and negative, the following identity is solved:

1− x
1 + x

< 0 (2.9)
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which is fulfilled if and only if x < −1 or x > 1. When −1 ≤ t < 0, x > 1 is on the upper
branch cut, and when t < −1, x < −1 is on the lower branch cut.
For the arccot(x) function (2.2), the following identity is solved:

ix− 1

ix+ 1
= t (2.10)

which is easily checked to be:

x = i
t+ 1

t− 1
(2.11)

which means that x must be on the imaginary axis. Therefore x can be replaced with ix
where x is real, and because t must be real and negative, the following identity is solved:

x+ 1

x− 1
< 0 (2.12)

which is fulfilled if and only if −1 < x < 1. When −1 < t < 0, −1 < x < 0 is on the lower
branch cut, and when t ≤ −1, 0 ≤ x < 1 is on the upper branch cut.

The principal arctan(x) and arccot(x) formulas (2.1) and (2.2) can be made odd on
these branch cuts explicitly by defining the following functions that are π on the lower
branch cuts of these functions and zero elsewhere, using the Iverson bracket notation
definition 1.2.

oddtan(x) = π[Re(x) = 0][Im(x) < −1] (2.13)

oddcot(x) = π[Re(x) = 0][−1 < Im(x) < 0] (2.14)

The following are the formulas for the principal values of the arctan(x) and arccot(x)
functions that are odd everywhere in the complex plane including on the imaginary axis,
where ln(x) is the principal natural logarithm function.

Definition 2.1. For complex x:

arctan(x) = − i
2

ln(
1 + ix

1− ix
)− π[Re(x) = 0][Im(x) < −1] (2.15)

arccot(x) = − i
2

ln(
ix− 1

ix+ 1
)− π[Re(x) = 0][−1 < Im(x) < 0] (2.16)

This definition means that on the lower branch cut the other branch is chosen, and this
definition will be confirmed by applying the addition formulas for determining the values
of these functions on their branch cuts in section 5. In this paper from here this definition
of the principal arctan(x) and arccot(x) functions is always used.

Theorem 2.2. For real x, y:

arctan(x+ iy) =
i

4
ln(

x2 + (y + 1)2

x2 + (y − 1)2
) +

1

2
arctan(

2x

1− x2 − y2
)

+
π

2
[x2 + y2 > 1]sg(x)− π[x = 0][y < −1]

(2.17)
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arccot(x+ iy) =
i

4
ln(

x2 + (y − 1)2

x2 + (y + 1)2
) +

1

2
arctan(

2x

x2 + y2 − 1
)

+
π

2
[x2 + y2 < 1]sg(x)− π[x = 0][−1 < y < 0]

(2.18)

Proof. When evaluating (2.15) with (1.27):
For complex x:

arctan(x) = − i
4

ln(

∣∣∣∣1 + ix

1− ix

∣∣∣∣2) +
1

2
Arg(

1 + ix

1− ix
)− π[Re(x) = 0][Im(x) < −1] (2.19)

In this formula x is replaced by x+ iy:
For real x, y:

|1− y + ix|2

|1 + y − ix|2
=
|(1− y + ix)(1 + y + ix)|2

|(1 + y − ix)(1 + y + ix)|2
=
|(1− y)(1 + y)− x2 + 2ix|2

((1 + y)2 + x2)2

=
((1− y)(1 + y)− x2)2 + 4x2

((1 + y)2 + x2)2
=

(1− y)2 + x2

(1 + y)2 + x2

(2.20)

Arg(
1− y + ix

1 + y − ix
) = Arg(

(1− y + ix)(1 + y + ix)

x2 + (1 + y)2
) = Arg(1− x2 − y2 + 2ix) (2.21)

With application of (1.19) the first identity is proved, and the proof of the second identity
is similar.

When x = 0 and y = ±1 these formulas yield arctan(i) = i∞, arctan(−i) = −i∞,
arccot(i) = −i∞ and arccot(−i) = i∞.
For real x:

arctan(ix) =
i

2
ln(

∣∣∣∣1 + x

1− x

∣∣∣∣) +
π

2
([x > 1]− [x < −1]) (2.22)

arccot(ix) =
i

2
ln(

∣∣∣∣x− 1

x+ 1

∣∣∣∣) +
π

2
([0 ≤ x < 1]− [−1 < x < 0]) (2.23)

The sum of the two functions (2.15) and (2.16) is now also odd in the complex plane
(except for x = 0 as mentioned above).

Theorem 2.3. For complex x 6= ±i:

arccot(x) + arctan(x) =
π

2
sg(x) (2.24)

where sg(x) is defined by (1.4).

Proof. Substituting formulas (2.15) and (2.16) and using (1.28) and ln(−1) = πi:

arccot(x) + arctan(x)

=− i

2
[ln(

1 + ix

1− ix
) + ln(

ix− 1

ix+ 1
)]− oddtan(x)− oddcot(x)

=
π

2
− oddtan(x)− oddcot(x) +


π if Arg( 1+ix

1−ix ) + Arg( ix−1ix+1 ) > π

−π if Arg( 1+ix
1−ix ) + Arg( ix−1ix+1 ) ≤ −π

0 otherwise

(2.25)
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In the last identity (1.26) with c = 1 can be applied, for which the imaginary part of
(1 + ix)/(1− ix) can be determined by substituting x = a+ bi:

1 + i(a+ bi)

1− i(a+ bi)
=

(1− b+ ia)(1 + b+ ia)

(1 + b− ia)(1 + b+ ia)
=

1− a2 − b2 + 2ia

(1 + b)2 + a2
(2.26)

From this follows that Im((1 + ix)/(1− ix)) ≥ 0 if and only if Re(x) ≥ 0, and application
of (1.26) with c = 1 yields:

Arg(
1 + ix

1− ix
) + Arg(

ix− 1

ix+ 1
) = π sg(Re(x)) (2.27)

and consequently from (2.25) follows:

arccot(x) + arctan(x) =
π

2
− oddtan(x)− oddcot(x)− π[Re(x) < 0] (2.28)

which for x 6= ±i is exactly π
2 sg(x) with sg(x) defined in (1.4).

This result is different from [1] eq. 4.4.5 when Re(x) = 0, because as mentioned the
function definitions in this reference are (2.1) and (2.2) which are not odd on the imagi-
nary axis.

Theorem 2.4. For complex x:

arctan(
1

x
) = arccot(x) + π[Re(x) = 0]([−1 < Im(x) < 0]− [0 < Im(x) < 1]) (2.29)

arccot(
1

x
) = arctan(x) + π[Re(x) = 0]([Im(x) < −1]− [Im(x) > 1]) (2.30)

Proof. Applying the definitions (2.15) and (2.16):

arctan(
1

x
)− arccot(x)

=− i

2
[ln(

1 + i 1x
1− i 1x

)− ln(
ix− 1

ix+ 1
)] + oddcot(x)− oddtan(

1

x
)

=− i

2
[ln(

ix− 1

ix+ 1
)− ln(

ix− 1

ix+ 1
)] + oddcot(x)− oddtan(

1

x
)

=oddcot(x)− oddtan(
1

x
)

(2.31)

Because the lower branch cuts are on the imaginary axis, the following identity holds:

oddtan(
1

x
) = oddcot(−x) (2.32)

and the first identity in the theorem is proved. The proof of the second identity is similar.
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Both sides of these identities are odd for x 6= 0. For real x, arccot(x) = arctan(1/x).
The following is a consequence of this theorem, using theorem 2.3.
For complex x:

arctan(x) + arctan(
1

x
) =

π

2
sg(x) + π[Re(x) = 0]([−1 < Im(x) < 0]− [0 < Im(x) < 1])

(2.33)

arccot(x) + arccot(
1

x
) =

π

2
sg(x) + π[Re(x) = 0]([Im(x) < −1]− [Im(x) > 1]) (2.34)

Theorem 2.5. For complex x:

arctan(x) = −i ln(
1 + ix+

√
1 + x2

1− ix+
√

1 + x2
) (2.35)

which is identical to (2.15), and therefore odd in the complex plane.

Proof. From definition (2.15) and (1.31) follows:

arctan(x) = −i ln(

√
1 + ix

1− ix
)− π[Re(x) = 0][Im(x) < −1] (2.36)

Let:

F (x) =
1 + ix+

√
1 + x2

1− ix+
√

1 + x2
(2.37)

Then:

F 2(x) =
2(1 + ix)(1 +

√
1 + x2)

2(1− ix)(1 +
√

1 + x2)
=

1 + ix

1− ix
(2.38)

Using (1.8) the result is: √
1 + ix

1− ix
= sg(F (x))F (x) (2.39)

Evaluation of F (x) with (1.9) and:

a+ ib

c+ id
=

(a+ ib)(c− id)

(c+ id)(c− id)
=
ac+ bd+ i(bc− ad)

c2 + d2
(2.40)

yields for real x, y:

F (x+ iy) =
f(x, y) + ig(x, y)

h(x, y)
(2.41)

where:
z(x, y) =

√
(1 + x2 − y2)2 + (2xy)2 =

√
(x2 + y2 − 1)2 + 4x2 (2.42)

f(x, y) = 1− x2 − y2 + z(x, y) + 2
√

(z(x, y) + 1 + x2 − y2)/2 (2.43)

g(x, y) =2x(1 +
√

(z(x, y) + 1 + x2 − y2)/2)

+ 2y sg(xy)
√

(z(x, y)− 1− x2 + y2)/2
(2.44)
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h(x, y) =x2 + (1 + y)2 + z(x, y) + 2(1 + y)
√

(z(x, y) + 1 + x2 − y2)/2

− 2x sg(xy)
√

(z(x, y)− 1− x2 + y2)/2
(2.45)

where h(x, y) ≥ 0. Because z(x, y) ≥ |x2 + y2 − 1| and x + |x| ≥ 0, it is concluded that
f(x, y) ≥ 0, so sg(F (x + iy)) = 1 except when f(x, y) = 0 and g(x, y) < 0. Furthermore
f(x, y) = 0 if and only if x = 0 and y2 ≥ 1. When x = 0, g(x, y) < 0 if and only if y < 0,
so sg(F (x+ iy)) = −1 if and only if x = 0 and y ≤ −1. Therefore the following results.
For complex x: √

1 + ix

1− ix
= (1− 2[Re(x) = 0][Im(x) ≤ −1])F (x) (2.46)

With (2.36) and (1.29) the theorem is proved.

Theorem 2.6. For complex x:

arccot(x) =
π

2
sg(x)− i ln(

1− ix+
√

1 + x2

1 + ix+
√

1 + x2
) (2.47)

which for x 6= 0 is odd in the complex plane.

Proof. From theorem 2.3 follows:
For complex x:

arccot(x) =
π

2
sg(x)− arctan(x) (2.48)

Substituting for arctan(x) the previous theorem, and because Re(F (x)) ≥ 0:

ln(F (x)) = − ln(1/F (x)) (2.49)

gives the theorem.

Theorem 2.7. For the arctan(x) function in definition 2.1:
For complex x:

tan(arctan(x)) = x (2.50)

Proof. For the tan(x) function defined by (2.4), for integer n:

tan(x± nπ) = tan(x) (2.51)

and therefore using the arctan(x) function as defined in 2.1 and using for complex x:
eln(x) = x:

tan(arctan(x)) = tan(− i
2

ln(
1 + ix

1− ix
)) = −ie

1
2 ln(

1+ix
1−ix ) − e−

1
2 ln(

1+ix
1−ix )

e
1
2 ln(

1+ix
1−ix )

+ e
− 1

2 ln(
1+ix
1−ix )

= −ie
ln(

1+ix
1−ix ) − 1

e
ln(

1+ix
1−ix )

+ 1

= −i
1+ix
1−ix − 1
1+ix
1−ix + 1

= −i1 + ix− 1 + ix

1 + ix+ 1− ix
= −i2ix

2
= x

(2.52)
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Theorem 2.8. For the arccot(x) function in definition 2.1:
For complex x:

tan(arccot(x)) =
1

x
(2.53)

Proof. For the tan(x) function defined by (2.4), for integer n:

tan(x± nπ) = tan(x) (2.54)

and therefore using the arccot(x) function as defined in 2.1 and using for complex x:
eln(x) = x:

tan(arccot(x)) = tan(− i
2

ln(
ix− 1

ix+ 1
)) = −ie

1
2 ln(

ix−1
ix+1 ) − e−

1
2 ln(

ix−1
ix+1 )

e
1
2 ln(

ix−1
ix+1 )

+ e
− 1

2 ln(
ix−1
ix+1 )

= −ie
ln(

ix−1
ix+1 ) − 1

e
ln(

ix−1
ix+1 )

+ 1

= −i
ix−1
ix+1 − 1
ix−1
ix+1 + 1

= −i ix− 1− ix− 1

ix− 1 + ix+ 1
= −i−2

2ix
=

1

x

(2.55)

Theorem 2.9. For the arccot(x) function in definition 2.1:
For complex x:

cot(arccot(x)) = x (2.56)

Proof. For the cot(x) = 1/ tan(x) function defined by (2.4), for integer n:

cot(x± nπ) = cot(x) (2.57)

and therefore using the arccot(x) function as defined in 2.1 and using for complex x:
eln(x) = x:

cot(arccot(x)) = cot(− i
2

ln(
ix− 1

ix+ 1
)) = i

e
1
2 ln(

ix−1
ix+1 )

+ e
− 1

2 ln(
ix−1
ix+1 )

e
1
2 ln(

ix−1
ix+1 ) − e−

1
2 ln(

ix−1
ix+1 )

= i
e
ln(

ix−1
ix+1 )

+ 1

e
ln(

ix−1
ix+1 ) − 1

= i
ix−1
ix+1 + 1
ix−1
ix+1 − 1

= i
ix− 1 + ix+ 1

ix− 1− ix− 1
= i

2ix

−2
= x

(2.58)

Theorem 2.10. For the arctan(x) function in definition 2.1:
For complex x:

cot(arctan(x)) =
1

x
(2.59)
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Proof. For the cot(x) = 1/ tan(x) function defined by (2.4), for integer n:

cot(x± nπ) = cot(x) (2.60)

and therefore using the arctan(x) function as defined in 2.1 and using for complex x:
eln(x) = x:

cot(arctan(x)) = cot(− i
2

ln(
1 + ix

1− ix
)) = i

e
1
2 ln(

1+ix
1−ix )

+ e
− 1

2 ln(
1+ix
1−ix )

e
1
2 ln(

1+ix
1−ix ) − e−

1
2 ln(

1+ix
1−ix )

= i
e
ln(

1+ix
1−ix )

+ 1

e
ln(

1+ix
1−ix ) − 1

= i
1+ix
1−ix + 1
1+ix
1−ix − 1

= i
1 + ix+ 1− ix
1 + ix− 1 + ix

= i
2

2ix
=

1

x

(2.61)

Definition 2.2. For real x:

S(x) =
1

2
Arg(e2ix) =

π

2
− ((

π

2
− x) mod π) (2.62)

This function is periodic: for integer n: S(x± nπ) = S(x).

Theorem 2.11. For the arctan(x) function in definition 2.1:
For complex x:

arctan(tan(x)) =
π

2
−((

π

2
−Re(x)) mod π)−π[(

π

2
+Re(x)) mod π = 0][Im(x) < 0]+i Im(x)

(2.63)

arctan(cot(x)) =
π

2
− (Re(x) mod π)− [Re(x) mod π = 0][Im(x) > 0]− i Im(x) (2.64)

Proof. For the first identity, the first part of definition 2.1 with (2.4):

1 + i tan(x)

1− i tan(x)
=

1 + eix − e−ix
eix + e−ix

1− eix − e−ix
eix + e−ix

=
eix + e−ix + eix − e−ix

eix + e−ix − eix + e−ix
=

2eix

2e−ix
= e2ix (2.65)

which results in:

arctan(tan(x)) = − i
2

ln(e2ix)− π[Re(tan(x)) = 0][Im(tan(x)) < −1] (2.66)

For the first part of this expression, for real a, b:

− i

2
ln(e2i(a+bi)) = − i

2
ln(e2iae−2b) =

1

2
Arg(e2ia) + ib = S(a) + ib (2.67)

For real a, b, the case Re(tan(a+ ib)) = 0 occurs when for integer n, a = nπ/2:

tan(n
π

2
+ ib) = −i i

ne−b − (−i)neb

ine−b + (−i)neb
= −i1− (−1)ne2b

1 + (−1)ne2b
(2.68)
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From this follows that Im(tan(nπ/2 + ib)) < −1 if and only if n is odd and b < 0. As
S(−a) = −S(a) except for a = ±(2n+ 1)π/2 when S(a) = S(−a) = π/2, this expression
is odd in the complex plane, except when Im(x) = 0 and Re(x) = ±(2n+ 1)π/2.
For the second identity, using (2.5), Re(x) is replaced by π

2 −Re(x) and Im(x) by −Im(x).

Theorem 2.12. For the arccot(x) function in definition 2.1:
For complex x:

arccot(cot(x)) =
π

2
−((

π

2
−Re(x)) mod π)− [(

π

2
+Re(x)) mod π = 0][Im(x) > 0]+i Im(x)

(2.69)

arccot(tan(x)) =
π

2
− (Re(x) mod π)− π[Re(x) mod π = 0][Im(x) < 0]− i Im(x) (2.70)

Proof. For the first identity, the first part of definition 2.1 with (2.4) and cot(x) =
1/ tan(x):

i cot(x)− 1

i cot(x) + 1
=
−e

ix + e−ix

eix − e−ix − 1

−e
ix + e−ix

eix − e−ix + 1
=
−eix − e−ix − eix + e−ix

−eix − e−ix + eix − e−ix
=
−2eix

−2e−ix
= e2ix (2.71)

which results in:

arccot(cot(x)) = − i
2

ln(e2ix)− π[Re(cot(x)) = 0][−1 < Im(cot(x)) < 0] (2.72)

As in the previous theorem, for the first part of this expression, for real a, b:

− i

2
ln(e2i(a+bi)) = S(a) + ib (2.73)

For real a, b, the case Re(cot(a+ ib)) = 0 occurs when for integer n, a = nπ/2:

cot(n
π

2
+ ib) = i

ine−b + (−i)neb

ine−b − (−i)neb
= i

1 + (−1)ne2b

1− (−1)ne2b
(2.74)

From this follows that −1 < Im(cot(nπ/2 + ib)) < 0 if and only if n is odd and b > 0. As
S(−a) = −S(a) except for a = ±(2n+ 1)π/2 when S(a) = S(−a) = π/2, this expression
is odd in the complex plane, except when Im(x) = 0 and Re(x) = ±(2n+ 1)π/2.
For the second identity, using (2.5) with x replaced by π

2−x, Re(x) is replaced by π
2−Re(x)

and Im(x) by −Im(x).

3 Addition Formulas for the Inverse Tangent and
Cotangent Functions for Complex Arguments

For the addition formulas of the principal arctan(x) and arccot(x) functions for complex
arguments, application of (1.28) to the arguments of (2.15) and (2.16) gives the following
theorems.

14



Theorem 3.1. For complex x 6= ±i and y 6= ±i:

arctan(x) + arctan(y) =


0 if y = −x
π
2 sg(x) + oddcot(x)− oddcot(−x) if y = 1/x

arctan(
x+ y

1− xy
) + addtan(x, y) + oddtan(x, y) otherwise

(3.1)
where:

addtan(x, y) =


π if Arg( 1+ix

1−ix ) + Arg( 1+iy
1−iy ) > π

−π if Arg( 1+ix
1−ix ) + Arg( 1+iy

1−iy ) ≤ −π
0 otherwise

(3.2)

oddtan(x, y) = oddtan(
x+ y

1− xy
)− oddtan(x)− oddtan(y) (3.3)

Proof. For xy 6= 1, application of (1.28) to (2.15):

arctan(x) + arctan(y)

=− i

2
[ln(

1 + ix

1− ix
) + ln(

1 + iy

1− iy
)]− oddtan(x)− oddtan(y)

=− i

2
ln(

(1 + ix)(1 + iy)

(1− ix)(1− iy)
) + addtan(x, y)− oddtan(x)− oddtan(y)

=− i

2
ln(

1 + iz

1− iz
) + addtan(x, y)− oddtan(x)− oddtan(y)

(3.4)

where z has to be solved. First the following equation is solved:

1 + iz

1− iz
= t (3.5)

which is easily checked to be:

z = i
1− t
1 + t

(3.6)

The following t is now substituted:

t =
(1 + ix)(1 + iy)

(1− ix)(1− iy)
(3.7)

and the solution is:

z = i
1− (1+ix)(1+iy)

(1−ix)(1−iy)

1 + (1+ix)(1+iy)
(1−ix)(1−iy)

= i
(1− ix)(1− iy)− (1 + ix)(1 + iy)

(1− ix)(1− iy) + (1 + ix)(1 + iy)
=

x+ y

1− xy
(3.8)

Substituting (2.15):

− i

2
ln(

1 + iz

1− iz
) = arctan(z) + oddtan(z) (3.9)

and the theorem is proved for xy 6= 1. For xy = 1, that is y = 1/x, (2.33) is used.
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When writing this theorem as f(x, y) = g(x, y), because f(−x,−y) = −f(x, y), the
symmetry identity g(−x,−y) = −g(x, y) must hold. When none of the inverse tangent
arguments is on a branch cut, the arguments of the Arg(x) functions in addtan(x, y) are
not on the negative real axis, and then by (1.25) Arg(1/x) = −Arg(x), and this symmetry
identity holds. When one of x or y is on a branch cut, then only the first or the third case in
addtan(x) is possible, so addtan(x, y) changes from 0 to π or vice versa, and oddtan(x, y)
changes from 0 to −π or vice versa. In all of these cases the same identity holds. When
both x and y are on a branch cut, then addtan(x, y) = π and oddtan(x, y) changes from 0
to −2π or vice versa or from −π to −π, and the same identity holds. When only z is on a
branch cut, then (3.7) holds with t real and negative, and using (1.26) then addtan(x, y)
changes from 0 to −π or vice versa, and oddtan(x, y) from 0 to π or vice versa, and the
same identity holds. When z and x or y is on a branch cut, then addtan(x, y) = 0 and
oddtan(x, y) changes from 0 to 0 or from π to −π or vice versa, and the same identity
holds. The arguments x, y and z cannot all be on a branch cut, because the product of
two real negative t values cannot be negative.

Theorem 3.2. For complex x 6= ±i and y 6= ±i:

arccot(x) + arccot(y) =


π if y = x = 0

0 if y = −x 6= 0
π
2 sg(x) + oddtan(x)− oddtan(−x) if y = 1/x

arccot(
xy − 1

x+ y
) + addcot(x, y) + oddcot(x, y) otherwise

(3.10)
where:

addcot(x, y) =


π if Arg( ix−1ix+1 ) + Arg( iy−1iy+1 ) > π

−π if Arg( ix−1ix+1 ) + Arg( iy−1iy+1 ) ≤ −π
0 otherwise

(3.11)

oddcot(x, y) = oddcot(
xy − 1

x+ y
)− oddcot(x)− oddcot(y) (3.12)

Proof. For xy 6= 1, application of (1.28) to (2.16):

arccot(x) + arccot(y)

=− i

2
[ln(

ix− 1

ix+ 1
) + ln(

iy − 1

iy + 1
)]− oddcot(x)− oddcot(y)

=− i

2
ln(

(ix− 1)(iy − 1)

(ix+ 1)(iy + 1)
) + addcot(x, y)− oddcot(x)− oddcot(y)

=− i

2
ln(

iz − 1

iz + 1
) + addcot(x, y)− oddcot(x)− oddcot(y)

(3.13)

where z has to be solved. First the following equation is solved:

iz − 1

iz + 1
= t (3.14)
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which is easily checked to be:

z = i
t+ 1

t− 1
(3.15)

The following t is now substituted:

t =
(ix− 1)(iy − 1)

(ix+ 1)(iy + 1)
(3.16)

and the solution is:

z = i

(ix−1)(iy−1)
(ix+1)(iy+1) + 1

(ix−1)(iy−1)
(ix+1)(iy+1) − 1

= i
(ix− 1)(iy − 1) + (ix+ 1)(iy + 1)

(ix− 1)(iy − 1)− (ix+ 1)(iy + 1)
=
xy − 1

x+ y
(3.17)

Substituting (2.16):

− i

2
ln(

iz − 1

iz + 1
) = arccot(z) + oddcot(z) (3.18)

and the theorem is proved for xy 6= 1. For xy = 1, that is y = 1/x, (2.34) is used.

When x 6= 0 and y 6= 0, writing this theorem as f(x, y) = g(x, y), because then
f(−x,−y) = −f(x, y), also g(−x,−y) = −g(x, y), and the same reasoning as for the
previous theorem can be given. When y = 0 this theorem and (2.32) and (2.34) yields:
For complex x:

1

2
(1 + sg(x)) + [Re(x) = 0]([−1 < Im(x) < 0]− [Im(x) > 1]) = [Arg(

ix− 1

ix+ 1
) > 0] (3.19)

and replacing x by 1/x and using (1.17) and (2.32):
For complex x:

1

2
(1 + sg(x)) + [Re(x) = 0]([Im(x) < −1]− [0 ≤ Im(x) ≤ 1]) = [Arg(

1 + ix

1− ix
) > 0] (3.20)

4 Addition Formulas for the Inverse Tangent and
Cotangent Functions for Real Arguments

For the addition formulas of the principal arctan(x) and arccot(x) functions for real argu-
ments, theorems 3.1 and 3.2 are applied for real x and y.

Theorem 4.1. For real x, y:

arctan(x) + arctan(y) =


π
2 sg(x) if y = 1/x

arctan(
x+ y

1− xy
) + π[xy > 1]sg(x) otherwise

(4.1)

Proof. Applying theorem 3.1 for x and y real, oddtan(x, y) = 0, and for addtan(x, y) in
(3.2), because x and y are real:

Arg(
1 + ix

1− ix
) + Arg(

1 + iy

1− iy
) = 2[Arg(1 + ix) + Arg(1 + iy)] (4.2)
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Applying (1.18) because −π < Arg(1 + ix) + Arg(1 + iy) < π:

Arg(1 + ix) + Arg(1 + iy) = Arg((1 + ix)(1 + iy)) = Arg(1− xy + i(x+ y)) (4.3)

The addtan(x, y) in theorem 3.1 for real x, y thus becomes:

addtan(x, y) =


π if Arg(1− xy + i(x+ y)) > π/2

−π if Arg(1− xy + i(x+ y)) ≤ −π/2
0 otherwise

(4.4)

In the complex plane this is easily seen to be equivalent to the theorem, with the fact
that in this case xy 6= 1. When xy > 1, x and y have the same sign, so sg(x + y) can be
replaced by sg(x).

Theorem 4.2. For real x, y:

arccot(x) + arccot(y) =


π if y = x = 0

0 if y = −x 6= 0
π
2 sg(x) if y = 1/x

arccot(
xy − 1

x+ y
) + π[|xy| < sg(x)sg(y)]sg(x+ y) otherwise

(4.5)

Proof. Applying theorem 3.2 for x and y real, oddcot(x, y) = 0, and for addcot(x, y) in
(3.11), because x and y are real and using sg(x)x = |x|:

ix− 1

ix+ 1
=
−i sg(x)(ix− 1)

−i sg(x)(ix+ 1)
=
|x|+ i sg(x)

|x| − i sg(x)
(4.6)

Arg(
|x|+ i sg(x)

|x| − i sg(x)
) + Arg(

|y|+ i sg(y)

|y| − i sg(y)
) = 2[Arg(|x|+ i sg(x)) + Arg(|y|+ i sg(y))] (4.7)

Applying (1.18) because not x = y = 0 which is a special case in the theorem,
−π < Arg(|x|+ i sg(x)) + Arg(|y|+ i sg(y)) < π:

Arg(|x|+ i sg(x)) + Arg(|y|+ i sg(y))

=Arg((|x|+ i sg(x))(|y|+ i sg(y)))

=Arg(|xy| − sg(x)sg(y) + i(sg(x)|y|+ sg(y)|x|))
(4.8)

The addcot(x, y) in theorem 3.2 for real x, y thus becomes:

addcot(x, y) =


π if Arg(|xy| − sg(x)sg(y) + i(sg(x)|y|+ sg(y)|x|)) > π/2

−π if Arg(|xy| − sg(x)sg(y) + i(sg(x)|y|+ sg(y)|x|)) ≤ −π/2
0 otherwise

(4.9)

Because |xy| = sg(x)sg(y) only occurs when xy = 1, in the complex plane this is easily
seen to be equivalent to the theorem, with the fact that in this case xy 6= 1. Because |xy| <
sg(x)sg(y) can only occur when sg(x) = sg(y), and because sg(x)|x| = x, sg(x)|y|+sg(y)|x|
can be replaced by x+ y.
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Theorem 4.3. For real x, y:

arccot(x) + arccot(y) =


π
2 sg(x) if y = 1/x

arctan(
x+ y

xy − 1
) + π[|xy| < sg(x)sg(y)]sg(x+ y) otherwise

(4.10)

Proof. From (2.29) follows that for real x: arccot(x) = arctan(1/x), so this theorem follows
directly from the previous theorem, where the special cases x = y = 0 and y = −x 6= 0
give identical results.

Theorem 4.4. For real x, y:

arctan(x) + arctan(y) = 2 arctan(
x+ y

1− xy +
√

(1 + x2)(1 + y2)
) (4.11)

Proof. From definition (2.15), for real x:

arctan(x) = − i
2

ln(
1 + ix

1− ix
) (4.12)

Using (1.31):
arctan(x) = −i ln(F (x)) (4.13)

where:

F (x) =

√
1 + ix

1− ix
(4.14)

For real x, y using (1.30):

arctan(x) + arctan(y) = −i(ln(F (x)) + ln(F (y))) = −i ln(F (x)F (y))

= −i ln(

√
1 + ix

1− ix

√
1 + iy

1− iy
)

(4.15)

From definition 2.15, for real z:

2 arctan(z) = −i ln(
1 + iz

1− iz
) (4.16)

From theorem 2.1, the solution of:
1 + iz

1− iz
= t (4.17)

is:

z = i
1− t
1 + t

(4.18)

Substituting for t the result of (4.15), and using (1.11) and (1− ix)(1 + ix) = 1 + x2:

z = i
1−

√
1+ix
1−ix

√
1+iy
1−iy

1 +
√

1+ix
1−ix

√
1+iy
1−iy

= i

√
(1 + x2)(1 + y2)−

√
(1 + ix)2

√
(1 + iy)2√

(1 + x2)(1 + y2) +
√

(1 + ix)2
√

(1 + iy)2
(4.19)
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Because for real x, sg(1 + ix) = 1:

z = i

√
(1 + x2)(1 + y2)− (1 + ix)(1 + iy)√
(1 + x2)(1 + y2) + (1 + ix)(1 + iy)

(4.20)

Using (2.40):

z =
2(x+ y)

√
(1 + x2)(1 + y2)

(
√

(1 + x2)(1 + y2) + 1− xy)2 + (x+ y)2

=
(x+ y)

√
(1 + x2)(1 + y2)

(1 + x2)(1 + y2) + (1− xy)
√

(1 + x2)(1 + y2)

=
x+ y√

(1 + x2)(1 + y2) + 1− xy

(4.21)

In this theorem in the argument on the right side: 1 − xy +
√

(1 + x2)(1 + y2) ≥ 2,
with equal sign if and only if x = y, and squaring that argument yields:

[
|x+ y|

1− xy +
√

(1 + x2)(1 + y2)
> 1] = [xy > 1] (4.22)

Taking x = 1/a and y = 1/(4a3 + 3a) and using 1 + (4a3 + 3a)2 = (1 +a2)(1 + 4a2)2, from
this theorem the following known identity [6] results.
For real a:

arctan(
1

a
) + arctan(

1

4a3 + 3a
) = 2 arctan(

1

2a
) (4.23)

Theorem 4.5. For real x, y:

arccot(x)+arccot(y) =


π if y = x = 0

0 if y = −x 6= 0

2 arccot(
xy − 1 + sg(x)sg(y)

√
(1 + x2)(1 + y2)

x+ y
) otherwise

(4.24)

Proof. This theorem directly follows from the previous theorem because for real x:
arccot(x) = arctan(1/x).

Theorem 4.6. For real x, y:

arccot(x)+arccot(y) =

0 if y = −x 6= 0

2 arccot(
x+ y

1− xy + sg(x)sg(y)
√

(1 + x2)(1 + y2)
) otherwise

(4.25)
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Proof. From definition (2.16) for real x:

arccot(x) = − i
2

ln(
ix− 1

ix+ 1
) (4.26)

Using (1.31):
arccot(x) = −i ln(G(x)) (4.27)

where:

G(x) =

√
ix− 1

ix+ 1
(4.28)

For real x, y using (1.30):

arccot(x) + arccot(y) = −i(ln(G(x)) + ln(G(y))) = −i ln(G(x)G(y))

= −i ln(

√
ix− 1

ix+ 1

√
iy − 1

iy + 1
)

(4.29)

From definition 2.16, for real z:

2 arccot(z) = −i ln(
iz − 1

iz + 1
) (4.30)

From theorem 2.1, the solution of:
iz − 1

iz + 1
= t (4.31)

is:

z = i
t+ 1

t− 1
(4.32)

Substituting for t the result of (4.29), and using (1.11) and (1− ix)(1 + ix) = 1 + x2:

z = i

√
ix−1
ix+1

√
iy−1
iy+1 + 1√

ix−1
ix+1

√
iy−1
iy+1 − 1

= i

√
−(1− ix)2

√
−(1− iy)2 +

√
(1 + x2)(1 + y2)√

−(1− ix)2
√
−(1− iy)2 −

√
(1 + x2)(1 + y2)

(4.33)

Using from section 1:
√
−x2 = sg(ix)ix and i(1− ix) = i+ x and for real x:

sg(i+ x) = sg(x):

z = i
sg(x)sg(y)(i+ x)(i+ y) +

√
(1 + x2)(1 + y2)

sg(x)sg(y)(i+ x)(i+ y)−
√

(1 + x2)(1 + y2)
(4.34)

and multiplying numerator and denominator with sg(x)sg(y) and using sg2(x) = 1:

z = i
(i+ x)(i+ y) + sg(x)sg(y)

√
(1 + x2)(1 + y2)

(i+ x)(i+ y)− sg(x)sg(y)
√

(1 + x2)(1 + y2)
(4.35)
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Using (2.40):

z =
2(x+ y)sg(x)sg(y)

√
(1 + x2)(1 + y2)

(sg(x)sg(y)
√

(1 + x2)(1 + y2) + 1− xy)2 + (x+ y)2

=
(x+ y)sg(x)sg(y)

√
(1 + x2)(1 + y2)

(1 + x2)(1 + y2) + (1− xy)sg(x)sg(y)
√

(1 + x2)(1 + y2)

=
x+ y

sg(x)sg(y)
√

(1 + x2)(1 + y2) + 1− xy

(4.36)

Theorem 4.7. For real x, y:

arctan(x) + arctan(y) =


0 if y = −x

2 arctan(
xy − 1 +

√
(1 + x2)(1 + y2)

x+ y
) otherwise

(4.37)

Proof. This theorem directly follows from the previous theorem because for real x:
arccot(x) = arctan(1/x), and using (1.17).

Let s = ±1, then by cross multiplication it is clear that:

x+ y

1− xy + s
√

(1 + x2)(1 + y2)
=
xy − 1 + s

√
(1 + x2)(1 + y2)

x+ y
(4.38)

From this follows that theorems 4.4 and 4.7 as well as theorems 4.5 and 4.6 are equivalent.

5 The Principal Values of the Inverse Tangent and
Cotangent Functions on the Imaginary Axis

For determining the principal values of the arctan(x) and arccot(x) functions on the imagi-
nary axis, and thus confirming the new definitions (2.15) and (2.16), the addition theorems
for complex arguments are used to express these values as a sum of two principal arctan(x)
or arccot(x) terms with arguments that are not on the imaginary axis. The following the-
orems state that this is possible.

Theorem 5.1. Let t be on the imaginary axis and t 6= ±i and let x be real and positive,
then from theorem 3.1 follows:

arctan(t) = arctan(x) + arctan(
t− x
1 + tx

)− oddtan(t) (5.1)

Proof. In theorem 3.1 the solution of:

x+ y

1− xy
= t (5.2)
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is easily checked to be:

y =
t− x
1 + tx

(5.3)

When t is on the imaginary axis then it can be replaced by t = iz where z is real:

y =
iz − x
1 + izx

=
(iz − x)(1− izx)

1 + z2x2
=
x(z2 − 1) + iz(1 + x2)

1 + z2x2
(5.4)

Because x is real and positive, y is only on the imaginary axis when z2 = 1, that is when
t = ±i which are singular points and excluded in the theorem. Therefore y is never on
the imaginary axis and oddtan(y) = 0. Because x is real, also oddtan(x) = 0, so in
theorem 3.1 oddtan(x, y) = oddtan(t). For evaluating addtan(x, y) in that theorem, by
substituting (5.3):

1 + iy

1− iy
=

1 + it

1− it
· 1− ix

1 + ix
(5.5)

When t is on the imaginary axis the first factor in the right side of this equation is real
and is called c, and because t 6= ±i, c 6= 0. Then in addtan(x, y) in theorem 3.1, because
x is real and positive, application of (1.25) and (1.26) yields:

Arg(
1 + ix

1− ix
) + Arg(

1 + iy

1− iy
) = Arg(

1 + ix

1− ix
) + Arg(c

1− ix
1 + ix

) =

{
0 if c > 0

π if c < 0
(5.6)

This means that in theorem 3.1 addtan(x, y) = 0 and this theorem follows.

Theorem 5.2. Let t be on the imaginary axis and t 6= ±i and let x be real and positive,
then from theorem 3.2 follows:

arccot(t) = arccot(x) + arccot(
1 + tx

x− t
)− oddcot(t) (5.7)

Proof. In theorem 3.1 the solution of:

xy − 1

x+ y
= t (5.8)

is easily checked to be:

y =
1 + tx

x− t
(5.9)

When t is on the imaginary axis then it can be replaced by t = iz where z is real:

y =
1 + izx

x− iz
=

(1 + izx)(x+ iz)

x2 + z2
=
x(1− z2) + iz(1 + x2)

x2 + z2
(5.10)

Because x is real and positive, y is only on the imaginary axis when z2 = 1, that is when
t = ±i which are singular points and excluded in the theorem. Therefore y is never on the
imaginary axis and oddcot(y) = 0. Because x is real, also oddcot(x) = 0, so in theorem
3.2 oddcot(x, y) = oddcot(t). For evaluating addcot(x, y) in that theorem, by substituting
(5.9):

iy − 1

iy + 1
=
it− 1

it+ 1
· ix+ 1

ix− 1
(5.11)
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When t is on the imaginary axis the first factor in the right side of this equation is real
and is called c, and because t 6= ±i, c 6= 0. Then in addcot(x, y) in theorem 3.2, because
x is real and positive and using (4.6), application of (1.25) and (1.26) yields:

Arg(
ix− 1

ix+ 1
) + Arg(

iy − 1

iy + 1
)

=Arg(
|x|+ isg(x)

|x| − isg(x)
) + Arg(c

|x| − isg(x)

|x|+ isg(x)
) =

{
0 if c > 0

π if c < 0

(5.12)

This means that in theorem 3.2 addcot(x, y) = 0 and this theorem follows.

The two tables below are the computation of principal values of arctan(t) and arccot(t)
on four points of the imaginary axis, where the principal arctan(y) and arccot(y) values
can be computed with a computer algebra program. With these two tables it can be
checked that for these values on the imaginary axis arctan(t) and arccot(t) are odd and
that theorem 2.3 is valid. These values are also in agreement with definitions (2.15) and
(2.16), which are therefore now confirmed with the addition formulas.

Table 1: Evaluation of arctan(t) with theorem 5.1

t 2i 1
2 i − 1

2 i −2i
x 1 1 1 1
y = t−x

1+tx
3
5 + 4

5 i − 3
5 + 4

5 i − 3
5 −

4
5 i

3
5 −

4
5 i

1+ix
1−ix i i i i
1+iy
1−iy

1
3 i − 1

3 i −3i 3i

arctan(x) π
4

π
4

π
4

π
4

arctan(y) π
4 + 1

2 i ln(3) −π4 + 1
2 i ln(3) −π4 −

i
2 ln(3) π

4 −
i
2 ln(3)

−oddtan(t) 0 0 0 −π
arctan(t) π

2 + 1
2 i ln(3) 1

2 i ln(3) − 1
2 i ln(3) −π2 −

1
2 i ln(3)
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Table 2: Evaluation of arccot(t) with theorem 5.2

t 2i 1
2 i − 1

2 i −2i
x 1 1 1 1
y = 1+tx

x−t − 3
5 + 4

5 i
3
5 + 4

5 i
3
5 −

4
5 i − 3

5 −
4
5 i

ix−1
ix+1 i i i i
iy−1
iy+1 −3i 3i 1

3 i − 1
3 i

arccot(x) π
4

π
4

π
4

π
4

arccot(y) −π4 −
1
2 i ln(3) π

4 −
1
2 i ln(3) π

4 + i
2 ln(3) −π4 + i

2 ln(3)
−oddcot(t) 0 0 −π 0
arccot(t) − 1

2 i ln(3) π
2 −

1
2 i ln(3) −π2 + 1

2 i ln(3) 1
2 i ln(3)

6 The Inverse Hyperbolic Tangent and Cotangent
Functions and their Addition Formulas

The principal arctanh(x) and arccoth(x) functions for complex x are defined by:

arctanh(x) = −i arctan(ix) (6.1)

arccoth(x) = i arccot(ix) (6.2)

With these definitions from (2.15) and (2.16) follows:
For complex x:

arctanh(x) = −1

2
ln(

1− x
1 + x

) + πi[Im(x) = 0][Re(x) < −1] (6.3)

arccoth(x) =
1

2
ln(

x+ 1

x− 1
)− πi[Im(x) = 0][−1 < Re(x) < 0] (6.4)

Theorem 6.1. For complex x:

arctanh(x) = ln(
1 + x+

√
1− x2

1− x+
√

1− x2
) (6.5)

arccoth(x) =
π

2
i sg(ix) + ln(

1 + x+
√

1− x2

1− x+
√

1− x2
) (6.6)

Proof. This theorem directly follows from theorem 2.5 and definition (6.1) and theorem
2.6 and definition (6.2).

Theorem 6.2. For real x, y:

arctanh(x+ iy) =
1

4
ln(

y2 + (x+ 1)2

y2 + (x− 1)2
) +

i

2
arctan(

2y

1− x2 − y2
)

− π

2
i[x2 + y2 > 1]sg(−y) + πi[y = 0][x < −1]

(6.7)
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arccoth(x+ iy) =
1

4
ln(

y2 + (x+ 1)2

y2 + (x− 1)2
)− i

2
arctan(

2y

x2 + y2 − 1
)

+
π

2
i[x2 + y2 < 1]sg(−y)− πi[y = 0][−1 < x < 0]

(6.8)

Proof. These two identities follow from theorem 2.2 with definitions (6.1) and (6.2) by
replacing x+ iy with i(x+ iy) = −y + ix, that is replacing x with −y and y with x.

When x = ±1 and y = 0 these formulas yield arctanh(1) = ∞, arctanh(−1) = −∞,
arccoth(1) =∞ and arccoth(−1) = −∞.
For real x:

arctanh(x) =
1

2
ln(

∣∣∣∣1 + x

1− x

∣∣∣∣)− π

2
i([x > 1]− [x < −1]) (6.9)

arccoth(x) =
1

2
ln(

∣∣∣∣x+ 1

x− 1

∣∣∣∣) +
π

2
i([0 ≤ x < 1]− [−1 < x < 0]) (6.10)

For complex x 6= ±1:

arccoth(x)− arctanh(x) =
π

2
i sg(ix) (6.11)

For complex x:

arctanh(
1

x
) = arccoth(x) + πi[Im(x) = 0]([−1 < Re(x) < 0]− [0 < Re(x) < 1]) (6.12)

arccoth(
1

x
) = arctanh(x)− πi[Im(x) = 0]([Re(x) < −1]− [Re(x) > 1]) (6.13)

For complex x 6= ±1:

arctanh(x)− arctanh(
1

x
)

=− π

2
i sg(ix)− πi[Im(x) = 0]([−1 < Re(x) < 0]− [0 < Re(x) < 1])

(6.14)

arccoth(x)− arccoth(
1

x
) =

π

2
i sg(ix) + πi[Im(x) = 0]([Re(x) < −1]− [Re(x) > 1]) (6.15)

The addition formulas for these functions for complex x and y can be taken from the
addition formulas for complex x and y above by substituting ix for x and iy for y. The
addition formulas for real x and y are given, using for real x: sg(ix) = sg(x).

Theorem 6.3. For real x 6= ±1 and y 6= ±1:

arctanh(x) + arctanh(y)

=

−
π
2 i sg(x)− πi([−1 < x < 0]− [0 < x < 1]) if y = −1/x

arctanh(
x+ y

1 + xy
)− πi(addtanh(x, y) + oddtanh(x, y)) otherwise

(6.16)

where:
addtanh(x, y) = ([x < −1] + [x > 1])([y < −1] + [y > 1]) (6.17)

oddtanh(x, y) = [
x+ y

1 + xy
< −1]− [x < −1]− [y < −1] (6.18)
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Proof. Application of theorem 3.1 by substituting definition (6.1) gives this theorem, where
in addtan(x, y) the sum of Arg(x) functions becomes:

Arg(
1− x
1 + x

) + Arg(
1− y
1 + y

) =


0 if −1 < x < 1 and −1 < y < 1

π if one of −1 < x < 1 or −1 < y < 1

2π if (x < −1 or x > 1) and (y < −1 or y > 1)

(6.19)

Only in the last case is addtan(x, y) π and otherwise zero, which is equivalent to
addtanh(x, y).

Theorem 6.4. For real x 6= ±1 and y 6= ±1:

arccoth(x) + arccoth(y)

=


πi if y = x = 0

0 if y = −x 6= 0
π
2 i sg(x) + πi([x < −1]− [x > 1]) if y = −1/x

arccoth(
1 + xy

x+ y
) + πi(addcoth(x, y) + oddcoth(x, y)) otherwise

(6.20)

where:
addcoth(x, y) = [−1 < x < 1][−1 < y < 1] (6.21)

oddcoth(x, y) = [−1 <
1 + xy

x+ y
< 0]− [−1 < x < 0]− [−1 < y < 0] (6.22)

Proof. Application of theorem 3.2 by substituting definition (6.2) gives this theorem, where
in addtan(x, y) the sum of Arg(x) functions becomes:

Arg(
x+ 1

x− 1
) + Arg(

y + 1

y − 1
) =


0 if (x < −1 or x > 1) and (y < −1 or y > 1)

π if one of −1 < x < 1 or −1 < y < 1

2π if −1 < x < 1 and −1 < y < 1

(6.23)

Only in the last case is addcot(x, y) π and otherwise zero, which is equivalent to
addcoth(x, y).

Theorem 6.5. For real x 6= ±1 and y 6= ±1:

arccoth(x) + arccoth(y) =


π
2 i sg(x) + πi([x < −1]− [x > 1]) if y = −1/x

arctanh(
x+ y

1 + xy
) + πi addcoth(x, y) otherwise

(6.24)

where:

addcoth(x, y) =[
x+ y

1 + xy
> 1] + [−1 < x < 1][−1 < y < 1]

− [−1 < x < 0]− [−1 < y < 0]

(6.25)
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Proof. Using (6.12) and the identity:

[0 < α < 1] = [
1

α
> 1] (6.26)

this theorem directly follows from the previous theorem, where the special cases x = y = 0
and y = −x 6= 0 give identical results.

When x = y these addition formulas reduce to the following duplication formulas,
using |2x/(1 + x2)| ≤ 1.
For real x:

2 arctanh(x) = arctanh(
2x

1 + x2
) + πi([x < −1]− [x > 1]) (6.27)

2 arccoth(x) = arccoth(
1 + x2

2x
) + πi([0 ≤ x < 1]− [−1 < x < 0]) (6.28)

2 arccoth(x) = arctanh(
2x

1 + x2
) + πi([0 ≤ x < 1]− [−1 < x < 0]) (6.29)

7 Conclusion

When the principal arctan(x) and the arccot(x) functions are defined by (2.15) and (2.16),
by choosing the other branch on the lower branch cut, and the principal arctanh(x) and
arccoth(x) functions by (6.1) and (6.2), then these functions are related by (2.24) and
(6.11) with sg(x) defined by (1.4).
For complex x:

arccot(x) =
π

2
sg(x)− arctan(x) (7.1)

arccoth(x) =
π

2
i sg(ix) + arctanh(x) (7.2)

and not arccot(x) = arctan(1/x) and arccoth(x) = arctanh(1/x), which are then replaced
by (2.29), (2.30), (6.12) and (6.13). This way the functions are odd everywhere in the
complex plane (except at x = 0 for the arccot(x) and arccoth(x) functions) and consistent
with the addition formulas as mentioned in section 5. These formulas also have the
advantage that no inversion of the arguments is required. For implementation of these
functions theorems 2.2 and 6.2 with (1.5) and (1.20) may be used.
The corresponding Mathematica® [10] program:

Sg[x_]:=If[Re[x]>0,1,If[Re[x]<0,-1,If[Im[x]>=0,1,-1]]]

8 The Inverse Sine and Cosine Functions

For complex x:

sin(x) =
1

2i
(eix − e−ix) (8.1)

cos(x) =
1

2
(eix + e−ix) (8.2)
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sin2(x) + cos2(x) = 1 (8.3)

sin(π − x) = sin(x) (8.4)

cos(π − x) = − cos(x) (8.5)

sin(
π

2
+ x) = cos(x) (8.6)

cos(−π
2

+ x) = sin(x) (8.7)

Definition 8.1. For complex x [1]:

arcsin(x) = −i ln(ix+
√

1− x2) (8.8)

arccos(x) = −i ln(x+ i
√

1− x2) (8.9)

Theorem 8.1. For complex x:

Re(ix+
√

1− x2) ≥ 0 (8.10)

and therefore the arcsin(x) function defined in (8.8) is odd in the complex plane:
For complex x:

arcsin(−x) = − arcsin(x) (8.11)

Proof. Because
√
−x2 = ix sg(ix):

ix+
√
−x2 = ix(sg(ix) + 1) (8.12)

Because for Re(ix) < 0, sg(ix) = −1, Re(ix +
√
−x2) ≥ 0. Using (1.9) it is clear that

Re(
√
−x2 + 1) ≥ Re(

√
−x2) so the theorem is proved. From:

(ix+
√

1− x2)(−ix+
√

1− x2) = 1 (8.13)

follows:

− ix+
√

1− x2 =
1

ix+
√

1− x2
(8.14)

Because when Re(x) ≥ 0: ln(1/x) = − ln(x), the arcsin(x) function is odd in the complex
plane.

Theorem 8.2. For complex x:

arcsin(x) + arccos(x) =
π

2
(8.15)

Proof. For complex x:

(ix+
√

1− x2)(x+ i
√

1− x2) = i (8.16)

therefore:

x+ i
√

1− x2 =
i

ix+
√

1− x2
(8.17)

From (1.18) and (1.25) with c = 1 follows:

Arg(x) + Arg(
i

x
) =

π

2
− 2π[Arg(x) < −π

2
] (8.18)

With (1.28), −i ln(i) = π/2 and the previous theorem, this theorem follows.
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Corollary 8.1. For complex x:

arccos(−x) = π − arccos(x) (8.19)

Proof. Combination of the previous two theorems:

arccos(−x) =
π

2
− arcsin(−x) =

π

2
+ arcsin(x)

=
π

2
+ (

π

2
− arccos(x)) = π − arccos(x)

(8.20)

Theorem 8.3. For complex x:

sin(arcsin(x)) = x (8.21)

cos(arccos(x)) = x (8.22)

Proof. Using (
√
x)2 = x and (ix+

√
1− x2)(−ix+

√
1− x2) = 1:

sin(arcsin(x)) =
1

2i
(eln(ix+

√
1−x2) − e− ln(ix+

√
1−x2))

=
1

2i
(ix+

√
1− x2 − 1

ix+
√

1− x2
)

=
1

2i
(ix+

√
1− x2 + ix−

√
1− x2) = x

(8.23)

The proof of the second identity is similar.

Theorem 8.4. For complex x:

sin(arccos(x)) =
√

1− x2 (8.24)

cos(arcsin(x)) =
√

1− x2 (8.25)

Proof. Using (
√
x)2 = x and (x+ i

√
1− x2)(x− i

√
1− x2) = 1:

sin(arccos(x)) =
1

2i
(eln(x+i

√
1−x2) − e− ln(x+i

√
1−x2))

=
1

2i
(x+ i

√
1− x2 − 1

x+ i
√

1− x2
)

=
1

2i
(x+ i

√
1− x2 − x+ i

√
1− x2) =

√
1− x2

(8.26)

The proof of the second identity is similar.

Theorem 8.5. For complex x:

sg(sin(x)) =[0 < Re(x) mod 2π < π]− [π < Re(x) mod 2π < 2π]

+ [Re(x) mod 2π = 0]([Im(x) ≥ 0]− [Im(x) < 0])

+ [(Re(x) + π) mod 2π = 0]([Im(x) ≤ 0]− [Im(x) > 0])

(8.27)
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sg(cos(x)) =[0 < (Re(x) +
π

2
) mod 2π < π]− [π < (Re(x) +

π

2
) mod 2π < 2π]

+ [(Re(x) +
π

2
) mod 2π = 0]([Im(x) ≥ 0]− [Im(x) < 0])

+ [(Re(x) +
3π

2
) mod 2π = 0]([Im(x) ≤ 0]− [Im(x) > 0])

(8.28)

Proof. For the first identity, for real a, b:

sin(a+ ib) =
1

2i
(eiae−b − e−iaeb)

= − i
2

((cos(a) + i sin(a))e−b − (cos(a)− i sin(a))eb)

=
1

2
sin(a)(e−b + eb) +

1

2
i cos(a)(eb − e−b)

(8.29)

Using (1.16):

sg(sin(a+ ib)) = [sin(a) > 0]− [sin(a) < 0]

+ [sin(a) = 0]([cos(a)(eb − e−b) ≥ 0]− [cos(a)(eb − e−b) < 0])
(8.30)

For the second identity, using (8.6), Re(x) is replaced by Re(x) + π
2 .

Definition 8.2. For real x:

T (x) = Arg(eix) = π − ((π − x) mod 2π) (8.31)

Theorem 8.6. For complex x:

arcsin(sin(x)) =[sg(cos(x)) = 1](π − ((π − Re(x)) mod 2π) + i Im(x))

+ [sg(cos(x)) = −1](π − (Re(x) mod 2π)− i Im(x))
(8.32)

arccos(sin(x)) =[sg(cos(x)) = 1](−π
2

+ ((π − Re(x)) mod 2π)− i Im(x))

+ [sg(cos(x)) = −1](−π
2

+ (Re(x) mod 2π) + i Im(x))
(8.33)

Proof. For the first identity:

arcsin(sin(x)) = −i ln(i sin(x)−
√

1− sin2(x))

= −i ln(i sin(x) +
√

cos2(x))

= −i ln(i sin(x) + sg(cos(x)) cos(x))

= −i ln(
1

2
(eix − e−ix) + sg(cos(x))

1

2
(eix + e−ix))

= [sg(cos(x)) = 1](−i ln(eix)) + [sg(cos(x)) = −1](−i ln(−e−ix))

(8.34)

Taking x = a+ bi, for real a, b:

− i ln(ei(a+bi)) = −i ln(eiae−b) = Arg(eia) + ib = T (a) + ib (8.35)
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−i ln(−e−i(a+bi)) = −i ln(−e−iaeb) = Arg(−e−ia)− ib = Arg(e−ia+iπ)− ib
= Arg(ei(π−a))− ib = T (π − a)− ib

(8.36)

The second identity follows from theorem 8.2.

Theorem 8.7. For complex x:

arcsin(cos(x)) =[sg(sin(x)) = 1](π − ((
π

2
+ Re(x)) mod 2π)− i Im(x))

+ [sg(sin(x)) = −1](π − ((
π

2
− Re(x)) mod 2π) + i Im(x))

(8.37)

arccos(cos(x)) =[sg(sin(x)) = 1](−π
2

+ ((
π

2
+ Re(x)) mod 2π) + i Im(x))

+ [sg(sin(x)) = −1](−π
2

+ ((
π

2
− Re(x)) mod 2π)− i Im(x))

(8.38)

Proof.

arcsin(cos(x)) = −i ln(i cos(x)−
√

1− cos2(x))

= −i ln(i cos(x) +

√
sin2(x))

= −i ln(i cos(x) + sg(sin(x)) sin(x))

= −i ln(
i

2
(eix + e−ix)− sg(sin(x))

i

2
(eix − e−ix))

= [sg(sin(x)) = 1](−i ln(ie−ix)) + [sg(sin(x)) = −1](−i ln(ieix))

(8.39)

Taking x = a+ bi, for real a, b:

−i ln(ie−i(a+bi)) = −i ln(ie−iaeb) = Arg(ie−ia)− ib = Arg(e−ia+i
π
2 )− ib

= Arg(ei(
π
2−a))− ib = T (

π

2
− a)− ib

(8.40)

−i ln(iei(a+bi)) = −i ln(ieiae−b) = Arg(ieia) + ib = Arg(eia+i
π
2 ) + ib

= Arg(ei(
π
2 +a)) + ib = T (

π

2
+ a) + ib

(8.41)

The second identity follows from theorem 8.2.

9 Relations between the Inverse Sine and Cosine and
the Inverse Tangent and Cotangent Functions

Theorem 9.1. For complex x:

sin(arctan(x)) =
x√

1 + x2
(9.1)

Proof. Using theorem 2.5, the definition of sin(x) (8.1), (
√
x)2 = x, eln(x) = x, e− ln(x) =

1/x and:

(1 + ix+
√

1 + x2)(1− ix+
√

1 + x2) = 2(1 + x2 +
√

1 + x2) (9.2)
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sin(arctan(x)) =
1

2i
(e

ln(
1+ix+

√
1+x2

1−ix+
√
1+x2

) − e− ln(
1+ix+

√
1+x2

1−ix+
√
1+x2

)
)

=
1

2i
(
1 + ix+

√
1 + x2

1− ix+
√

1 + x2
− 1− ix+

√
1 + x2

1 + ix+
√

1 + x2
)

=
1

2i

(1 + ix+
√

1 + x2)2 − (1− ix+
√

1 + x2)2

2(1 + x2 +
√

1 + x2)

=
1

2i

4ix(1 +
√

1 + x2)

2(1 + x2 +
√

1 + x2)
=

x(1 +
√

1 + x2)√
1 + x2(

√
1 + x2 + 1)

=
x√

1 + x2

(9.3)

Theorem 9.2. For complex x:

cos(arctan(x)) =
1√

1 + x2
(9.4)

Proof. Using theorem 2.5, the definition of cos(x) (8.2), and the identities in the previous
theorem:

cos(arctan(x)) =
1

2
(e

ln(
1+ix+

√
1+x2

1−ix+
√
1+x2

)
+ e
− ln(

1+ix+
√
1+x2

1−ix+
√
1+x2

)
)

=
1

2
(
1 + ix+

√
1 + x2

1− ix+
√

1 + x2
+

1− ix+
√

1 + x2

1 + ix+
√

1 + x2
)

=
1

2

(1 + ix+
√

1 + x2)2 + (1− ix+
√

1 + x2)2

2(1 + x2 +
√

1 + x2)

=
1

2

4(1 +
√

1 + x2)

2(1 + x2 +
√

1 + x2)
=

1 +
√

1 + x2√
1 + x2(

√
1 + x2 + 1)

=
1√

1 + x2

(9.5)

Theorem 9.3. For complex x:

sin(arccot(x)) =
sg(x)√
1 + x2

(9.6)

Proof. Using theorem 2.6, the definition of sin(x) (8.1), (
√
x)2 = x, eln(x) = x, e− ln(x) =

1/x and:
e±i

π
2 sg(x) = ±i sg(x) (9.7)

(1 + ix+
√

1 + x2)(1− ix+
√

1 + x2) = 2(1 + x2 +
√

1 + x2) (9.8)
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sin(arccot(x)) =
1

2i
(e
iπ2 sg(x)+ln(

1−ix+
√
1+x2

1+ix+
√
1+x2

) − e−i
π
2 sg(x)−ln( 1−ix+

√
1+x2

1+ix+
√
1+x2

)
)

=
1

2i
(i sg(x)

1− ix+
√

1 + x2

1 + ix+
√

1 + x2
+ i sg(x)

1 + ix+
√

1 + x2

1− ix+
√

1 + x2
)

= sg(x)
1

2

(1− ix+
√

1 + x2)2 + (1 + ix+
√

1 + x2)2

2(1 + x2 +
√

1 + x2)

=
1

2

sg(x)4(1 +
√

1 + x2)

2(1 + x2 +
√

1 + x2)
=

sg(x)(1 +
√

1 + x2)√
1 + x2(

√
1 + x2 + 1)

=
sg(x)√
1 + x2

(9.9)

Theorem 9.4. For complex x:

cos(arccot(x)) =
sg(x)x√
1 + x2

(9.10)

Proof. Using theorem 2.6, the definition of cos(x) (8.2), and the identities in the previous
theorem:

cos(arccot(x)) =
1

2
(e
iπ2 sg(x)+ln(

1−ix+
√
1+x2

1+ix+
√
1+x2

)
+ e
−iπ2 sg(x)−ln( 1−ix+

√
1+x2

1+ix+
√
1+x2

)
)

=
1

2
(i sg(x)

1− ix+
√

1 + x2

1 + ix+
√

1 + x2
− i sg(x)

1 + ix+
√

1 + x2

1− ix+
√

1 + x2
)

= sg(x)
i

2

(1− ix+
√

1 + x2)2 − (1 + ix+
√

1 + x2)2

2(1 + x2 +
√

1 + x2)

=
i

2

−sg(x)4ix(1 +
√

1 + x2)

2(1 + x2 +
√

1 + x2)
=

sg(x)x(1 +
√

1 + x2)√
1 + x2(

√
1 + x2 + 1)

=
sg(x)x√
1 + x2

(9.11)

Lemma 9.1. For complex x:

sg(
1√

1 + x2
) = 1− 2[Re(x) = 0][|Im(x)| > 1] (9.12)

sg(
1√

1− x2
) = 1− 2[Im(x) = 0][|Re(x)| > 1] (9.13)

sg(
x√

1 + x2
) = sg(x) (9.14)

sg(
x√

1− x2
) = sg(x)(1− 2[Im(x) = 0][|Re(x)| > 1]) (9.15)

[Re(
x√

1− x2
) = 0] = [Re(x) = 0] + [Im(x) = 0][|Re(x)| > 1] (9.16)

For complex x 6= 0:

sg(

√
1− x2
x

) = sg(x)(1− 2[Re(x) = 0]) (9.17)
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Proof. From the complex plane it is clear that sg(1/
√
x) = −1 if and only if Im(x) = 0

and Re(x) < 0, from which follows (9.12), and (9.13) is obtained by replacing x by ix.
From the complex plane it is clear that for complex x:

sg(

√
x2√

x2 + 1
) = 1 (9.18)

sg(

√
x2√

−x2 + 1
) = 1− 2[Im(x) = 0][|Re(x)| > 1] (9.19)

Using
√
x2 = sg(x)x and sg(−x) = −sg(x) (9.14) and (9.15) follow.

For (9.16):

[Re(
x√

1− x2
) = 0] = [Im(

x2

1− x2
) = 0][Re(

x2

1− x2
) < 0]

= [Re(x) = 0] + [Im(x) = 0][|Re(x)| > 1]

(9.20)

Using (1.17) and (9.16):

sg(

√
1− x2
x

)

= sg(
x√

1− x2
)− 2([Re(x) = 0] + [Im(x) = 0][|Re(x)| > 1])sg(Im(

x√
1− x2

))

= sg(
x√

1− x2
)− 2([Re(x) = 0]sg(Im(x))− [Im(x) = 0][|Re(x)| > 1]sg(Re(x)))

(9.21)

which with (9.15) results in (9.17).

Theorem 9.5. For complex x:

arccos(
1√

1 + x2
) = sg(x) arctan(x) (9.22)

Proof. Application of theorem 9.2:

arccos(
1√

1 + x2
) = arccos(cos(arctan(x))) (9.23)

Application of theorem 8.7 with theorem 9.1 and lemma 9.1:

sg(sin(arctan(x))) = sg(
x√

1 + x2
) = sg(x) (9.24)

Using that −π/2 ≤ Re(arctan(x)) ≤ π/2 the theorem follows.

Theorem 9.6. For complex x 6= 0:

arctan(

√
1− x2
x

) = arccos(x)− π[sg(x)(1− 2[Re(x) = 0]) = −1] (9.25)
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Proof. In the previous theorem replacing x with
√

1− x2/x and using that
sg(1/

√
x) = −1 if and only if Im(x) = 0 and Re(x) < 0:

1√
1 + 1−x2

x2

=
1√
1
x2

=
√
x2 sg(

1√
x2

) = x sg(x)(1− 2[Re(x) = 0]) (9.26)

Using lemma 9.1 and arccos(−x) = π − arccos(x) gives the theorem.

Theorem 9.7. For complex x:

arcsin(
1√

1 + x2
) = sg(x)arccot(x) (9.27)

Proof. Application of theorem 9.3:

arcsin(
1√

1 + x2
) = arcsin(sin(arctan(x))) (9.28)

Application of theorem 8.6 with theorem 9.4 and lemma 9.1:

sg(cos(arccot(x))) = sg(
sg(x)x√
1 + x2

) = sg2(x) = 1 (9.29)

Using that −π/2 ≤ Re(arccot(x)) ≤ π/2 the theorem follows.

Theorem 9.8. For complex x 6= 0:

arccot(

√
1− x2
x

) = arcsin(x) (9.30)

Proof. In the previous theorem replacing x with
√

1− x2/x and using the same method
as in theorem 9.6 and lemma 9.1 and arcsin(−x) = − arcsin(x) gives the theorem.

Theorem 9.9. For complex x:

arcsin(
x√

1 + x2
) =(1− 2[Re(x) = 0][|Im(x)| > 1]) arctan(x)

+ π[Re(x) = 0]([Im(x) > 1]− [Im(x) < −1])
(9.31)

Proof. Application of theorem 9.1:

arcsin(
x√

1 + x2
) = arcsin(sin(arctan(x))) (9.32)

Application of theorem 8.6 with theorem 9.2 and lemma 9.1:

sg(cos(arctan(x))) = sg(
1√

1 + x2
) = 1− 2[Re(x) = 0][|Im(x)| > 1] (9.33)

Using that −π/2 ≤ Re(arctan(x)) ≤ π/2, with equal signs on the upper and lower branch
cuts, the theorem follows.
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Theorem 9.10. For complex x:

arctan(
x√

1− x2
) = arcsin(x)− π[Im(x) = 0]([Re(x) > 1]− [Re(x) < −1]) (9.34)

Proof. In the previous theorem replacing x with x/
√

1− x2 and using lemma 9.1:

x√
1−x2√

1 + x2

1−x2

=

x√
1−x2√

1
1−x2

= x sg(
1√

1− x2
) = x(1− 2[Im(x) = 0][|Re(x)| > 1]) (9.35)

From lemma 9.1:

[Re(
x√

1− x2
) = 0] = [Re(x) = 0] + [Im(x) = 0][|Re(x)| > 1] (9.36)

In the second case only |Im(x/
√

1− x2)| > 1 where Im(x/
√

1− x2) > 1 if Re(x) < −1.
With arcsin(−x) = − arcsin(x) follows:

arcsin(x) = (1− 2[Im(x) = 0][|Re(x)| > 1])2 arctan(
x√

1− x2
)

+ π(1− 2[Im(x) = 0][|Re(x)| > 1])[Im(x) = 0]([Re(x) < −1]− [Re(x) > 1])
(9.37)

which yields the theorem.

Theorem 9.11. For complex x:

arccos(
x√

1 + x2
) = (1− 2[Re(x) = 0][|Im(x)| > 1])arccot(x) + π[sg(x) = −1] (9.38)

Proof. Application of theorem 9.4:

arccos(
sg(x)x√
1 + x2

) = arccos(cos(arccot(x))) (9.39)

Application of theorem 8.7 with theorem 9.3 and sg(−x) = −sg(x) and lemma 9.1:

sg(sin(arccot(x))) = sg(
sg(x)√
1 + x2

) = sg(x)sg(
1√

1 + x2
)

= sg(x)(1− 2[Re(x) = 0][|Im(x)| > 1])

(9.40)

Using that −π/2 ≤ Re(arccot(x)) ≤ π/2 and arccos(−x) = π − arccos(x):

arccos(
sg(x)x√
1 + x2

) = π[sg(x) = −1] + sg(x) arccos(
x√

1 + x2
)

= sg(x)(1− 2[Re(x) = 0][|Im(x)| > 1])arccot(x)

(9.41)

Multiplying this identity by sg(x) and using sg2(x) = 1 and:

sg(x)[sg(x) = −1] = −[sg(x) = −1] (9.42)

gives the theorem.
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Theorem 9.12. For complex x:

arccot(
x√

1− x2
) = arccos(x)− π[sg(x) = −1] (9.43)

Proof. In the previous theorem replacing x with
√

1− x2/x and using the same method
as in theorem 9.10 and using lemma 9.1:

arccos(x(1− 2[Im(x) = 0][|Re(x)| > 1]))

= (1− 2[Im(x) = 0][|Re(x)| > 1])arccot(
x√

1− x2
) + π[sg(

x√
1− x2

) = −1]
(9.44)

Multiplying by 1− 2[Im(x) = 0][|Re(x)| > 1] and using lemma 9.1:

arccot(
x√

1− x2
) = arccos(x) + π(1− 2[Im(x) = 0][|Re(x)| > 1])

· ([Im(x) = 0][|Re(x)| > 1]− [sg(x)(1− 2[Im(x) = 0][|Re(x)| > 1]) = −1])
(9.45)

The second term on the right side is zero when sg(x) = 1 and −π when sg(x) = −1, which
is the theorem.

10 Addition Formulas for the Inverse Sine and Cosine
Functions for Real Arguments

Lemma 10.1. For real −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1 but not x = y = −1:

sg(x
√

1− y2 + y
√

1− x2) = sg(x+ y) (10.1)

For real −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1:

sg(
√

(1− x2)(1− y2)− xy) = 1− 2[sg(x)sg(y) = 1][x2 + y2 > 1] (10.2)

[|xy| < sg(x)sg(y)
√

(1− x2)(1− y2)] = [sg(x)sg(y) = 1][x2 + y2 < 1] (10.3)

sg(sg(x)sg(y)− xy +
√

(1− x2)(1− y2)) = sg(x)sg(y) + 2[y = −x 6= 0] (10.4)

Proof. For the first identity, when sg(x) = sg(y) the identity is obvious. When sg(x) =
−sg(y), suppose that x is nonnegative and y negative. Then as −y is positive:

[x
√

1− y2 + y
√

1− x2 ≥ 0] = [x
√

1− y2 ≥ −y
√

1− x2]

= [x2(1− y2) ≥ y2(1− x2)] = [x2 ≥ y2] = [x ≥ −y] = [x+ y ≥ 0]
(10.5)

which confirms the first identity, and similarly when x is negative and y nonnegative.
For the second identity, when sg(x) = −sg(y), the argument is always nonnegative, so
then the result is one. When sg(x) = sg(y):

[
√

(1− x2)(1− y2)− xy < 0] = [
√

(1− x2)(1− y2) < xy]

= [(1− x2)(1− y2) < x2y2] = [x2 + y2 > 1]
(10.6)
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which results in the second identity. A similar reasoning results in the third identity. For
the fourth identity, because −1 ≤ xy ≤ 1 it is easily shown that:

− 1 ≤
√

(1− x2)(1− y2)− xy ≤ 1 (10.7)

which is equal to 1 if and only if y = −x, which results in the identity.

Theorem 10.1. For real −1 ≤ x ≤ 1, −1 ≤ y ≤ 1:

arcsin(x) + arcsin(y)

= (1− 2[sg(x)sg(y) = 1][x2 + y2 > 1]) arcsin(x
√

1− y2 + y
√

1− x2)

+ π[sg(x)sg(y) = 1][x2 + y2 > 1]sg(x)

(10.8)

arccos(x) + arccos(y)

= (1− 2[sg(x)sg(y) = 1][x2 + y2 > 1]) arccos(x
√

1− y2 + y
√

1− x2)

+ π(
1

2
+ [sg(x)sg(y) = 1][x2 + y2 > 1](1− sg(x)))

(10.9)

Proof. Application of theorem 4.1 and 9.10:

arcsin(x) + arcsin(y) = arctan(
x
√

1− y2 + y
√

1− x2√
(1− x2)(1− y2)− xy

)

+ π[xy >
√

(1− x2)(1− y2)]sg(x)

(10.10)

Application of theorem 9.9 and:

α/β√
1 + (α/β)2

=
α sg(β)√
α2 + β2

(10.11)

where in this case α2 + β2 = 1, and from lemma 10.1:

[xy >
√

(1− x2)(1− y2)] = [sg(x)sg(y) = 1][x2 + y2 > 1] (10.12)

sg(
√

(1− x2)(1− y2)− xy) = 1− 2[sg(x)sg(y) = 1][x2 + y2 > 1]) (10.13)

yields the first identity. For the second identity, using theorem 8.2:

arccos(x) + arccos(y) = π − (arcsin(x) + arcsin(y))

= π − ((1− 2f(x, y)) arcsin(g(x, y)) + πf(x, y)sg(x))

= π − ((1− 2f(x, y))(
π

2
− arccos(g(x, y))))− πf(x, y)sg(x)

= (1− 2f(x, y)) arccos(g(x, y)) + π(
1

2
+ f(x, y)(1− sg(x)))

(10.14)
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Corollary 10.1. For real −1 ≤ x ≤ 1:

arcsin(
√

1− x2) = arccos(|x|) (10.15)

arccos(
√

1− x2) = arcsin(|x|) (10.16)

Proof. This corollary follows from the previous theorem taking y = 1:

arccos(x) = (1− 2[x > 0]) arccos(
√

1− x2) + π(
π

2
+ [x > 0](1− sg(x)))

= (−sg(x) + 2[x = 0]) arccos(
√

1− x2) +
π

2

= −sg(x) arccos(
√

1− x2) +
π

2

(10.17)

and using theorem 8.2:

arccos(
√

1− x2) = −sg(x)(arccos(x)− π

2
)

= sg(x) arcsin(x) = arcsin(sg(x)x) = arcsin(|x|)
(10.18)

and again using theorem 8.2:

arcsin(
√

1− x2) =
π

2
− arccos(

√
1− x2) =

π

2
− arcsin(|x|)

=
π

2
− (

π

2
− arccos(|x|)) = arccos(|x|)

(10.19)

Theorem 10.2. For real −1 ≤ x ≤ 1, −1 ≤ y ≤ 1:

arcsin(x)+ arcsin(y) = sg(x+ y) arcsin(xy −
√

(1− x2)(1− y2))

+ π(1− [x < 0]− [y < 0] + ([sg(x)sg(y) = −1]− 1

2
)sg(x+ y))

(10.20)

arccos(x)+ arccos(y) = sg(x+ y) arccos(xy −
√

(1− x2)(1− y2))

+ π([x < 0] + [y < 0]− [sg(x)sg(y) = −1]sg(x+ y))
(10.21)

Proof. Application of theorem 4.2 and 9.12:

arccos(x) + arccos(y) = arccot(
xy −

√
(1− x2)(1− y2)

x
√

1− y2 + y
√

1− x2
)

+ π([x < 0] + [y < 0] + [|xy| < sg(x)sg(y)
√

(1− x2)(1− y2)]sg(x+ y))

(10.22)

Application of theorem 9.11 and using the same method as in the previous theorem, and
from lemma 10.1:

[|xy| < sg(x)sg(y)
√

(1− x2)(1− y2)] = [sg(x)sg(y) = 1][x2 + y2 < 1] (10.23)

sg(x
√

1− y2 + y
√

1− x2) = sg(x+ y) (10.24)
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and when y 6= −x:

[
xy −

√
(1− x2)(1− y2)

x
√

1− y2 + y
√

1− x2
< 0]

= [x+ y < 0][xy >
√

(1− x2)(1− y2)] + [x+ y > 0][xy <
√

(1− x2)(1− y2)]

= [x+ y > 0](1− [xy =
√

(1− x2)(1− y2)]) + [xy >
√

(1− x2)(1− y2)]sg(x+ y)

= [x+ y > 0](1− [sg(x)sg(y) = 1][x2 + y2 = 1]) + [sg(x)sg(y) = 1][x2 + y2 > 1]sg(x+ y)

(10.25)

Using [x2 + y2 < 1] = 1− [x2 + y2 = 1]− [x2 + y2 > 1] and using the special case xy = 1
in theorem 4.2 and 1− [sg(x)sg(y) = 1] = [sg(x)sg(y) = −1] yields the theorem, which is
also correct when y = −x.

Theorem 10.3. For real −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, but not x = y = ±1:

arcsin(x) + arcsin(y) = 2 arcsin(
x
√

1− y2 + y
√

1− x2√
2(1− xy +

√
(1− x2)(1− y2))

) (10.26)

arccos(x) + arccos(y) = 2 arccos(
x
√

1− y2 + y
√

1− x2√
2(1− xy +

√
(1− x2)(1− y2))

) (10.27)

When x = y = ±1, 2 arcsin(±1) = ±π, 2 arccos(1) = 0 and 2 arccos(−1) = 2π.

Proof. Application of theorem 4.4 and 9.10:

arcsin(x) + arcsin(y) = 2 arctan(
x
√

1− y2 + y
√

1− x2

1− xy +
√

(1− x2)(1− y2)
) (10.28)

Application of theorem 9.9 yields the first identity. For the second identity, using theorem
8.2:

arccos(x) + arccos(y) = π − (arcsin(x) + arcsin(y)) = π − 2 arcsin(f(x, y))

= π − 2(
π

2
− arccos(f(x, y))) = 2 arccos(f(x, y))

(10.29)

Theorem 10.4. For real −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, but not y = −x 6= 0 or x = y = ±1:

arcsin(x) + arcsin(y)

= 2 sg(x)sg(y) arcsin(
x
√

1− y2 + y
√

1− x2√
2(1− sg(x)sg(y)(xy −

√
(1− x2)(1− y2)))

)

+ π[sg(x)sg(y) = −1]sg(x+ y)

(10.30)
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arccos(x) + arccos(y)

= 2 sg(x)sg(y) arccos(
x
√

1− y2 + y
√

1− x2√
2(1− sg(x)sg(y)(xy −

√
(1− x2)(1− y2)))

)

+ π[sg(x)sg(y) = −1](1 + 2[x+ y < 0])

(10.31)

When y = −x, arcsin(x) + arcsin(−x) = 0 and arccos(x) + arccos(−x) = π.

Proof. Application of theorem 4.6 and 9.12 and lemma 9.1, when not y = −x 6= 0:

arccos(x) + arccos(y) =2 arccot(
x
√

1− y2 + y
√

1− x2

sg(x)sg(y)− xy +
√

(1− x2)(1− y2)
)

+ π([sg(x) = −1] + [sg(y) = −1])

(10.32)

Application of theorem 9.11 and when xy 6= 0: sg(x/y) = sg(x)sg(y) and from lemma
10.1:

sg(x
√

1− y2 + y
√

1− x2) = sg(x+ y) (10.33)

and when not y = −x:

sg(sg(x)sg(y)− xy +
√

(1− x2)(1− y2)) = sg(x)sg(y) (10.34)

and using [sg(x+ y) = 1] = 1− [sg(x+ y) = −1]:

π([sg(x) = −1] + [sg(y) = −1] + 2([sg(x)sg(y) = −1]− [sg(x)sg(y)sg(x+ y) = −1]))

= π[sg(x)sg(y) = −1](1 + 2[sg(x+ y) = −1])

(10.35)

For the first identity, using theorem 8.2: and using sg(x)sg(y) = 1− 2[sg(x)sg(y) = −1]:

arcsin(x) + arcsin(y) = π − (arccos(x) + arccos(y))

= π − (2 sg(x)sg(y) arccos(f(x, y)) + πg(x, y))

= π − (2 sg(x)sg(y)(
π

2
− arcsin(f(x, y))) + πg(x, y))

= 2 sg(x)sg(y) arcsin(f(x, y)) + π(1− sg(x)sg(y)− g(x, y))

(10.36)

With 1− 2[sg(x+ y) = −1] = sg(x+ y) this gives the first identity.

11 Duplication and Bisection Formulas for the Inverse
Tangent, Cotangent, Sine and Cosine Functions

In theorems 4.1, 4.2 and 4.3, taking y = x:
For real x:

2 arctan(x) = arctan(
2x

1− x2
) + π[x2 > 1]sg(x) (11.1)

2 arccot(x) = arccot(
x2 − 1

2x
) + π[x2 < 1]sg(x) (11.2)
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2 arccot(x) = arctan(
2x

x2 − 1
) + π[x2 < 1]sg(x) (11.3)

These formulas also follow from theorem 2.2 when taking y = 0.
In theorems 4.4, 4.5, 4.6 and 4.7, taking y = 0 and for real x: arccot(1/x) = arctan(x):
For real x:

1

2
arctan(x) = arctan(

x

1 +
√

1 + x2
) (11.4)

1

2
arctan(x) = arctan(x+

√
1 + x2)− π

4
(11.5)

1

2
arccot(x) = arccot(x+ sg(x)

√
1 + x2) (11.6)

1

2
arccot(x) = arccot(

x

1 + sg(x)
√

1 + x2
)− π

4
(11.7)

From theorems 9.9, 9.10, 9.11 and 9.12:
For real −1 ≤ x ≤ 1:

arcsin(x) = arctan(
x√

1− x2
) (11.8)

arccos(x) = arccot(
x√

1− x2
) + π[x < 0] (11.9)

For real x:
arctan(x) = arcsin(

x√
1 + x2

) (11.10)

arccot(x) = arccos(
x√

1 + x2
)− π[x < 0] (11.11)

In theorem 10.1 taking y = x:
For real −1 ≤ x ≤ 1:

2 arcsin(x) = sg(1− 2x2) arcsin(2x
√

1− x2) + π[2x2 > 1]sg(x) (11.12)

2 arccos(x) = sg(1− 2x2) arccos(2x
√

1− x2) + π(
1

2
+ [2x2 > 1](1− sg(x))) (11.13)

In theorem 10.2 taking y = x:
For real −1 ≤ x ≤ 1:

2 arcsin(x) = sg(x) arcsin(2x2 − 1) +
π

2
sg(x) (11.14)

2 arccos(x) = sg(x) arccos(2x2 − 1) + 2π[x < 0] (11.15)

In theorem 10.3 taking y = 1:
For real −1 ≤ x ≤ 1:

1

2
arcsin(x) = arcsin(

√
1 + x

2
)− π

4
(11.16)

1

2
arccos(x) = arccos(

√
1 + x

2
) (11.17)
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In theorem 10.3 taking y = 0:
For real −1 ≤ x ≤ 1:

1

2
arcsin(x) = arcsin(

x√
2(1 +

√
1− x2)

)

= sg(x) arcsin(

√
1−
√

1− x2
2

)

(11.18)

1

2
arccos(x) = arccos(

x√
2(1 +

√
1− x2)

)− π

4

= sg(x) arccos(

√
1−
√

1− x2
2

)− π

4
+ π[x < 0]

(11.19)

In theorem 10.4 taking y = 1:
For real −1 ≤ x ≤ 1:

1

2
arcsin(x) = sg(x) arcsin(

√
1 + |x|

2
)− π

4
+
π

2
[x < 0]

= arcsin(
x+ sg(x)√
2(1 + |x|)

)− π

4
+
π

2
[x < 0]

(11.20)

1

2
arccos(x) = sg(x) arccos(

√
1 + |x|

2
) +

π

2
[x < 0]

= arccos(
x+ sg(x)√
2(1 + |x|)

)− π

2
[x < 0]

(11.21)

In theorem 10.4 taking y = 0:
For real −1 ≤ x ≤ 1:

1

2
arcsin(x) = arcsin(

|x|√
2(1 + sg(x)

√
1− x2)

)− π

2
[x < 0]

= arcsin(

√
1− sg(x)

√
1− x2

2
)− π

2
[x < 0]

(11.22)

1

2
arccos(x) = arccos(

|x|√
2(1 + sg(x)

√
1− x2)

)− π

4
+
π

2
[x < 0]

= arccos(

√
1− sg(x)

√
1− x2

2
)− π

4
+
π

2
[x < 0]

(11.23)

Combination of identities (11.16) with (11.20) and (11.17) with (11.21) gives:
For real −1 ≤ x ≤ 1:

arcsin(

√
1 + x

2
) + arcsin(

√
1− x

2
) =

π

2
(11.24)
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arccos(

√
1 + x

2
) + arccos(

√
1− x

2
) =

π

2
(11.25)

With theorem 8.2:
For real −1 ≤ x ≤ 1:

arcsin(

√
1− x

2
) = arccos(

√
1 + x

2
) (11.26)

arcsin(

√
1 + x

2
) = arccos(

√
1− x

2
) (11.27)

which also follows from corollary 10.1 by replacing x with
√

(1 + x)/2.
Combination of identities (11.18) with (11.22) and (11.19) with (11.23) gives:
For real −1 ≤ x ≤ 1 but not x = 0:

arcsin(
x√

2(1 +
√

1− x2)
) + arcsin(

x√
2(1−

√
1− x2)

) =
π

2
sg(x) (11.28)

arccos(
x√

2(1 +
√

1− x2)
) + arccos(

x√
2(1−

√
1− x2)

) =
π

2
sg(x) + 2π[x < 0] (11.29)
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