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THE INVERSES OF BLOCK HANKEL AND BLOCK TOEPLITZ
MATRICES*

GEORGE LABAHNt, DONG KOO CHOIt, AND STAN CABAY

Abstract. A set of new formulae for the inverse of a block Hankel (or block Toeplitz) matrix is given.
The formulae are expressed in terms of certain matrix Pad6 forms, which approximate a matrix power series
associated with the block Hankel matrix.

By using Frobenius-type identities between certain matrix Pad6 forms, the inversion formulae are shown
to generalize the formulae of Gohberg-Heinig and, in the scalar case, the formulae of Gohberg-Semencul
and Gohberg-Krupnik.

The new formulae have the significant advantage of requiring only that the block Hankel matrix itself
be nonsingular. The other formulae require, in addition, that certain submatrices be nonsingular.

Since effective algorithms for computing the required matrix Pad6 forms are available, the formulae
are practical. Indeed, some of the algorithms allow for the efficient calculation of the inverse not only of
the given block Hankel matrix, but also of any nonsingular block principal minor.

Keywords. Hankel matrix, Toeplitz matrix, Pad6 fraction, power series, Pad6 form, Yule-Walker
equation
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1. Introduction. Let

(1.1)
am-n+l am

tt,,,
am am+n-1

be a nonsingular block Hankel matrix with coefficients from the ring of p x p matrices
over a field. The special structure of Hankel matrices has resulted in a number of
closed formulae for the inverse of H,,n.

When p 1 (the scalar case) well-known formulae of Gohberg and Semencul 14]
give H -1 in terms of only the first and last columns of the inverse. Gohberg and
Krupnik [15] give a formula for the inverse in terms of the last two columns of H -1

Ben-Artzi and Shalom [3] give a series of inverse formulae, including one for determin-
ing the inverse once two adjacent columns, along with the last column, of the inverse
are known.

When p > 1, additional problems are encountered in obtaining a closed formula
for the inverse of a block Hankel matrix. When the coefficients of H,,,, come from a
noncommutative algebra there are closed formulae due to Gohberg and Heinig [16].
These are given provided the first and last columns together with the first and last rows
of the inverse are known.

All of the above formulae depend on the ability to perform certain bordering
operations that lend themselves well to matrices with a Hankel structure. However,
these bordering operations require the imposition of certain additional restrictions on
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All results hold, with minor modifications, for block Toeplitz matrices.
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Hm, For the Gohberg-Krupnik formula, the matrix H,._,._ must also be nonsingular;
whereas, for the Gohberg-Semencul and Gohberg-Heinig formulae, the matrix
must be nonsingular. Inverse formulae are then also given for the relevant submatrices.

In the case ofthe scalar Gohberg-Semencul formulae, there is a standard technique
for overcoming the extra requirements, When H,.,. is nonsingular but H,.,._ is singular,
a larger nonsingular Hankel matrix, H,.+, is created. An inverse formula is then
obtained by using the formulae ofGohberg-Semencul for H,.,. and H,.,.+ (cf. Gohberg
and Semencul [14], or Iohvidov [19]). For the nonscalar case, however, there is no
known similar method for overcoming the added restriction in the Gohberg-Heinig
formulae.

The primary contribution of this paper is a set of new closed formulae for H-By avoiding bordering techniques, we require only that H,,, be nonsingular, When
p 1, one of the formulae agrees with that obtained by Choi [12].

The representations forH -1 depend on the concept of a matrix Pad6 form (Labahn
and Cabay [22]) for the matrix polynomial

(1.2) A(z)= E aiz’.
i=0

These matrix Pad6 forms are determined from solutions to equations of a Yule-Walker
type. Central to our approach are commutativity relationships that are shown to exist
between certain matrix Pad6 forms. These commutativity relationships allow us to
overcome the traditional limitations imposed when using bordering techniques. Indeed,
the conditions that we impose are both necessary and sufficient for the existence of
an inverse.

When we add the condition that H,,n_ also be nonsingular, certain Frobenius-type
identities for matrix Pad6 forms are used to show that our formulae yield the formulae
of Gohberg and Heinig. On the other hand, when we add the condition that H,,_,,_
be nonsingular, a different set of Frobenius-type identities applied to our results yields
inverse formulae, which in the scalar case corresponds to the Gohberg-Krupnik
formulae. Finally, using somewhat different techniques, we show how our inverse
formulae provide natural generalizations of the results of Ben-Artzi and Shalom to the
nonscalar case.

A major advantage of a closed inverse formula is that it allows for efficient
algorithms to calculate the inverses of Hankel matrices. This efficiency comes both in
the cost complexity of calculating the inverse and also in the amount of storage required
for the final result.

When our inverse formulae are used in conjunction with the MPADE algorithm
of Labahn and Cabay [22], we obtain an algorithm for calculating H- This algorithm
has many advantages for our situation. It is successful without any preconditions
placed on the original power series. As a by-product, we obtain inverses for all the
principal minors of H.,. that are nonsingular. Also, it is iterative on n, allowing cost
savings in implementation. The complexity of the MPADE algorithm is generically
O(p3n2), although there are pathological cases where it can be as high as O(p3n 3)
(for example, when all the principal minors of H,. are singular). This compares with
other nonscalar methods (cf. Akaike [1], Watson [31], Rissanen [27], Bose and Basu
[5]) that are also of complexity O(p3n:’), but that succeed only when all principal
minors are nonsingular, in the scalar case, however, the cost complexity of MPADE
is O(n), regardless of the types of singularities found in H,.,.. This compares favorably
with the method described by Rissanen [28] that is of complexity O(n 2) and succeeds
in the degenerate case. The O(n) methods of Trench [30], Watson [31], Zohar [33],
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and Kailath, Kung, and Morf [20], on the other hand, fail whenever a principal minor
of H,,.n is singular:

When fast polynomial multiplication methods are available, in the scalar case,
the required Pad6 forms can be calculated by the off-diagonal algorithm of Cabay and
Choi [11] with a complexity of O(n log2 n). The algorithm is also iterative on n and
produces the inverses of some of the nonsingular principal minors as a bi-product. As
a result of this, and some other factors, the performance is better than the O(n log n)
method of Brent, Gustavson, and Yun [6] and Sugiyama [29], both of which also
succeed in the degenerate case. The O(n log2 n) methods of Bitmead and Anderson
[4], Ammar and Gragg [2], and de Hoog [18], on the other hand, succeed only in the
nondegenerate case.

In the nonscalar case, fast algorithms can also be used to calculate the required
Pad6 forms, but under some restrictions. If the block matrix is positive definite (or,
more generally, if the associated power series is nearly-normal (cf. [21])), for example,
and fast polynomial multiplication is allowed, then the inverse formulae can be
calculated using the fast algorithm of Labahn [21] with complexity O(p3" n log n).
This algorithm is also iterative and calculates the inverses of some of the nonsingular
principal minors as a bi-product. The algorithm of Bitmead and Anderson, generalized
to the nonscalar case using the formulae of Gohberg and Heinig, is also of complexity
O(p3" n log2 n), but works only in the normal case.

For purposes of presentation, we adopt the following notation. We let D denote
the noncommutative ring of p p matrices over a field.2 The domain of formal power
series with coefficients over D and indeterminate z is denoted by D[[z]]. For any
A(z) D[[z]], A(z) is formally represented by

(1.3) A(z)= aiZi,
i=0

where the coefficients ai 6 D are always written in lower case. The domain of poly-
nomials (finite power series) over D with indeterminant z is denoted by D[z]. Any
polynomial P,,(z) D[z] is represented formally by

(1.4) P (z) piz i,
i=0

where again the coefficients pi D are written in lower case. The degree of P,,(z) (i.e.,
the largest such that pi 0) is denoted by O(P,,(z)).

2. Matrix Pad6 forms. The inversion formulae derived in 3 and 4 depend on
the concept of a matrix Pad6 form for a matrix power series. This is a multidimensional
generalization of scalar Pad6 forms (cf. Gragg [17]). Let

(2.1) A(z)= 2 aiz’ D[[z]]
i=0

be a formal power series with coefficients from the ring D of p p matrices over some
field. For nonnegative integers rn and n, let

(2.2) U,(z)= uiz i, Vn(z)= viz D[z]
=0 =0

be p p matrix polynomials.

All the results of this paper can be presented in the more general setting where D is an arbitrary
noncommutative algebra.
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DEFINITION 2.1 (Labahn and Cabay [22]). The triple (Urn(z), Vn(z), W(z)) is
defined to be a Right Matrix Pad Form (RMPFo) of type (m, n) for the power series
a(z) if

(I) 0(Urn(z)) <= m, O(Vn(z)) <= n,
(II) a(z) V,(z)- Urn(z) z"+"+ W(z), where W(z) D[[z]], and
(III) The columns of V,(z) are linearly independent over the field.

The matrices Urn(z), V,(z), and W(z) are called the right numerator, denominator, and
residual (all of type (m, n)), respectively. I2

There is an equivalent definition for a left matrix Pad6 form (LMPFo). In condition
(II), multiplication on the right by V,,(z) is replaced by multiplication on the left. In
addition, condition (III) is replaced by

(III) the rows of V,,(z) are linearly independent over the field.
Condition (II) can be written as follows:

(2.3) I a_,am:_ ..... amaOl IVnlIUOIvo Um

and

(2.4)
am am+l am+n Do "0

Here ai 0 for < 0. The matrix polynomial V,(z) can be determined by solving (2.4),
and then U,,(z) can be obtained from (2.3).

THEOREM 2.2 (Existence of Matrix Pad6 Forms). For any matrix power series A(z)
andfor any pair of nonnegative integers m, n), there exists an RMPFo and an LMPFo
of type m, n ).

Proof The result follows from (2.3,) and (2.4) by comparing the number of
equations with the number of unknowns. For details see [22].

To distinguish between matrix Pad6 forms of different types, we introduce the
following notation. For a given pair of positive integers (m,n), the triples
(Urn(Z), Vn(z), W(z)) and (U*m(Z), V*,(z), W*(z)) denote an RMPFo and an LMPFo,
respectively, of type (m, n) for A(z). For the same (m, n), an RMPFo and an LMPFo
oftype (m 1, n 1) for A(z) are represented, respectively, by (P,,_t(z), Q,_(z), R(z))
and (P*_(z), Q*,_(z),R*(z)). For these Pad6 forms, collectively, condition (II)
becomes

(2.5)

(2.6)

(2.7)
(2.8)

A(z) Vn(z)- Urn(Z)= Z
m+"+ W(Z),

V*,(z)A(z)- U*m(Z)= z"+"+1" W*(z),
a(z)Q,_(z)- P,,,_(z) z"+"- R(z),

Q*_(z)a(z)- P*m-(Z) Z
m+"-’ R*(z).

In 3, in the case that Hm, is nonsingular, the inverse is given in terms of these four
matrix Pad6 forms.

THEOREM 2.3. For a pair of positive integers (m, n), the following statements are
equivalent:

(2.9) det (Hm,,) # 0,

When the leading term Vo is nonsingular, then in [22] a RMPFo is called a Right Matrix Pad6 Fraction
(RMPFr).



102 GEORGE LABAHN, DONG KOO CHOI, AND STAN CABAY

(2.10) det (ro) # 0 and det (Vo) 0,

(2.11) det (ro*) # 0 and det (Vo*) 0.

Proof. That (2.9) implies (2.10) and (2.9) implies (2.11) was proved in [22], and
so we show only the converse here. To see that (2.10) implies (2.9), let X (x, , xn)
be a vector of length np and suppose that

(2.12) X. Hm, O.

We shall show that X =0. We accomplish this by showing that (2.12) implies that
x. 0 and

(2.13) (0, x, ,..., x._,) H.,,. 0.

By repeated application of this property, it then follows that x._ x =0, and
so X=0,

First observe that equating coefficients of z , for rn + 1-<_ i-< rn + n, in (2.5) yields

(2.14) H.,,. Vo
1)1 am+n

where Vo is invertible since we are assuming statement (2.10). Similarly, equating
coefficients of z i, for rn -_ =< m + n 1, in (2.7) yields

0

(2.15) H,... t
qo

ro

where, by assumption, ro is invertible. From (2.12) and (2.15), it follows that

0

(2.16) x." ro X. ) X. H,.,. 0.

qo
ro

Since ro is invertible, it then follows that x, 0.
Having shown that x, =0, (2.12) then yields

(2.17) (xl,""", x._) =0.

am am+n-2

But, from (2.12) and (2.14), we have

(2.18) (x,,’.’, x._,, 0)
am+n

Since vo is invertible, (2.18) implies that

(2.19) (x,, ,Xn_l)

am+n-I

Vo -X. Hm,. =0.
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Equations (2.17) and (2.19) imply that

(2.20) (xl," ",Xn-)"
L
am-n+2. am+l.

---0,
a am+n_

which is equivalent to (2.13).
Thus, we have shown that (2.10) implies (2.9). A similar argument shows that

(2.11) implies (2.9). [3

Theorem 2.3 has important computational significance since the singularity of
H,,,n can be detected simply by recognizing a singular ro or a singular Vo. If both ro
and Vo are nonsingular, then we have Theorem 2.4.

THEOREM 2.4. If det (H,,,,) # 0, then the matrix Padforms identified by (2.5)-(2.8)
are unique, except for the specification of the nonsingular matrices Vo, V*o, to, and r*o.

Proof We refer the reader to Theorems 3.2 and 3.3 in [22] for a detailed proof
of this result. [3

As a consequence of Theorem 2.4, it can be assumed without loss of generality that

(2.21) Vo Vo* ro ro* L

This nonrestrictive assumption simplifies the presentation of subsequent results.
The key relationship between matrix Pad6 forms that enables the presentation of

the inverse of H,,,, in 3 and 4, is given by Lemma 2.5.
LEMMA 2.5. Let det (Hm.,) # O. Then the matrix Paddforms identified by (2.5)-(2.8)

and normalized according to (2.21) satisfy

(2.22)
V*n(Z) U*,,,(z) V,(z)

(2.23) [ U.,(z)
V.(z) Pm_,(z)].[Q*._,(z)Q,_l(Z) -v*,(z)

R*(z)
(2.24) _z2W,(z) -Q.*_,(z)] [ V.(z)

v*.(z) zW(z)

Q,_,(z) 0

-P*,*,-l(Z)] =z,,+,_[I 0]U*,,,(z) 0 I’

R(z) I

V*,(z) I
[ V.(z) Q,,_,(z)] [ R*(z)

(2.25) Lz2 w(z) R(z) -z2 W*(z)

Proof Multiplying (2.5) on the left by Q*_(z) and (2.8) on the right by V,(z),
and subtracting the first from the second, we obtain

Q*_,(z) u,,,(z) P_,(z) Vn(z) z "-’ (R*(z)V.(z) 2 .m+
--Z Qn_I(Z) W(z))

(2.26) z"+"- ro* Vo
zm+n-lL

In (2.26), we have used the normalizing condition (2.21) and the fact that the left-hand
side, and consequently the right-hand side, is a matrix polynomial of degree at most
re+n-1.

Multiplying (2.5) on the left by V*(z) and (2.6) on the right by V,(z), and
subtracting the second from the first, we obtain

v*._,(z). U(z) + u*(z). V.(z) z+"+’. (v*.(z) W(z)- W*(z) V.(z))
(2.27)

--0.
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In (2.27), the last equality is true because the left-hand side, and consequently the
right-hand side, is a matrix polynomial of degree at most m + n.

In a similar fashion, (2.7), (2.8), and (2.21) yield

Q*_,(z)P,,_,(z)- P*,,_,(z)Q,_,(z)= zre+n-’. (Q*,_,(z)R(z)- R*(z)Q,_,(z))
(2.28)

=0;

whereas, (2.6), (2.7), and (2.21) give

-v*.(z)Pm_,(z)+ ty*(z)O._,(z)= zm+"- (V*.(z)R(z)-zW*(z)O._,)
(2.29)

zm+n-l I.

Equations (2.26)-(2.29) together comprise (2.22). Equation (2.23) follows directly
from (2.22), since matrix inverses are two sided.

Equations (2.26) also gives

(2.30) zm+"-’ (R*(z) V,(z)- zZO*,_,(z) W(z)) zm+"-’ I,
from which we obtain

(2.31) R*(z) V,(z)- zZO*_,(z) W(z) I.

Similarly, from (2.27), we obtain

(2.32) V*(z) W(z)- W*(z) V,(z)=0.
From (2.28), we obtain

(2.33) O*n_,(z)R(z) R*(z)O,_,(z) O,
and (2.29) gives

(2.34) V*(z)R(z)-z2W*(z)Q,_,= I.

Equations (2.31)-(2.34) comprise (2.24). As before, (2.25) follows from (2.24), since
matrix inverses are two-sided. El

3. The off-diagonal inverse formula. The main result of this paper is Theorem 3.1.
TH.ORFM 3.1. Let Hm, be the block Hankel matrix (1.1). If there are RMPFos

and LMPFos of type rn 1, n 1) and m, n) for A( z) satisfying the normalizing
condition (2.21), then Hm, is nonsingular with inverse

(3.1)

or, equivalently,

(3.2)

qo* 0

Proof Using

Um(z)O*n_,(z)- Pm-,(Z) V*(z)
which is from (2.23), we can equate coefficients of Z , m < < m+ n-1, to obtain

(3.3) IU""’U’-n+ll... Um: Iq*n_ 1.. .... q.,q*Ol Pm--l" IV,..... v,V,11": =I.
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Similarly,

< (z)O*._,() O_,(z) v*. (z) o,
also from (2.23), yields

(3.4) .." .. .-"
)n Vl q*-l q,-1 qo

Now, from (2.7), we obtain

Pro-1 Pm-n
(3.5) Hm ," ."

q0

0 Pro-1

Hm_n,
qn-1 qo

Observe that, for 1-< i, j<-n, the (i, j) component in (3.5) is obtained by equating
coefficients of z re+i-j-1 in (2.7). Similarly, (2.5) yields

l)n )0 l"tm "Um + )n

(3.6) Hm, ." .., -Hm_n,n .."
DO Um Dn D

(3.7)

Combining (3.5) and (3.6) and using (3.3) and (3.4), it then follows that

Vn--1 VO q*,-1 q*o qn-2 qo 0
v*.... V*l

Hm, ." .. ." ".

VO q*n-1
qo ",
0

v,,

qn-1 qo V*n

=L

Thus, H,,, is nonsingular with the inverse given by (3,1).
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The second formula (3.2) for the inverse is proved using (2.6), (2.8), and the
second column of (2.23). V1

Remark 1. In the scalar case, (3.1) was first obtained by Choi [12].
Remark 2. The assumptions of Theorem 3.1 can be equivalently replaced by the

requirement that we obtain solutions to

(3.8)

(3.9)

(3.1o)

(3.11)

Hm,n" [qn-1 ,’’’, q0]’= [0,..., 0, I]’,

[qn*-I ,’’’, qo*]" Hm, --[0,’’’, 0, I],

Hm,n" [vn, vii t-- -[am+,,""", am+n-,,

[v*,""", vl*]" Hm, =-[am+,,’’’, am+n-l,

where am+n can be any pp matrix. EquatiOns (3.10) and (3.11) are block versions
of the Yule-Walker equations.

4. The antidiagonal inverse formula. Theorem 3.1 provides inverse formulae for
the block Hankel matrix Hm,, in terms of RMPFo and LMPFo of type (m- 1, n- 1)
and (m, n) for the associated matrix polynomial A(z). There are some algorithms (cf.
[6], [24], [29]) that calculate Pad6 forms along an antidiagonal, rather than along an
off-diagonal path of the Pad6 table. For this reason, it is useful to provide inverse
formulae in terms of RMPFos and LMPFos of type (m-1, n) and (m, n-1) for A(z).

Let (Era(z), Fn_l(z), G(z)) and (E*m(Z), Fn*_l(Z), G*(z)) be an RMPFo and an
LMPFo, respectively, of type (m, n 1) for A(z). Also, let (Bm_l(Z), Cn(z), D(z)) and
(B*m_i(z), C*.(z), D*(z)) be an RMPFo and an LMPFo, respectively, of type (m 1, n)
for A(z). Then, the following equations are satisfied:

(4.1) A(z)F,_I(z)-Em(Z)= zm+nG(z),

(4.2) F*_l(z)A(z)- E*m(Z) zm+nG*(2),

(4.3) A(z)C,(z)- Bm_l(Z zm+"D(z),

(4.4) C*,(z)A(z)- Bm_l(Z) zm+nD*(z).

COROLLARY 4.1. Let Hm, be the block Hankel matrix (1.1). Then the following are
equivalent:

(4.5) det (H.,..) 0,

(4.6) det(em)0 and det(c,)0,

(4.7) det (e*) 0 and det (c.*) 0.

If any (and therefore all) of (4.5), (4.6), or (4.7) hold, then the inverse is given by

(4.8)

or, equivalently,

(4.9) H-’

fn*-I f*

1 o

fLi
0
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where we have normalized the Pad6 forms so that

(4.10) em=e=Cn=C*=L
Proof Let a--a2,,-i, for 0 -< i=< m + n, and define a truncated power series

m+nAe.(z)=i= o az. Observe that, if

am-n+l am
(4 11) He.m,n

a am+n_

then

(4.12)

where

He. J"m,n

Equating coefficients of z , for rn < < m + n 1, in (4.1), we obtain

1 i
fn-I

(4.13) H,,.

From (4.12) and (4.13), it then follows that

(4.14) e./-/,,,, )
f. em

Thus,

(4.15) Q._(z)= 2 f.-+ zi
i=0

is a right denominator of type (m-1, n-1) for Ae.(z). Similarly, (4.2) yields

[fo* fL]H =[0,"" 0, e*],(4.16)

and so
n-1

(4.17) Q.*_(z)= E f*n-l+ig
i=0

is a left denominator of type (m-1, n-1) for
Next, from (4.3), we obtain

(4.18) H,.,.
Co am

and so (4.12) then gives

(4.19)
Co am+l

H e.

Cn-1 am+n

Cn

Cg
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Thus,

(4.20) V,(z)= c,_iz
i=0

is a right denominator of type (m, n) for A(z). Similarly, (4.4) can be used to obtain

(4.21) [Co*," ,c,* 1]H =c*,[am,n m+l a m+n],

and so

(4.22) V,*(z)= c*,_,z’
i=0

is a left denominator of type (m, n) for A(z) Since det (H )#0 if and only if
det (Hm,n)O the equivalence of (4.5)-(4.7) now follows from the equivalence of
(2.9)-(2.11).

To prove (4.8), normalize according to (4.10) and substitute (4.15), (4.17), (4.20),
and (4.22) into (3.1) to obtain

(4.23)
C C fo f*.__,

c, fo*

By using (4.12), (4.8) follows immediately from (4.23). In a similar fashion, (4.9) can
be obtained using (3.2). [3

5. The Gohberg-Heinig inverse formulae. In this and the next section, we compare
our inverse formulae (3.1) and (3.2) with other similar well-known formulae. In terms
of matrix Pad6 forms of type (m 1, n 1) and (m, n- 1), the inverse of Hm,, is given
by Corollary 5.1.

COROLLARY 5.1. Let the matrix Padd forms identified by (2.7), (2.8), (4.1), and
(4.2) be given. Then the following statements are equivalent:

(5.1) det(Hm,,_l)#0 and det(Hm,,)#0,

(5.2) det (ro) # 0 and det (fo) # 0,

(5.3) det (r*o) # 0 and det (fo*) -# 0.

In addition, ifany (and therefore all) ofconditions (5.1), (5.2), or (5.3) are satisfied, then

(5.4)

H-I=m,n

fo qn-1

where the Paddforms have been normalized by

(5.5) ro= r*o fo=fo* I.
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Proof We first show that (5.1) implies (5.2). Since det (Hm,,)# 0, Theorem 2.3
implies that det (ro) # 0. Since det (Hm,,-1) 0, Theorem 2.3 also implies that det (fo) #
0. Therefore (5.1) implies (5.2). In a similar fashion, (5.1) implies (5.3).

To show that (5.2) implies (5.1), let

(5.6) Urn(z) E,.(z) z. Pm_l(z)r-l go,

(5.7) V.(z) F._I(z)- z" Q._l(z)rl go

Then, 0( Um (z)) <- rn and 0( V. (z)) <= n, Also,

A(z) V(z)- Urn(Z) {A(z)F._I(Z)- Era(z)}- z{A(,z)Q._l(z) Pm_l(z)}rl go

(5.8) 2m+n{G(2)- R(z)rl go}

=z"+"+W(z)
where

(5.9) W(Z) z-l{ G(z) R(z)r-l go} E D[[z]].

Finally, the columns of V,(z) are linearly independent since from (5.7) vo=fo, and
by assumption fo is nonsingular. Thus, (Urn(Z), V,(z), W(z)) is an RMPFo of type
(m, n) for A(z), satisfying det (Vo)#0. From Theorem 2.3, it follows that Hm,, is
nonsingular since both det (ro)# 0 and det (Vo)# 0. To see that Hm,,-1 is also non-
singular, observe that

(5.10) I I
I f.-1 am-n+1"’" am-1 e.

i
am-n+l am

". am-n+2 am

am "’’am+n-1 O" 0 fo am am+n-2

where the last column is determined by equating coefficients of z i, for rn < <= rn + n 1
in (4.1). Thus, det (Hm,) 0 and det (fo),# 0 implies that det (Hm..-l) O. Thus, (5.2)
implies (5.1).

In a similar fashion, by defining

(5.11) U*m(Z) E*m(Z)-zg*or*o-lp*m_l(Z),

(5.12) v*.(z) .*_,(z) O._,(z),

it can be shown that (5.3) implies (5.1).
To obtain the inverse formula, substitution of (5.6), (5.7), (5.11), and (5.12), after

normalization by (5.5), into equation (3.1) gives

H-l= ...
m,t’l o Oo oO

"*-1
qo
0

(5.13)
qn-2 qo 0

+ (go-g*o) ".qo
0

But, (4.1) and (4.2) imply that

(5.14) E*m(z)F._l(Z) F*._l(z)Em(z) zm+"{F*._l(Z)G(z) O*(z)F._l(z)}.
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Consequently,

(.)

and, in particular,

F*._,(z)G(z) G*(z)V._(z) 0

(5.16) go= g*o

Thus, (5.13) is exactly (5.4), since the last product cancels.
Remark 1. Corollary 5.1 can be proved directly from (2.7), (2.8), (4.1), and (4.2).

Indeed, using the same arguments as in Lemma 2.5, we can obtain

[ r*o-Q*,_l(Z) -r*o-lp*_(z)] [ E,,(z)f P,,_,(z)r] [ 0](5.17) ,-1, E*m(Z) F,_(z)f Q,_,(z)r I-f( Frl-1(7 fo*-

and the commutative relationship

[E,,,(z)f P,,-l(z)r-dl]["*-It3*."0 X,n_ Z) r*-’’*]o/"m--l(Z) re+n- [I 0](5.18) F,_(z)f O,_l(z)r -J*-l,_ (z) fo*-E*(z)
z

0 I

Consequently, we can normalize our Pad6 forms according to (5.5) and the formulae
will follow in a fashion similar to the proof of Theorem 3.1.

The actual proof, in addition to being simpler, serves to illustrate the existence
of Frobenius-type relationships (generalized from the scalar case (cf. Gragg [17]) to
the matrix case) between matrix Pad6 forms of types (m, n), (m, n- 1), and (m- 1,
n- 1). These relationships, which exist under the assumptions of Corollary 5.1, are
given by (5.6), (5.7), (5.11), and (5.12) (see also [7]-[9]).

Remark 2. From (5.17), it follows from equating coefficients of degree rn + n- 1
that

(5.19) e*mq,-1 fo* ro
and

(5.20) q*,_le,, r*ofo.
Thus, if the conditions of Corollary 5.1 are satisfied, then e*,,, q,-1, q,*-l, and e,, are
all nonsingular. Normalizing (2.7), (2.8), (4.1), and (4.2) by setting

(5.21) ro= r*o em e*= I,

rather than by (5.5), we obtain

(5.22) H,,.,. [qn-1,’’’, qo]’= [0,""", 0, I]’,

(5.23) [q,*- "’’,q0*]’H,,, =[0,’’" 0, I],1, ,l’l

(5.24) H,,,,,. [f,_,,... ,fo]’= [I, 0,..., 0]’,

(5.25) [fn*-l,""" ,fo*] H,,. [I, 0,..., 0].

These conditions, together with the requirement that det (q,_) # 0 and det (q,*_) # 0,
are exactly the conditions given by Gohberg and Heinig [16] in deriving the inverse
formula (5.4). Because of the different normalization requirement, their formula

#-1includes the term q:i between the first two matrices and q,_ between the last two
matrices. This is permissible because of (5.19)-(5.21). In the scalar case, this is the
well-known formula of Gohberg and Semencul [14].
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Remark 3. The assumptions of Corollary 5.1, which are equivalent to conditions
(5.22)-(5.25) of Gohberg and Heinig, are far more restrictive than the assumptions of
Theorem 3.1, which are equivalent to (3.8), (3.9) and the block Yule-Walker equations
(3.10) and (3.11). The formula of Gohberg and Heinig has the additional requirement
that q,-1 and q,*_l be nonsingular (which is equivalent to H,,,n- being nonsingular).
Thus, for example, (3.1) can be used to obtain the inverse of

(5.26) 82,3 0 0 I
0 I 0

whereas, (5.4) cannot be applied.
Remark 4. Since the assumptions of Corollary 5.1 require that not only H,,,n but

also H,,,,-1 be nonsingular, it should be possible to express the inverse of H,,,,_ in
closed form as well. Indeed, by deriving Frobenius-type identities similar to (5.6),
(5.7), (5.11), and (5.12) (cf. Bultheel [7]-[9]), the matrix Pad6 form oftype (m 1, n -2)
can be expressed in terms of matrix Pad6 forms of type (m, n- 1) and (m- 1, n- 1).
Then, substituting the Pad6 forms of type (m, n 1) and (m- 1, n -2) into (3.1) (with
n replaced by n- 1) and simplifying, we obtain as another corollary to Theorem 3.1
the second inverse formula of Gohberg and Heinig, namely,

(5,27) g-1

fo q,*-i qo f,*-

Here, we have again normalized according to (5.5). We also note that the Gohberg-
Heinig formulae given here are both determined from (3.1). Additional formulae, based
on (3.2) rather than (3.1), can also be derived.

Remark 5. Gohberg and Heinig prove their formulae with the coefficients over a
noncommutative algebra. Our formulae and results also carry over with minor altera-
tions. In particular, Theorem 2.3 and Corollary 5.1 would both require that (2.9) be
equivalent to (2.10) and (2.11), simultaneously.

6. The inverse formulae of Gohberg-Krupnik. Let (L,,_2(z), M-2(z), N(z)) and
(L*,,_2(z), M*,_2(z), N*(z)) be an RMPFo and an LMPFo, respectively, of type (m-
2, n- 2) for A(z). These matrix Pad6 forms then satisfy

(6.1) A(z)M._z(z)-L.,_(z)= z’+"-3N(z),

(6.2) M*_(z)A(z)- L*.,_(z) z’+"-3N*(z).

The inverse of H.,,. in terms of matrix Pad6 forms of types (m -2, n -2) and (m 1, n
1) is given by Corollary 6.1.

COROLLARY 6.1. Let the matrix Pad forms identified by (2.7), (2.8), (6.1), and
(6.2) be given. Then, the following statements are equivalent:

(6.3) det (H.,.) 0

(6.4) det (no) 0,

(6.5) det (no*) 0,

and det (H,,_,,_1) # 0,

det (qo) 0, and det (ro) 0,

det(qo*)0 and det(ro*)0.

In addition, ifany (and therefore all) of the conditions (6.3), (6.4), or (6.5) are satisfied,



112 GEORGE LABAHN, DONG KOO CHOI, AND STAN CABAY

then

qn.-. qo

iom,n

m*n- m* 1q-d ,
m’n-2

mn-3 mo 0 0

(6.6)

[!o
q*-1

iq -ll+ q-l[q*-l,’’’, q*o].
qo

Here, the matrix Paddforms have been normalized so that4

(6.7) no no* ro ro* I.

Proof To prove that (6.3) is equivalent to (6.4), it follows directly from Theorem
2.3 that det (H,,,,) # 0 implies that det (ro) # 0, while det (Hm-l,n-1) 0 implies that
det (no) 0 and det (qo) # 0. Conversely, suppose that (6.4) holds. Again, from Theorem
2.3, we have that det (no)# 0 and det (qo) 0 implies det (Hm_l,n_l)7 O. But, then

am-n+l am
(6.8)

I q am_ "’’am+n_2am am+n-1
0 0 qo am am+n-1 0

together with the assumption that det (ro)# 0, implies that also det (Hm,n)7 O.
A similar argument shows that (6.3) is equivalent to (6.5).
To prove (6.6), we first establish some identities. Observe that, under the normali-

zation condition (6.7), (Lm.2(z), Mn_2(z), U(z)), (L*m_2(z), M*_2(z), N*(z)),
--1 --1(Pm-l(z)q 1, Q,_(z)qg 1, g(z)qo ), and (qo*- P_l(z), q*o Q*_l(z), q*o- g*(z))

satisfy the conditions of Lemma 2.5, with (m, n) replaced by (m- 1, n- 1). Here, (2.25)
becomes

(6.9) [On-(z)ql Mn-2(z)][ N*(z) -M*_2(z) ]=[I O]z2R(z)q N(z) -zq*o-R*(z) :--1qo Qn-l(z) 0 I

and, in particular,

(6.10) {R(z)ql}N*(z) N(z){q*o-lR*(z)}.

Note that the constant and linear terms in (6.10) yield

(6.11) qo q*o

and

(6.12) q*o-l(n*l r*l (n- rl)q-1.

Rather than normalizing with ro ro* 1, it is equally proper to normalize with qo q 1.
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For later purposes, also observe the identity

q-I qo q*,,- q*o

qo q*-

(6.13)

q[q*-l,’" ",q*o],
qo

which follows using (6.11).
Next, we proceed as in Corollary 5.1 by constructing right and left matrix Pad6

forms of type (m, n) for A(z). Set

(6.14) Urn(z {Pm_l(2)[I -- (tl rl)z Lm_2tz)zZ}qg

and

(6.15) Vn(z) {Q,_,(z)[I + (n,- r,)z]- mn_2(z)z2}q

Then, Urn(z) and V,(z) provide an RMPFo of type (rn, n) for A(z). To see this, note
that the degree requirements are clearly satisfied. In addition, the columns of Vn(z)
are linearly independent since, in (6.15), Vo =/. Finally,

A(z) Vn(z)- Urn(Z)= {[a(z)Qn_l(Z)- Pm-l(Z)][I -t-(n,- r,)z]

-1z2[A(z)M-2(z)- Lm-2(z)]}qo

(6.16) {z re+n-1 R(z)[ I + n rl)2 Z
re+n-1 N(z)}q-1

,,+,-, }}q-=z {(ro no)+(r+ro(nl-r)-n,)z+z2{
m+n+l --1=z {’" "}qo

since no ro L
Similarly, it can be shown that

(6.17) U*m( Z) q*o -’ {[ I + n* r*l )Z]P*m-,( z) L_z( Z)z2},

(6.18) V* z) q*o -’{[ I + (n’l- r*l )Z]Q*_l( Z) M*,_z(Z)Z2}

provides an LMPFo of type (m, n) for A(z).
Note that (6.15) and (6.18), respectively, yield

v,,_ Vo q,,-1 qo.. .. q+
qO

Vo qo
0

(6.19)
mo 0 0

o

/ o .." qo

k 0

qo 0

(n-r)q’
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and

(6.20)

q*-, q*t

q*o -’ "’"
0

m*n-2 m* 1m’n-2
where m*_ =0. Substituting (6.19) and (6.20) into (3.1), and rearranging terms, we
obtain

(6.21)

But, using (6.12) and (6.13), it is easy to see that (6.21) is exactly (6.6). V!

Remark 1. The inverse formula (6.6) can also be determined by bordering tech-
niques. Indeed, (6.8) can be further manipulated to obtain

m,n 0 0
+ q-l[qn*-,’"", qo*].

qo

Equation (3 1) applied to H- along with simplification using Lemma 2.5 convertsm--l,n--1

(6.22) to (6.6).
The present proof takes its cue from the approach of 4 and 5. In each case,

the inverse formula is obtained from (3.1) using Frobenius-type identities for matrix
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Pad6 forms The Frobenius-type identities (6.14), (6.15), (6.17), and (6.18) used here

can be found in [8] (see also [22]).
Remark 2. Note that, if the matrix Pad6 forms (2.7), (2.8), (6.1), and (6.2) satisfy

the conditions of Corollary 6.1 and are normalized according to (6.7), then
0 0

(6.23) H,,,," .n n=

I qo 0

nl

Thus the second last column of H -1 is a combination of the coefficients of mn_2(Z
and Q._(z). Similarly, we can obtain the second last row of H-,... as a combination
of the coefficients of M.*_2(z) and Q*._(z).

Conversely, suppose X [x._, , Xo]’ and Q [q._, , qo]’, respectively,
represent the second last and last block columns, of the inverse of H.,... Then, if
det (qo)# 0, we have that

0

Xn-1 qn-1

(6.24) H,,,, qxo 0

Xo qo I

qfflX0
so that

0

(6.25) H,,_,,,_ qxo
Xl q

This implies that

(6.26) M,_2(z) z-{X(z)- Q,,_(z)qxo}
is an RMPFo denominator of type (rn- 2, n- 2) for A(z). Similarly, we can obtain an
LMPFo denominator of type (m-2, n-2) when we have the last and second last
block rows of the inverse of Hm,,. Then substitution into (6.6) yields

X* Xo*
o

n-I

H- ... q
Oo"" qo

0

(6.27)

[Xn,_2 o.X0 0

qn.-2 q0 0

o
oO qd’(X*o Xo)q*o -1

q*-, q*o
Oo

qn-1
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q-[q*.-1 *+ ,’" ",qo];
qo

whereas, substitution into (3.1) gives
q,,-2" "qo x*_" "Xl Xn_ 2" "Xo q*-" q*

(6.28) H’_,,,_- ." q qo*-
qo x*_ Xo

Remark 3. In the scalar case, if X=[x,_,,...,Xo]’ and Q=[q,_,...,qo]’
represent the second last and last columns of the inverse of H,,,, respectively, and
qo 0, then (6.27) and (6.28) reduce to

qn.-2 qo

,., q;-

(6.29)
Xn-2 "XO

X0
0

and

Hnl_l,n_l =ql ."

qo x_

.." x "..
Xo q_

These are the original formulae of Gohberg and Krupnik [15].
Remark 4. Following the approach of 4, we can also obtain conditions and

inverse formulae for Hm-l,.- and H,.,. when the first and second block column, along
with the first and second block row, of the inverse of Hm, is given (cf. Iohvidov 19]).
Here, conditions and inverse formulae for Hm-l,.-1 and H,. are stated in terms of
matrix Pad6 forms of type (m, n- 1) and (m + 1, n- 2). Additional formulae, based
on (3.2) rather than (3.1), can also be given.

7. The inverse formulae of Ben-Artzi and Shalom. As mentioned in 3, the assump-
tions of Theorem 3.1 can be equivalently replaced by the requirement that we obtain
solutions to

(7.1) H,.. [q.-1,’", qo]’= [0,..., 0, I]’,
(7.2) [q_ ,., ,qX] m [0, ,0, I]

(7.3) Hm.." Iv.,’", v]’=-Jam+l,""", a+._, am+.]’,
(7.4) [v,’’’, v]" H,. =-[a+,..., am+._, am+.]

where a+. can be any p x p matrix. It is possible to alter the right-hand sides of (7.3)
and (7.4) and still obtain inverse formulae for H,.. In particular, we may replace the
right-hand sides by linear combinations of the rows and columns of H+l,..
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LEMMA 7.1. Let Hm,. be the block Hankel matrix (1.1). Suppose there are solutions
to (7.1) and (7.2) along with solutions to

(7.5) Hm,,, [x.-1,’"", Xo]’= Hm+,,. [y.-,,""’, Yo]’,
and

(7.6) [x*.-1 ,’" ", X*o H.,,. [y*._ ,’’ ", Y*o Hm+l,n,
with Yo and y*o nonsingular. Then Hm.. is nonsingular with inverse

(7.7)

or, equivalently, the inverse is given by

qo qn-1

(7.8)

(7.9)

Proof Since

am-n+l

am

y*_, x*,_2 y* x*o

Y y X ""
y*o

Xn
.-2-Yn-1 yg

Xo-- Yl Xn-2 Yn-1 Xn-1

y*o

q*-2 q*o

q*o ""
0

am+n-1 Xo am+l am+n

am-n+l am

am am+n-1

am+l 1+ Yo,

am+n

L Y

we get that

(7.10) Yn..-1 X..-2 y
Vl

LY L Xol



118 GEORGE LABAHN, DONG KOO CHOI, AND STAN CABAY

is a solution to (7.3). Similarly,

(7.11) v,*, , v*] Yo*-’’ ([0, y,*_,, , y*] [Xn_l Xn_2, X0])
is a solution to (7.4). Substituting (7.10) and (7.11) into (3.1) gives (7.7), while
substituting into (3.2) gives (7.8).

Let E (i) denote the n x 1 block matrix having the p x p identity matrix as its ith
block row, and zeros elsewhere. Similarly, let E *(i) be the 1 x n block matrix having
the p xp identity matrix as its ith block column, with zeros elsewhere. Theorem 7.2
shows how to construct the inverse of a block Hankel matrix, knowing only the last
block column and row, along with two successive block columns and rows ofthe inverse.

THEOREM 7.2. Let Hm, be the block Hankel matrix (1.1). Suppose there are solutions
to (7.1) and (7,2), along with solutions to

(7.12) H,. [x_,..., Xo]t= E,
(7.13) H,. [y_ ,..., yo]t= E+,
(7.14) [x_,..., x]. H, E *i),
(7.15) [Y-I,’’’, Y]" H,, E*+.
i in addition, Yo and y are both nonsingular, then H,, is nonsingular with inverse
given by

Yo

qo 0 --1 x-2-Y-i x-y

(7.16) +
/ 2, Y-’ "’" "’" x_- y_,

X_

[0
[q-2 qo 0

q-l’’’q
or, equivalently, the inverse is given by

".. ...
qo’’’ qn-I L Y

x._ [q_’ q 0

Ix._ y._l

[
(7.17) + ... yg’

XO Yl Xn-2 Yn Xn

qn-1 [

q’-2 qO"

qo q.-
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Proof Equation (7.13) implies that

(7.18) Hm+l,. Y E(i)+ E (")" c

where

(7.19) c-- am+ Yn-1 +" + am+n" YO.

Therefore

(7.20) H,,,, (X + Q. c)= Hm+l,, Y,

and similarly we can show that

(7.21) (X*+ e*. Q*).H,,,,,, Y* H,+I,,
where

(7.22) c* Yn*-I am+l +’’" + Y*O am+n.
Therefore, using Lemma 7.1, Hm, is nonsingular with inverse given according to (7.7)
or (7.8) applied to equations (7.1), (7.2), (7.20), and (7.21). For example, substituting
these expressions into (7.7) and expanding, we obtain the inverse of H,,, as

(7.23)

To obtain formula (7.16), we note that

y* E (i)Y#n
Y*’H.,,,," X
Y* {Hm/,, ,Y- Hm,,," Q. c}

Y* {Hm+l,, Y-E)" c}
(7.24)

Y*" Hm+,n" Y-y. c

Y*Hm,," [0, y,_,,’’’, y]’+ e*yo-y e

E*(+). [0, y,_,. , y]’+ c*yo-y e

Y,-i + c*yo-y e.

Therefore

(7.25) (y- c*-c. y)= y-l (Y-i-Y,-) Yg.
Substituting (7.25) into (7.23) gives (7.16). Formula (7.17) is verified in a similar
manner. S
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Remark 1. In the scalar case, Theorem 7.2 gives the inverse of H,,,, in terms of
the last column along with an additional two successive columns of the inverse. In
this case, (7.16) gives H -1

m,n as

yl Xo
qn-1

Yo
(7.26)

Formula (7.26) is due to Ben-Artzi and Shalom [3] (in its Hankel formulation). Equation
(7.17) reduces to an alternate formula in the scalar case.

Remark 2. Let S be the n x n shift matrix having l’s along the superdiagonal,
and O’s elsewhere. Suppose in the scalar case there is a solution Q, to (7,1) along with
a solution to

(7.27) H,,..Z=S.H.,..Y
where Yo 0. Then, there is also a solution to (7.5) since

(7.28) Hm, (Z-l- O c) Hm+,,n Y

where c is given by (7.19). Since Yo 0, Lemma 7.1 implies that H,,,, is nonsingular,
with inverse given by (7.7). After simplification, this inverse formula is

[Y’,-1-z,-: Yl-Zo Y

Iq,,_l qo
.." ..y-

yl Zo
q,-

Yo
(7.29)

q,-_ qo 0 z,_l z,-2-y,- Zo-y...,,. "..
qo z,,_2 y,_
0 Zn-I

This is the main inverse formula of Ben-Artzi and Shalom [3] in the scalar case. They
use this formula to give simple derivations of their own scalar formula (7.26), along
with other inverse formulae including the formulae of both Gohberg-Krupnik and
Gohberg-Semencul.

8. Conclusions. The Frobenius-type relationships given in this paper are but a
small sample of similar recurrence relationships that exist between matrix Pad6 forms
that have been developed by Bultheel [7]-[9]. All the relationships require the existence
of inverses of certain coefficients in the Pad6 forms involved. These requirements are
always satisfied for normal matrix power series (where Hm,, is nonsingular for all m
and n). For this restricted class of power series, many of the recursive relationships
provide directly algorithms for the computation of Pad6 forms. Depending on the path
(within the Pad6 table) determined by the recurrence, Bultheel observes that most
previous algorithms [1], [5], [13], [23], [25]-[27], [32] that explicitly or implicitly
compute the inverse of Hankel or Toeplitz matrices are equivalent to using an appropri-
ate recurrence formula.
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For a subset of these relationships, this paper shows that each recurrence yields
a separate closed formula for the inverse of a block Hankel matrix. Algorithms based
on recurrences that specify computations along an off-diagonal path (e.g., [1], [5],
[27], [32]) yield closed formulae expressed by (3.1), (3.2), and (6.6). Those that specify
computations along a staircase (e.g., [13], [23], [25]) yield formulae (5.4) and (5.27);
whereas, those that specify computations along an antidiagonal path yield (4.8) and
(4.9). Additional closed formulae can be derived corresponding to other recurrences
given by Bultheel.

Formulae (5.4), (5.27), and (6.6) are equivalent to those given by Gohberg and
Heinig and Gohberg and Krupnik, whereas (3.1), (3.2), (4.8), and (4.9) are new. A
major advantage of the new formulae is that the underlying assumptions are far less
restrictive than they are for (5.4), (5.27), and (6.6). Whereas, the new formulae require
only that H,,., be nonsingular, the latter also require that an additional submatrix be
nonsingular. In addition, necessary and sufficient conditions for the existence of H21n
are directly available from the coefficients of Pad6 forms. This provides a significant
computational advantage.

Relaxed conditions provide little computational gain, however, if the available
algorithms can function only under the more severe restrictions of normality. Unfortu-
nately, this is true for most algorithms that compute nonscalar Pad6 forms or decompose
block Hankel matrices. One exception in this regard is the MPADE algorithm of
Labahn and Cabay [22]. This algorithm is based on a recurrence relationship between
Pad6 forms at successive nonsingular nodes along an off-diagonal path of the matrix
Pad6 table (or, by reversing coefficients, along an antidiagonal path). When the power
series is normal, or, less restrictively, when all principal minors of the associated
Hankel matrix are nonsingular (e.g., when the block Hankel matrix is positive definite),
all the nodes along the path are nonsingular and then their recurrence relationship
reduces to (6.15), which is one of many given by Bultheel. The methods based on this
relationship are special cases of the MPADE algorithm

For purposes of expressing the inverse of Hm, in terms of the new formulae (3.1),
(3.2), (4.8), and (4,9), the MPADE algorithm is particularly suitable. Singularity is
detected with no additional effort. When H,,., is nonsingular, the necessary Pad6 forms
(i.e., the solutions of the associated block Yule-Walker equations) appearing in the
formulae are simultaneously available on termination. The algorithm has no restrictions
of normality. In addition, intermediate results enable the computation of the inverses
of any nonsingular principal minors.

Using classical polynomial arithmetic, the cost of the MPADE algorithm is
typically O(p3n2), but can reach a complexity of O(p3n 3) in pathological cases (e.g.,
when all the principal minors are singular). When the power series is normal, this cost
is the same as that of previously mentioned algorithms.

Using fast polynomial arithmetic in the normal case, Bitmead and Anderson [4]
indicate that their scalar algorithm, based on a divide-and-conquer partitioning of the
Hankel matrix, can be generalized to the nonscalar case with a cost complexity of
O(p3n log2 n). Under somewhat relaxed normality conditions (i.e., near-normality),
Labahn [21] also gives an algorithm, an adaptation of MPADE, with the same
complexity.

In the scalar case, one call of an algorithm given by Cabay and Choi 11] can be
used to construct the inverse formulae (3.1), (3.2), (4.8), or (4.9) with cost complexity
O(n log2 n) under no restrictions of normality. This is also true of other methods (cf.
Sugiyama [29] for a survey) and, in particular, this is true of the method of Brent,
Gustavson, and Yun [6]. They use two calls of a fast antidiagonal GCD algorithm,
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EMGCD, to determine the two Pad6 forms required by the Gohberg-Semencul formula
(5.4). The algorithm succeeds immediately if both H,,,n and Hm,n-1 are nonsingular.
If Hm,n-I is singular (but Hm,, is not), then a nonsingular matrix H,,,,+l is first
constructed (it is not clear that this is always possible in the nonscalar case). Two
additional calls of the antidiagonal algorithm are then made to yield the two Pad6
forms required by the second formula (5.27) of Gohberg and Semencul. By computing
the inverse of H,,,, using (4.8) or (4.9), their algorithm can now be altered so as to
only require one call of their antidiagonal algorithm.

The use of (3.1) to express the inverse of Hm, avoids the immediate problem of
potential numerical instabilities inherent when using instead the two formulae (5.4)
and (5.27) according to the status of singularity of relevant minors (cf. Bunch [10]).
However, this does not imply that the algorithm for determining the inverse of
using (3.1) is stable, since this first requires the stable computation of (P(z), Q(z))
and (U(z), V(z)). The question of the stability of the algorithm MPADE for computing
(P(z), Q(z)) and (U(z), V(z)) is an open question currently under investigation.

Acknowledgment. We would like to thank the reviewer for bringing the paper of
Ben-Artzi and Shalom to our attention.

REFERENCES

[1] H. AKAIKE, Block Toeplitz matrix inversion, SIAM J. Appl. Math., 24 (1973), pp. 234-241.
[2] G. S. AMMAR AND W. B. GRAGG, The generalized Schur algorithm for the superfast solution of Toeplitz

systems, Lecture Notes in Mathematics 1237, Springer-Verlag, Berlin, New York, 1987, pp. 315-330.
[3] A. BEN-ARTZl AND T. SHALOM, On inversion of Toeplitz and close to Toeplitz matrices, Linear Algebra

Appl., 75 (1986), pp. 173-192.
[4] R. R. BITMEAD AND B. D. O. ANDERSON, Asymptoticallyfast solutions of Toeplitz and related systems

of linear equations, Linear Algebra Appl., 34 (1980), pp. 103-116.
[5] N. K. Bose AND S. BASU, Theory and recursive computation of 1-D matrix Padd approximants, IEEE

Trans. Circuits and Systems, 4 (1980), pp. 323-325.
[6] R. BRENT, F. G. GUSTAVSON, AND D. Y. Y. YUN, Fast solution of Toeplitz systems of equations and

computation of Padd approximants, J. Algorithms, (1980), pp. 259-295.
[7] A. BULTHEEL, Recursive algorithms for the matrix Padd table, Math. Comp., 35 (1980), pp. 875-892.
[8] Recursive relations for block Hankel and Toeplitz systems Part I: Direct recursions, J. Comput.

Appl. Math., 10 (1984), pp. 301-328.
[9] Recursive relations for block Hankel and Topelitz systems Part II: Dual recursions, J. Comput.

Appl. Math., 10 (1984), pp. 329-354.
[10] J. R. BUNCH, Stability of methods for solving Toeplitz systems of equations, SIAM J. Sci. Comput., 6

(1985), pp. 349-364.
[11] S. CABAY AND D. K. CHOI, Algebraic computations of scaled Paddfractions, SIAM J. Comput., 15

(1986), pp. 243-270.
[12] D. K. CHOl, Algebraic computations of scaled Pad fractions, Ph.D. thesis, University of Alberta,

Edmonton, Alberta, Canada, 1984.
[13] J. DURBIN, The fitting of time-series models, Rev. Inst. Internat. Statist., 28 (1960), pp. 233-244.
14] I. C. GOHBERG AND A. A. SEMENCUL, On the inversion offinite Toeplitz matrices and their continuous

analogs, Mat. Issled., 2 (1972), pp. 201-233. (In Russian.)
[15] I. C. GOH3ERG AND N. YA. KRUPNIK, A formula for the inversion offinite Toeplitz matrices, Mat.

Issled., 2 (1972), pp. 272-283. (In Russian.)
[16] I. C. GOHERG AND G. HENG, Inversion of finite Toeplitz matrices made of elements of a non-

commutative algebra, Rev. Roumaine Math. Pures Appl., XIX(5) (1974), pp. 623-663. (In Russian.)
[17] W. B. GRAGG, The Padd table and its relation to certain algorithms of numerical analysis, SIAM Rev.,

14 (1972), pp. 1-61.
[18] F. DE HOOG, A new algorithmfor solving Toeplitz systems ofequations, Linear Algebra Appl., 88 (1987),

pp. 123-138.
[19] I. S., IOHVIDOV, Hankel and Toeplitz Matrices and Forms, Birkhauser, Boston, 1982.



INVERSES OF BLOCK HANKEL 123

[20] T. KAILATH, S.-Y. KUNG, AND M. MORF, Displacement ranks of matrices and linear equations, J.
Math. Anal. Appl., 68 (1979), pp. 395-407.

[21] G. LABAHN, Matrix Pad. approximants, M.Sc. thesis, Department of Computing Science, University
of Alberta, Edmonton, Alberta, Canada, 1986.

[22] G. LABAHN AND S. CABAY, Matrix Padfractions and their computation, SIAM J. Comput., 18 (1989),
pp. 639-657.

[23] N. LEVINSON, The Wiener RMS (root mean square) error in filter design, J. Math. Phys., 25 (1947),
pp. 261-278.

[24] R. J. MCELIECE AND J. B. SHEARER, A property of Euclid’s Algorithm and an application to Padd
approximation, SIAM J. Appl. Math., 34 (1978), pp. 611-617.

[25] M. MORF, A. VIEIRA, AND D. T. LEE, Ladderforms for identification and speech processing, in Proc.
Conference on Decision and Control, December 7-9, 1977.

[26] B.R. MusIcus. Levinson andfast Choleski algorithmsfor Toeplitz and quasi-Toeplitz matrices, Laboratory
of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 1984.

[27] J. RISSANEN, Algorithms for triangular decomposition of block Hankel and Toeplitz matrices with

application to factoring positive matrix polynomials, Math. Comp., 27 (1973), pp. 147-154.
[28], Solution of linear equations with Hankel and Toeplitz matrices, Numer. Math., 22 (1974), pp.

361-366.
[29] Y. SUGIYAMA, An algorithm for solving discrete-time Wiener-Hopf equations based on Euclid’s

Algorithm, IEEE Trans. Inform. Theory, 32 (1986), pp. 394-409.
[30] W. F. TRENCH, An algorithmfor the inversion offinite Hankei matrices, SIAM J. Appl. Math., 13 (1965),

pp. 1102-1107.
[31] G. A. WATSON, An algorithm for the inversion of block matrices of Toeplitz form, J. Assoc. Comput.

Mach., 20 (1973), pp. 409-415.
[32] R. A. WIGGENS AND E. A. ROBINSON, Recursive solution to the multichannel filtering problem, J.

Geophys. Res., 70 (1965), pp. 1885-1891.
[33] S. ZOHAR, Toeplitz matrix inversion: The algorithm of W. F. Trench, J. Assoc. Comput. Mach., 16

(1969), pp. 592-601.


