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Abstract - The Inversion Algorithm is an event-driven algorithm, whose performance 
rivals or exceeds that of Levelized Compiled code simulation, even at activity rates 
of 50% or more.  The Inversion Algorithm has several unique features, the most 
remarkable of which is the size of the run-time code.  The basic Algorithm can be 
implemented using no more than a page of run-time code, although in practice it is 
more efficient to provide several different variations of the basic algorithm.  The 
run-time code is independent of the circuit under test, so the algorithm can be 
implemented either as a compiled code or an interpreted simulator with little 
variation in performance.  Because of the small size of the run-time code, the run-
time portions of the Inversion Algorithm can be implemented in assembly language 
for peak efficiency, and still be retargeted for new platforms with little effort. 

I. INTRODUCTION. 

Of all the tools available to the modern VLSI designer, simulation is probably most 
important.  The cost of fabricating a VLSI design is so high, that it is necessary to verify 
and debug the product before committing it to silicon.  Despite steady improvements in 
simulator performance, it is not unusual for a VLSI designer to spend more time on 
simulation than on any other activity.  There are many different styles of simulation, from 
high-level simulation at the algorithmic level, to electrical simulation using systems of 
differential equations.  As a general rule, the more detailed the simulation, the more time 
consuming it becomes.  Logic simulation represents a compromise between the extremes 
of algorithmic simulation and electrical simulation.  Although more time consuming than 
algorithmic simulation, it is efficient enough to be used as a primary debugging tool.  
While it is not as detailed as electrical simulation, the logic gates that comprise the logic 
model can be mapped one-to-one into the electrical components of the final product. 

Over the past several years, there has been a steady flow of papers describing new 
more efficient methods of logic simulation[1-14].  This research makes it obvious that 
there are two methods for improving the performance of logic simulation: speed up the 
simulation of individual gates, or simulate fewer gates.  Until now, these two methods 
have worked at cross-purposes to each other.  Some simulators have used relatively 
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complex algorithms for reducing the number of gates simulated, thereby increasing the 
simulation time for each gate.  Other simulators have improved the speed of individual 
gate simulations by reducing or eliminating scheduling code, thereby increasing the 
number of gate simulations that must be performed for each input vector.  When all 
scheduling code is eliminated the simulation time for each input vector becomes constant, 
and is no longer dependent on changes in the inputs.  Such simulators are termed 
Oblivious.  In contrast, simulators whose performance varies from one input vector to 
another are termed Event-Driven[2].  (This term is used for simplicity, and does not 
necessarily imply that the simulator processes events.) 

The simplest form of oblivious simulation is Levelized Compiled Code (LCC) 
simulation, in which each gate in the circuit is simulated once per input vector.  Many of 
these gate simulations produce no useful output, because they do not cause a change in 
any output net.  (Any net visible to the user can be considered an output net, regardless of 
whether it is an actual output of the circuit.)  Event-driven simulation is he most common 
method for eliminating useless simulations.  In a typical event-driven simulation, an 
event is generated whenever a net changes value.  A gate is simulated if and only if an 
event occurs on one of its inputs.  Although this technique eliminates many useless 
simulations, it does not eliminate all of them.  Even if the inputs of a gate change, this 
change may not propagate to an output net.  This can occur in two ways.  First, the 
change in the gate-input may not produce a change in the gate output.  This situation is 
illustrated in Figure 1.  Second, the change may propagate through the gate, but be 
“absorbed” by some other gate before reaching an output net, as illustrated in Figure 2. 
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Figure 1. A Useless Simulation 
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Figure 2. An Unpropagated Change. 

The Inversion Algorithm is able to eliminate all useless simulations of the first kind, 
and some useless simulations of the second kind.  The problem of eliminating all useless 
simulations is currently under study. 
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II. AN OVERVIEW OF THE INVERSION ALGORITHM. 

Because the aim of the Inversion Algorithm is to eliminate gate simulations that 
produce no change in the output of a gate, it was designed around the underlying 
principle that no gate should be simulated unless its output is guaranteed to change value.  
Thus, when an event occurs on the input of a gate, it is necessary to determine whether 
the change will propagate through the gate, and suppress the gate-simulation if no 
propagation will occur.  It is not immediately clear that making such a determination is 
any more efficient than simply simulating the gate, but it turns out that this is indeed the 
case. 

When an event occurs on a gate input, the Inversion Algorithm performs a set of tests 
to determine if the event will propagate through the gate.  The tests must be 
individualized for different gate-types, but the number of different kinds of tests that 
must be performed is surprisingly small.  In its most basic form, the Inversion Algorithm 
supports the eight gate types AND, NAND, OR, NOR, XOR, XNOR, NOT, and 
BUFFER.  These gate-types provide all essential functions and can be used as building 
blocks to construct more complex gate-types.  However, it is not necessary to provide 
specific tests for each of these eight types.  One set of tests is provided for NOT and 
BUFFER gates, a second set of tests is provided for XOR and XNOR gates, and a third 
set of tests is provided for AND, NAND, OR, and NOR gates. 

The tests for the XOR, XNOR, NOT, and BUFFER gates are trivial, because any 
change in an input implies a change in the output.  An identical set of tests could be used 
for all four gate-types, but because XOR and XNOR gates have more than one input, it is 
possible to propagate two or more simultaneous events through the gate.  Because two 
consecutive simultaneous events cancel one another, the tests for XOR and XNOR have 
been optimized to eliminate consecutive events on the gate output.  When an event 
propagates through the gate, the algorithm tests the queue to determine whether there is 
already an event queued for the net.  If so, the existing event is removed from the queue, 
and no new event is queued.  Since NOT and BUFFER gates have a single input, no test 
for collapsed events is necessary.  The event-handlers for NOT/BUFFER gates and 
XOR/XNOR gates are illustrated in Figure 3. 

 
NOT/BUFFER: 
 Schedule OutputEvent; 
 
XOR/XNOR: 
 if OutputEvent Not Scheduled Then 
  Schedule OutputEvent; 
 else 
  Deschedule OutputEvent; 
 Endif 
 

Figure 3. Event Handlers for NOT/XOR. 

The tests for AND, OR, NAND and NOR are more complex and are based on the 
counting algorithm originally described by Schuler[16,17,18].  The counting algorithm, 
which is illustrated in Figure 4, was originally intended for use in a conventional event-
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driven simulation.  In Figure 4 it is assumed that there has been a change in an input X to 
the gate G.  The dominant value, 1 for OR/NOR, and 0 for AND/NAND, is a parameter 
to the algorithm. 

If Value.of.X = Dominant.Value.of.G Then  
 Count.of.G := Count.of.G + 1; 
 If Count.of.G = 1 Then 
  Output.of.G := Dominant.Value.of.G; 
 EndIf; 
Else 
 Count.of.G := Count.of.G - 1; 
 If Count.of.G = 0 Then 
  Output.of.G := NOT Dominant.Value.of.G; 
 EndIf; 
EndIf; 

Figure 4. The Original Counting Algorithm. 

The counting algorithm of Figure 4 assigns a value to the output of G if and only if 
the output changes value.  This algorithm is extremely efficient because it uses the value 
of a single input and an internal state to compute the value of the output, rather than 
computing a function using all input values.  The counting algorithm used by the 
Inversion Algorithm is used to predict changes rather than compute output values, and is 
much simpler than the algorithm shown in Figure 4.  One reason for the simplification is 
the underlying scheduling technique, which is based on the shadow algorithm[12].  In the 
shadow algorithm, each event is represented by the structure pictured in Figure 5. 

Next Event in Queue

Previous Event in Queue

Event Processing Routine

Net-SpecificData

 

Figure 5. An Event Structure. 

The Inversion Algorithm generates a dedicated event structure for each input net, 
each of which contains an indirect pointer to the event-processing routine for the net.  
The use of indirect pointers allows event handlers to be changed at run time.  In the 
counting algorithm, the test for dominant values can be eliminated by observing that 
successive events on an input net will cause it to alternate between its dominant and non-
dominant value.  The Inversion Algorithm uses two event-handlers, one for dominant 
values and one for non-dominant values.  When the dominant-value event-handler 
executes, it replaces the Event-Processing-Routine address in the event structure with the 
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address of the non-dominant event handler.  The non-dominant-value event handler 
performs similarly.  The two event handlers execute in strict alternating fashion for each 
input net, with no test for dominant value required.  The event-processing for AND, 
NAND, OR and NOR gates uses the same event-collapsing procedure as XOR and 
XNOR gates.  The event-handlers for dominant and non-dominant values are illustrated 
in Figure 6. 

 
Dominant: 
Decrement DominantCount; 
If DominantCount=0 Then 
 If OutputEvent Not Scheduled Then 
  Schedule OutputEvent 
 Else 
  Deschedule OutputEvent 
 EndIf 
EndIf 
EventProcessingRoutine := AddressOf NonDominant; 
 
NonDominant: 
Increment DominantCount; 
If DominantCount=1 Then 
 If OutputEvent Not Scheduled Then 
  Schedule OutputEvent 
 Else 
  Deschedule OutputEvent 
 EndIf 
EndIf 
EventProcessingRoutine := AddressOf Dominant; 

Figure 6. The AND/OR Event Processors. 

The event handlers of Figure 3 and Figure 6 do not contain separate code for 
scheduling gate simulations.  Because no gate is scheduled for simulation unless its 
output is guaranteed to change value, gate simulations are reduced to simple inversion 
operations.  (This assumes that a two-valued logic model is being used.  The Inversion 
Algorithm supports more complex logic models, but this is beyond the scope of this 
paper[19].)  Surprisingly, because the correct operation of the Inversion Algorithm does 
not require net-values, it is possible to eliminate most gate simulations entirely.  The 
event handlers pictured in Figure 3 and Figure 6 do not need to test net values to schedule 
new events.  There are only two cases where net-values are required by the Inversion 
Algorithm.  Net values are required for all primary inputs, because it is necessary to 
compare new and old net values when a new input vector is read.  It is also necessary to 
maintain net values for any net visible to the user so that correct output values can be 
printed after an input vector has been simulated.  Since the processing of events does not 
depend on net values, gate simulations can be performed during event processing without 
affecting the correctness of the algorithm.  Thus, when the output of a gate is visible to 
the user, the event handlers will schedule a special event to invert the value of the output. 

The elimination of net values has some surprising consequences which are worth 
noting.  Inverted outputs and non-inverted outputs are identical.  Therefore, for 
simulation purposes AND is identical to NAND, OR is identical to NOR, XOR is 
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identical to XNOR, and NOT is identical to BUFFER.  Because the increment and 
decrement operations are performed with respect to dominance rather than specific 
values, AND and OR gates are also identical for simulation purposes. 

In a sense, the Inversion Algorithm performs no traditional gate evaluations, but 
simply processes a series of events. These events differ in one important way from the 
events that occur in traditional event-driven algorithms.  In traditional event-driven 
simulation, each event corresponds to a change in a single net, while in the inversion 
algorithm each event corresponds to a change in a single fanout branch of a net.  Thus a 
single event in a traditional event-driven algorithm may correspond to several events in 
the Inversion Algorithm.  Figure 7 illustrates why this is necessary. 

G1

G2

G3

X

 

Figure 7. A Circuit Fragment. 

In Figure 7, X is the output of gate G1, and the input for G2 and G3.  However, the 
dominant value for G2 is the non-dominant value for G3, and vice-versa, so when an 
increment operation is performed for G2, a decrement operation must be performed for 
G3.  Although both of these operations could be performed during the processing of a 
single event, it is more straightforward to treat them as separate events.  This 
implementation style also facilitates the incorporation of inversion events for computing 
required net values.  In Figure 7, if net X were visible to the user, the simulator would 
add a third event to compute the value of X. 

Initialization for the Inversion Algorithm is somewhat more complex than for more 
conventional simulation algorithms.  Although the dominant, non-dominant sequence is 
predictable for the inputs of AND, NAND, OR and NOR gates, it is necessary to 
commence the simulation with the correct event handler.  As Figure 8 illustrates, a simple 
default is not sufficient to guarantee correct operation of the algorithm. 

A
Q

I1
G1

G2
 

Figure 8. Complex Initialization Requirements. 

In Figure 8, any time net A changes to the dominant value, net I1 changes to the non-
dominant value, and vice-versa.  It is necessary to initialize the simulation in such a way 
as to guarantee that any time the non-dominant event handler is used for net A, the 
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dominant event-handler will be used for net I1.  The determination of this requirement 
cannot be made simply by examining gate G2.  It is necessary to examine the entire 
circuit to determine the correct initialization state for the inputs of G2.  To determine the 
correct initialization for all gate inputs, a single simulation is performed at compile time 
to determine consistent values for all nets in the circuit.  These net values are then used to 
determine the initial event handler to be used for each fanout branch, and the initial 
dominant count for each gate.  (The three-valued Inversion Algorithm eliminates the 
preliminary simulation step, but this is beyond the scope of this paper.) 

III. IMPLEMENTATION DETAILS. 

The Inversion Algorithm consists of two major phases, the Translation Phase which 
prepares the circuit for simulation, and the Simulation Phase which performs the 
simulation.  The primary function of the Translation Phase is to prepare the data 
structures used by the Simulation Phase.  Most current implementations of the Inversion 
Algorithm also generate run-time code, but this code could just as easily be loaded from a 
library of precompiled routines.   

The first step in the translation phase is to parse the circuit description, and translate 
it into internal data structures.  Once this has been done, the circuit is levelized, the gates 
of the circuit are sorted into levelized order, and each gate is simulated once to generate a 
set of consistent values.  Next, a SIMULATION fanout branch is added to each net 
visible to the user.  Finally, a data structure known as a shadow is generated for each 
fanout branch of each net in the circuit. 

Figure 9 illustrates the structure of a shadow.  The next and previous shadow fields 
are used to link the shadow into the event list.  The event list is doubly linked to facilitate 
dequeueing of events.  The subroutine field points to the event processing routine for 
this fanout branch.  The first and last fanout branch fields contain pointers to the first 
and last shadow that will be scheduled when an event propagates through the gate.  All 
fanout branches of a net are scheduled and descheduled simultaneously.  To make this 
process more efficient, all shadows for a net are statically linked during the translation 
phase.  This allows all shadows for a net to be inserted into the queue or deleted from the 
queue as a unit. 

The lock address field contains the address of the dominant count for the gate 
associated with the fanout branch.  For NOT, BUFFER, XOR and XNOR gates, this field 
is unused.  Finally, the queue address identifies the queue into which the shadow is to be 
inserted. 
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 next shadow 
 previous shadow 
 subroutine 
 first fanout branch 
 last fanout branch 
 queue address 
 lock address 

 

Figure 9. The Structure of a Shadow. 

Eight different event processors are used during the simulation phase of the Inversion 
Algorithm.  These occur in pairs and are called INCREMENT, INCREMENTX, 
DECREMENT, DECREMENTX, NOT, NOTX, XOR and XORX. The second routine of 
each pair is used for shadows that are at the end of a subchain, while the second is used 
for the other shadows.  The two subroutines of each pair are identical, except that the 
second routine removes the subchain from the queue.  The routines were created in pairs 
to allow dequeueing to be performed without a conditional test.  These routines are more 
detailed versions of the algorithms presented in Figure 3 and Figure 6. 

Most existing implementations of the Inversion Algorithm use the zero-delay timing 
model, and are based on the LECSIM simulator developed by Wang[13].  (Unit-delay 
implementations of the Inversion Algorithm exist, but are beyond the scope of this 
paper.) LECSIM is a zero-delay event-driven levelized compiled code simulator.  In 
LECSIM, gates are levelized and a queue is created for each level in the circuit, including 
the zero level.  When a gate is queued for simulation, it is placed in the queue that 
corresponds to its level.  Queues are processed in order by level.  For asynchronous 
cyclic circuits, queues may be processed more than once. 

Like LECSIM, the zero-delay Inversion Algorithm levelizes the circuit and creates 
one event queue per level.  Each queue consists of a doubly linked list of shadows 
terminated by a special shadow known as the queue-trailer.  The queue-trailer is 
responsible for advancing the simulation from one queue to the next and for terminating 
the simulation when appropriate.  Figure 10 illustrates the structure of the queue.  As 
Figure 10 illustrates, the queue headers are organized as an array of pointers, each of 
which points to a doubly linked list of shadows. 
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Figure 10. The Structure of the Simulation Queue. 

The simulation of an input vector begins with the primary input tests.  The value of 
each primary input is compared with the value from the previous vector (or with zero for 
the first vector) and if there is a change, the fanout branches of the primary input are 
inserted into queue zero.  Once all primary input tests are complete, the simulator loads 
the address of the first shadow in queue zero into the current-shadow register and 
branches to the subroutine address contained in the shadow. 

When an event is processed, additional shadows may be inserted into other queues.  
Once the last queue has been processed, simulation of the current vector terminates and a 
new vector is read.  Prior to reading the new vector, the value of each net visible to the 
user is printed.  Figure 11 gives the code for the INCREMENTX routine. 
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INCREMENTX: 
 Current_Shadow->subroutine = &DECREMENTX; 
 (*Current_Shadow->Lock)++; 
 if ((*Current_Shadow->Lock) == 1) 
 { 
  if (Current_Shadow->first_fanout->next == NULL) 
  { 
   Current_Shadow->last_fanout->next = 
    Current_Shadow->Queue->next; 
   Current_Shadow->Queue->next->previous = 
    Current_Shadow->last_fanout; 
   Current_Shadow->Queue->next = 
  `  Current_Shadow->first_fanout; 
   Current_Shadow->first_fanout->previous = 
    Current_Shadow->Queue; 
  } 
  else 
  { 
   Current_Shadow->last_fanout->next->previous = 
    Current_Shadow->first_fanout->previous; 
   Current_Shadow->first_fanout->previous->next= 
    Current_Shadow->last_fanout->next; 
   Current_Shadow->last_fanout->next = NULL; 
  } 
 } 
 Temp = Current_Shadow->next; 
 Current_Shadow->next = NULL; 
 Current_Shadow = Temp; 
 Goto *Current_Shadow->subroutine; 

Figure 11. The INCREMENTX event handler. 

IV. OPTIMIZATIONS OF THE INVERSION ALGORITHM. 

There are several simple optimizations that can significantly increase the performance 
of the Inversion Algorithm.  The most important of these are the elimination of NOT and 
BUFFER gates, the elimination of XOR and XNOR gates, and the collapsing of 
homogeneous and heterogeneous connections. 

A. The Elimination of NOT and Buffer Gates. 

As the event-handler of Figure 3 illustrates, the processing of NOT and BUFFER 
gates is a no-op operation in the Inversion Algorithm.  When the input of a NOT or a 
BUFFER gate is processed, the only action that is taken is scheduling the fanout branches 
of the output of the gate.  The same simulation result can be achieved by eliminating the 
scheduling of NOT and BUFFER inputs and scheduling their fanout branches instead.  
Figure 12 illustrates this procedure.  For the Unit-Delay and Multi-Delay timing models, 
special procedures are required to preserve the delay of the gate. 
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Figure 12. The elimination of a NOT gate. 

B. The Elimination of XOR and XNOR gates. 

It is also possible to eliminate all XOR and XNOR gates.  As with NOTs and 
BUFFERs, the only action taken when processing the input of an XOR or XNOR is 
scheduling or descheduling the fanout branches of the gate.   One can eliminate the 
processing of the input branch by scheduling or descheduling the output branches of the 
gate instead.  This can interfere with block scheduling of fanout branches as Figure 13 
illustrates. 

G1

G2

G3

G4

G5

G6
 

Figure 13. The Elimination of XOR Gates. 

Suppose that gate G3 of Figure 13 has been eliminated, and that events propagate 
through both G1 and G2.  Assume that the event for G1 is processed first.  When the 
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event for G1 is processed, it is necessary to schedule events for the inputs of G4 and G5.  
When the event for G2 is processed, it is necessary to deschedule the events for the 
inputs of G4 and G5, and schedule an event for the input of G6.  If events are to be 
collapsed properly, the fanout branches of G3 must maintain their identity, and cannot be 
grouped with the fanout branches of G1 and G2.  This problem arises only if one or more 
XOR input nets fan out to other gates.  One could simply ignore event collapsing in these 
situations, but because of the relative rarity of XOR and XNOR gates, XOR/XNOR 
elimination has not been implemented in any current realization of the Inversion 
Algorithm. 

C. Homogeneous and Heterogeneous Connections. 

Once all NOT, BUFFER, XOR and XNOR gates have been eliminated from the 
circuit, all fanout branches other than primary inputs and outputs must be connections 
between AND, OR, NAND and NOR gates.  These types of connections can be further 
categorized as homogeneous and heterogeneous connections.  To distinguish between the 
two, suppose that net A is the output of G1 and the input of G2, and suppose that an 
event on the input of G1 propagates to A.  This will cause the dominant counts of both 
gates to change.  If both counts are incremented or both are decremented, then the 
connection is homogeneous, otherwise it is heterogeneous.  Because a net may fan out to 
different types of gates, the heterogeneous and homogeneous properties apply to fanout 
branches rather than to entire nets.  It is possible to categorize connections at compile 
time using the tables illustrated in Figure 14 and Figure 15.  When using these tables, it is 
necessary to do the categorization before NOT gates are eliminated.  An intervening 
NOT gate changes a heterogeneous connection to a homogeneous connection, and vice-
versa.  Two consecutive NOT gates cancel one another.  A connection that passes 
through an XOR/XNOR gate cannot be categorized as either heterogeneous or 
homogeneous, because the dominant-counts of the two gates will sometimes move in the 
same direction and sometimes move in opposite directions. 

 

Figure 14. Homogeneous Connections. 
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Figure 15. Heterogeneous Connections. 

D. The Elimination of Homogeneous Connections. 

It is possible to eliminate all homogeneous connections from a circuit using the 
procedure illustrated in  Figure 16.  To eliminate the connection I1, one simply removes 
gate G1, and treats the inputs A, B, and C as if they were inputs of G2.  The initial value 
of the dominant-count for G2 is recomputed by adding the initial dominant-counts of G1 
and G2 and subtracting one. 

A
B
C
D
E

I1

Q

Q

A
B
C
D
E

 

Figure 16. Eliminating a Homogeneous Connection. 

The operation illustrated in Figure 16 could be performed conventional simulator, but 
the benefits are not as clear.  After the collapse, any event on inputs A, B, and C would 
result in the simulation of a 5-input gate, regardless of whether the event would have 
propagated to I1 in the uncollapsed circuit.  In the Inversion Algorithm, the processing of 
events on the inputs A, B, and C is identical in both circuits, and all processing for net I1 
is eliminated in the collapsed circuit.  Even if collapsing of heterogeneous connections 
proved to be beneficial in a conventional simulation, the ability to collapse connections is 
limited to those types illustrated in column 1 of Figure 14.  The connections in column 2 
and connections with intervening NOT gates would pose a problem. 
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E. Eliminating Heterogeneous Connections. 

The procedures for eliminating heterogeneous connections are more complex than 
those for homogeneous connections, and do not always eliminate all operations for the 
connection.  There are two procedures for eliminating heterogeneous connections, the 
linear method, and the layered method.  The layered method allows more connections to 
be eliminated, but retains more operations for eliminated connections. 

As Figure 17 illustrates, the linear method can eliminate only one input from any 
gate. It is possible to collapse either G2 or G3 into G4.  However, once G2 has been 
collapsed into G4, it is no longer possible to collapse G3 into G4.  It is, however, 
possible to collapse gates in linear fashion by first collapsing G1 into G2, and then 
collapsing the G1/G2 combination into G4. 

G1 G2

G3

G4

G1

G3

G2

G4

 

Figure 17. Eliminating a Heterogeneous Connection. 

The linear method operates by changing the increment and decrement values used to 
update the dominant count of a gate.  Instead of using a uniform value of one, the linear 
method uses different values for different inputs.  Consider the collapsed gate illustrated 
in Figure 18. 

G1

G2

A

B
C

Q

 

Figure 18. A Collapsed AND-OR Connection. 

In Figure 18, a single dominant-count will be maintained for the combined gate 
G1/G2.  Suppose that all three inputs, A, B, and C, have the value 0.  The dominant-
count corresponding to this input state is zero.  For the output of G1/G2 to change, it is 
necessary for C to change or for both A and B to change.  The total effect of both 
changes in A and B must equal the effect that G1 would have had in the original circuit, 
and must also equal the effect that C has on the collapsed gate.  Neither A nor B by itself 
can have enough effect on the dominant-count to cause a change in the output of G1/G2.  
Because of the symmetry of the circuit, the effect of A and B must be the same. 

There are many ways to assign increment/decrement values to the input nets A, B and 
C that will achieve these requirements.  One acceptable procedure is to assign the value 1 
to the input C, and 0.5 to the inputs A and B.  The output Q changes when the dominant 
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count changes from a value less than 1 to a value greater than or equal to one, or when it 
changes from a value greater than or equal to one to a value less than one. 

Collapsed connections with more than two levels follow the same principles as two-
level collapsed connections.  Values are assigned to inputs depending on their relative 
power to change the output of the collapsed gate, and there are many different 
assignments that will achieve the desired results.  Figure 19 illustrates a three- and a four-
level collapsed gate. 

G1
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G3

A
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C

D
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E G4
 

Figure 19. Multi-Level Collapsed Connections. 

The values for the inputs of gate G1/G2/G3 can be calculated in the following 
manner.  Assume that A, B, C, and D have been initialized with the logic value of 0.  The 
increment of D is set to 1.  The total effect of the G1/G2 combination must be equal to 
the effect of D.  Since A and B are symmetric inputs, the increments assigned to A and B 
should be equal.  Since the output of G2 changes from 0 to 1 (thereby changing the 
output of G1/G2/G3) when C changes to 1 and either A or B changes to a 1, the sum of 
the increments assigned to A and C must equal 1.  Since a change in both A and B, 
without an accompanying change in C, will not cause the output of G1/G2/G3 to change, 
it is necessary that the sum of the increments assigned to A and B be less than 1.  This 
implies that the increment assigned to C must be greater than the increments assigned to 
A and B.  To achieve these requirements, an increment of .25 is assigned to both A and 
B, while an increment of .75 is assigned to C.  Using similar principles, the increments 
assigned to the inputs of G1/G2/G3/G4 are A->.125, B->.125, C->.25, D->.75, E->1.  
As with the two level collapsed gate, the output changes value only when the gate count 
changes from a value less than one to a value greater than or equal to one, or from a value 
greater than or equal to one to a value less than one. 

The layered method of collapsing heterogeneous connections allows arbitrary 
collapsing of connections, as illustrated in Figure 20, but requires more computation in 
the simulation phase than the linear method. 
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Figure 20. Layered Collapsing of Connections. 

Unlike the linear method, which uses a single dominant-count for each gate, the 
layered method preserves the dominant-counts of the original gates.  Because the original 
dominant counts are preserved, the number of run-time increment/decrement operations 
is not reduced, nor is the number of tests reduced.  However the operations are performed 
hierarchically without any intermediate scheduling, which improves run-time 
performance.  To illustrate assume that in Figure 20, input A of the collapsed gate of 
changes from 0 to 1.  The dominant-count of G1 is decremented, and if the new value is 
not zero, no further processing is done.  However if the new value is zero, then the 
dominant-count of G3 is incremented.  If the new value is 1, then the fanout branches of 
G3 are scheduled.  No scheduling is done for the fanout branches of G1 or G2. 

The shadow of a layered connection differs from that illustrated in Figure 9 in that the 
Lock component of the shadow is an array of pointers rather than a single pointer.  
Figure 21 illustrates the code for a two-level layered connection.  This code corresponds 
to the increment processor of a simple connection.  As is the case for simple connections, 
both increment and decrement processors are used, the increment and decrement 
processors alternate with one another. 

 
INCREMENT_LAYERED_2: 
Current_Shadow->subroutine = &DECREMENT_LAYERED_2; 
(*Current_Shadow->Lock[1])++; 
if ((*Current_Shadow->Lock[1]) == 1) 
{ 
 (*Current_Shadow->Lock[0])--; 
 if ((*Current_Shadow->Lock[0]) == 0) 
 { 
  if (fanouts not on queue) 
  { 
   insert fanouts into queue; 
  } 
  else 
  { 
   remove fanouts from queue; 
  } 
 } 
} 
Current_Shadow = Current_Shadow->next; 
Goto *Current_Shadow->subroutine; 

Figure 21. The INCREMENT Routine for Two-Level Connections. 

F. When to Collapse Connections. 

Although it is possible to collapse all homogeneous and heterogeneous connections in 
a circuit, it is not always advantageous to do so.  Consider the two circuits illustrated in 
Figure 22. 
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Figure 22. Collapsing Gates with Fanout. 

In the first circuit of Figure 22, the net i does not fan out, so the connection can be 
collapsed by moving the inputs A and B of G1 to G2.  In the second circuit, the output of 
G3 fans out into two branches x and y.  To collapse this net it is necessary to move the 
two inputs E and F to both G4 and G5.  Because the Inversion Algorithm requires one 
event per fanout-branch, this doubles the number of events that must be processed when 
either E or F changes value.  In the original circuit, a change in net E will cause one 
event to be processed, while in the collapsed circuit two events will be processed.  For 
the first circuit, a change in net A will cause one event to be processed in both the 
original and the collapsed circuit. 

It is not immediately clear that the elimination of the events on x and y won’t offset 
the effect of doubling the inputs E and F.  To further characterize the situation, the 
average number of events on the inputs and outputs of G3 were calculated, assuming all 
input vectors to be equally likely.  For the uncollapsed connection, the average number of 
events on E, F, x, and y is 1.75 events per input vector.  After collapsing the connection, 
the average number of events on E and F is 2.00 events per input vector.  On the average, 
the uncollapsed connection will be more efficient.  Under the same assumptions, the 
average number of events on A, B, and i is 1.375 for the uncollapsed connection and 
1.000 for the collapsed connection.  In this case the collapsed connection is more 
efficient. 

Extending this analysis to gates with larger numbers of inputs and larger fanouts, an 
uncollapsed 2-input AND with a fanout of 3 averages 2.125 events per vector, while the 
collapsed gate averages 3.00 events per vector.  For a 3-input AND with a fanout of 2, 
the uncollapsed gate averages about 1.94 events per vector, while the collapsed gate 
averages 3.00 events per vector.  A 3-input AND with a fanout of 3, gives even more 
striking results with an average of 2.16 events per vector for the uncollapsed gate and 
4.50 events per vector for the collapsed connection.  This analysis shows that it is 
advantageous to eliminate a connections only if it does not fan out to more than one gate. 
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V. PERFORMANCE EVALUATION. 

Four prototype simulators were constructed to test the performance of the Inversion 
Algorithm and the various optimizations discussed in the previous section.  The first 
prototype is unoptimized; the second eliminates NOT and BUFFER gates; the third 
eliminates homogeneous connections, NOT gates, and BUFFER gates; and the fourth 
heterogeneous connections, homogeneous connections, NOT gates, and BUFFER gates.  
Heterogeneous connections were eliminated using the layered method.  The linear 
method of eliminating heterogeneous connections was not tested.  All prototypes are 
levelized event-driven zero-delay simulators based on the LECSIM model. 

The ISCAS-85 benchmarks[15] were used to certify the correctness of the prototypes.  
Each circuit was simulated with 5000 randomly generated input vectors, and the outputs 
were compared to those of the FHDL simulator[20], a levelized compiled code simulator 
that has been in usefor several years.  These same circuits and input vectors were used to 
evaluate the relative performance of the four prototypes and the FHDL simulator.  Each 
simulation was run on a SUN-4 IPC running SunOS with 12 megabytes of memory and a 
dedicated disk drive.  This system was isolated from outside influences as much as 
possible during the execution of the tests.  To isolate the effects of each algorithm, each 
simulation was done three different ways.  First, a complete simulation was done with 
full input and output.  Next the output functions of the simulators were disabled leaving 
all input and simulation functions intact, and a second set of simulations was run.  
Finally, both the simulation functions and the output functions were disabled, leaving 
only the input functions intact, and a third set of simulations was run.  Each of these 
simulations was performed five times and the results were averaged to minimize errors in 
the UNIX /bin/time command, which was used to report the timings.  The "user" field 
from the output of the /bin/time command was used to determine the execution time.  The 
results of the read-only simulations were subtracted from the results of the no-print 
simulations to obtain the results reported in Figure 23. All simulations were run as 
compiled code simulations.  The C language was used as the target language for all of the 
simulators.  No optimization flags were used when compiling the simulators. 

 
Circuit Unopt. NOT Elim. Hom. Elim. Hom/Het Elim. LCC Activity 
c432 1.7 1.6 1.4 1.2 0.5 59.4 
c499 2.0 1.9 1.9 1.9 0.6 63.2 
c880 3.8 3.5 3.2 2.7 1.2 57.1 
c1355 6.5 5.4 5.4 4.2 1.9 56.5 
c1908 8.1 5.8 5.6 4.5 4.4 56.8 
c2670 17.7 13.2 12.2 11.7 5.3 55.7 
c3540 16.5 11.6 10.0 9.3 8.4 52.4 
c5315 36.9 28.8 28.1 22.8 21.7 63.8 
c6288 40.4 40.0 39.7 33.8 30.1 61.5 
c7552 52.6 40.6 39.4 33.5 40.7 60.7 

Figure 23. Experimental Results. 
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As Figure 23 indicates, the activity rates of the circuits tested ranged from just over 
50% to over 60%.  At this level of activity, Levelized Complied Code simulation (the 
LCC column) typically outperforms event driven simulation by a significant margin.  
However, for the Inversion Algorithm with deletion of homogeneous and heterogeneous 
connections, the timings are essentially the same for the circuits c1908, c3540, c5315, 
and c6288.  For circuit c7552, the Inversion Algorithm actually outperforms Levelized 
Compiled Code simulation. 

VI. CONCLUSION. 

As the results of the previous section indicate, the Inversion Algorithm is competitive 
with Levelized Compiled Code simulation, even at very high activity rates.  When the 
activity rate is reduced to a more reasonable level, the performance of the Inversion 
Algorithm will increase correspondingly while the performance of LCC simulation will 
remain the same.  Since the activity rates reported here are significantly higher than those 
that are likely to be encountered in practice, the Inversion Algorithm can be expected to 
outperform Levelized Compiled Code simulation in most practical situations. 

In addition to its performance, the Inversion Algorithm has several other desirable 
properties.  The Inversion Algorithm can be run interpretively with only a minimal 
impact on performance.  Therefore, it can be used for fast debugging of circuits during 
the initial phases of the design cycle, and for more massive testing later in the design 
cycle with only minor differences in performance. 

Because of the small size of the run-time code, the Inversion Algorithm will be 
beneficial to tool developers who must support many different types of development 
platforms.  The run-time code of the inversion algorithm can be written and debugged in 
a few hours, making it feasible to have several different assembly-language 
implementations of the same code. 

The results shown here suggest that the Inversion Algorithm will be an effective tool 
for high-performance simulation of large circuits.  In spite of this, there is a massive 
amount of research that must be done to realize the full potential of the techniques 
described in this paper.  Work is currently under way to extend the Inversion Algorithm 
to more complex timing models, and multiple-valued logic models.  There is also work in 
progress to identify further optimizations, and to further characterize the underlying 
theoretical issues.  The work described here should provide the foundation for much new 
research in high-performance simulation of VLSI circuits. 
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