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Introduction. This is a part of our series on a geometric theory of the compact
symmetric spaces $M$ ([CN-1], [CN-2], [CN-3], [NS-1], [NS-2], [N]); especially we
will give proofs to certain statements in [N] (as was promised there). The theory features
the subspaces, called the polars and the meridians (1.5 for both) of $M$, which are
significant building blocks of maximal size (i.e. larger than the cells in any reasonable
decomposition such as that of Bruhat). The polars are directly related to the space $M$

in topology; 1.11 is just one example. They are the critical submanifolds of a certain
Bott-Morse function (at least if $M$ is an R-space; see [T-1]), and so forth. More strikingly,
even the signature (or index) of $M$ equals the sum of that of the polars, of which we
do not have a direct proof yet. We point out another intriguing fact about polars;
Uhlenbeck [U] found that every harmonic map from the 2-sphere into $U(n)$ is a product
of those into polars. On the other hand, the meridians have equal rank to that of $M$

and their root systems are related to that of $M$ with a simple rule (2.15); therefore their
curvature is related to that of $M$ in an equally simple way. The polars are paired with
the meridians; they are the “orthogonal complements” to each other, while the polars
are the connected components of the fixed points of any one of the involutions by which
$M$ becomes a symmetric space (1.5). Their theoretical significance lies in the fact that
Mis determined byasingle pair ofa polar anda meridian (1.15). Thus it is an easy
corollary that a simple $M$ is hermitian if and only if a polar and a meridian in a pair
are hermitian (2.30). Also the theory aims at studies of interrelationship between
symmetric spaces or morphisms $f$ : $B\rightarrow M$ between them. The case of dim $B=0$ was
studied in [CN-3] and [T-3]. The case of $B=sphere$ was done in [NS-1] fairly
completely.

In section 1, we will explain basic concepts and facts about them as well as their
relevance in our geometric theory. Theorem 1.8 gives the basic property of the meridian
in connection with the maximal tori, whose proof includes a new proof of conjugacy
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of the maximal tori. We begin Section 2 with formulating a variational problem $t($

connect geometry with the root theory more directly; the roots describe the curvatur$($

and the root spaces describe certain elliptic subspaces. Thus Chow’s arithmetic $distanc|$

can be handled in a more general context (Section 11 of [N]; it was worked out $b\tau$.
Takeuchi [T-2], of which he is proud). We will show how to determine the meridian

(Theorem 2.15, which was Theorem 2.5 in [N]). In the second half of the section
we will look at the subspaces which any two roots define. An outcome is a $mor($

geometric classification of the symmetric spaces than those in [A] and [H]; it alst

explains the strong restrictions on the multiplicity of the root and its meaning. $Il$

Section 3, we will describe the involutions with emphasis on the interrelationshi]

between involutions of different spaces; all the involutions will be defined with thos $($

of the orthogonal group (or its local isomorphism class).

In order to keep this paper short, we have to appeal to facts expounded in [B]

[H] and [KN].

Notations. We use Cartan’s notations for compact l-connected symmetric space
except that we use the symbol $G_{r}(K^{n})$ to denote the Grassmann manifold of th $($

r-dimensional linear subspaces of $K^{n}$ over $K=R,$ $C$ or $H$ and GI for his $G=G_{2}/SO(4)$

$\mathscr{L}G$ will denote the Lie algebra ofa Lie group $G$ . The symbol $=$. means local isomorphisn

between symmetric spaces.

\S 1. Basics on symmetric spaces.

We will define the category of the compact symmetric spaces and discuss rudiment

thereof.

1.1. DEFINmON. A smooth manifold $M$ is called a symmetric space when $\ovalbox{\tt\small REJECT}$

admits an involutive smooth transformation $s_{\sigma}$ : $M\rightarrow M$ for every point $0$ of $M$ sucl
that $0$ is an isolated fixed point of $s_{\sigma}$ and there is a Riemannian metric which ever
symmetry $s_{o}$ leaves invariant. $M$ is called affine symmetric if $M$ satisfies the $abov|$

conditions with the metric replaced with an affine connection.

A symmetric space is affine symmetric. Moreover the invariant connection of $al$

affine symmetric spaoe is unique and it has no torsion, since the involution $s_{o}$ leave
invariant no tensor $\neq 0$ of odd degree, in particular none of type $(1, 2)$ , while th

invariant Riemannian metrics are not quite unique.

1.2. DEFINmON. A smooth map $f:M\rightarrow N$ between symmetric spaces $M$ and 1

is called a morphism or a homomorphism if $f$ commutes with the symmetries
$f\circ s_{x}=s_{f\langle x)}\circ f$ for every point $x$ of $M$.

1. $2a$ . A morphism $f$ is an affine map, as is known [KN]. In fact, the exponentia

map $exp:T_{o}M\rightarrow M$, restricted to any line $L\subset T_{o}M$ through $0$ , is affine and a morphisr

at once; hence $f$ commutes with $exp$ . Thus, in case $M$ is connected, $f$ is a morphisr
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if and only if $f$ is affine. In particular, the automorphism group $Aut(M)$ is a Lie group
([KN]).

1. $2b$ . If $M$ is connected, then a morphism $f$ : $M\rightarrow N$ gives rise to a Lie algebra

homomorphism $\mathscr{L}f:\mathscr{L}Aut(M)\rightarrow \mathscr{L}Aut(N)$ , since the composites $s_{\sigma}\circ s_{p}$ for all the

pairs of the points $0,$ $p$ of $M$ generate the identity-component of $Aut(M)$ (and hence

one has a local homomorphism: $s_{o}\circ s_{p}\mapsto s_{f\langle 0)}\circ s_{f(p)}$ of $Aut(M)$ into $Aut(N))$ .

1.3. REMARK. With these morphisms, the symmetric spaces make a category, on
which we will work. For instance, a subspace $B$ of $M$ means a symmetric space in $M$

such that the inclusion map is a morphism. In case $B$ is connected, this is equivalent

to say that $B$ is a totally geodesic submanifold of $M$ . We assume that $M$ is connected,

generally. One easily sees that the intersection of two subspaces, the image and the
inverse image under a homomorphism are all subspaces. Hence every homomorphism

is the composite of a monomorphism and an epimorphism. The fixed point set of an
automorphism $t$ of $M,$ $F(t, M)$ , is another subspace.

1. $3a$ . EXAMPLE AND REMARK. Every compact Lie group $L$ is a symmetric space
by the symmetry $s_{x}$ : $y\mapsto xy^{-1}x$ . Every automorphism of the group $L$ is that of the
symmetric space $L$ , but not vice versa. For this reason, we use the term

group-automorphism to emphasize that the action preserve the group structure also.

1. $3b$ . EXAMPLE. Let $G$ be a compact Lie group and let $\sigma$ be a group involution of
$G$ . We then make $G$ act on $G$ itself by $c:x\mapsto cx\sigma(c)^{-1}$ for $c\in G$ . We call it the $\sigma$-action.

The orbit through the unit element 1 is a subspace of $G$ . This subspace $\{c\sigma(c)^{-1}|c\in G\}$

$isahomogeneousspaceG/F(\sigma, G)$ . $AlsoitequalsF(s_{1}\circ\sigma, G)_{\langle 1)}$ (ifG is connected); here

and elsewhere the symbol $B_{(x)}$ for a topological space $B$ with a point $x$ on it denotes

the connected component of $B$ through $x$ .

1.4. LEMMA. If $M$ is connected (which we usually assume), then every isometry $f$

$ofM$ (inparticular, every symmetry $s_{x}$) is an automorphism $ofM$ and the identity component

$G:=Aut(M)_{\langle 1)}$ of the automorphism group $Aut(M)$ is transitive on $M$.
$PR\infty F$ . We will show $s_{f\langle x)}=f\circ s_{x}\circ f^{-1}$ for every point $x$ of $M$. In fact, the

transformations in the both hand sides are isometries and fix the point $f(x)$ . They act

on the tangent space $T_{f\langle x)}M$ accordingly, and we have only to show that they agree

there. The left hand side $s_{f\langle x)}$ is $-1$ times the identity, while $f\circ s_{x}\circ f^{-1}$ is conjugate

to $s_{x}$ acting on the tangent space $T_{x}M$ which is $-1$ times the identity on $T_{x}M$. So we

obtain the equality. If $c$ is a geodesic segment joining a point $0$ to another point $p$ , then

the symmetry $s_{m}$ at the midpoint $m$ exchanges $0$ and $p$ . Therefore $Aut(M)$ is locally

(hence globally) transitive on $M$, and so is $G$ (altematively, one can prove the transitivity

of $G$ by trisecting $c$ instead of bisecting it). (Of course $Aut(M)$ is a Lie group. See [KN]

quoted in 1. $2a.$) QED
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1.5. DEFINITION. Each connected component of the fixed point set $F(s_{o}, M)i$

called a polar of $0$ in $M$ and denoted by $M^{+}$ or by $M^{+}(p)$ if it contains the point $p$

Through the point $p$ , there is a unique connected subspace $F(s_{p}\circ s_{\sigma}, M)_{(p)}$ whose tangen
space at $p$ is the orthogonal complement of the tangent space $T_{p}M^{+}(p)$ in $T_{p}M$. $W($

call $F(s_{p}\circ s_{\sigma}, M)_{(p)}$ the meridian to $M^{+}(p)$ through $p$ and denote it by $M^{-}$ or $M^{-}(p)$

More generally, if $t$ is an involution of $M$ which fixes a point $0$ , the subspaoe $F(t\circ s_{\sigma}, M)_{(0}$

has the tangent space at $0$ which is the orthogonal complement of the tangent spac $($

to the subspace $F(t, M)_{(\sigma)}$ at $0$ in $T_{o}M$. We call these subspaces complementally orthogona
or just c-orthogonal to each other at $0$ . We call apolar $M^{+}(p)$ apole of $o$ in $M$ if it $i^{t}$

a singleton $\{p\}$ . $\{p\}$ is a $pole\Leftrightarrow s_{p}=s_{o}$ . (The point $p$ is also called a pole if $\{p\}$ is
Usua14, we do not mean that $0$ itself is a pole or polar.)

1. $5a$ . REMARKS. (i) A theoretical significance of the concepts of the polars $ane$

the meridians lies in the fact that $M$ is (globally) determined by any one pair $(M^{+},$ $M^{-}$

if $M$ is compact and connected; see Theorem 1.15 below. We assume $M$ is compact
hereafter.

(ii) Every polar of $0$ is a $K_{(1)}$-orbit, where $K$ is the isotropy subgroup $0|$

$G:=Aut(M)_{(1)}$ at $0$ . Indeed, every component of $F(t, M)$ is an orbit of the connectec
group $F(ad(t), G)_{\langle 1)}$ for an automorphism $t$ of $M$, obviously. As a consequence, if $\mathcal{M}$

is a group, then $F(s_{1}, M)$ is the set of the involutive members and the polars are thei]

conjugate classes, since $K$ is the adjoint group, $ad(M)$ . Another consequence is that tht
isomorphism class (or the G-congruence class, more precisely) of the meridian $M^{-}(q_{J}^{\backslash }$

$toM^{+}(p)atqisindependentofqinM^{+}(p)$ . Also $\{p\}$ isapole ofo in M $=G/K,$ $K(0)=0$

if and only if $K_{(1)}$ fixes $p$ .
(iii) The above subspace $F(t\circ s., M)_{(\cdot)}$ meets every component of $F(t, M)$ for ever}

involutive automorphism $t$ of $M$ which fixes the point $0$ . In particular every $meridia\iota 1$

to a polar of $0$ meets every polar of $0$ (and $\{0\}$).

$PR\infty F$ OF (iii). Let $M^{t}(q)$ denote the component of $F(t, M)$ through the point $q$

Let $\gamma$ be a shortest geodesic arc joining $M^{t}(0)$ to $M^{t}(q)$ . $\gamma$ is orthogonal to $M^{t}(0)$ at a
point $p$ . Some member $b$ of $F(ad(t), G)_{\langle 1)}$ carries $p$ into $0$ . $b$ then carries $\gamma$ into a geo-
desic $ b\gamma$ which is orthogonal to $M^{t}(0)$ at $0$ . This means $ b\gamma$ is entirely contained in the
orthogonal space $F(t\circ s., M)_{(\cdot)}$ ; the other end of $ b\gamma$ still lies on $M^{t}(q)$ . QED

1. $5b$ . REMARK. We like to review a few more concepts and facts from [CN-3]
and [N] for later use. Every covering epimorphism $\pi:M\rightarrow M^{\prime\prime}$ carries the polars of $0$

in $M$ and their meridians onto those of $\pi(0)$ in $M^{\prime\prime}$ and the meridians except that $som\epsilon$

poles in $M$ may fall onto the point $\pi(0)$ . More specifically, if a point $p$ is a pole of a
point $0$ in $M$, then there is a double covering epimorphism $\pi:M\rightarrow M^{\prime\prime}$ which carries $0$

and $p$ into a single point. Those polars of $\pi(0)$ in $M^{\prime\prime}$ which are not the $\pi$-images 01
polars in $M$ are the projections of the connected components of what we call the
centrosome $C(0, p);C(0, p)$ is a subspace consisting of the midpoints of the geodesic
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arcs from $0$ to $p$ by definition. Next we recall the polars of the dot product $M\cdot N$ of

two spaces $M$ and $N$, where $M\cdot N$ denotes the orbit space $(M\times N)/Z_{k}$ for the (obvious

from the context) cyclic group $Z_{k}$ of order $k$ acting freely on $M$ and $N$ hence on the
product $M\times N$ accordingly as an automorphism group. When $k$ equals 2, the $Z_{k}$-orbit

through a point $(0_{M}, 0_{N})$ has another point $(p_{M},p_{N})$ in it. Let $\pi$ denote the projec-

tion: $M\times N\rightarrow M\cdot N$. Then the polars of the point $z;=\pi(0_{M}, 0_{N})$ is described by the
formula: $F(s_{z}, M\cdot N)=F(s_{\sigma_{M}}, M)\cdot F(s_{\sigma_{N}}, N)\cup C(0_{M},p_{M})\cdot C(0_{N},p_{N})$ . Typically, the dot
product appears in connection with a tensor product; thus, SO(4) is isomorphic with
the dot product $Sp(1)\cdot Sp(1)$ , since SO(4) may be interpreted as the group $Sp(1)\times Sp(1)$ ,

made effective, acting on C’ $\otimes C^{2}$ in the natural fashion. Similarly, $U(n)$ is the dot

product of $U(1)$ and $SU(n)$ .

1.6. NOTATIONS AND DEFINITION. We denote $Aut(M)_{\langle 1)}$ by $G$ or $G_{M}$ . Let $\mathscr{L}G$ or
$\mathfrak{g}$ denote its Lie algebra, which is thought of as a linear space of vector fields on $M$.
Given a point $0$ of $M$, we have an involution $ad(s_{\sigma})$ of $\mathfrak{g}$ . Its eigenspace decomposition
$g=f+m$ is called the symmetry decomposition at $0$ for M. $f$ is the Lie algebra of the
isotropy subgroup $K$ of $G$ at $0$ . $\mathfrak{m}$ is linearly isomorphic with the tangent space $T_{o}M$

to $M$ at $0$ by the evaluation map: $v\mapsto v(0)$ .

1. $6a$ . One knows $[m, m]=f$ and $[f, m]\subset m$ .

1. $6b$ . DEFINITIONS. Given a point $0$ in $M$, we call the map $Q:M\rightarrow G:x\mapsto s_{x}\circ s_{o}$

the quadratic transformation (of E. Cartan).

$Q$ is a G-equivariant morphism, as is easily seen, if one chooses the $\sigma$-action of
$G$ on itself (1.3b). $Q$ is a covering morphism of $M$ onto the subspace $Q(M)=$

$\{b\sigma(b)^{-1}|b\in G\}$ ; thus one has an “exact” sequenoe of morphisms of spaces:
$\{0\}\rightarrow P\rightarrow M\rightarrow Q(M)\rightarrow\{1\}\sim$

’ where $P$ denotes $Q^{-1}(1)$ . $P$ consists of all the poles of $0$ in
$M$ . Hence $Q$ is a monomorphism if and only if $M$ has no pole. One notes (1.14) that
$P$ has the structure of an abelian group.

1.7. DEFINITION. A space $M$ is called semisimple if $G$ is so. $M$ is called simple if
$M$ is semisimple but not a local product of two spaces of positive dimensions. The
bottom (space) (or the adjoint space [H]) $M^{*}$ of a connected semisimple space $M$ is the

space such that every connected space which is locally isomorphic with $M$ is a covering
space of $M^{*}$ . $G^{*}$ is the adjoint group of $G$ . And one sees the unique existence of $M^{*}$ ;

in fact $M^{*}=F(s_{1}\circ ad(s_{o}), G^{*})_{\langle 1)}=G^{*}/F(ad(s_{o}), G^{*})$ . Also $M^{*}\cong Q(M^{*})$ .

1.8. THEOREM. Let $M$ be a compact connected symmetric space. Then
(i) every meridian $M^{-}(p)$ contains a maximal torus of $M$, that is, a maximal sub-

space of $M$ which is isomorphic with a torus.

(ii) Every maximal $torus\ni 0$ meets every polar of $0$ .
(iii) The maximal tori are G-congruent with each other; furthermore, if two maximal

tori $A$ and $B$ contain a point $0$ , then some member of $K_{\langle 1)}$ at $0$ carries $A$ into $B$ .
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The dimension of a maximal torus in $M$ is called the rank of $M$, denoted by $r(M$

Thus every meridian $M^{-}(p)$ has an equal rank to $M$.

$PR\infty F$ . (i) Considera geodesic $\gamma$ througho and p. Then there isamemberH c
$\mathfrak{m}$ such that $\gamma$ is the orbit $\{\exp(tH)(0)|t\in R\}$ of the 1 dimensional group. If $\mathfrak{a}$ denote
a maximal abelian subalgebra in $\mathfrak{m}$ which contains $\gamma$, the orbit $\exp(\mathfrak{a})(0)$ is a $maxim^{t}$

torus $A$ in $M$ which contains $\gamma$ . Equivalently $Q(A)$ is a maximal abelian subgrou
(maximal in $Q(M)$) that contains the abelian subgroup $Q(\gamma)$ of $G$ (and $A$ is connected’
$\{p\}$ is a pole of $0$ in $A$ , sinoe every polar in a torus is a pole. Hence $s_{p}$ acts on th
tangent space $T_{p}A$ as $-1$ times the identity. Therefore $A$ is contained in the meridia
$M^{-}(p)$ . We prove (ii) and (iii) simultaneously, although (iii) is well known. We ma
assume $M$ is semisimple and further that $M$ is the bottom $M^{*}$ ; thus $M$ has no pole
We induct on the dimension of $M$; the case of dim $M=0$ is trivial (and so is the cas
of dim $M=2$). Also we may assume by 1.4 that $A$ and $B$ share the point $0$ . Let $p$ be
pole of $0$ in $A$ . Then $A$ is a subspace of the meridian $M^{-}(p)$ . Similarly, $B$ is a subspac
of another meridian $M^{-}(q)$ . $M^{+}(q)\cap M^{-}(p)$ is not empty by 1. $5a$ (iii). Every connecte $($

component $M^{-+}(q)$ of $M^{+}(q)\cap M^{-}(p)$ is a polar of $0$ in $M^{-}(p)$ . Hence $A$ meets $M^{-+}(q$

by the induction assumption on (ii). Hence some member $b$ of $K_{\langle 1)}$ carries $A$ into
torus $bA$ that contains the point $q$ (and o) by 1. $5a$ (ii). $M^{-}(q)$ contains $bA$ by (i). $Agai\uparrow$

by the induction assumption (this time on (iii)), another member $c$ of $K_{\langle 1)}$ carries $b_{I}$

into $B$. QED

1. $8a$ . COROLLARY. A connected $M$ is l-connected if some meridian is.

$PR\infty F$ . This follows from 1.8 (i), since every member of the fundamental grou]

$\pi_{1}(M)$ contains a closed geodesic. QED

1.9. THEOREM. Every compact connected symmetric space $M$ is a subspace $0$.
a canonical finite covering group $G^{A}$ of $G=Aut(M)_{(1)}$ such that one has $M=$

$F(s_{1}\circ\sigma, G^{A})_{(1)}=\{b\sigma(b)^{-1}|beG^{A}\},$ $\sigma:=ad(s_{o})$ , and the inclusion induces an isomor
phism of the fundamental group $\pi_{1}(M)$ onto $\pi_{1}(G^{A})$ . This way, $Q$ lifts to a mono
morphism $Q^{A}$ : $M\rightarrow G^{A}$ (see 1.13). (The group $G^{A}$ is not unique with the above condi
tion; ”canonical” means that 1.12 below obtains.)

$PR\infty F$ . In case $M$ is a torus, one takes the identity map $1_{M}$ as $Q^{A}$ ; $M=G^{A}$ . $W|$

assume that $M=G/K$ is semisimple. The subspace { $b\sigma(b)^{-1}|$ be $G^{\sim}$ } of the universa
covering group $G^{\sim}$ is a homogeneous space $G^{\sim}/F(\sigma, G^{\sim})$ and $F(\sigma, G^{\sim})$ is connectet
(Theorem 8.2, [H], p. 320). Thus the subspaoe $M^{\sim}:$ $=\{b\sigma(b)^{-1}|b\in G^{\sim}\}$ is l-connected
On the other hand the projection $\pi$ of $G^{\sim}$ onto the adjoint group $G^{*}$ carries $ M^{\sim}ont\langle$

the bottom space $M^{*}=Q(M^{*})$ . Therefore the fundamental group $\pi_{1}(M^{*})$ is a subgrou]
of $\pi_{1}(G^{*})$ which is the center $C(G^{\sim})$ of $G^{\sim}$ . Hence $\pi_{1}(M)$ is also a subgroup of $C(G^{\sim})$

moreover $\pi_{1}(M)\subset\pi_{1}(M^{*})=C(G^{\sim})\cap M^{\sim}$ . Thus $M$ is a subspace of $G^{A}$ $:=G^{\sim}/\pi_{1}(M)$

one has $M=$ { $b\sigma(b)^{-1}|$ be $G^{A}$ }. The construction of $G^{A}$ is now obvious in the genera
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case. QED

1.10. COROLLARY. If $G^{\sim}is$ a compact l-connected Lie group, then the subspace

$M=\{b\sigma(b)^{-1}|b\in G^{\sim}\}$ is l-connectedfor every group involution $\sigma$ . Its bottom space $M^{*}$

is $\{b\sigma(b)^{-1}|b\in G^{*}\}$ . In particular, the fundamental group $\pi_{1}(M^{*})$ is a subgroup of $\pi_{1}(G^{*})$

which is the center $C(G^{\sim})$ of $G^{\sim}for$ every compact connected semisimple space $M$.

1.11. COROLLARY. The polars in a compact l-connected Lie group are all

l-connected. In particular they are semisimple.

1.12. COROLLARY. The monomorphism $Q^{\wedge}:M\mapsto G^{\wedge}$ ($or$ rather $(M,$ $0)\mapsto(G^{A},$ $1)$)

given in the theorem extends to a functor of the category of the compact connected

symmetric spaces into that of the compact connected Lie groups. That is, a homomorphism

$f:M=G_{M}/K_{M}\rightarrow N$ extends to a homomorphism $G^{A}f:G_{M}^{A}\rightarrow G_{N}^{A}$ .

PROOF. The given homomorphism $f$ gives rise to a homomorphism $\mathscr{L}f$ : $\mathfrak{g}_{M}\rightarrow \mathfrak{g}_{N}$

on the Lie algebra level by 1.$6a;m$ generates $\mathfrak{g}$ . (Of course we use the symmetry

decomposition of $\mathfrak{g}_{N}$ at $f(0).)\mathscr{L}f$ lifts to a homomorphism $G^{\sim}f:G_{M}^{\sim}\rightarrow G_{N}^{A}$ of the

l-connected group. Sinoe the kernel of the projection of $G_{M}^{\sim}$ onto $G_{M}^{A}$ is contained in
$M^{\sim}$ as in the proof of the theorem, one obtains the desired $G^{\wedge}f$ The rest is

obvious. QED

1.13. REMARK. The significanoe of 1.12 or the concept of $G^{A}$ lies in the fact that

a morphism $f:M\rightarrow N$ does not necessarily give rise to a homomorphism of

$Aut(M)_{\langle 1)}\rightarrow Aut(N)_{(1)}$ . If one writes $Q^{A}$ for the monomorphism: $M\rightarrow G^{A}$ in the theorem,

then one has $Q=\pi\circ Q^{A}$ , where $\pi$ is the projection: $G^{\wedge}\rightarrow G$ . Theoretical importamoe of
$Q^{\wedge}$ lies in that, in a way, $Q^{\wedge}$ replaces the projection: $G\rightarrow M=G/K$, which is not a

homomorphism in our sense.

1. $13a$ . REMARK. If $f$ is an epimorphism, then so is $G^{A}f$ . The analog is false for

a monomorphism. Every automorphism $t$ of $M$, however, extends to that of $G^{A}$ .

1.14. COROLLARY. For a covering morphism $\pi:M\rightarrow M^{\prime\prime}$ , one has an “exact”

sequence: $\{0\}\rightarrow M^{\prime}\rightarrow M\rightarrow M^{\prime\prime}\rightarrow\{0^{\prime\prime}\}$ and the “kernel” $M^{\prime}:=\pi^{-1}(0^{\prime\prime}),$ $0^{\prime\prime}:=\pi(0)$ , has the

structure of an abelian group with the unit element $1=0$ which is a subgroup of the center

of $G^{A}$ . We call $M^{\prime}$ the center (through o) of $M$ if $M^{\prime\prime}=M^{*}$ , the bottom.

$PR\infty F$ . The group homomorphism $G^{A}\pi:G^{\sim}/\pi_{1}(M)\rightarrow G^{\sim}/\pi_{1}(M^{\prime\prime})$ has the kernel
$N\cong\pi_{1}(M^{\prime\prime})/\pi_{1}(M)$ , which is abelian as a quotient group of a subgroup $\pi_{1}(M^{\prime\prime})$ of the

center of $G^{\sim}$ . $N$ may be identified with $M^{\prime}$ by the theorem. QED

1. $14a$ . COROLLARY. Every meridian through $0$ contains the kernel $M^{\prime}$ in the above.

$PR\infty F$ . This is immediate from 1.8 (i) and the fact that the center of a connected

compact Lie group is contained in every maximal torus (which is a subgroup). QED
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1. $14b$ . REMARK. Homomorphisms between symmetric spaoes are not too muc
involved; that is, if $f$ : $M\rightarrow N$ is a homomorphism, then $M$ is a local product $M^{\prime}\times \mathcal{M}$

of subspaces such that $f(M^{\prime})$ is a single point and the restriction of $f$ to $M^{n}$ is a coverin
map onto $f(M)$ , a subspace of $N$. This is immediate from the fact that the compa $($

connected group $G_{M}^{A}$ is the local direct product of the kernel of $G^{A}f$ and its image.

1.15. THEOREM. A compact connected simple symmetric space $M$ is determined $t$

any one pair $(M^{+}, M^{-})$ of a polar $M^{+}$ and a meridian $M^{-}$ to $M^{+}$ . More precisel.
another such space $N$ is isomorphic with $M$ if a pair $(N^{+}, N^{-})$ of a polar in $N$ and
meridian to it is isomorphic with $(M^{+}, M^{-})$ in thefollowing strong sense; $M^{+}is$ isomorph
with $N^{+}$ and $M^{-}$ is isometric with $N^{-}$ up to a constant multiple of the metric.

$PR\infty F$ . One could verify this case by case, sinoe those pairs are all known for a
the spaces. The corresponding local isomorphism theorem will be proven later (2.28

We assume 2.28 and will prove the theorem. If $M$ and $N$ satisfy the hypothesis for th
pairs $(M^{+}, M^{-})$ and $(N^{+}, N^{-})$ , then the bottoms do locally by 1. $5b$ . Hence we have th
isomorphism $M^{\sim}\cong N^{\sim}$ for the universal covering spaces by 2.28. The kemel (1.14) fo
the projection $\pi:M^{\sim}\rightarrow M$ lies within the corresponding meridian (1.14a), which ca
be compared with the counterpart for $N$ by the isometry assumption. QED

1. $15a$ . REMARK. Some comment may be due for the isomorphism in the strongt
sense. For most spaoes it is sufficient to assume that $M^{+}$ is isomorphic with $N^{+}$ an
$M^{-}$ with $N^{-}$ , but, when $M^{-}$ is a local product of a circle $T$ and a semisimple spac $($

the ratio of the diameter of $T$ to that of $M^{-}$ counts in locating $M$ within its $1oc_{\dot{c}}$

isomorphism class, just as the groups in the local isomorphism class of the Lie grou
$SL(2, R)$ are distinguished by the diameter of the maximal subgroup $\cong SO(2)\cong T$ wit
respect to the standard pseudo-Riemannian metric (defined by the Killing form). On
of the very few counterexamples is $(M^{+}, M^{-})=(EIII, T\cdot SO(10)^{\sim})$ for $M=E_{6}$ an
$M^{*}=E_{6}/Z_{3}$ .

\S 2. Observations of the root systems.

We will study subspaces which are the fixed point sets of involutions of $compa\{$

symmetric spaces as Riemannian manifolds. The root systems will come up as ingredient
of the curvature; the roots in our sense are called the restricted roots in the literatuI
including [H]. In terms of the root system, we will describe the meridians in particula
which will allow us to determine them locally. The second half of the section will $b$

devoted to detailed studies of the root systems; an introduction for them will be give
between 2.24 and 2.25.

Lett be an involution ofMwhich fixesa point o. We write M for F$(t, M)_{(\sigma)}$ , th
connected component throu$gho$ of the fixed point set of $t$ acting on $M$. Let $M^{-t}$ denol
$F(t\circ s_{\sigma}, M)_{\langle 0)}$ , the c-orthogonal spaoe to $M^{t}$ at $0$ .
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Consider a geodesic $c$ in $M^{-t}$ starting at $c(O)=0$ . Let $JF^{t}$ denote the spaoe of the

Jacobi fields $v$ on $c$ ([KN] vol. 2, p. 63) which are tangent to $M^{t}$ at $0$ and whose

covariant derivatives $\nabla_{c^{\prime}\langle O)}v$ at $0$ are tangent to $M^{-t}$ . A point $c(u)$ is called a focal point

(with respect to $JF^{t}$) if there is a nonzero Jacobi field $v=v\circ c$ in $JF^{t}$ which vanishes at

$c(u)$ , while the point $c(u)$ is called aconjugate point of $o$ along $c$ if there is anonzero
Jacobi field in $JF^{t}$ which vanishes at $c(u)$ and at $0$ . It is $a$ known important fac $t$ that

there is no focal point $c(u)$ on the $a$rc $c|[0, u_{\sigma}],$ $0<u<u_{\sigma}$ , if the arc is weakly stable (that

is, it is not longer than any nearby curves from $M^{t}$ to the point $c(u_{o}))$ . The Jacobi fields

are exactly the solutions of the following Jacobi equation, an ordinary linear differenti $a1$

equation of the second order:

2.1. $\nabla_{H}\nabla_{H}v+K(v, H)H=0$ ,

where $H$ denotes the tangent vector $c^{\prime}(u)$ and $K$ is the curvature tensor. To solve this

equation, one notes that the linear operator: $v\mapsto K(v, H)H$ is symmetric and constant

in the sense $\nabla K=0$ , which follows from the fact that every point symmetry fixes $K$.

Now the action of $Aut(M)$ makes its Lie algebra $\mathfrak{g}$ a linear spaoe of vector fields
$v$ on $M$. If one embeds $M$ into $G^{\wedge}$ as the subspaoe $F(s_{1}\circ ad(s_{o}), G^{A})_{\langle 1)}$ by 1.9, then a

member $b$ of $G^{\wedge}$ (or $G$ ) carries a point $x$ of $M$ into $bx(ad(s_{o})b)^{-1}$ . This convention has

technical advantages; it frees us from distinction between the group manifolds and the

other spaces in proving some theorems, for instance.
Sinoe every $v\in \mathfrak{g}$ is a Killing vector field, the restriction $v\circ c$ to $c$ is a Jacobi field.

We employ the symmetry decomposition $g=f+m$ at $0$ and the one $\mathfrak{g}=f_{c\langle u)}+\mathfrak{m}_{c\langle u)}$ at

every point $c(u)$ of $c$ . We choose $H$ in $\mathfrak{m}$ so that $H(0)=c^{\prime}(0)$ . Then we have $H(c(u))\in \mathfrak{m}_{c\langle u)}$ ;

and henoe $H(c(u))=c^{\prime}(u)$ at every point. One recalls $K(v, H)=-[[v, H],$ $H$] at $0$ and

for every $v\in \mathfrak{m}$ ([H], p. 215) and hence for every $ve\mathfrak{g}$ ; therefore one has

$K(v, H)H=-[[v, H],$ $H$] everywhere on $c$ for every $v\in \mathfrak{g}$ . Thus 2.1 reads:
$\nabla_{H}\nabla_{H}v-ad(H)^{2}v=0$ for every $v\in \mathfrak{g}$ . In terms of the Fermi coordinates, or equivalently,

by identifying the tangent space $T_{c\langle u)}M$ with $T_{o}M$ or $\mathfrak{m}$ by the transformation $\exp(uH)$

(which is a parallel displacement along $c$), this is converted to the equation

2. $1a$ . $(\frac{d}{du})^{2}v-ad(H)^{2}v=0$ for a curve $v$ on $T_{o}M$ .

To go further, we decompose $f$ and $\mathfrak{m}$ by means of $ad(t);f=f^{-t}+f^{t}$ , and
$\mathfrak{m}=\mathfrak{m}^{-t}+\mathfrak{m}^{t}$ , where $f^{t}=F(ad(t), f),$ $f^{-t}=F(-ad(t), f),$ $\mathfrak{m}^{t}=F(ad(t), \mathfrak{m})$ and $\mathfrak{m}^{-t}=$

$F(-ad(t), \mathfrak{m})$ . We can do this since $ad(s_{o})$ commutes with $ad(t)$ . The symmetry de-

compositions of $M^{t}$ and $M^{-t}$ are $\mathfrak{k}^{t}+\mathfrak{m}^{t}$ and $f^{t}+\mathfrak{m}^{-t}$ at $0$ respectively.

We choose a maximal abelian subalgebra $\mathfrak{a}^{-t}$ in $\mathfrak{m}^{-t}$ . Sinoe $Q(\mathfrak{a}^{-t})$ generates a

toral group $A^{-t}$ , we have another decomposition $\mathfrak{g}=\sum \mathfrak{g}(\alpha)$ of $\mathfrak{g}$ throu$gh$ the adjoint

action of $A^{-t}$ , where $\alpha$ is a linear form on $\mathfrak{a}^{-t}$ and $\mathfrak{g}(\alpha)$ is a subspaoe on which $(ad(H))^{2}$

is a scalar multiplication by $-\alpha(H)^{2}$ for every member $H$ of $\mathfrak{a}^{-t}$ . We agree $\mathfrak{g}(\alpha)=\mathfrak{g}(-\alpha)$

because of the ambiguity involved in the definition; whenever we need distinguish $-\alpha$
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from $\alpha$ for a technical reason, we have only to wo$rk$ on the complexification of $\mathfrak{g},$ $($

in the usual Lie algebra theory.
Since every $(ad(H))^{2}$ commutes with $ad(s_{o})$ and $ad(t)$ , we obtain a $fin|$

decomposition: $f^{t}=\sum f^{t}(\alpha),$ $f^{-t}=\sum f^{-t}(\alpha),$ $\mathfrak{m}^{t}=\sum \mathfrak{m}^{t}(\alpha)$ , and $\mathfrak{m}^{-t}=\sum \mathfrak{m}^{-t}(\alpha)$ , whe
$f^{t}(\alpha):=P\cap \mathfrak{g}(\alpha)$ , etc. Note $\mathfrak{m}^{-t}(0)=\mathfrak{a}^{-t}$ . One sees that $f^{t}(\alpha),$ $\alpha\neq 0$ , is linearly isomorph
with $\mathfrak{m}^{-t}(\alpha)$ and $f^{-t}(\alpha)$ with $\mathfrak{m}^{t}(\alpha)$ by any $ad(H),$ $H\in \mathfrak{a}^{-t}$ satisfying $\alpha(H)\neq 0$ , since $ad(H$

is then a linear automorphism on $f(\alpha)$ and $\mathfrak{m}(\alpha)$ .

2.2. NOTATIONS. Let $R(M;\mathfrak{a}^{-t}),$ $R(M;\mathfrak{a}^{-t})$ and $R(M^{-t};\mathfrak{a}^{-t})$ denote the se $t$ of a
the linear forms $\pm\alpha\neq 0$ with $\mathfrak{g}(\alpha)\neq\{0\}$ , its subset consisting of $\alpha$ with $\mathfrak{m}^{t}(\alpha)\neq\{0\},$ $ar_{J}$

the subset consisting of $\alpha$ with $\mathfrak{m}^{-t}(\alpha)\neq\{0\}$ respectively; thus one has $R(M;\mathfrak{a}^{-t})$ :

$R(M^{t};\mathfrak{a}^{-t})\cup R(M^{-t};\mathfrak{a}^{-t})$ . The linear forms $\pm\alpha$ are identified with members of $\mathfrak{a}^{-t}t$

means of the inner product on $\mathfrak{m}$ .

2.3. PROPOSITION. $R(M;\mathfrak{a}^{-t})$ and $R(M^{-t};\mathfrak{a}^{-t})$ are root systems in the usual $sen$.
(cf. [B]). $R(M^{t};\mathfrak{a}^{-t})$ , or the union $R(M^{t};\mathfrak{a}^{-t})\cup\{0\}$ in case $\mathfrak{m}^{t}(0)\neq\{0\}$ , is a weight syste,
in the sense to be explained below.

$PR\infty F$ . This is known for the first two sets [OS]; the root theo$ry$ for a Lie algeb]
$\mathfrak{g}$ remains valid to this extent and beyond even if the abelian subalgebra $\mathfrak{a}^{-t}$ is $n\langle$

maximal in $\mathfrak{g}$ (Soe 2. $4c$ for another example). The point is that every member $\alpha$ $\langle$

$R(M;\mathfrak{a}^{-t})$ together with a nonzero member $x$ of $\mathfrak{g}(\alpha)$ generates a Lie subalgeb]
$\mathfrak{g}_{x}(\alpha)\cong \mathscr{L}Sp(1)$ of $\mathfrak{g}$ if $ 2\alpha$ is not a member of $R(M;\mathfrak{a}^{-t})$ . $\mathfrak{g}_{x}(\alpha)$ acts on $\mathfrak{g}$ through th
adjoint action. It acts on $\mathfrak{g}^{-t}:=f^{t}+\mathfrak{m}^{-t}$ if $\alpha$ is in addition a member of $R(M^{-}‘;$ $\mathfrak{a}^{-\iota}$

We add that $R(M^{-t};\mathfrak{a}^{-r})$ spans $\mathfrak{a}^{-t}$ if $M^{-t}$ is semisimple. From now on we will use th
language of the root theory [B]; see [B] also for some notation, the numbering of th
simple roots, etc. The set $R(M^{t};\mathfrak{a}^{-t})$ is a weight system for $R(M^{-t};\mathfrak{a}^{-t})$ in the $sen!$

that (i) this finite set is invariant under the action of the Weyl group of $R(M^{-t};\mathfrak{a}^{-\iota}$

(ii) its members $\lambda$ are weight forms, that is, $\langle\lambda, \alpha^{v}\rangle$ is an integer for every root $\alpha l$

$R(M^{-t};\mathfrak{a}^{-t})$ , whe $ re\alpha^{v}=2\Vert\alpha\Vert^{-2}\alpha$ ; and (iii) it contains $\lambda+m\alpha$ whenever it contains
and $\lambda+p\alpha,$ $m$ an inte$ger$ between $0$ and the integer $p$ ; namely, the set is R-satur
$R=R(M^{-t};\mathfrak{a}^{-t})$ , in the sense of [B], Chap. 8. (The linear span of $R(M^{-\iota};\mathfrak{a}^{-t})do($

not necessarily contain $R(M^{t};\mathfrak{a}^{-t}).)$ This obtains sinoe the Lie subalgebra $\mathfrak{g}_{x}(\alpha)$ stabilizI
the linear subspaoe $f^{-t}+\mathfrak{m}^{t}$ of $\mathfrak{g}$ . QED

2. $3a$ . REMARK. If $M$ is a group and $t\circ s_{o}$ is a group automorphism, $0=1,$ $th\epsilon$

$R(M^{t};\mathfrak{a}^{-t})$ is the weight system ofthe isotropy representation for the space $M^{t}=.M/M^{-}$

$=$. means local isomorphism. By a later theorem 2.15, one can mo$re$ easily determir
the representation for a meridian than E.Cartan did years ago.

2.4. DEFINITION. We call $R(M^{-t};\mathfrak{a}^{-t})$ the root system of $M^{-t}$ and denote it $t$

$R(M^{-\iota})$ also; its isomorphism class depends on the spaoe $M^{-t}$ only, independent of $\mathfrak{a}$

and $t$ . The members of $R(M^{-t};\mathfrak{a}^{-t})$ are called the roots of $M^{-t}$ (with respect to $\mathfrak{a}^{-l}$
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and those of $m^{-t}(\alpha)$ are the root space for $\alpha$ . We call the dimension of $\mathfrak{m}^{-t}(\alpha)$ the
multiplicity of $\alpha$ , denoted by $m^{-t}(\alpha)$ . One has $m^{-t}(\alpha)=\dim f^{t}(\alpha)$ . The rank of $M^{-t}$ is
$r(M^{-t})=\dim \mathfrak{a}^{-t}$ as defined earlier. In case $t=s_{\sigma},$ $M^{-t}$ is $M$ itself and, dropping the
upper index $-t$, we write $\mathfrak{a}$ for $\mathfrak{a}^{-t}$ to have $R(M;\mathfrak{a})=R(M^{-}‘)$ ; also $m(\alpha)=m^{-t}(\alpha)$ .

2. $4a$ . REMARK. One ge $ts$ some information about $G$ from $R(M)$ and the action
ofG on M $=G/K$. Thus, ifG is the bottom G* $=ad(G)$ acting onasemisimple M, one
has $\exp(2\pi H)=1\Leftrightarrow ad(\exp(2\pi H))=1\Leftrightarrow\cos(2\pi\alpha(H))=1$ for every $\alpha$ in $R(M)$ , where
$H\in \mathfrak{a}$ ; cf. 2.20. Other examples are 2.$4b,$ $2.4c$ and 2.5.

The next lemma gives a geometric meaning of the root.

2. $4b$ . LEMMA. Let $\alpha$ be a $root\in R(M),$ $M$ simple. Assume $ 2\alpha$ is not a root. Then
(i) $\mathfrak{m}(\alpha)$ and $\alpha$ together span the tangent space $T_{\sigma}M(\alpha)$ to a connected subspace $M(\alpha)$ of
positive constant curvature $\Vert\alpha\Vert^{2}$ (that is, $M(\alpha)$ is either a sphere or a realprojective space).
(ii) The bracket product: $\mathfrak{m}(\alpha)\wedge m(\alpha)\rightarrow[\mathfrak{m}(\alpha), \mathfrak{m}(\alpha)]\cong \mathscr{L}O(\mathfrak{m}(\alpha))$ is bijective. Also
$\mathfrak{m}(\alpha)+R\alpha$ generates $\mathscr{L}O(m(\alpha)+2)$ . (iii) $M(\alpha)$ is a sphere unless $M=M(\alpha)$ or $R(M)$ is $B_{r}$

in which $\alpha$ is a shorter root. (iv) $M(\alpha)$ is a sphere if $M$ is l-connected. (v) $M(\alpha)$ contains
a subspace $M^{\prime}(\alpha)\ni 0$ whose tangent space $T_{o}M^{\prime}(\alpha)$ is $\mathfrak{m}(\alpha)$ , which is congruent with the
polar ( $\cong a$ real projective space) or the centrosome ( $\cong a$ sphere) in $M(\alpha)$ . And (vi) there
is an involutive member $b$ of $K_{\langle 1)}$ which stabilizes $a$ and induces the reflection in the
hyperplane with a normal vector $\alpha$ on $\mathfrak{a}$ . Thus $K_{\langle 1)}$ contains members which, restricted to
$\mathfrak{a}$ , generate the Weyl group $W(R(M))$ .

$PR\infty F$ . Recall E.Cartan’s result [H]: $a$ linear subspace $\mathfrak{m}^{\prime}$ of $\mathfrak{m}$ is tangent to a
unique connected subspace $M^{\prime}$ of $M$ if and only if $[[\mathfrak{m}^{\prime}, \mathfrak{m}^{\prime}],$

$\mathfrak{m}^{\prime}$] $\subset \mathfrak{m}^{\prime}$ . The condition
is equivalent to say that the subalgebra $f^{\prime}$ of $\mathfrak{g}$ generated by $[\mathfrak{m}^{\prime}, \mathfrak{m}^{\prime}]$ normalizes $\mathfrak{m}^{\prime}$ ; the
symmetry decomposition for $M^{\prime}$ is $f^{\prime}+\mathfrak{m}^{\prime}$ . We will verify it for $\mathfrak{m}^{\prime}:=m(\alpha)+R\alpha$ . One notes

2.$4b.1$ . $[\mathfrak{g}(\alpha), \mathfrak{g}(\beta)]\subset \mathfrak{g}(\alpha+\beta)+\mathfrak{g}(\alpha-\beta)$

for roots (or zeroes) $\alpha$ and $\beta$ ; in particular one has $[\mathfrak{g}(\alpha), \mathfrak{g}(\alpha)]$ cg(O) $=f(0)+\mathfrak{a}$ , since
$ 2\alpha$ is not a root. Henoe one has $[\mathfrak{m}(\alpha), \mathfrak{m}(\alpha)]\subset f(0)$ . One knows $[\mathfrak{m}(\alpha), R\alpha]=f(\alpha)$ and
$[f(\alpha), R\alpha]=\mathfrak{m}(\alpha)$ .

One obtains $[f(\alpha), \mathfrak{m}(\alpha)]=R\alpha$ from the inner product $\langle[v, x], H\rangle=\langle v, [x, H]\rangle=$

$\langle v, -\alpha(H)y\rangle=-\langle v, y\rangle\alpha(H)$ for every $v\in f(\alpha),$ $H\in \mathfrak{a}$ and $x\in \mathfrak{m}(\alpha)$ and for some
$y\in f(\alpha),$ $[H, x]=\alpha(H)y$ ; one has $[v, x]=-\langle v, y\rangle\alpha$ . Sinoe $f(O)$ normalizes $\mathfrak{m}(\alpha),$ $f(\alpha)$ and
$ R\alpha$ , one has $a$ subalgebra $(f(O)+f(\alpha))+(\mathfrak{m}(\alpha)+R\alpha)$ of $\mathfrak{g}$ with this symmetry decomposi-
tion; we have established the unique existenoe of $M(\alpha)$ . Now we compute the curva-
ture by using the formula [H] for the one corresponding to the orthonormal vectors
$v$ and $x\in \mathfrak{m}^{\prime}:\langle K(v, x)x, v\rangle=\langle-[[v, x], x], v\rangle=\Vert[x, v]\Vert^{2}$ . One may assume that $x$ is
proportional to $\alpha$ ; in fact one can rotate $x$ into a unit vector $ H\in R\alpha$ fixing $v$ by means
of the group generated by $ad(y),$ $[\alpha, x]=\Vert\alpha\Vert^{2}y\in f(\alpha)$ , because of $\langle[y, v], \alpha\rangle=$

$\langle v, [\alpha, y]\rangle=-\langle v, \Vert\alpha\Vert^{2}x\rangle=0$ and $[f(\alpha), \mathfrak{m}(\alpha)]=R\alpha$ . Now $\langle K(v, H)H, v\rangle=\langle-[[v, H]$ ,
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$H],$ $ v\rangle$ $=\Vert[H, v]\Vert^{2}=\Vert\alpha(H)v\Vert^{2}=\Vert\alpha\Vert^{2}$ . We tum to (ii). Now that $M(\alpha)$ is an ellipti

space, the isotropy subgroup of its automorphism group has the Lie algebra $f_{o}(\alpha)+f(\alpha)$

where $f_{0}(\alpha)=[f(\alpha), f(\alpha)]=[\mathfrak{m}(\alpha), \mathfrak{m}(\alpha)]$ is that of the subgroup which fixes $\alpha$ . $f_{0}(\alpha)+f(\alpha$

is the Lie algebra of the orthogonal group $O(\mathfrak{m}(\alpha)+R\alpha)$ . (Replacing $f(O)$ with $f_{0}(\alpha)il$

the above symmetry decomposition, one gets the effective Lie algebra acting on $M(\alpha^{1}$,

Also see the proof of 2.25 for a more algebraic proof of the above equalities $involvin$

$f_{0}(\alpha).)$ For (iii), we first assume that $G$ is the bottom $G^{*}$ . And let $G_{x}(\alpha)$ be the $connecte|$

subgroup of $G^{*}$ generated by $\mathfrak{g}_{x}(\alpha)$ which is, as before, generated in $\mathfrak{g}$ by a nonzer $($

$x\in \mathfrak{m}(\alpha)$ and $\alpha$ . Then $G_{x}(\alpha)$ is isomorphic with Sp(l) (not with $SO(3)$) if and only $1$

’

$\langle\beta, \alpha^{\vee}\rangle$ is odd for some root $\beta$ in $R(M)$ , as one sees by letting $G_{x}(\alpha)$ act on the $suIJ$

of $\mathfrak{g}(i\alpha+\beta),$ $j$ integer, ([B] on the length of $\alpha$-series of roots). Such a root $\beta$ fails $t($

exist if and only if either $M=M(\alpha)$ or $\alpha$ is a shorter root in $R(M)$ which is $B_{r}$ . In cas
$M$ is also the bottom $M^{*},$ $G_{x}(\alpha)\cap M^{*}$ is still a 2-sphere if such a root $\beta$ exists, sinc
$M^{*}$ is $a$ subspaoe $Q(M^{*})$ . Then the elliptic spaoe $M(\alpha)$ ofwhich $G_{x}(\alpha)\cap M^{*}$ is a subspac

is also a sphe$re$ . Therefore one has (iii) for eve$ry$ covering spaoe of $M^{*}$ . Assume tha
$M$ is l-connected. If $M$ has rank 1, then $M(\alpha)$ is the whole spaoe $M$ and of course]

is a sphere. If $R(M)$ is $B_{r}$ , then (let us assume one knows or one will find later thal
$M^{*}$ is the group $SO(2r+1)$ or the real Grassmann manifold $G_{r}(R^{2r+m}),$ $m\geqq 1$ . $M^{*}(0$

is SO(3) (embedded in the obvious way) or the real projective spaoe $G_{1}(R^{2+n}$

respectively. It is not $ha$rd to see that the lift of the circle with the tangent $\alpha$ passe
through the pole in M. (iii) and (iv) are essentially due to Helgason, although he discusse

the highest root only in [H]. (v) is obvious; $M^{\prime}(\alpha)$ is c-orthogonal to the circle with

tangent $\alpha$ at $0$ and $[\mathfrak{m}(\alpha), \mathfrak{m}(\alpha)]+\mathfrak{m}(\alpha)$ is the symmet$ry$ decomposition for the ellipti

spaoe $M^{\prime}(\alpha)$ . (vi) is elementary. Take $y$ in the above and normalize $y$ (and x) so $th^{r}$

$[x, y]=\alpha$ , hence $[y, \alpha]=x$ . Then $ad(y)$ acts trivially on the hyperplane with the norm;

$\alpha$ in $\mathfrak{a}$ . And $b:=\exp(\pi ad(y))$ carries $\alpha$ into $-\alpha$ . QED

2. $4c$ . REMARK. One has the multiplicity $m(\alpha)=m(\beta)$ if the length $\Vert\alpha\Vert=\Vert\beta\Vert$ an
$M$ is simple, by 2.$4b$ . Moreover $m(\alpha)\leqq m(\beta)$ if $\Vert\alpha\Vert\geqq\Vert\beta\Vert$ , as one sees by the usua
arguments on $\alpha$-series of a weight [B].

The construction of $M(\alpha)$ for a single root $\alpha$ may be generalized to that of

subspaoe for several roots.

2.$4d$ . LEMMA. Given a set $S\subset R(M)$ , one has a unique connected subspace $M(S)$

$M$ whose tangent space $T_{\sigma}M(S)$ equals $\mathfrak{m}_{S}:=\mathfrak{a}_{S}+\sum_{R\langle S)}\mathfrak{m}(\alpha)$ , summed up for the roots $i$

$R(S)$ , where $\mathfrak{a}_{S}$ is the linear span of $S$ and $R(S)$ is the minimal root subsystem of $R(h$

satisfying $S\subset R(S)\subset R(M)\cap \mathfrak{a}_{S}$ .

$p_{R\infty F}$ . $R(S)$ exists, sinoe $R(M)\cap \mathfrak{a}_{S}$ is a root system (See [B]). Let $f_{S}$ be th

subalgebra of $f$ generated by $[\mathfrak{m}_{S}, \mathfrak{m}_{S}]$ . One knows $[\mathfrak{m}(\alpha), \mathfrak{m}(\beta)]cf(\alpha+\beta)+f(\alpha-\beta)$ , an

one sees $\alpha\pm\beta eR(S)$ if $f(\alpha\pm\beta)\neq 0$ and $\alpha\pm\beta\neq 0$ . Henoe $f_{S}\subset f(0)+\sum_{R(S)}f(\alpha)$ . While $f(|$

normalizes every $\mathfrak{m}(\beta)$ , one has $[f(\alpha), \mathfrak{m}(\beta)]\subset \mathfrak{m}(\alpha+\beta)+\mathfrak{m}(\alpha-\beta)$ , and one conclud $($
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$[f_{S}, m_{S}]\subset \mathfrak{m}_{S}$ . This establishes the unique existenoe of $M(S)$ ; the symmetry decomposition
for $M(S)$ is $f_{S}+\mathfrak{m}_{S}$ . QED

2.5. PROPOSITION. The followingfive conditions are equivalent.
(i) The multiplicity m$(\alpha)=1foreveryroot\alpha ofM=G/K$.
(ii) The rank $r(M)=r(G)$ .
(iii) The root system $R(M)\cong R(G)$ .
(iv) The subspace $f(O)=\{0\}$ .
(v) The subalgebra $f(O)$ acts on $\mathfrak{m}(\alpha)$ reducibly for every root $\alpha$ of $M$.

PROOF. One clearly sees $[f(O), \mathfrak{m}(\alpha)]\subset m(\alpha)$ for every $\alpha$ . Under the assumption of
(i), this gives $[f(O), \mathfrak{m}(\alpha)]=\{0\}$ , since $f(O)$ is the Lie algebra of a compact Lie group.
Hence $f(O)=\{0\}$ , sinoe $f$ is effective on $\mathfrak{m}$ . Obviously, $(iv)\Leftrightarrow \mathfrak{a}$ is $a$ maximal abelian
subalgebra of $\mathfrak{g}\Leftrightarrow(ii)$ . Assume (ii). Then $\mathfrak{g}$ is the direct sum of $\mathfrak{a}$ and $\mathfrak{g}(\alpha)$ for the roots
of $M$; henoe every root $\alpha$ of $M$ is that of $\mathfrak{g}$ . The converse is trivial: $(iii)\Rightarrow(ii)$ , sinoe $\mathfrak{a}$

is the direct sum of the linear spaoe spanned by $R(M)$ and the torus part of $\mathfrak{m}$ . Under
the equivalent assumptions of (ii), one recalls dim $\mathfrak{g}(\beta)=2$ to derive $m(\beta)=+\dim \mathfrak{g}(\beta)=1$ ;
$(ii)\Rightarrow(i)$ . Trivially, (iv) implies (v). Finally assume (v). If $ 2\alpha$ is not a root, them
$[\mathfrak{m}(\alpha), \mathfrak{m}(\alpha)]\subset f(0)$ is $\mathscr{L}O(\mathfrak{m}(\alpha))$ by 2. $4b$ . Thus $m(\alpha)=1$ by (v). The case of a root $ 2\alpha$ is
handled similarly (See 2. $26a$).

2. $5a$ . REMARK. One cannot generalize 2.5 by replacing $M$ and $G$ with $M^{-t}$ and
$M$ respectively. For example, if $M=EI=E_{6}/Sp(4)^{*}$ , there is an involution for which
$M^{-r}=CI(4)^{*}=(Sp(4)/U(4))^{*}$ ; thus (i) does not imply (ii). However, (v) implies (i): $f^{+t}(0)$

is irreducible on $\mathfrak{m}^{-t}(\alpha)$ if dim $\mathfrak{m}^{-t}(\alpha)>1$ . And similarly for its action on $\mathfrak{m}^{t}(\lambda)$ .

2.6. EXAMPLE. Let $M=SU(n),$ $M^{t}=AI(n):=SU(n)/SO(n)$ and $M^{-t}=SO(n)$ ; thus
$t$ is the composite of the complex conjugation $\kappa$ and the symmetry at 1. Then $R(M;\mathfrak{a}^{-t})$

is, if $n=2n^{\prime}$ is even, $C_{n^{\prime}}(4,2)$ , where $C_{n’}$ is the root system, 4 is the multiplicity of the
shorter roots and 2 is the common multiplicity of the longer roots. By convention, we
indicate the multiplicities of the roots in the order of the length of the roots, based on
the fact that the roots of equal length have equal multiplicity for simple symmetric
spaces; this is true, because the members of the Weyl group represented by those of
$K_{\langle 1)}$ preserve the multiplicity. $R(M^{-t})$ is $D_{n},(2, O)\cong R(SO(n))$ and the highest weight in
$R(M^{t};\mathfrak{a}^{-t})$ is $2\omega_{1}$ , which indicates the action of the isotropy subgroup $SO(n)$ on the
tangent space to $AI(n)$ at the unit element 1. $R(M^{t};\mathfrak{a}^{-t})$ is actually $C_{n^{\prime}}(4,2)$ . If $n=2n^{\prime}+1$

is odd, then $R(M;\mathfrak{a}^{-t})$ is $BC_{n’}(4,2,2)$ ; the longest roots have multiplicity 2. We also
note that $\mathfrak{m}^{t}(0)+\mathfrak{a}^{-t}$ is a maximal abelian subalgebra of the Lie algebra $\mathscr{L}SU(n)$ . Now
we exchange $AI(n)$ and $SO(n);t=\kappa$ so that we consider $M^{-\iota}=AI(n):=SU(n)/SO(n)$

and $M^{t}=SO(n)$ . Then $R(M^{-t})\cong A_{n-1}(1,0)$ , $R(M^{t};\mathfrak{a}^{-t})\cong A_{n-1}(1,0)$ , $ R(M;\mathfrak{a}^{-t})\cong$

$A_{n-1}(2,0)$ of course.

Now we retum to the geodesic $c,$ $c^{\prime}(O)=H\in \mathfrak{a}^{-t},$ $H\neq 0$ , and $JF^{t};c^{\prime}(u)$ is (the
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restriction $oQ$ a member $H$ of $\mathfrak{a}^{-t}$ so that one has $c(u)=\exp(uH)(0)$ . If $v$ is a membe

of $\mathfrak{g}(\alpha)$ , then $v$ solves 2. $1a$ or, quite explicitly, $(d/du)^{2}v+\alpha(H)^{2}v=0$ . Thus, if one no $t\{$

$v(c(u))=v(\exp(uH)0)=\exp(uH)\circ ad(\exp(-uH))(v)(0)$ for any value of the parameter $i$

then one obtains the next lemma.

2.7. LEMMA. (i) $v$ vanishes at $c(u)$ ifand only if $ad(\exp(-uH))(v)$ belongs to $f;ar_{1}$

(ii) under additional conditions of $v\in f(\alpha)$ and $\alpha(H)\neq 0,$ $v$ vanishes at $c(u)$ if and only

$u\alpha(H)$ is an integral multiple of $\pi$ .

In case $\alpha(H)=0$ , one sees that not only $ve\mathfrak{g}(\alpha)$ but the vector field: $u\mapsto uv=uv(c(0$

is also $a$ solution of the Jacobi equation. And similarly for the members of $\mathfrak{a}^{-t}$ . Therefo

we obtain the next lemma.

2.8. LEMMA. $JF^{t}$ is, in the natural fashion, isomorphic with the direct sum of $t/$

following linear spaces; (1) $\mathfrak{m}^{t},$ (2) $f^{t}(\alpha)$ for $\alpha(H)\neq 0,$ (3) {the vector fields: $u$ }

$uv(c(u))|v\in \mathfrak{m}^{-t}(\alpha)\}$ for $\alpha(H)=0$ , and (4) {the vectorfields: $u\mapsto uv(c(u))|ve\mathfrak{a}^{-t}$}.

$PR\infty F$ . This must be obvious from the above, since $JF^{t}$ has dimension $=\dim$

and one has $\nabla_{H}v=0oncforvin(3)$ and (4). QED

The following four conditions are equivalent to each other. (i) The poi

$p=c(\pi)=\exp(\pi H)(0)$ is fixed by $t$; (ii) $c$ meets another component $M^{t}(p)$ of $F(t$, A

through $p$; (iii) $s_{o}$ fixes $p$ ; and (iv) $\exp(2\pi H)(0)=0$ . We assume $t(p)=p$ . Then $c$ is

circle with $c(2\pi)=0$; it may happen, $ho$wever, that $p$ coincides with $0$ . By 2.7, this giv

that $\alpha(2H)$ is an integer for every $\alpha$ in $R(M;\mathfrak{a}^{-t})$ ; altematively, one sees this from $t$

fact that $ad(\exp(2\pi H))$ preserves $f$ , which follows from $0=c(2\pi)=\exp(2\pi H)(0)$ . We $u$

these facts to prove the next proposition.

2.9. PROPOSmON. Assume that $t$ fixes the point $p=c(\pi)$ on the geodesic

$u\mapsto\exp(uH)(0)$ , He $\mathfrak{a}^{-t}$ .
(i) If there is no conjugate point of $0$ on the interval $(0, \pi)$ along the geodesic

then one has $\alpha(H)=0,$ $\pm*or$ $\pm 1$ for every $\alpha$ in $R(M^{-t};\mathfrak{a}^{-t})$ .
(ii) If there is no focal point of $0$ on the interval $(0, \pi)$ along the geodesic $c$, th

one has $\lambda(H)=0$ or $\pm*for$ every $\lambda$ in $R(M^{t};\mathfrak{a}^{-t})$ .

$PR\infty F$ . (i) We $saw$ that $\alpha(2H)$ is an integer for every $\alpha$ in $R(M;\mathfrak{a}^{-t})$ . But 1

members of $f^{t}$ cannot vanish on the interv$a1(0, \pi)$ by the assumption. (ii) Wh

$ad(\exp(2\pi H))$ preserves $\mathfrak{m}^{t}$ , the members of $\mathfrak{m}^{t}$ cannot vanish on the interval $(0$ ,

similarly. More details may be due. Let $v$ be a (nonzero) member of $\mathfrak{m}^{t}(\lambda)$ . Then th $($

is a member $w$ of $f^{-t}(\lambda)$ such that one has $ad(\exp uH)(v)=\cos(u\lambda(H))v+\sin(u\lambda(H))w$

every real number $u$ by $($2.1 $a)$ . If $\lambda(H)\neq 0$ , then $\lambda(H)=\pm*$ by (2.8) and the $assumpti\langle$

since $v$ never vanishes ( $\Leftrightarrow\cos(u\lambda(H))$ never vanishes) on the interval $(0, \pi)$ and yet $\lambda(2$

is an integer. We might add that a conjugate point is focal in our setting. QED

2.10. COROLLARY. (i) In the setting of (ii) of (2.9), $\mathfrak{m}(\lambda)$ is contained
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$F(ad(s_{p}), \mathfrak{m}^{t})=F(-ad(Q(p)), \mathfrak{m}^{t})$ for $\lambda$ in $R(M^{t};\mathfrak{a}^{-t})$ if $\lambda(H)\neq 0$ ; and $\mathfrak{m}^{t}(\lambda)\subset F(-ad(s_{p})$ ,
$\mathfrak{m}^{t})$ if $\lambda(H)=0$ .

(ii) In the setting of(i) of$(2.9),$ $f^{t}(\alpha)$ is contained in $F(ad(s_{p}), f^{t})$for $\alpha$ in $R(M^{-t};\mathfrak{a}^{-t})$

if $\alpha(H)=\pm 1$ or $0$ ; and $f^{t}(\alpha)\subset F(-ad(s_{p}), f^{t})$ if $\alpha(H)=\pm*$ .
(iii) In the setting of (ii) of (2.9), the parallel transport of the tangent space $T_{o}M$

along the circle $c=c|[0,2\pi]$ ( $=the$ action of $\exp(2\pi H)=Q(p)$ on $T_{o}M$) is the identity
on the sum

$m^{t}(0)+\sum_{\lambda\langle H)=0}\mathfrak{m}^{t}(\lambda)+\sum_{\alpha\langle H)=\pm 1\sigma r0}\mathfrak{m}^{-t}(\alpha)+\mathfrak{a}^{-t}$

This is identifiedwith $T_{o}M^{-}(p)$ by evaluation at $0$ andwith $T_{p}M^{-}(p)$ at $p$ by evaluation.

2.11. COROLLARY. In the setting of (ii) of (2.9), the tangent space $T_{p}M^{t}(p)$ at $p$ is

identified with the sum

$\mathfrak{m}^{t}(0)+\sum_{\lambda(H)=0}\mathfrak{m}^{t}(\lambda)+\sum_{\alpha\langle H)=\pm 1/2}f^{t}(\alpha)$

by evaluation. This sum is $F(-ad(s_{p}), \mathfrak{g}^{t})$ . Inparticular the tangent space to the intersection
$M^{-t}\cap M^{t}(p)$ at $p$ is identified with the third sum $\sum f^{t}(\alpha)$ for $\alpha(H)=\pm*by$ evaluation.

To state an important corollary, we denote by $(H^{k})_{1\leqq k\leqq r},$ $r;=\dim \mathfrak{a}^{-t}$ , the dual
basis toabasis of simple roots $(\alpha_{j})_{1\leqq J\leqq r}forR(M;\mathfrak{a}^{-t})$ under the assumption that M

is simple; thus $\alpha_{j}(H^{k})=\delta_{j}^{k}$ and $(H^{k})$ is a basis for $\mathfrak{a}^{-t}$, while the k-th fundamental weight
$\omega_{k}equals*\Vert\alpha_{k}\Vert^{2}H^{k}$ . The vector $H$ in $\mathfrak{a}^{-t}$ is $a$ unique linear combination $\sum h_{k}H^{k}$ . We may

assume that $h_{k}\geqq 0$ , in our study. And the highest root $\alpha^{\sim}$ of $R(M;\mathfrak{a}^{-t})$ is written $\sum n^{j}\alpha_{j}$

with positive integers $n^{j}$ as coefficients.

2.12. EXAMPLE. We describe these for the root system $BC_{r}=B_{r}\cup C_{r}$ . $\alpha_{j}=\epsilon_{j}-\epsilon_{j+1}$

for $1\leqq j<r$ and $\alpha_{r}=\epsilon_{r}$ , while $\alpha^{\sim}=2\epsilon_{1}=2(\alpha_{1}+\cdots+\alpha_{r})$ . One sees $\omega_{j}=H^{j}=\epsilon_{1}+\cdots+\epsilon_{j}$

for 1 $\lrcorner\leq<r$ and $2\omega_{r}=H^{r}=\epsilon_{1}+\cdots+\epsilon_{r}$ .

2.13. COROLLARY. Under the assumption of 2.9 (i), if $M$ is simple, then $H$ is

congruent (by $K_{\langle 1)}$) with the vector in $1^{o}$ or 2’ below:
1o $H=*H^{j}$ for somej with $n^{j}=1$ or 2; $or$

$2^{o}$ $H=*H^{j}+*H^{k}$ for somej and $k$ with $n^{j}=1=n^{k}$ .
The case 1’ occurs if $\alpha^{\sim}is$ not a member of $R(M^{-t};\mathfrak{a}^{-t})$ .

$PR\infty F$ . $H=\sum h_{k}H^{k}$ is carried into a given Weyl domain in $\mathfrak{a}^{-\iota}$ by 2.$4a$ . And the
transform of $H$ still satisfies the assumption of 2.9 (i). Thus we may assume every $h_{k}$

is nonnegative. For every simple root $\alpha_{j}$, one has $\alpha_{j}(H)=h_{j}=0,$ $*$ or 1 and
$\alpha^{\sim}(H)=\sum n^{j}h_{j}=*$ or 1 by2.9. $If\alpha^{\sim}(H)=*$ then one has the case 1’ with $n^{j}=1$ necessarily.

If $\alpha^{\sim}(H)=1$ then one has 1o or $2^{o}$ as is easily seen. QED

2.14. REMARK. By this corollary, one can find the length of the arc $c|[0, \pi]$ and



54 TADASHI NAGANO

the distanoe from $0$ to $p=c(\pi)$ (and to $M^{t}(p)$), or its ratio if the invariant Riemannia]

metric is not specified; in fact the length of $H^{j}=(2/\Vert\alpha_{j}\Vert^{2})\omega_{j}$ is readily available in [B]

The distanoe was computed for certain exceptional spaces by Atsuyama [At].

2. $14a$ . REMARK. A weight $\omega_{j}$ with $n^{j}=1$ is called ”minuscule” in [B].

2. $14b$ . REMARK. The case 2’ in 2.13 will be illustrated in 2.16 $O1$ and 3.7.

2.15. THEOREM (A local characterization of a meridian $M^{-}(p)$). Assume a poin
$p\neq 0$ ofa simple space $M$ isfixed by the symmetry $s_{o}$ . Then (i) the root system $R(M^{-}(p)$

of the meridian to the polar $M^{+}(p)$ is read offfrom the root system $R(M)$ as follows; $on$

obtains the Dynkin diagram of $R(M^{-}(p))$ either by deleting a vertex $\alpha_{j},$

$n^{j}=1$ , from th

Dynkin diagram of $R(M)$ or by deleting a vertex $\alpha_{j},$

$n^{j}=2$ , from the extended Dynki

diagram of $R(M)$ , where $n^{j}$ is a coefficient in $\alpha^{\sim}=\sum n^{j}\alpha_{j}$ . In the first case (of $n^{j}=1$
’

$M^{-}(p)$ is a local product of a circle with a tangent $H^{j}$ and a semisimple space with th

obtained root system; and $M^{-}(p)$ is semisimple if and only if $n^{j}=2$ . (ii) In all the case
(but that of the real projective space), the multiplicity of the roots is preserved. $(iiJ$

Moreover, if $M$ is the bottom space $M^{*}$ , then the converse is true (Theorem 2.5, [N]).

$PR\infty F$ . Letting $t=s_{\sigma}$ , we apply (2.13). We then have $M^{-t}=M$ and $M^{t}=\{0\}$ . Thu
$\mathfrak{a}^{-t}$ is a maximal abelian subalgebra $\mathfrak{a}$ in $\mathfrak{m}$ . Let $c$ be a shortest geodesic from $0=c(t$

to $p=c(\pi)$ . Then $c$ lies in the meridian $M^{-}(p)$ ; in fact the arc $c|[0, \pi]$ is one of the shortes

from $0$ to the polar $M^{+}(p)=M^{t}(p)$ by 1. $5a$ (ii) and henoe $c$ is orthogonal to $M^{+}(p$ .

We may assume that $\mathfrak{a}$ is tangent to $M^{-}(p)$ (See 1.8) and that the initial tanger
$H:=c^{\prime}(0)$ lies in $\mathfrak{a}$ and further in a given Weyl chambe $r$ or its closure. Now we emplo
2.10, which we can, since the assumption (i) of 2.9 is equivalent to (ii) because $c$

$M^{t}=\{0\}$ . By 2.10, the tangent space $T_{o}M^{-}(p)$ to the meridian is identified with $\sum \mathfrak{m}(\alpha)+$

for $\alpha(H)=\pm 1$ or $0$ , since $m^{t}(0)+\sum \mathfrak{m}^{t}(\lambda)$ is trivially zero by $M^{t}=\{0\}$ . We will characteriz

the sets of the roots $\alpha$ satisfying this condition, which will be the root system of $M^{-}(p$

By 2.13, we may assume 1’ $H=*H^{j}$ for some $j$ with $n^{j}=1,2^{o}H=*H^{j}$ for some $j$ wit
$n^{j}=2$ , or $3^{o}H=*H^{j}+*H^{k}$ for some $j$ and $k$ with $n^{j}=1=n^{k}$ . In the case 1, $R(M^{-}(p$

consists ofthe roots which are orthogonal to $*H^{j}$; thus the Dynkin diagram of $R(M^{-}(p$

is that of $R(M)$ less the vertex $\alpha_{j}$ and $M^{-}(p)$ is a local product of $a$ semisimple subspae

with $R(M^{-}(p))$ and the circle with the initial tangent $*H^{j}$ . In the case of $2^{o},$ $R(M^{-}(p$

contains the highest root and all the roots that $a$re orthogonal to $*H^{j}$ . Hence it h2

the extended Dynkin diagram of $R(M)$ less the vertex $\alpha_{j}$ . In the third case, it is easy $t$

check that the Dynkin diagram of $R(M^{-}(p))$ is obtained from the extended Dynki

diagram of $R(M)$ by deleting the vertices $\alpha_{j}$ and $\alpha_{k}$ ; alternatively one looks at the botto]

for which the case 3’ does not occur (See 2.21). Obviously the multiplicity is $preserve\{$

simply because $\mathfrak{m}(\alpha)$ is contained in the tangent spaoe $T_{\sigma}M^{-}(p)$ to the meridian whenevt
$\alpha$ is its root and $M^{-}(p)$ has an equal rank to $M$. Finally, assume that $M$ is the botto]

spaoe $M^{*}$ . Then, given a vector $H$ in $\mathfrak{a}$ , the point $c(2\pi)=\exp(2\pi H)(0)$ coincides with

if $ad(\exp(2\pi H))$ preserves $f$ , simply because $M^{*}$ has no pole. This is the case if and onl
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if $\sin(2\pi\alpha(H))=0$ on each $f(\alpha)+\mathfrak{m}(\alpha),$ $\alpha\in R(M)$ . Now choose $H=\neq H^{j}$ for some $j$ with
$n^{j}=1$ or 2. And $2\pi\alpha(H)=\pi\alpha(H^{j})$ is an integral multiple of $\pi$ for every root $\alpha$ . Thus
$c(2\pi)=0$ , while $p:=c(2\pi)\neq 0$ by $\alpha_{j}(\pi H)=\neq\pi$ . Hence the point $p$ lies in a polar $M^{+}(p)$ .
One has $Q(p)=\exp(2\pi H)$ , which determines $M^{-}(p)$ as desired. QED

2.1 $5a$ . REMARK. If one chooses the involution $t=s_{p}$ for a point $p$ in a polar $M^{+}(p)$

(hence $t(0)=0$), one has $M^{-t}=M^{-}(p)$ and $\mathfrak{a}^{-t}$ is a maximal abelian subalgebra in
$\mathfrak{m}$ by 1.8. The subspace $M^{t}$ is congruent with $M^{+}(p)$ by the point symmetry $s_{m}$ at
the midpoint $m=c(\neq\pi)$ , where $c$ is a shortest geodesic from $0=c(0)$ to $p=c(\pi)$ as
in the proof above. Sinoe $c$ is a shortest from $0$ to the polar, the use of $s_{m}$ shows
that there is no focal point on $c|(0, \pi)$ and 2.10 applies as well as 2.11 and others;
henoe $\mathfrak{m}^{t}(0)+\sum m^{t}(\lambda)$ is zero. One concludes that (i) $R(M)$ is the disjoint union of
$R(M^{-t})=R(M^{-}(p))$ and $R(M^{t}, \mathfrak{a}^{-t})$ , (ii) $R(M^{-}(p))$ consists of the roots $\alpha$ of $M$ such
that $\alpha(H)=\pm$ ] or $0$ , and (iii) $R(M^{t})$ consists of the roots $\lambda$ of $M$ such that $\lambda(H)=\pm*$ .
In particular, $f^{-}:$ $=f^{-t}=F(-ad(t), f)$ is exchanged with $\mathfrak{m}^{+}:$ $=m^{t}=F(ad(t), \mathfrak{m})$ by
$ad(s_{m})$ , while $f^{+}:$ $=f^{t}=F(ad(t), f)$ and $\mathfrak{m}^{-}:$ $=\mathfrak{m}^{-t}=F(-ad(t), \mathfrak{m})$ remain invariant. The
symmetry decomposition for $M^{t}\cong M^{+}(p)$ is $\mathfrak{g}^{+}=f^{+}+\mathfrak{m}^{+}$ and the one for the meridian
is $\mathfrak{g}^{-}=f^{+}+m^{-}$ . (These are thus graded at least if they are complexified.)

2.1 $5b$ . COROLLARY. Some coefficient $n^{j}$ in $\alpha^{\sim}=\sum n^{j}\alpha_{j}$ is 1 or $2for$ any root system.

2.16. EXAMPLES. $O1$ Let $M=SU(n)$ . Then every $n^{j}=1$ . The circle in the direction
of $\neq H^{j}++H^{n-j}$ meets the polar $G_{2j}(C^{n})$ as in [N] (3.4). But in $SU(n)^{*}$ the circle in the
direction of $\neq H^{j}$ meets the polar $G_{j}(C^{n})$ $($or $G_{J}\langle C^{n})^{*}$ if $2j=n$) at $c(+\pi)$ . Notioe that the
polars are closer in the bottom, since one has $\Vert\neq H^{2j}\Vert<\Vert+H^{j}+*H^{n-j}\Vert$ . The theorem
implies that similar phenomena occur to the spaoes $AI(n)$ and $AII(n)$ of the same root
system as well.

\copyright Consider the case $R(M)=BC_{r}=BC_{r}(a, b, c)$ , where $a$ denotes the multiplicity
of the shortest roots $\alpha,$

$b$ that of the roots of medium length and $c$ that of $ 2\alpha$ , the
longest. The meridians have the root systems $C_{p}(b, c)\times BC_{r-p}(a, b, c),$ $1\leqq p\leqq r$ , by 2.12.

2.17. REMARK. The theorem 2.15 gives not only the local structure of
$M^{-}(p)=.G^{-}/K^{+}$ (together with 2.29) but also that of $M^{+}(p)=.K_{(1)}/K^{+}$ by 2. $15a$, where
$=$. means local isomorphism, with the reservation that $K^{+}$ is not necessarily almost
effective on $M^{+}(p)$ .

2. $17a$ . REMARK. A few more words to the theorem 2.15. In the first case, the
circle $T$ lies in the direction of $H^{j}$ or $\neq H^{j}++H^{k}$ . In the second case, $H^{j}$ is orthogonal
to all the simple roots of $M^{-}(p)$ but the added vertex $-\alpha^{\sim}$

2. $17b$ . REMARK. It is not quite always true that the circle $T$ in the direction of
$H^{j}$ or $+H^{j}+\neq H^{k}$ is actually one of the shortest that reaches the polar. It depends on
the spaces in the local isomorphism class of $M$, as the previous example $O1$ shows. In
$E_{7}$ and EV, the circles in the directions of $H^{2}$ and $H^{7}$ reach the pole, but the latter is
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shorter (See the proofof 3.13). In $E_{6}$ , the circles in the directions of $H^{1},$ $H^{6}$ and $H^{1}+H$

reach the polar EIII; the third one is shorter in $E_{6}$ and longer in $E_{6}^{*}$ (See the proofof3.17).

2. $17c$ . REMARK. One can immediately read off the isotropy representation of th $($

isotropy subgroup $K$ on the tangent space $T_{\sigma}M$ of the spaoe $M=G/K$ from the roo
systems R$(K)andR(G)iftherankr(K)=r(G)$ . In fact, if one removes the simple roo
$\alpha_{j}$ out of $R(G)$ to obtain the Dynkin diagram of $R(K)$ as in the theorem, then one ha
only to express $\alpha_{j}$ as a linear combination of the fundamental weights of $R(K)$ ; in cas $($

$n^{j}=1,$ $H^{j}$ should be included as a fundamental weight.

2.18. REMARK. Whether or not $p=c(\pi)$ is fixed by $s_{\sigma}$ , one has $\alpha(H)=\pm 1$ or $($

for every root $\alpha ofR(M)ifK_{(1)}$ fixes p, or equivalently ad$(\exp(\pi H))$ preservesf and i
there is no conjugate point on $(0, \pi)$ along $c$ . Since every homotopy class of close $($

smooth curves in $M$ contains $a$ circle of the shortest length, one can $\infty nclude$ that $th|$

nonzero members of the fundamental group $\pi_{1}(M^{*})$ are in a one-to-one correspondenc $($

with those $*H^{j}$ with $n^{j}=1$ , as is well known. We tabulate $\pi_{1}(M^{*})$ below for each roo
system $R(M);Z_{k}$ denotes a cyclic group of order $k$ .

$\pi_{1}(M^{*})$ is {1} if $R(M)$ is $G_{2},$ $F_{4},$ $E_{8}$ or $BC_{r}$ by the above. One obtains more informa$tiol$

about $\pi_{1}(M^{*})$ , through the knowledge of the length of the circle $c,$ $c(*\pi H^{J})=0$ fo
$M=M^{*}$ . The next proposition 2.19 illustrates the point.

2. $18a$ . REMARK. Let $M^{-}(p)$ be a meridian in $M$. Then every covering morphisn
$\pi:M\rightarrow M^{\prime\prime}$ restricts to a covering morphism of $M^{-}(p)$ onto a meridian $M^{\prime\prime-}(p^{\prime\prime})i1$

$M^{\prime\prime}$ . We asse$rt$ that the kemel of the restriction $\pi|M^{-}(p)$ coincides with that of $\pi$ ; se
1.14 for the kemel. This follows from the fact that the inclusion: $M^{-}(p)\rightarrow M$ induce
a surjection: $\pi_{1}(M^{-}(p))\rightarrow\pi_{1}(M)$ , which is a consequence of 1. $14a$ . In particular, A

covers $M^{\prime\prime}$ as many times as $M^{-}(p)$ covers $M^{\prime\prime-}(p^{\prime\prime})$ . The assertion is true for $an^{t}$

subspace of equal rank, $notjustforM^{-}(p)$ .

2.19. PROPOSITION. Let $t^{*}$ be an automorphism of a compact connected simpl

bottom space $M^{*}$ which fixes a point $0^{*}$ . Then
(i) $t^{*}acts$ on the fundamental group $\pi_{1}(M^{*})$ as the identity or $s_{1}$ : $x\mapsto x^{-1}$ excep

when $R(M^{*})=D_{r}$ and $r$ is even.
(ii) $t^{*}$ lifts to an automorphism of any covering space $M$ of $M^{*}$ with the sam

possible exceptions.
(iii) Assume $R(M^{*})=D_{r}$ and $r$ is even. If $M$ is $SO(2r)$ or $G_{r}(R^{2}$

‘
$)$ with $r\neq 4$ , the

$t^{*}$ lifts to an automorphism ofM. In case $r\neq 4$, an automorphism $t^{*}of$ $M^{*}=SO(2r)^{*}0$
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$G_{r}(R^{2r})^{*}$ llfts to an automorphism of $M=SO(2r)^{\iota}$ ( $=semi$-spinor group) or $G_{r}(R^{2r})^{\iota}$

respectively if and only $\iota\beta t^{*}$ is inner (which is equivalent to say that $t^{*}$ is homotopic to

the identity map in this case) or the composite of an inner automorphism and a symmetry

at a point. In case $r=4$ , an inner automorphism $t^{*}ofM^{*}$ lifts to an automorphism of $M$,

$butthisisnotnecessarilytrueift^{*}$ is outer; see the proof for some details.

$PR\infty F$ . $t^{*}$ lifts to an automorphism $t^{\sim}$ of the universal covering spaoe $M^{\sim}$ , so

that we have the “exact” sequences of homomorphisms:

$\{0^{\sim}\}\rightarrow\pi_{1}(M)\rightarrow M^{\sim}\rightarrow M\rightarrow\{0\}$ and $\{0\}\rightarrow C(M)\rightarrow M\rightarrow M^{*}\rightarrow\{0^{*}\}$ ,

where the projections: $M^{\sim}\rightarrow M\rightarrow M^{*}$ car$ryo^{\sim}\mapsto 0\mapsto 0^{*},$ $t^{\sim}(0^{\sim})=0^{\sim}$ (See 1.14). $t^{\sim}$

preserves $C(M^{\sim})=\pi_{1}(M^{*})$ . The action may be identified with the above mentioned

action of $t^{*}$ on $\pi_{1}(M^{*})$ , which is the question in (i). In (ii) and (iii), the question is

whether or not $t^{\sim}$ preserves the subgroup $\pi_{1}(M)$ . There is no problem if $t^{\sim}$ is inner,

simply because $t^{\sim}$ then acts on $\pi_{1}(M^{*})$ trivially. In view of the table in 2.18, both (i)

and (ii) are true obviously (by the group theory) unless the root system $R(M)$ is $A_{r}$ or
$D_{r}$ . In the case of $A_{r},$ $t^{\sim}$ acts on the cyclic group $C(M^{\sim})=\pi_{1}(M^{*})$ as an automorphism.

We will prove that $t^{\sim}$ stabilizes every subgroup of $C(M^{\sim})$ in this case, by showing that
$t^{\sim}$ either fixes any given generator $g$ or reverses $g$ . We have $H^{j}=\omega_{j}$ and $n^{j}=1$ for every

$j,$ $1\leqq j\leqq r$ . One easily sees that the geodesic in the direction of $H^{j}$ reaches a member of
$C(M^{\sim})$ , whose inverse lies in the direction of $H^{n-j}$ and that the length satisfies
$\Vert\omega_{j}\Vert^{2}=j(n-])/n,$ $n:=r+1$ . Therefore $t^{\sim}$ carries $g$ into $g$ or $g^{-1};(i)$ and (ii) are proven

for $A_{r}$ . There is no problem in the case of $D_{r},$ $r$ odd. So assume $R(M)\cong D_{r},$ $r$ even.
Then $\pi_{1}(M^{*})$ is generated by two poles $\delta$ and $\epsilon$ ( $=-1$ in the Clifford algebra); so
$\pi_{1}(M^{*})=\{1, \delta, \epsilon, \delta\epsilon\}$ . $\delta$ (resp. $\epsilon$ and $\delta\epsilon$) lies in the direction of $H^{r}$ (resp. $H^{1}$ and $H^{r-1}$ ),

and the respective distanoe from $0^{\sim}$ is proportional to the lengths of those vectors; one
has $\Vert H^{1}\Vert^{2}=1$ and $\Vert^{\wedge}H^{r-1}\Vert^{2}=\Vert H^{r}\Vert^{2}=r/4$ . Thus, if $r=4$ , all the poles are ofequal distance

from $0^{\sim};$ in fact there is an automorphism $T$ which permutes these three cyclically (See

[B]), which naturally lifts to $M^{\sim}$ only. If $r\neq 4$ , then one has $\Vert H^{1}\Vert<\Vert H^{r-1}\Vert=\Vert H^{r}\Vert$

and indeed there is a well known outer involution which exchanges $\delta\epsilon$ and $\delta$ which

therefore cannot lift to $SO(2r)^{\sim}/\{1, \delta\}\cong SO(2r)^{\$}:=SO(2r)^{\sim}/\{1, \delta\epsilon\}$ if M* is $SO(2r)^{*}$ or
to $G_{r}(R^{2r})^{\sim}/\{1, \delta\}\cong G_{r}(R^{2r})^{\sim}/\{1, \delta\epsilon\}$ if $M^{*}$ is $G_{r}(R^{2r})^{*}$ . QED

2.20. PROPOSITION. Assume that $M$ is the bottom space $M^{*}$ . Then the “unit lattice”

{He $\mathfrak{a}|\exp(2\pi H)(0)=oeM^{*}$ } is $\{H\in \mathfrak{a}|(\exp(2\pi H))^{2}=1\in G^{*}\}=\{\sum c_{j}H^{j}\in \mathfrak{a}|2c_{j}eZ\}$

spanned $by*H^{j},$ $1\leqq j\leqq r=rank$ of $M$, over $Z$.

$PR\infty F$ . (This is known [H].) Recall thata pointp $=\exp(\pi H)(0)$ lies inapolar of
$o$ if and only if $\exp(2\pi H)(0)=0$ and that $a$ bottom space $M^{*}$ is expressed as $G^{*}/F(\sigma, G^{*})$ ,

$\sigma=ad(s_{o})$ . Let $H\in \mathfrak{a}$ . Then one has $\sigma(H)=-H$. Thus $\exp(2\pi H)(0)=0\Leftrightarrow\exp(-2\pi H)=$

$\sigma\exp(2\pi H)=\exp(2\pi H)\Leftrightarrow(\exp(2\pi H))^{2}=1\Leftrightarrow ad(\exp(4\pi H))=1\Leftrightarrow\alpha(4\pi H)e2\pi Z$ for every

root $\alpha\in R(M)\Leftrightarrow 2\alpha(H)\in Z$ for every root $\alpha\in R(M)\Leftrightarrow 2c_{j}=2\alpha_{j}(H)\in Z$ for every simple
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root $\alpha_{j}$, where $H=\sum c_{j}H^{j}$ . QED

2.21. COROLLARY. Assume $M=M^{*}$ . Then, referring to 2. $17b$, the direction $H=$
$\neq H^{j}+\neq H^{k}$ cannot give one of the shortest curve to a polar.

$PR\infty F$ . By the proposition, the point $\exp(\pi(*H^{j}-*H^{k}))(0)$ coincides wit)
$\exp(\pi(\neq H^{j}++H^{k}))(0)$ . But the vector $*H^{j}-*H^{k}$ is shorter than $*H^{j}+*H^{k}$ , sinoe th
inner product $\langle H^{j}, H^{k}\rangle$ is positive. This proves the corollary if $j\neq k$ . If $j=k,$ the]
$\exp(\neq\pi H^{j})(0)$ is $a$ point in the polar, sinoe $\exp(\pi(+H^{j}+\neq H^{k}))(0)$ is then $0$ , again by th
proposition. QED

2.22. REMARK. The fact 2.21 shows that $R(M)$ is read off from $R(M^{-}(p))$ if $M^{-}(p$

is semisimple. One can derive other various results on $(M^{+}, M^{-})$ . The next propositio]
is an example.

2.23. PROPOSITION. Let $M$ be a Kaehlerian (hermitian) symmetric space wit’
$R(M)=C_{r}$ . Then (i) $M$ has a connected centrosome $C(0,0^{\prime})$ . (ii) $C(0,0^{\prime})$ is congruent witl
its c-orthogonal space $C^{\perp}$ . (iii) Indeed one can rotate $C(0,0^{\prime})$ onto $C^{\perp}at$ any point $xo$
$C(0,0^{\prime})$ with the complex structure $J_{x}$ : $T_{x}M\rightarrow T_{x}M$ which extends to a globa
transformation of $TM$ in the natural fashion. In particular $C(0,0^{\prime})$ is totally real (an‘

hence an R-space). And (iv) $C(0,0^{\prime})$ is a dot product ofa circle and a simple space ofroo
system $A_{r-1}$ with the equal multiplicity to the shorter ones in $R(M)$ .

$PR\infty F$ . We will work on the bottom $M^{*}$ , of which $M$ is the double $coverin\{$

space. $C(0,0^{\prime})$ will project onto $a$ polar $M^{*+}(p^{*})$ of the point $0^{*}$ . We choose the $meridial$

$M^{*-}(p^{*})$ that corresponds to $H^{r}$ (so the simple root $\alpha_{r}$ is the longer) by (2.15). $M^{*}-(p^{*}$

is the dot product of the circle with a tangent $H$‘ and a subspaoe as stated. Now th $($

point symmetry at $p^{*}$ , taken as $t$, gives the decompositions $\mathfrak{m}=m^{+}+\mathfrak{m}^{-}ane$

$f=f^{+}+f^{-};$ $m^{-}$ gives the tangent spaoe to $M^{*-}(p^{*})$ at $0^{*}$ . The longer roots $2\epsilon_{j},$ $1\leqq j\leqq r$

belong to $\mathfrak{m}^{+}$ and make a system of strongly orthogonal roots. Recall (or see 2.26 $ane$

2.27) that they $ha$ve multiplicity 1. By using $a$ Chevalley system (Cf. Proposition $’$

about it in [B]), one can find a vector $I\in\sum \mathfrak{m}^{+}(2\epsilon_{j})\subset m^{+}$ such that $\{H^{r}, I\}$ generate\dagger
a 3-dimensional subalgebra. And $J:=[H‘, I]\subset f^{-}$ generates a l-parameter group whos $($

orbit through $H^{r}$ contains $I$. Henoe, making it act on $M^{*}$ , one sees its orbit through
p*contains $a$ pole $q^{*}$ of $o^{*}$ in $M^{*t}$ . This means that $M^{*t}$ is $a$ meridian $M^{*-}(q^{*})$ to tht
polar $M^{*+}(p^{*})$ . QED

2. $23a$ . REMARK. The proposition applies to $M=G_{2}^{\sigma}(R^{4+m}),$ $m>0,$ $CI(r),$ $G_{r}(C^{2r})$

$DIII(2r)$ and EVII. A similar proposition obtains for the quatemion-Kaehlerian spaces
in which the so-to-speak “totally complex” meridians $S^{2}\cdot B$ are congruent with the
polars; details will appear elsewhe$re$ .

2. $23b$ . REMARK. A meridian is $a$ maximal subspace, generally. Mo $re$ precisely,
let $M$ be a simple spaoe of rank $>1$ . Then $a$ proper connected subspaoe of $M$ coincides
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with a meridian $M^{-}$ if it contains $M^{-}$ . This should be more or less obvious from various

known facts such as 2. $17c$ together with (ii) of 2.15. Namely, if any one root $\alpha$ of $R(M)$

(outside $R(M^{-})$) is added to $R(M^{-})$ , then $R(M)$ will be the only root system that

contains these, $\{\alpha\}\lrcorner\llcorner R(M^{-})$ , by (2.3). (This argument at onoe shows that the isotropy

representation of $K$ for a simple space $M=G/K$ is simple with $r(K)=r(G)$ and hence

its Lie algebra $\mathscr{L}K$ is a maximal subalgebra of $\mathscr{L}G.$)

2.24. LEMMA. Let $q$ be a pole of $0$ in $M^{-}(p)$ , the meridian to a polar $M^{+}(p)$ of $0$

at $p$ . Then there are at most three cases: 1 $q$ is a pole of $0$ in $M$; 2’ $q=p$; or $3^{o}q$ is

a pole of $p$ in M. In the case $3^{o}$ , the polar $M^{+}(q)$ is congruent with $M^{+}(p)$ by $G$ .
$PR\infty F$ . Assume 1o is not the case. Then $M^{-}(q)$ is not the whole spaoe $M$. The

quadratic transform $Q(q)$ is the identity on $M^{-}(p)$ but not on the whole spaoe $M$ . We

now assume that $M$ is simple and has the rank $r(M)>1$ , in order to use 2. $23b$ . Since
$M^{-}(p)$ is then a maximal connected subspace of $M$, it follows that $M^{-}(p)$ is $F(Q(q), M)_{\langle\sigma)}$ .
But one has $M^{-}(p)=F(Q(p), M)_{\langle 0)}$ in general. Hence one obtains $Q(q)=Q(p)$ ; that is,

$s_{q}=s_{p}$ . Therefore $q$ is in the case $2^{o}$ or $3^{o}$ . If $r(M)=1$ , then $M^{-}(p)$ is a sphere (of

dimension 1, 2, 4 or 8), and one has $q=p$ certainly. In case $M$ is not simple, $M$ is the

local product (i.e. a finite covering is a product) of simple spaces (and a torus). $M^{-}(p)$

is then a maximal connected subspaoe of that, $M^{\prime}$ , of some of them (and the intersection

with the torus). A pole in $M$ remains to be one in $M^{\prime}$ and vice vers $a$ . The congruence
is easy to see from the fact that $M^{+}(p)$ is carried onto the c-orthogonal spaoe to $M^{-}(p)$

by the point symmetry $s_{m}$ at the midpoint $m$ of a geodesic $a$rc joining $0$ to $p$ within
$M^{-}(p)$ , since the composite of two point symmetries is $a$ member of $G$ . QED

In the rest of the section, we will scrutinize the root system of a compact symmetric

spaoe of rank $\leqq 2$ (in continuation of Lemma 2.$4b$) to study its structure. As a result,

$a$ local classification of the symmetric spaces would come out easily (Remark 2.$27a$).

Also the proofofTheorem 1.15 on $(M^{+}, M^{-})$ determining $M$ will be completed (Lemma

2.28). As a consequence, it will be shown that $a$ spaoe $M$ is locally determined by its

root system $R(M)$ with multiplicity (2.29). To illustrate the use of the pair $(M^{+}, M^{-})$ ,

we will show that $M$ is $hermitian\Leftrightarrow M^{+}$ and $M^{-}$ are hermitian for some pair
$(M^{+}, M^{-})\Leftrightarrow this$ is true for every pair $(M^{+}, M^{-})$ (Proposition 2.30).

We introduce a few symbols. As before, $f_{0}(\alpha)$ denotes the subalgebra generated by
$[\mathfrak{m}(\alpha), m(\alpha)]$ for $a$ root $\alpha\in R(M)$ . $fM(\alpha):=f_{0}(\alpha)+f(\alpha)$ and $m(\alpha):=\dim f(\alpha)=\dim \mathfrak{m}(\alpha)$ ,

the multiplicity of $\alpha,$ $\mathfrak{g}_{y}(\alpha)$ is the subalgebra generated by $\alpha$ and a nonzero member $y$ of
$\mathfrak{g}(\alpha);\mathfrak{g}_{y}(\alpha)\cong \mathscr{L}O(3)$ . $\mathfrak{g}(\beta++\alpha)$ denotes the linear subspaoe $\sum_{j}\mathfrak{g}(\beta+j\alpha)$ corresponding to

the $\alpha$-series of the root $\beta$ (summed up for all the linear subspaces of this type); similarly

for $\mathfrak{m}(\beta++\alpha)$ . As usual, $ n(\beta, \alpha):=\langle\beta, \alpha^{\vee}\rangle:=2\Vert\alpha\Vert^{-2}\langle\beta, \alpha\rangle$ .

2.25 LEMMA. Assume $\alpha$ is a root but not $2\alpha$ . Then

(a) $f_{0}(\alpha)$ is isomorphic with $\mathscr{L}O(m),$ $m=\dim \mathfrak{m}(\alpha)$ . Moreover $f_{0}(\alpha)$ acts on $\mathfrak{m}(\alpha)$
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and on $f(\alpha)$ as $\mathscr{L}O(m)$ through the standard representation $\omega_{1}$ of $O(m);f_{O}(\alpha)+f(\alpha)$ acts $0$

$\mathfrak{m}(\alpha)+R\alpha$ as $\mathscr{L}O(m+1)$ similarly. Also one has $f_{O}(\alpha)=[f(\alpha), f(\alpha)]=[\mathfrak{m}(\alpha), m(\alpha)]$ .
(b) $f_{0}(\alpha)isanidealinf(O)$ . $ Hencef_{0}(\alpha)stabilizesm(\beta)foreveryroot\beta$ .
$(c)$ $\mathfrak{g}_{y}(\alpha)$ stabilizes $\mathfrak{g}(\beta++\alpha)$ . If $n(\beta, \alpha)=1$ , then $\mathfrak{g}(\beta++\alpha)$ is $\mathfrak{g}(\beta)+\mathfrak{g}(\beta-\alpha)$ and is

direct sum of simple $\mathfrak{g}_{y}(\alpha)$-modules (of dimension 4) on which $\mathfrak{g}_{y}(\alpha)$ acts through the $ sp\iota$

representation of the highest weight $\omega_{1}$ . Thus they are direct sums of simple modules $ ov\ell$

every line in $\mathfrak{g}_{y}(\alpha)$ and, in particular, they meet every linear subspace $\mathfrak{g}(\beta+j\alpha)\neq\{0\}$ in
subspace of dimension 2.

(d) The subgroup $G_{y}(\alpha)$ with Lie algebra $\mathfrak{g}_{y}(\alpha)$ is isomorphic with SU(2) (not wit
$SO(3))$ , if the integer $n(\beta, \alpha)$ is oddfor some root $\beta$ .

(e) If $n(\beta, \alpha)=1$ and the multiplicity $m(\alpha)>1$ , then $\mathfrak{m}(\beta)$ is a direct sum of simpl
(and nontrivial) $f_{0}(\alpha)$-modules; thus $[f_{0}(\alpha), \mathfrak{m}(\beta)]=\mathfrak{m}(\beta)$ . $f_{0}(\alpha)$ acts on them through th
spin or a half-spin representation; in case $m(\alpha)=2$ , this simply means that $m(\beta)$ is a direc
sum of isomorphic 2-dimensional $f_{0}(\alpha)$-modules, giving rise to a $f_{0}(\beta)$-invariant comple.
structure on $m(\beta)$ . In case $m(\alpha)=4,$ $f_{0}(\alpha)$ may act through the spin representation $c$

$\mathscr{L}O(3)$ , the other ideal of $f_{0}(\alpha)$ acting trivially. (In particular, $m(\beta)$ is even.)

$PR\infty F$ . The linear subspace $[m(\alpha), \mathfrak{m}(\alpha)]\subset f(0)=f(0)+f(2\alpha)$ normalizes itself an $($

henoe it equals $f_{O}(\alpha)$ . Since $ad(\alpha)$ gives a bijection of $m(\alpha)$ onto $f(\alpha)$ , the equality $[f(\alpha)$

$f(\alpha)]=[\mathfrak{m}(\alpha), \mathfrak{m}(\alpha)]$ follows from a stronge $r$ fact

$[x, x^{\prime}]=[y, y^{\prime}]$

where $[\alpha, x]=\Vert\alpha\Vert^{2}yef(\alpha)$ and $[\alpha, x^{\prime}]=\Vert\alpha\Vert^{2}y^{\prime}\in f(\alpha)$ . To prove this, observe $[\alpha,$ $[y^{\prime}$

$[\alpha, y]]]=[[\alpha, y^{\prime}],$ $[\alpha, y]]+[y^{\prime}, [\alpha, [\alpha, y]]]=[[\alpha, y^{\prime}],$ $[\alpha, y]]-\Vert\alpha\Vert^{4}[y^{\prime}, y]$ , in which $th_{1}$

two $te$rms in the righ $t$ hand side are alternating in $y^{\prime},$ $y$ while the left hand side $i$

symmetric in $y^{\prime},$
$y$ by $[y^{\prime}, [\alpha, y]]=[\alpha, [y^{\prime}, y]]-[[\alpha, y^{\prime}],$ $y$] $=[y, [\alpha, y^{\prime}]]becaus($

$[y^{\prime}, y]\in f(0)$ ; hence $[[\alpha, y^{\prime}],$ $[\alpha, y]]=\Vert\alpha\Vert^{4}[y^{\prime}, y]$ as asserted. The rest of (a) follows fron
2.$4b$ or its proof: the $f_{0}(\alpha)$-module $m(\alpha)$ is isomorphic with $f(\alpha)=[\alpha, \mathfrak{m}(\alpha)]b^{I}$.
$[f_{O}(\alpha), \alpha]\subset[f(0), \alpha]=\{0\}$ . One has (b) by (a), since $f(0)\supset f_{O}(\alpha)$ normalizes every $f(\beta$

and $\mathfrak{m}(\beta)$ . We tum to (c). Clearly $\mathfrak{g}_{y}(\alpha)$ stabilizes $\mathfrak{g}(\beta++\alpha)$ by $[\mathfrak{g}(\alpha), \mathfrak{g}(\beta)]\subset \mathfrak{g}(\beta+\alpha)\cdot\dagger$

$\mathfrak{g}(\beta-\alpha)$ and $[\alpha, \mathfrak{m}(\beta)+f(\beta)]\subset f(\beta)+\mathfrak{m}(\beta)$ . Thus, if $n(\beta, \alpha)$ is 1, one sees $\mathfrak{g}(\beta++\alpha)=$

$\mathfrak{g}(\beta)+\mathfrak{g}(\beta-\alpha)$ , another well known fact about the roots [B]. If the inner produc
$\langle\alpha, \beta+j\alpha\rangle$ is not zero, then $ad(\alpha)$ carries $\mathfrak{m}(\beta+j\alpha)$ onto $f(\beta+j\alpha)$ bijectively. Henc $($

$\mathfrak{g}_{y}(\alpha)$ acts effectively on each simple $\mathfrak{g}_{y}(\alpha)$-submodule of $\mathfrak{g}(\beta++\alpha)$ through the weigh
$\omega_{1}$ ; the submodules thus have dimension 4. Sinoe the lines in $\mathfrak{g}_{y}(\alpha)$ are conjugate $t($

each other, their actions are known from that of $ R\alpha$ . If $n(\beta, \alpha)$ is odd, $\mathfrak{g}_{\nu}(\alpha)act|($

similarly through the highest weight $n(\beta, \alpha)\omega_{1}$ , and one obtains (d). For (e), one firs
notes that any two orthonorm$a1$ vectors $y_{1},$ $y_{2}$ in $f(\alpha)$ generate a subalgebra $f_{12}$ which $i^{t}$

isomorphic with $\mathscr{L}O(3)$ ; in fact one knows $[y_{1}, y_{2}]\neq 0$ by 2.$4b$ and that $ad([y_{1}, y_{2}]$

exchanges the two lines spanned by $y_{1},$ $y_{2}$ . $f_{12}$ stabilizes $\mathfrak{m}(\beta)+m(\beta-\alpha)$ , which $doe\{$

not contain a trivial $f_{12}$-submodule by (c). One also notes $m(\beta)\geqq m(\alpha)>1$ by 2.$4c$
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$f_{12}$ acts on each $f_{12}$-submodule through the weight $\omega_{1}$ again by (c); $ad(y_{j}):\mathfrak{m}(\beta)\rightarrow$

$\mathfrak{m}(\beta-\alpha)$ is bijective. Therefore $ad([y_{1}, y_{2}]):\mathfrak{m}(\beta)^{\wedge}-\mathfrak{m}(\beta)$ is bijective, which immedi-

ately implies that $f_{0}(\alpha)$ acts on each simple submodule of $\mathfrak{m}(\beta)$ through the spin or

a half-spin representation; it may help to note that $([y_{2j-1}, y_{2j}])_{j}$ makes a basis for a

maximal abelian subalgebra of $f_{0}(\alpha)$ for an orthogonal basis $(y_{j})_{j}$ for $f(\alpha)$ . In case

$m(\alpha)=1,$ $\mathfrak{m}(\beta)$ is a direct sum of a simple Spin(2)-submodu1es of dimension 2. In case

$m(\alpha)=4$ , a 3-dimensional ideal in $f_{0}(\alpha)$ may act trivially on $\mathfrak{m}(\beta)$ , as one will see

later. QED

2. $25a$ . LEMMA. Let $L$ be a subset of the root system $R(M)$ . Then the subspace

$\mathfrak{m}^{\prime}(L)=\sum_{L}\mathfrak{m}(\lambda)$ , summed up for $\lambda$ in $L$ , is the tangent space $T_{\sigma}M^{\prime}(L)$ to a subspace $M^{\prime}(L)$

of $M$ if and only if (1) the set $R(L)=\{\lambda\pm\mu|\lambda, \mu\in L\}\cap R(M)$ is a root subsystem of
$R(M)$ or empty, (2) $L$ is a weight system for $R(L)$ , and (3) $ L\cap R(L)=\emptyset$ .

$PR\infty F$ . Assume $\mathfrak{m}^{\prime}(L)$ is tangent to $a$ subspace $M^{\prime}(L)$ . Then, as in the proof of

2. $4b$ , one has the symmetry decomposition $f^{\prime}+\mathfrak{m}^{\prime}$ for $M^{\prime}(L)$ , where $\mathfrak{m}^{\prime}=m^{\prime}(L)$ and

$f^{\prime}=[\mathfrak{m}^{\prime}, \mathfrak{m}^{\prime}](1.6a)$ . Henoe $f^{\prime}\subset\sum_{L}f_{0}(\lambda)+\sum_{R(L)}f(\alpha)$ , summed up for $\lambda$ in $L$ and $\alpha$ in $R(L)$ ,

where $f_{0}(\lambda):=[\mathfrak{m}(\lambda), m(\lambda)]$ . Here the equali$ty$ obtains; in fact, if $n(\mu, \lambda)=1$ as we may

assume, then $f(\lambda-\mu)\subset f^{\prime}$ by 2.25(c). Trivially $n(\beta, \alpha)$ is an integer for every pair ofmembers

of $R(L)$ . $R(L)$ is left invariant by the reflections in its members by the proof of 2.$4b$

(vi). Therefore $R(L)$ is a root system in the linear span $\mathfrak{a}_{L}$ , unless $R(L)$ is empty (in

which case the members of $L$ are strongly orthogonal to each other). Sinoe $L$ is $a$ subset

of $R(M)$ and one has $[f^{\prime}, \mathfrak{m}^{\prime}]\subset \mathfrak{m}^{\prime},$ $L$ is a weight system for $R_{L}$ in the sense of 2.3; the

Weyl group there means that of $R_{L}$ in the present context. If $L\cap R(L)$ contains a

member $\alpha$ , then $\mathfrak{m}^{\prime}$ must contain $[\mathfrak{m}(\alpha), f(\alpha)]=R\alpha$ , contrary to the assumption.

Conversely, assume (1) through (3). Then $S:=R(L)\cup L$ is $a$ root subsystem of $R(M)$

too. By 2.$4d$ , there is a subspaoe $M(S)$ , which admits an involution $\tau$ such that

$M^{\prime}(L)=F(\tau, M(S))_{\langle 0)};ad(\tau\circ s_{\sigma})$ induces the identity on $f^{\prime}$ and on $\mathfrak{a}_{L}+\sum_{R\langle L)}\mathfrak{m}(\alpha)$ ,

summed up for $\alpha$ in $R(L)$ . QED

2.26. LEMMA. Assume $\alpha$ and $ 2\alpha$ are $roots\in R(M),$ $M$ simple. Let $M(\alpha, 2\alpha)$ denote

the subspace $M(S)$ for the root subsystem $S=\{\alpha, 2\alpha\}$ (See 2.$4d$). Then (i) $M(\alpha, 2\alpha)$ has

rank 1, and the ratio of the maximum of its sectional curvature to the minimum is 4: 1.

(ii) $M(\alpha, 2\alpha)$ is one of the complex, quaternion and Cayley projective spaces, denoted by

$G_{1}(C^{2+k}),$ $G_{1}(H^{2+k})$ and FII respectively. Its root system is $BC_{1}(2k, 1),$ $BC_{1}(4k, 3)$ or

$BC_{1}(8,7)$ with multiplicity, the first number in each being that of the shorter ones; the

space has dimension $2k+2,4k+4$ or 16 accordingly. (iii) $M(\alpha, 2\alpha)$ is l-connected.

$PR\infty F$ . The stated ratio is obtained with the formula in the proof of 2.$4b$ . We

now assume $M=M(\alpha, 2\alpha)$ for simplicity and will prove (ii). Let $M^{\prime}(\alpha)$ be the subspace

with $\mathfrak{m}(\alpha)=T_{\sigma}M^{\prime}(\alpha);M^{\prime}(\alpha)=M^{\prime}$ for $L=\{\alpha\}$ in 2. $25a$ . $M^{\prime}(\alpha)$ is c-orthogonal to the

meridian $M(2\alpha)$ (See 2.15; $M^{\prime}(\alpha)$ is congruent with the polar), which is in fact a sphere

ofdimension $>1by2.4b$ (iii). The spaoe $M$ ofrank 1 is thus l-connected. The subalgebra
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$f(O)+f(2\alpha)$ off is $f^{+}=F(adQ(p), f)$ and henoe it acts irreducibly on $T_{\sigma}M^{\prime}(a)$ and $T_{\sigma}M(20$

and the isotropy subalgebras; the actions are irreducible because $M^{\prime}(\alpha)$ and $M(2\alpha)$ hav
rank 1. We want to rotate $M$ around $0$ with $a$ member $b$ of $K_{\langle 1)}$ so that $b$ carries $M(20$
into $M^{\prime}(\alpha)$ . Let $p$ be the pole of $0$ in $M(2\alpha)$ . Choose $b$ of $K_{\langle 1)}$ which carries $p$ into
point $q$ in $M^{\prime}(\alpha)$ ; $q$ lies necessarily on the polar $M^{+}(p)$ , the only polar of $0$ in $M^{\prime}(\alpha^{t}$,
Then $b(M(2\alpha))$ is entirely contained in $M^{\prime}(\alpha)$ , sinoe $q$ is the pole of $0$ in the spher
$b(M(2\alpha))$ . There ore $M^{\prime}(\alpha)$ has $te$ same root system $BC_{1}=BC_{1}(a, s-1)$ as $M$ with $th|$

multiplicity $a$ of $\alpha$ less than that, $m(\alpha)$ , of the root $\alpha$ of $M$ by $s:=\dim M(2\alpha)=m(2\alpha)+1$

and $a=m(\alpha)-s$ . Repeating rotations, one sees that dim $M^{\prime}(\alpha)=m(a)$ is an integra
multiple, $js$, of $s$ . One has $n(a, 2\alpha)=1$ ; henoe dim $\mathfrak{m}(a)$ is even by 2.25 (c) and so is $s$

Also one observes that $f(2\alpha)$ normalizes $\mathfrak{g}(\alpha)$ .
We begin with the case $s=2$ . By 2.25 (c), $f(2\alpha)\cong \mathscr{L}U(1)$ defines a complex structur$($

on $\mathfrak{m}(\alpha)$ as well as $\mathfrak{m}$ which is invariant under the action of $f=f_{O}(\alpha)+f(a)+f(2\alpha)$ . Ont
easily sees that $M$ with $ra$nk 1 is $a$ complex projective spaoe $c_{1}(c^{2+}’)$ , by showing tha
the holomorphic sectional curvature of $M$ is constant (which boils down to the $fac$ .

that any $f(2\alpha)$-invariant 2-plane in $m$ is tangent to some Riemann sphere $b(M(2\alpha)))0l$

showing that $\mathfrak{g}\cong \mathscr{L}SU(i+2)$ and $f\cong \mathscr{L}U(j+1)$ as in the next case.
In case $s=4$, we induct on $j$ to show that $M$ is a quatemion projective spact

$G_{1}(H^{2+J})$ . $f_{0}(2\alpha)\cong \mathscr{L}Sp(1)$ gives the invariant H-structure on $\mathfrak{m}(\alpha)$ by 2.25 (e) and one
on $\mathfrak{m}(2\alpha)$ , sinoe $f_{0}(2\alpha)$ is an ideal in $fM(2\alpha):=f_{0}(2\alpha)+f(2\alpha)\cong \mathscr{L}O(4)$ (See 2. $4b$). Assume
$M^{\prime}(a)$ is $G_{1}(H^{1+J})$ ; one has $f_{O}(\alpha)\cong \mathscr{L}Sp0)$ . Sp(l) and $f_{0}(\alpha)\cap f(0)\cong \mathscr{L}Sp0)$ . The rotation
ad $\exp(t\alpha)ac$ting on $\mathfrak{g}$ exchanges $m(\alpha)$ and $f(\alpha)$ and stabilizes $f(2\alpha)+f(0)$ for some $t\in R$ .
sinoe its angular velocity on $\mathfrak{m}(2\alpha)+f(2\alpha)$ is twioe as much as the one on $\mathfrak{m}(\alpha)+f(\alpha)$ .
Henoe one has $f\cong \mathscr{L}Sp(j+1)$ . Sp(l). To conclude $M\cong G_{1}(H^{2+j})$ or $\mathfrak{g}\cong \mathscr{L}Sp(j+2)$ , one
has to verify certain uniqueness or that the curvature of $M$ or the Lie algeb$ra$ structure
of $\mathfrak{g}$ is determined by the root system with multiplicity (and the induction assumption);
more specifically one has to determine the bracket product $[, ]$ : $m\wedge \mathfrak{m}\rightarrow f$ . The
$fM(2\alpha)- module\mathfrak{m}(\alpha)$ is $a$ (not unique) direct sum $\sum_{P}\mathfrak{m}_{P}$ of simple submodules $\mathfrak{m}_{P}$,
$m_{P}\perp \mathfrak{m}_{Q}$ for $P\neq Q,$ $\dim \mathfrak{m}_{P}=4$ . Now the restriction $[ , ]$ : $m_{P}\wedge m_{Q}\rightarrow f$ is known for
$P\neq Q$ , sinoe $[\mathfrak{m}_{P}, \mathfrak{m}_{Q}]$ is contained in $fM^{\prime}(\alpha)\cong \mathscr{L}Sp(/)\cdot Sp(1)$ by $\langle \mathfrak{k}M(2a), [\mathfrak{m}_{P}, m_{Q}]\rangle=$

$\langle[fM(2\alpha), m_{P}], \mathfrak{m}_{Q}\rangle=\langle \mathfrak{m}_{P}, \mathfrak{m}_{Q}\rangle=0$ . For the remaining case of $P=Q$ , one observes that
$b(M(2\alpha))=\mathfrak{m}_{P}$ and $b(\mathfrak{m}_{P})=M(2\alpha)$ for some be $K;b:=ad(\exp(t[\alpha, x]))$ will do for any
nonzero member $x$ of $m_{P}$ and some $rea1$ number $t$ . Thus one concludes $\mathfrak{g}\cong \mathscr{L}Sp(j+2)$

and $M$ is $G_{1}(H^{2+J})$ .
Finally, assume $s>4$ . Sinoe $f_{0}(2\alpha)$ acts on eve$ry$ simple $fM(2\alpha)$-submodule $\mathfrak{m}_{P}$ of

$\mathfrak{m}$ through the spin representation by 2.25 (e), one has $s=8$ ; in fact, writing $2r+1$ for
$s-1=\dim m(2\alpha)$ , one knows $2^{r}=s=\dim m_{P}$ for the spin representation and one finds
$s=8$ as the only possibility. Furthermore one will see $j=1$ at the end. Ifj $=1,$ $fM(2\alpha)\cong$

$\mathscr{L}O(8)$ acts on $\mathfrak{m}(\alpha)$ through a half-spin representation (which is the composite of the
standard representation with an oute $r$ automorphism $T$ of $\mathscr{L}O(8),$ $T^{3}=1$ ). Henoe the
ideal $f_{0}(2\alpha)\cong \mathscr{L}O(7)$ in $f(O)$ must coincide with $f(O)$ ; that is, $fM(2\alpha)=f^{+}$ . Thus one
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has $f=f^{+}+f(\alpha)\cong \mathscr{L}O(9)$ , which acts on $m$ through the spin representation just as $f_{0}(2\alpha)$

acts on $\mathfrak{m}(\alpha)$ through it. Hence $\mathfrak{g}$ is $F_{4}$ and $M$ is FII; in fact one has the rank
$r(\mathfrak{g})=r(\mathfrak{a})+r(f(0))=r(\mathfrak{a})+r(f_{0}(2\alpha))=1+3=r(f)$ and the roots of $\mathfrak{g}$ are the union of those

of $f$ and the weights of its spin representation. Finally, suppose $j>1$ . Then $f(0)$ contains
a subalgebra $B_{4}\cong \mathscr{L}O(9)$ , which acts on $\mathfrak{m}_{P}+\mathfrak{m}_{Q},$ $P\neq Q$ , irreducibly through the spin
representation and normalizes $f_{0}(2\alpha)$ by 2.25 (b). Sinoe $B_{4}$ acts on the 8-dimensional

space $T_{o}M(2\alpha)$ trivially, $B_{4}$ and $f_{0}(2\alpha)$ centralize each other; $B_{4}\times f_{0}(2\alpha)$ is a subalgebra

of $f(O)$ which acts on $\mathfrak{m}_{P}+\mathfrak{m}_{Q}$ effectively. But this is impossible obviously. QED

2. $26a$ . COROLLARY. Assume both $\alpha$ and $2\alpha$ are roots. Then the actions of $f_{0}(\alpha)$ and
$f(O)$ on $m(\alpha)$ are irreducible and depend on the multiplicities $m(\alpha)$ and $m(2\alpha)$ only. More

precisely, in case $s:=m(2\alpha)+1=2$ , they act on $\mathfrak{m}(a)$ as $\mathscr{L}U0$), where $js:=m(\alpha)$ . In case
$s=4,$ $f_{0}(\alpha)$ and $f(O)$ act on $\mathfrak{m}(\alpha)$ as $\mathscr{L}Sp(1)\times Sp0)$ , while $f_{0}(\alpha)$ acts on $f(\alpha)$ as $\mathscr{L}SpO$);

$[m(\alpha), m(\alpha)]\neq[f(\alpha), f(\alpha)]$ . In case $s=8,$ $f_{0}(a)$ acts on $\mathfrak{m}(\alpha)$ as $\mathscr{L}O(8)$ and $f(0)$ does as
$\mathscr{L}O(7)$ through the spin representation; and $f_{0}(\alpha)=f(0)+f(2\alpha)$ .

2. $26b$ . COROLLARY. There exist monomorphisms $ G_{1}(R^{2+k})\rightarrow G_{1}(C^{2+k})\rightarrow$

$G_{1}(H^{2+k})$ and $G_{1}(H^{3})\rightarrow FII\leftarrow S^{8}$ , which are the inclusion maps of the fixed point sets of
involutions, which correspond to the extensions of the coefficient rings and which induce
monomorphisms $A_{1}(k)\rightarrow BC_{1}(2k, 1)\rightarrow BC_{1}(4k, 3)$ and $BC_{1}(4,3)\rightarrow BC_{1}(8,7)\leftarrow A_{1}(7)$ of
their root systems. There is another family of monomorphisms $G_{1}(F^{2+m})\rightarrow G_{1}(F^{2+k})$ ,

$F=R,$ $C$ or $H,$ $0\leqq m<k$ , and $FII\leftarrow S^{8}$ inducing $BC_{1}(8,7)\leftarrow A_{1}(7)$ .

2.27. LEMMA. Let $\alpha$ and $\beta$ be linearly independent $roots\in R(M)$ . Let $R(\alpha, \beta)$ and
$M(a, \beta)$ denote $R(S)$ and $M(S)$ for $S=\{\alpha, \beta\}$ (See 2. $4d$). Then (i) $R(\alpha, \beta)$ is one of
$A_{2},$ $B_{2}=C_{2},$ $G_{2}$ and $BC_{2}$ unless $M(\alpha, \beta)$ is a local product $M^{\prime\prime}(\alpha)\times M^{\prime\prime}(\beta)$ , where $M^{\prime\prime}(\gamma)$

denotes $M(S)$ for $S=\{\gamma\},$ $\{\gamma, 2\gamma\}$ or $\{\neq\gamma, \gamma\}$ . (ii) If the multiplicity is included, the root

systems are $A_{2}(m)form=1,2,4$ or 8, $B_{2}(m, 1)form\geqq 1,$ $B_{2}(2,2),$ $B_{2}(4,3),$ $BC_{2}(2k, 2,1)$ ,

$BC_{2}(4,4,1),$ $BC_{2}(8,6,1),$ $BC_{2}(4k, 4,3),$ $G_{2}(1,1)$ and $G_{2}(2,2)$ . (iii) If $M(\alpha, \beta)$ is

l-connected, $M(\alpha, \beta)$ is uniquely determined by the root system with multiplicity (as made

explicit in the proof).

PROOF. The subspace $M(\alpha, \beta)$ has rank 2. If $\alpha$ and $\beta$ are strongly orthogonal
$(\Leftrightarrow[m(\alpha), \mathfrak{m}(\beta)]=\{0\})$ , then $R(\alpha, \beta)$ is $\{\pm\alpha, \pm\beta\}$ possibly with $\pm 2a$ (or $\pm\neq\alpha$) $and/or$

$\pm 2\beta$ (or $\pm\neq\beta$) added, hence $M(\alpha, \beta)$ is $a$ local product of $M^{\prime\prime}(\alpha)$ and $M^{\prime\prime}(\beta)$ . If not,

$M(\alpha, \beta)$ is simple and hence $R(\alpha, \beta)$ is one of 1’ $A_{2},2^{o}B_{2}=C_{2},3^{o}BC_{2}$ and 4’ $G_{2}$ .
Again we assume $M=M(\alpha, \beta)$ for simplicity.

Consider the case 1 $:R(\alpha, \beta)=A_{2}$ . One may assume $\gamma:=\alpha+\beta$ is another root.

There is a subspaoe $M^{\prime}(\alpha, \beta)$ with $T_{o}M^{\prime}(\alpha, \beta)=m(\alpha)+\mathfrak{m}(\beta)$ by 2.$25a$ . The subspace
$M^{\prime}(\alpha, \beta)$ is c-orthogonal at $0$ to the meridian (2.15) $T\cdot M(\gamma)$ with $T_{o}(T\cdot M(\gamma))=\mathfrak{a}+\mathfrak{m}(\gamma)$ ;

hence $M^{\prime}(\alpha, \beta)$ is congruent with the polar and has the symm $e$try decomposition
$f=f^{+}+f^{-}$ at $p$ . $M^{\prime}(\alpha, \beta)$ has rank $=1$ by 2.25 (c). Therefore the root system $R(M^{\prime\prime}(a, \beta))$

is $BC_{1}=BC_{1}(m, m-1)$ unless $m:=m(\alpha)=1$ . If $m>1$ , one has $m=2,4$ or 8 by 2.26. We
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now prove (iii) in this case by using the symmetry decompositions $\mathfrak{g}=f+\mathfrak{m},$ $f=f^{+}+f$

and $f^{+}=f(0)+f(\gamma)$ (modulo the centralizer $C(f(\gamma),$ $f(O))$) in the reversed order. Thus,
$m=1$ , one sees $M=AI(3)$ , sinoe $f^{+}=f(\gamma)\cong \mathscr{L}O(2),$ $f\cong f^{+}+T_{\sigma}M^{\prime}(\alpha, \beta)\cong \mathscr{L}O(2)+TS^{2,}O-$

$\mathscr{L}O(3)$ and one has its action $4\omega_{1}$ on $\mathfrak{m}\cong \mathfrak{m}(AI(3))$ , where $\mathfrak{m}(AI(m))$ is, as one recalls, th
space of the symme.tri$c$ bilinear forms of traoe $0$ on $R^{m}$ , to see that $\mathfrak{g}$ is $\mathscr{L}SU(3)havi\iota 1$

the root spaoes $\mathfrak{g}(a)$ , etc. for $A_{2}(2)$ with respect to the same $\mathfrak{a}$ . If $m=2$ , one $h^{t}$

$M=SU(3)$ . If $m=4$, one has $M=AII(3);f$ is $\mathscr{L}Sp(3)$ , sinoe $M^{\prime}(a, \beta)$ with $BC_{1}(4,3)$

congruent with the polar $G_{1}(H^{3})$ . One finds $\mathfrak{g}\cong \mathscr{L}SU(6)$ from this and the action of $\iota$

on itself: $\mathfrak{m}\wedge \mathfrak{m}\rightarrow f$ which is determined by 2.25 and 2.$4b$ . Let us add th2
$f(O)=f_{0}(\alpha)+f_{0}(\beta)+f_{O}(\gamma)$ is isomorphic with $A\times B\times C$, where $A,$ $B$ and $C$ are a
$\cong \mathscr{L}Sp(1),$ $B\times C$ ac$ts$ on $m(\alpha),$ $C\times A$ on $\mathfrak{m}(\beta)$ , and $A\times B$ on $\mathfrak{m}(\gamma)$ all as $\mathscr{L}O(4)$ . In $ca($

$m=8,$ $M$ is EIV. First, $f$ is $F_{4}$ , since FII is the polar $\cong M^{\prime}(\alpha, \beta)$ (the $\cong$ by 2.15a) wit
$BC_{1}(8,7)$ . $\mathfrak{g}$ is $E_{6}$ , as is seen without difficulty. Le $t$ us add a few facts. (1) $f(0)\cong \mathscr{L}O(8$

(2) since $f(\gamma)$ acts on $\mathfrak{m}(\alpha)+\mathfrak{m}(\beta)$ effectively and $f(O)$ stabilizes these linear spaoes, or
has an embedding of $f(\gamma)$ into $\mathfrak{m}(\alpha)\otimes \mathfrak{m}(\beta)$ as a f(O)-module; (3) if $f(O)\cong \mathscr{L}O(8)ac)$

on $\mathfrak{m}(\alpha)$ by the representation $\omega_{3}=\omega_{3}(D_{4})$ , say, on $m(\beta)$ by $\omega_{4}$ , on $f(\gamma)$ by $\omega_{1}$ , the
$\mathfrak{m}(\alpha)\otimes m(\beta)$ is the direct sum of $a$ simple module with the highest weight $\omega_{3}+\omega_{4}$ an
another simple submodule with $\omega_{1}$ . (Recall that these are obtained from each other $b$

composing with an outer automorphism $T$ of $\mathscr{L}O(8)$ or $T^{2};T^{3}=1$ . There is a membe
$t$ of $F_{4}$ which stabilizes $\mathfrak{a}$ and induces a cyclic permutation of $\{\alpha, \beta, \gamma\}$ by 2.$4b$ (vi
This $t$ then permutes $\{m(\alpha), \mathfrak{m}(\beta), m(\gamma)\}$ cyclically and stabilizes $f(O)$ . Henoe $t$ induce
the outer automorphism $T$ on $\mathscr{L}O(8).)$ The observation at once allows to describe th
bracket: $m(\gamma)\wedge m(\alpha)\rightarrow f(\beta)$ completely, although this is found also by the cycli
automorphi$sm$ and $M^{\prime}(\alpha, \beta)=FII$ .

Now we tum to the case 2’ of $B_{2}=B_{2}(m, n),$ $m\geqq n$ . Assume $\alpha$ and $\beta$ are shorte
roots, $\pm\alpha\pm\beta$ being the longer. We first prove that the multiplici$tyn$ of $\alpha\pm\beta$ cannc
be greater than 3. One recalls that $f(O)$ acts on $\mathfrak{m}(\alpha),$ $f(\alpha)$ and $\mathfrak{m}(\beta)$ as $\mathscr{L}O(m)$ by 2.2
$(a)$ and (b). In the adjoint representation, $adf(\alpha\pm\beta)$ exchanges $\mathfrak{m}(\alpha)$ and $m(\beta)$ effectivel
by 2.25 (c), and henoe one can embed $f(\alpha\pm\beta)$ into $m(\alpha)\otimes \mathfrak{m}(\beta)$ as a f(O)-module. From
this, one immediately sees that $f(O)$ acts on $\mathfrak{m}(\alpha)\otimes m(\beta)$ as a single algebra $\mathscr{L}O(m)$ (a

opposed to $\mathscr{L}O(m)\times \mathscr{L}O(m)$ whose factors act on $\mathfrak{m}(a)$ and $\mathfrak{m}(\beta)$ independently); $i$

other words, $m(\alpha)\otimes \mathfrak{m}(\beta)$ is isomorphic with $\mathfrak{m}(\alpha)\otimes m(\alpha)$ as a f(O)-module. Except fc
the case of $m=8,$ $\mathfrak{m}(\alpha)\otimes \mathfrak{m}(\alpha)$ is the direct sum of the trivial one, $R$, a submodul
$m(\alpha)\wedge \mathfrak{m}(\alpha)\cong \mathscr{L}O(m)$ and a simple one $\mathfrak{m}(AI(m))$ (explained earlier). They hav
dimensions 1, $*m(m-1)$ and $*m(m+1)-1$ respectively and $f(a\pm\beta)$ must be one $c$

these submodules except when $m=4$ and hence $\mathscr{L}O(m)$ is the sum of two copie$sc$

$\mathscr{L}O(3)$ . Thus $(m, n)$ is $(2, 2)$ , $(3, 3)$ or $(4, 3)$ unless $n=1$ ; the case $(3, 3)$ contradic$ts2.2$
(e). In case $m=8$ , the half-spin representations cannot appear as in 1 for the followin
reason. Sinoe the roots $\alpha-\beta$ and $\alpha+\beta$ are strongly orthogonal, $f_{O}(\alpha-\beta)$ centralize
$f_{0}(a+\beta)$ in acting on each of $\mathfrak{m}(\alpha)$ and $\mathfrak{m}(\beta)$ . Therefore $R(M)$ is $B_{2}(m, 1),$ $B_{2}(2,2)c$

$C_{2}(4,3)$ . Thus we have determined all the possible embeddings of $f(\alpha\pm\beta)$ int
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$m(\alpha)\otimes \mathfrak{m}(\beta)$ , which one notices means that the action of, say, $adf(\alpha):\mathfrak{m}(\alpha\pm\beta)\rightarrow \mathfrak{m}(\beta)$

has been determined simultaneously. Suppose $n=1;R(M)$ is $B_{2}(m, 1)$ . Then the
l-dimensional subalgebras $f(\alpha\pm\beta)$ oentralizes each other and $f(O)$ . Henoe $f(\alpha\pm\beta)$ define
$a$ $f(O)$-invariant complex structure $J^{\prime}$ on $T_{o}M^{\prime}(\alpha, \beta)=\mathfrak{m}(\alpha)\oplus \mathfrak{m}(\beta);\{\pm J^{\prime}\}$ is unique by
the above. Thus one has $M^{\prime}(\alpha, \beta)=.G_{2}(R^{2+m})=SO(2+m)/(SO(2)\cdot SO(m)),$ $f(0)$ acting
on $T_{o}M^{\prime}(\alpha, \beta)\cong R^{2}\otimes \mathfrak{m}(\alpha)$ as $\mathscr{L}O(2)\times \mathscr{L}O(m)$ . Moreover $f(\alpha+\beta)+f(\alpha-\beta)$ is the unique
sum $f_{t+)}+f_{\langle-)}$ such that $[f_{t+)}, f(\alpha)+f(\beta)]=0$ and $[f_{t-)}, m(\alpha)+\mathfrak{m}(\beta)]=0$ by the above;

in fact, if a member $y$ of $f(a+\beta)+f(\alpha-\beta)$ satisfies $[y, m(\alpha)+m(\beta)+f(\alpha)+f(\beta)]=0$ , then
one has $[y, m(a\pm\beta)]\subset[y,$ $[f(\alpha), \mathfrak{m}(\beta)]=0$ and $y=0$ therefore. Henoe $f_{\langle+)}$ centralizes $f$ .
Since $f$ is irreducible on $\mathfrak{m},$ $f_{t+)}$ thus defines $a$ f-invariant complex structure on $\mathfrak{m}$ ; here
one sees $f=f_{t+)}+\mathscr{L}O(2+m),$ $\mathscr{L}O(2+m)\supset f_{\langle-)}$ , and that $f$ acts on $\mathfrak{m}\cong R^{2}\otimes R^{2+m}$ as
$\mathscr{L}O(2)\times \mathscr{L}O(2+m)$ . Therefore one concludes $M=.G_{2}(R^{4+m})$ . In the case of $B_{2}(2,2)$ ,
$f(\alpha\pm\beta)$ embeds as $\mathfrak{m}(AI(2))$ and defines an invariant quaternion structure on
$m^{+};$ $M^{+}=.G_{1}(H^{2})$ . Thus $f=\mathcal{L}Sp(2)$ and $M$ is a group $=.Sp(2)$ . If $R(M)$ is $C_{2}(4,3)$ ,
$f(\alpha\pm\beta)$ defines an invariant quaternion structure on $\mathfrak{m}^{+}$ as in the case of
$B_{2}(m, 1);M^{+}=.G_{1}(H^{2})\times G_{1}(H^{2})$ and $M=.G_{2}(H^{4})$ .

Now suppose $R(\alpha, \beta)=BC_{2}=BC_{2}(a, b, c),$ $a\geqq b\geqq c$ . Let $R(\alpha, \beta)$ have $\alpha,$
$\beta,$ $\alpha\pm\beta,$ $2\alpha$ ,

and $2\beta$ . Since $2\alpha$ and $\alpha\pm\beta$ generate $a$ root system $R_{B}\cong B_{2}=B_{2}(b, c)$ , there is $a$ subspace
$M^{-}=M(R_{B})$ by 2.$4d;M^{-}$ is $a$ meridian. Henoe the multiplicity $c=m(2\alpha)$ is 1, 2 or 3
by our result on $B_{2}$ . But $c$ cannot be 2, by 2.26 applied to the subspaoe $M(\alpha, 2\alpha)$ .
Assume $c=1$ . Then $a$ member $J$ of $f(2\alpha)+f(2\beta)$ defines an invariant complex structure
on $\mathfrak{m}$ as in the case of $B_{2}(m, 1);M$ will be hermitian. The subspaoe $M(\alpha, 2\alpha)$ is a complex
projective space; hence $m(\alpha)$ has an even dimension $2k=a$ . Besides $f_{0}(\alpha)$ acts on $\mathfrak{m}(\alpha)$

as $\mathscr{L}U(k)(2.26a)$ , normalizing $f_{0}(\alpha+\beta)$ by 2.25 (b), while $f_{0}(\alpha+\beta)$ is $\mathscr{L}O(b)$ by 2.25
(a). This greatly limits the possibility of $(2k, b)$ . Indeed, if $O(b)$ is simple so that $f_{0}(\alpha+\beta)$

is effective on $m(\alpha)$ , then this gives $\mathscr{L}O(b)=\mathscr{L}SU(k)$ , and hence $(b, k)=(6,4)$ . For this,
$f^{+}$ is $\mathscr{L}T\cdot T\cdot O(8)=RJ+\mathscr{L}T\cdot O(8)$ by $M^{-}\cong G_{2}^{o}(R^{10})$ , and $f$ is $RJ+\mathscr{L}O(10);M^{\prime}(\alpha, \beta)$

is also $G_{2}^{o}(R^{10})$ . Since $\dim \mathfrak{m}=32$ obviously, $\mathscr{L}O(10)$ acts on $m$ through $a$ half-spin
representation. Therefore $G=.E_{6}$ and $M=$. EIII. If $O(b)$ is not simple, $b=1,2$ or 4, but
$b=1$ is impossible, since otherwise $f(O)$ would act trivially on $f(\alpha+\beta)+f(\alpha-\beta)$ which
must be a $f(0)$-submodule of $m(\alpha)\otimes \mathfrak{m}(\beta)$ . If $b=2$ , $M$ is $G_{2}(C^{4+k})$ ; $M^{-}$ is
$G_{2}(C^{4})\cong G_{2}^{o}(R^{6})$ , while the c-orthogonal spaoe $M^{+}:$ $=M^{\prime\prime}(\alpha, \beta)$ to $M^{-}$ is $G_{2}(C^{2+k})$ . If
$b=4,$ $M^{-}$ is DIII(4) $\cong G_{2}^{o}(R^{8})$ and $\mathscr{L}SU(k)$ acting on $\mathfrak{m}(\alpha+\beta)$ must be an ideal in
$\mathscr{L}O(b)$ ; one finds $k=2$ . Thus $M^{\prime}(\alpha, \beta)$ is $G_{4}(C^{5})\cong G_{1}(C^{5})$ . One concludes $M\cong DIII(5)$ .
Now assume $c=3$ . Then $f(2\alpha)+f(2\beta)\cong \mathscr{L}O(4)$ acts on $m^{+}=T_{o}M^{+}$ as $\mathscr{L}Sp(1)$ , defining
a quaternion structure. $M^{-}$ is $G_{2}(H^{4})$ and $M^{+}$ is $G_{2}(H^{2+k})$ by induction. $M$ is $G_{2}(H^{4+k})$ .

Finally we have come to the case of $R(\alpha, \beta)=G_{2}$ . Let $\alpha$ and $\beta$ be the simple roots
with $\alpha^{\sim}=2\alpha+3\beta;\alpha$ is longer. The multiplicity $m(\alpha)=1,2,4$ or 8, sinoe the longe$r$ roots
form the system $A_{2}$ . But $m(\alpha)$ cannot be 4 or 8; in fact, sinoe $\alpha^{\sim}$ and $\beta$ are strongly
orthogonal, $f_{0}(\alpha^{\sim})\cong \mathscr{L}O(m(\alpha))$ thus centralizes $f_{0}(\beta)\cong \mathscr{L}O(m(\beta)),$ $m(\alpha)\leqq m(\beta)$ , and both
act on $m(\alpha)$ nontrivially if $m(\alpha)>1$ . Hence either $m(\alpha)=m(\beta)=2$ or $m(\alpha)=1$ . If $m(\alpha)=1$ ,
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so does $m(\beta)=1$ ; in fact, $f(\alpha^{\sim})+fM(\beta)$ would act on $\mathfrak{m}^{+}=\sum_{0\leqq J\leqq 3}m(a+j\beta)$ as comple
transformations which properly contain $\mathscr{L}O(m(\beta)+1)$ . In case $m(\alpha)=2$ , the meridia
$M^{-}=M(\alpha^{\sim}, \beta)$ is SO(4) and the polar $M^{+}$ has the root system $G_{2}(1,1)$ as is easil
seen. $f^{+}\cong \mathscr{L}O(4)$ acts on $\mathfrak{m}^{+}$ through $(\omega_{1}, \omega_{3})$ . $M$ is thus the group $G_{2}$ . $M^{+}$ is th
spaoe GI. In case $m(\alpha)=1$ , both $M^{+}$ and $M^{-}$ are $S^{2}\cdot S^{2}$ and $f$ is $\mathscr{L}O(4)$ . Henoe $Ml$

GI. The lemma 2.27 has been proven at last. QED

2. $27a$ . COROLLARY. There are $O1$ monomorphisms: $AI(3)\rightarrow SU(3)\rightarrow AII(3)\rightarrow EI^{\eta}$

for the l-connected spaces of $A_{2}(m)$ , inducing $A_{2}(1)\rightarrow A_{2}(2)\rightarrow A_{2}(4)\rightarrow A_{2}(8)$ , $C\lrcorner$

monomorphisms: CI(2) $\rightarrow Sp(2)\rightarrow G_{2}(H^{4})$ , inducing $B_{2}(1,1)\rightarrow B_{2}(2,2)\rightarrow B_{2}(4,3)$ , \copyright

monomorphism: $G_{2}(R^{4+m})\rightarrow G_{2}(R^{4+k}),$ $m<k$, of the bottom space, inducing $B_{2}(m, 1)-$

$B_{2}(k, 1)$ , $O4$ a monomorphism: $G_{2}(C^{4+k})\rightarrow G_{2}(H^{4+k})$ , inducing $BC_{2}(2k, 2,1)-$

$BC_{2}(4k, 4,3)$ , \copyright monomorphisms: $G_{2}(C^{5})\rightarrow DIII(5)\rightarrow EIII\leftarrow G_{2}^{o}(R^{10})$ inducin
$BC_{2}(2,2,1)\rightarrow BC_{2}(4,4,1)\rightarrow BC_{2}(8,6,1)\leftarrow C_{2}(6,1)$ , which restrict to $G_{2}(R^{5})\rightarrow SO(5)-$

$G_{2}(H^{4})^{*}\leftarrow S^{4}\cdot S^{4},$ $O6$ the monomorphism: $EIII\leftarrow G_{2}^{o}(R^{10})$ also restricting to $FII\leftarrow S^{8}$ wit
$BC_{1}(8,0,7)\leftarrow A_{1}(7)$ as wellas $O7$ monomorphisms: $GI=G_{2}/SO(4)\rightarrow G_{2}\leftarrow SO(4)$ , inducin
$G_{2}(1,1)\rightarrow G_{2}(2,2)\leftarrow A_{1}(1)\times A_{1}(1)$ , but NOT those which induce $B_{2}(2,1)\rightarrow B_{2}(2,2)c$

$B_{2}(3,1)\rightarrow B_{2}(4,3)$ ; see [CN-3] for the last impossibilities.

2.$27b$ . REMARK ON $CLASSI\Pi CATION$ . These lemmas put together allow one to fin
the root systems with multiplicity of all the possible compact simple symmetric space.
The details would be easy to work out; for instance, $A_{3}(8)$ is impossible in view of ou
results on $A_{2}(8)$ , since $f_{O}(a_{1})$ and $f_{0}(\alpha_{3})$ , centralizing each other, must act on $\mathfrak{m}(a_{2})$ a
$\mathscr{L}O(8)$ , which is impossible of course, where $\alpha_{1},$ $\alpha_{2}$ and $\alpha_{3}$ are simple roots. Similarl
for $C_{3}(8,1)$ . A complete list is found in Table VI of Chapter X, [H].

The lemmas give more together with their proofs; next we will complete the proc
of Theorem 1.15 and show that $a$ simple symmetric spaoe $M$ is locally determined $b$

its root system $R(M)$ with multiplicity, thereby we will have given another classificatio
of the symmetric spaces which is different from [A] and [H]. The above lemmas giv
the classification for the spaces of rank $\leqq 2$ .

2.28. LEMMA. A simple space $M$ is locally determined by any polar $M^{+}$ of a poir
$o$ in $M$ and a meridian $M^{-}$ to it.

$PR\infty F$ . The lemma asserts, on the local level, that two simple spaces $M$ and $i$

are isomorphic if $a$ polar $M^{+}(p)$ in $M$ is isomorphic with a polar $N^{+}$ in $N$ and th
meridian $M^{-}$ to $M^{+}=M^{+}(p)$ is isomorphic with a meridian $N^{-}$ to $N^{+};$ the fact on th
global level was stated in 1.15. Let $\mathfrak{a}$ be a maximal abelian subalgeb$ra$ of $m=T_{o}A$

which is contained in $\mathfrak{m}^{-}:$ $=T_{\sigma}M^{-}$ (See 1.8), and let $\mathfrak{g}=f+\mathfrak{m}$ be the symmetr
decomposition for $M$ at $0$ . We have the root spaoe decomposition of $\mathfrak{m}$ with respec
to $\mathfrak{a}$ . $\mathfrak{m}^{-}$ is spanned by $\mathfrak{a}$ and the root spaces $\mathfrak{m}(\alpha),$ $a\in R(m^{-}):=R(M^{-})\subset R(M),$ $b$

2.15. Henoe the orthogonal complement $m^{+}$ to $\mathfrak{m}^{-}$ in $\mathfrak{m}$ is the sum of the other roc
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spaces $m(\lambda),$ $\lambda\in R(m^{+}):=R(M)-R(M^{-})$ . $m^{+}$ is the tangent space to a subspace which
is isomorphic with $M^{+}(2.15a)$ . Let $f^{+}$ deno$teF(adQ(p), f);f=f^{+}+f^{-}$ . $f^{+}$ is generated
by all the spaces $f(\alpha),$ $a\in R(m^{-})$ , and $f_{0}(\lambda),$ $\lambda\in R(\mathfrak{m}^{+})$ . (It does not matter if there is
some ambiguity about $f(0)\subset f^{+}.)$ Given $M^{+}$ and $M^{-}$ , one knows $R(M^{-})$ , the actions
of $f^{+}$ on $\mathfrak{m}^{-}$ and $\mathfrak{m}^{+}$ and the curvature maps $[$ . $]$ : $\mathfrak{m}^{-}\otimes \mathfrak{m}^{-}\rightarrow f^{+}$ and $m^{+}\otimes \mathfrak{m}^{+}\rightarrow f^{+}$ .
We have to show that these data alone allow one to determine the other part of the
curvature map $[, ]$ : $\mathfrak{m}^{+}\otimes \mathfrak{m}^{-}\rightarrow f$ along with $[, ]$ : $f^{-}\otimes \mathfrak{m}\rightarrow \mathfrak{m}$ . We may work on the
bottom $M^{*}$ and use 2.21.

To do it, we will use facts found in preceding lemmas and their proofs. $R(\mathfrak{m}^{+})$

is aweight system (See 2.3 and 2. $25a$); indeed $R(\mathfrak{m}^{+})$ is the weight system of $F(adQ(p)$ ,
$\mathfrak{g})$ acting on $f^{-}+\mathfrak{m}^{+}$ , restricted to $\mathfrak{a}$ . The decomposition of $\mathfrak{m}^{+}$ into the sum of the
weight spaces $m(\lambda),$ $\lambda\in R(\mathfrak{m}^{+})$ , is obtained as the simple f(O)-module decomposition;
$f(O)$ is the sum of $f_{O}(\alpha),$ $\alpha\in R(m^{-})$ , and the ideal in $f^{+}$ which acts trivially on $\mathfrak{m}^{-}$ . To
determine the weight $\lambda$ of each weight space $\mathfrak{m}(\lambda)$ out of the sum $\sum m(\lambda)=\mathfrak{m}^{+}$ , one
looks at the action of $fM(a)=f_{0}(a)+f(\alpha)$ on $\mathfrak{m}^{+}$ . From its action on $m(\lambda++\alpha)$ , the $\alpha$

series of $\lambda$ , one finds the numbers $ n(\lambda, \alpha)=2\Vert\alpha\Vert^{-2}\langle\lambda, \alpha\rangle$ for $\lambda\in R(\mathfrak{m}^{+})$ and $\alpha\in R(\mathfrak{m}^{-})$

and thereby pinpoints $\lambda$ in $\mathfrak{a}$ ; this is possible because $R(\mathfrak{m}^{-})$ spans $\mathfrak{a}$ or its hyperplane.
In the second case, the normalized norm $a1$ vector $H^{j}$ has the inner product $\langle\lambda, H\rangle=\pm 1$

for every $\lambda$ ; normalization can be done by finding the pole in the circle with the tangent
$H^{j}$ . Thus every $\mathfrak{m}(\lambda)$ has the name $\lambda$ now. As to the curvature maps $[, ]$ in question,
one observes that $\mathfrak{m}(\lambda)\otimes \mathfrak{m}(\alpha)\rightarrow f^{-}$ is converted to $\mathfrak{m}(\lambda)\otimes f(\alpha)\rightarrow \mathfrak{m}^{+}$ by applying
$ad(H),$ $H\in \mathfrak{a}$ with $\lambda(H)=0\neq\alpha(H)$ . Similarly $f^{-}(\lambda)\otimes m(\alpha)\rightarrow \mathfrak{m}^{+}$ is converted to the same
$m(\lambda)\otimes f(\alpha)\rightarrow m^{+}$ (which is $a$ part of the action $at$ hand); an alternative, geometric proof
for this is to use the symmetry $s_{m}$ at the midpoint $m$ on the geodesic $arc$ joining $0$ to $p$

in $M^{-}(p)$ as in 2. $15a$ and to see the obvious fact that the automorphism $ad(s_{m})$ of $\mathfrak{g}$

exchanges $m^{+}$ and $f^{-}$ QED

2.29. COROLLARY. A compact symmetric space is locally determined by its root
system with multiplicity.

PROOF. We may assume the spaoe is semisimple and a bottom space. Then it has
$a$ polar and its meridian of lower dimension. These are known from the given root
system with multiplicity. And one can apply the second half of the proof of the
lemma. QED

In the same vein, one obtains such results as the next proposition; some properties
of $M$ are faithfully reflected to those of the pairs $(M^{+}, M^{-})$ of the polars $M^{+}$ and the
meridians $M^{-}$ to them.

2.30. PROPOSITION. Let $M$ be a simple l-connected (compact) space. Then $M$ is
hermitian $\iota f$ and only if some polar $M^{+}(p)$ and a meridian $M^{-}(p)$ to it are hermitian. (If
$M$ is hermitian, all the polars and the meridians are hermitian, simply because the point
symmetries $s_{p}$ are holomorphic.)
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$PR\infty F$ . A simple spaoe $M=G/K$ is hermitian if and only if $M$ is l-connected $a\iota 1$

$K$ contains a one dimensional oenter [H]. From the above, one sees that this is equivale]

to say that $M$ is l-connected and $R(M)$ is $BC_{r}=BC_{r}(a, b, 1)$ with the understandir
that $BC_{r}(0, b, 1)$ means $C(b, 1)$ and $C_{r}(0,1)$ is $A_{1}(1)$ ; see the proof of 2.27 in the $ca\{$

of $B_{2}$ for somewhat detailed analysis of this point. Assume $M^{+}(p)$ and $M^{-}(p)$ a
hermitian. $M$ is then l-connected by 1. $8a$ . If $M^{-}$ has $a$ simple factor with the $ro($

system $BC_{s}(*, *, 1)$ , then $R(M)$ is neoessarily of the form $BC_{r}(a, b, 1)$ by 2.15 and $hen\langle$

$M$ is hermitian, sinoe a space with $BC_{r}$ is l-connected. Thus we may assume that $M$

is the product of spaces with the root systems of type $C_{s}(b, 1)$ . Then the longer roo
$2\epsilon_{j},$ $1\leqq j\leqq r$ , form a basis for the maximal abelian subalgebra ac $m^{-};$ one agrees th $($

$(\epsilon_{j})$ is an orthonormal basis. Henoe every root $\lambda$ in $R(M^{+}, \mathfrak{a}):=R(M)-R(M^{-})$ is short $($

than $2\epsilon_{j}$; there is no room for another root of that length. Thus $\Vert\lambda\Vert^{2}=1$ or 2, ft

otherwise $R(M)$ would be $G_{2}$ , contrary to the above in view of the highest $ro|$

$\alpha^{\sim}(G_{2})=3\alpha_{1}+2\alpha_{2}$ (See the paragraph above 3.21). If $\Vert\lambda\Vert^{2}=1$ , then $R(M)$ is of $ty$]

$BC(a, b, 1)$ and so $M$ is hermitian. So we assume $\Vert\lambda\Vert^{2}=2$ for every root $\lambda$ in $R(M^{+},$ $0$

One has $n(\lambda, 2\epsilon_{j})=\pm 1$ or $0$ . One sees $\lambda=\pm\epsilon_{j}\pm\epsilon_{k}$ and hence $R(M)$ is of $ty$]

$C_{r}(b, 1)$ . QED

\S 3. The involutions of the groups.

The purpose of this section is to describe the group involutions, G-Inv$(M),$ $($

compact simple Lie groups $M$ (as opposed to the involutions of $M$ as spaces) from
new view point, although they are known in a way. Using interrelationship betwee
the groups (such as Corollary 2.10 and Theorem 2.11), we will try to describe them
a unified way. Thus, as to the exceptional groups, we will show (3.10 through 3.2
that (i) every group involution of $E_{8}$ is conjugate with the extended adjoint action $ad($

of $a$ member $b$ of a fixed subgroup SO(16) of $E_{8}$ ; and (ii) all the group involutio]

(inner or outer) of the other l-connected exceptional groups a$re$ restrictions of tho
of $E_{8}$ , made explicit with fixed monomorphisms $E_{8}\supset E_{7}\supset E_{6}\supset F_{4}\supset G_{2}$ . All tl
involutions of the exceptional Lie groups $a$re given by a few members of $SO(16)^{\$}$ ; tl

results are summarized with diagrams in 3.22 through 3.29. $SO(16)^{S}$ is locally isomorph

with SO(16) of course, and all the group involutions of all the locally isomorphic grou]

to $SO(n)$ will be determined as well as those of the classical groups in terms of fixt

standard monomorphisms $O(n)\subset SO(n+1),$ $U(n)\subset SO(2n)$ and $Sp(n)\subset SU(2n)$ ; so $\iota$

will begin with $SO(n)$ . All the group involutions will be placed in a single panorama
The involutions of the spaces which are not groups will be systematically discuss $($

in $a$ forthcoming paper. There some monomorphisms such as the one: $D\rightarrow C_{r}whi($

cannot be realized by Li $e$ group monomorphisms but by symmetric space ones: $D_{r}\rightarrow|$

is realized by $G_{r}(R^{2r})\rightarrow G(C^{2r})$ , for instance. New Satake diagrams are neoessary

describe them [OS].
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3.1. NOTATIONS. $I_{k}=I_{k,n-k}$ denotes the diagonal matrix whose first $k$ diagonal
entries are $-1$ and the rest are equal to 1; that is, $I_{k}$ corresponds to $((-1)1_{k})\oplus 1_{n-k}$ in
$O(n)$ , where $1_{k}$ is the $k\times k$ unit matrix, and similarly $0_{k}$ denotes the zero matrix of that
size. We will use the following symbols for $2\times 2$ matrioes:

3.2. $I=\Vert_{0}^{-1}$ $ 01\Vert$ , $J=\Vert_{1}^{0}$ $-10\Vert$ and $K=\Vert_{1}^{0}$ $ 01\Vert$ .

Also we denote by $K\otimes A$ , say, the $2n\times 2n$ matrix which one gets by substituting the
$n\times n$ matrix $A$ into 1 at the two locations in $K$; thus $I\otimes 1_{n}$ equals $I_{n.n}$ for another
example. We write $P_{k}$ for the matrix $1_{2}\otimes I_{k}$ , which has $a$ pair of $I_{k}$ as diagonal blocks;
$P_{k}$ is conjugate with $I_{2k}$ in $O(2n)$ . Also we write $J_{k}$ or simply $J$ for $J\otimes 1_{k}$ and similarly
$K_{k}$ or simply $K$ for $K\otimes 1_{k}$ .

We begin with the orthogonal groups, aiming at Propositions 3.4 and 3.5. Our
explanation will be brief for the classical groups, for linear algebra is more or less
directly available.

Every involutive member of $O(n)$ is conjugate with some $I_{k}$ . These involutive
members $I_{k}$ , $1\leqq k\leqq n$ , make a commutative system, which is in one-to-one
correspondence with the conjugate classes of the involutive members of $O(n)$ , i.e. with
the polars of 1 in $O(n)$ .

If $n=2r+1$ is odd, every group involution of $SO(n)$ is conjugate with $ad(I_{k})$ . And
$ad(I_{k})$ is conjugate with $ad(I_{j})$ if and only if $j=k$ or $j+k=n$ . To prove these, we use
Theorem 2.11 after introducing necessary notations.

3.3. MORE NOTATIONS. We fix the maximal torus $A(SO(2r+1))$ which is also a
maximal torus in $SO(2r)$ identified with $SO(2r)\oplus\{1_{1}\}$ and whose Lie algebra consists
of $J\otimes D,$ $D$ arbitrary diagonal $r\times r$ matrices. We write $\epsilon_{k}$ for $J\otimes D$ in which the j-th
diagonal member of $D$ is $\delta_{k}^{j}$ . In conform with the notation of [B], the k-th fundamental
weight is $\omega_{k}=\omega_{k}(B_{r})=\omega_{k}(D_{r})=\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{k}$ for $k<r-1$ and $\omega_{r}=+(\epsilon_{1}+\epsilon_{2}+\cdots+$

$\epsilon_{r})$ , while $\omega_{r-1}(B_{r})=\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{r-1}$ for $SO(2r+1)$ and $\omega_{r-1}(D_{r})=+(\epsilon_{1}+\epsilon_{2}+\cdots+$

$\epsilon_{r-1}-\epsilon_{1})$ for $SO(2r)$ . We have identified the Cartan subalgebra with its dual vector
space; the corresponding simple roots are $\alpha_{k}=a_{k}(B_{r})=a_{k}(D_{r})=\epsilon_{k}-\epsilon_{k+1}$ for $k<r$, while
$\alpha_{r}(B_{r})=\epsilon_{r}$ and $\alpha_{r}(D_{r})=\epsilon_{r-1}+\epsilon_{r}$ . We also denote by the symbol $\omega\mapsto b$ the fact that
$\exp(\pi\omega)=b\in G$ for a member $\omega$ of the Cartan subalgebra $\mathfrak{a}$ of $G$ . For instance, one has
$\omega_{k}\mapsto P_{k}$ if $G=SO(2r)$ and $k<r-1$ . Also $\omega_{r}(D_{r})\mapsto J_{r}=J\otimes 1_{r}$ for $SO(2r)$ .

Back to the involutions of $SO(2r+1)$ , one recalls the highest root $a^{\sim}$ is
$\epsilon_{1}+\epsilon_{2}=\alpha_{1}+2(a_{2}+\cdots+\alpha_{r})$ . Henoe there is no outer involution (because the Dynkin
diagram admits no nontrivial automorphism; Cf. [B] Chap. 8, p. 110); the group-
automorphism group G-Aut$(SO(2r+1))$ is connected. Sinoe $SO(2r+1)$ is the adjoint
group $SO(2r+1)^{*}$ , Corollary 2.13 tells us that $H^{k},$ $1\leqq k\leqq r$, are tangent to the short-
est geodesics to the polars of 1 in $SO(2r+1)$ ; here $H^{k}=\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{k},$ $1\leqq k\leqq r$ .
One has $H^{k}\mapsto P_{k}$ . Therefore $ad(P_{k}),$ $1\leqq k\leqq r$ , give a representative system of the
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conjugate classes of the group involutions of $SO(2r+1)$ ; no pair among these a
conjugate simply because the different $H^{k}ha$ve different lengths. By Theorem 2.15, tl
$cor$responding meridians are $SO(2k)\times SO(2r+1-2k)$ . The universal covering grou
$SO(2r+1)^{\sim}$ has the center of order 2, $\{1, \epsilon\}$ , (since $\omega_{1}$ is the only minuscule). Hent
there is no other connected group in the local isomorphism class of $SO(2r+1).$ Eve]

$ad(P_{k})$ can act on $SO(2r+1)^{\sim}$

3.4. PROPOSmON (Case of $B_{r}$). $ad(P_{k}\oplus 1_{1}),$ $1\leqq k\leqq r$, form a representative syste

of the conjugate classes of the group involutions of $SO(2r+1)$ and $SO(2r+1)^{\sim}$ . This
commutative.

We tum to the class of $SO(2r)$ . The adjoint group is $SO(2r)/\{\pm 1\}$ . The highe
root $\alpha^{\sim}$ is $\epsilon_{1}+\epsilon_{2}=\alpha_{1}+2(\alpha_{2}+\cdots+\alpha_{r-2})+\alpha_{-1}+\alpha$ . Henoe the inner automorphis]

group G-Aut$(SO(2r)^{*})_{\langle 1)},$ $r\neq 4$ , has ind$ex2$ in G-Aut$(SO(2r)^{*})$ . One has $H^{k}=\omega_{k},$ $1_{-,\sim}$
.

$k\leqq r$, and $H^{k}\mapsto P_{k}$ for $k<r-1$ in $SO(2r)$ , while one has $\omega_{r}\mapsto J_{r}=J\otimes 1_{r}$ an
$\omega_{r-1}\mapsto J_{r}^{\prime}:=ad(I_{2r-1})J_{r}=-J\otimes I_{r-1}$ in $s6(2r)$ . By taking $H^{k}\mapsto P_{k}$

’ as the definitio
of $P_{k}$ , one sees what $P_{k}$ is in the locally isomorphic groups $SO(n)^{*},$ $SO(n)^{\sim}$ and $SO(4m)$

One notes that $ad(P_{k})$ is conjugate with $ad(P_{-k})$ in $SO(2r)^{*}$ and that $ad(J_{r})$ is conjuga)

with $ad(J_{r}^{\prime})$ in it in case $r$ is odd; mo$rege$nerally, $ad(J\otimes I_{k})$ is conjugate with $ad(J\otimes l$

if and only if $k-j$ is $e$ven. To $P_{k}$ there corresponds the meridian $SO(2k)\times SO(2r-2i$

in $SO(2r)$ , and $U(r)/Z_{2}$ is isomorphic with the meridians corresponding to $ad(i$

and $ad(J_{r}^{\prime})$ in $SO(2r)^{*}$ . Otherwise no pair of $ad(P_{k}),$ $1\leqq 2k\leqq r,$ $ad(J)$ and $ad(J_{r}^{\prime})$

conjugate to each other except for the case $r=4$ (in which $SO(8)^{*}$ admits an out $($

automorphism $T$ of order 3, which pe$rm$utes the 3 polars). If $n=2r$ is even, the adjoi]

group $O(n)^{*}$ has two connected components. The outer involutions come from tl
polars of 1 in it outside $SO(n)^{*}$ . Thus one has $ad(I_{k}),$ $k$ odd, which are conjugate $wi$ )

$ad(I_{2r-k})$ and nothing else. They commute with every $ad(P_{k})$ and no conjugate of $ad(J_{I}$

$ad(I_{1})$ carries $\omega_{r}$ intoa conjugate of $\omega_{-1}$ .
Next we look at $SO(n)^{\sim}$ . It has the oenter of order 4 for $n=2r$ consisting of 1, $\delta_{r}$ ,

and $\delta\epsilon$ ; one has $2H^{k}=2\omega_{k}\mapsto\epsilon$ for $k$ odd and $<r-1,2\omega_{r}\mapsto\delta_{r}$ and $2\omega_{r-1}\mapsto\delta_{r}\epsilon$

$SO(n)^{\sim}$ . $\delta_{r}$ and $\delta\epsilon$ projects to $-1$ in $SO(n)$ , while $\epsilon$ does to 1 in it. $\epsilon$ is involutive, as
elucidated in Remark 3.6; thus $4\omega_{1}\mapsto 1$ . Henoe $ 4\omega_{r}\mapsto\epsilon$ if $r$ is odd, while $\delta_{r}$ is involutil
if $r$ is even. Therefore the center $\{1, \delta_{r}, \epsilon, \delta_{r}\epsilon\}$ is cyclic for $r$ odd and isomorphic $wi|$

$\{1, \delta_{r}\}\times\{1, \epsilon\}\cong Z_{2}\times Z_{2}$ for $r$ even. Every automorphism of $SO(n)^{\sim}$ fixes $\epsilon$ because $($

the distanoe $\Vert 2\omega_{1}\Vert$ from 1 compared with $\Vert 2\omega_{r}\Vert$ except for $T$ acting on $SO(8)^{\sim}$ whit
pe$rm$utes $\{\delta_{r}, \epsilon, \delta\epsilon\}$ cyclically. In the general case including $SO(8)^{\sim},$ $ad(P_{k})$ is the identi
on the oenter as well as on the maximal torus which projects to $A(SO(n))$ defined earlie
sinoe $P_{k}$ is a member of $A(SO(n))$ and $ad(I_{1})$ exchanges $\delta_{r}$ and $\delta_{r}\epsilon$ , in particular tht
fix $\epsilon$ . Henoe every involution either fixes $\delta_{r}$ (in case it is inner) or carries it into $\delta_{r}\epsilon(($

case it is outer). Thus $SO(n)^{\sim}/\{1, \delta_{r}\}$ is isomorphic with $SO(n)^{\sim}/\{1, \delta_{r}\epsilon\}=:SO(2r)$

called semispinor group sometimes. Finally an involutive automorphism of $SO(2r)$ c2

act on SO$(2r)^{i}$ if and only if it is inner. In finding the group involutions, one does n $($
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have to consider the case $2^{o}$ in Corollary 2.10, since it does not occur to the adjoint

group (See Remark 3.7). We summarize these in a proposition.

3.5. PROPOSITION (Case of $D_{r}$). (i) $ad(P_{k}),$ $1\leqq 2k\leqq r$, together with $ad(J_{r})$ and $ad(J_{r}^{\prime})$

form a representative system of the conjugate classes of the inner group involutions of
$SO(2r),$ $SO(2r)^{*}$ and $SO(2r)^{\sim}$ , except that $(J_{r})$ is conjugate with $ad(J^{\prime})$ in case $r$ is odd.

The system is commutative. Furthermore $ad(I_{1})\circ ad(P_{k}),$ $1\leqq 2k\leqq r$, form that of the outer

ones of these groups. This is commutative and centralizes $ad(P_{k}),$ $1\leqq 2k\leqq r$, but not $ad(J)$

or $ad(J^{\prime})$ . (ii) Similarly for $SO(2r)^{t}$ with omission of the outer involutions.

3.6. REMARK. That $\epsilon^{2}=1$ is obvious if one knows that $\epsilon=-1$ in a certain Clifford

algebra into which $SO(n)^{\sim}$ is embedded through the spin or half-spin representation.

Let $\Sigma_{1}$ denote the subset $\{I\otimes J, J\otimes 1_{2}, K\otimes J\}$ of SO(4). The matrices in $\Sigma_{1}$ generate

the quaternion algebra $H$. The members of $H$ having unit norm form a group whic$h$

is homeomorphic with th$e3$-sphere and its Lie algebra is spanned by $\Sigma_{1}$ . The group is

therefore $Sp(1)=SO(3)^{\sim}$ Next consider another subset $\Sigma_{2}=\{J\otimes I, 1_{2}\otimes J, J\otimes K\}$

(which is obtained from $\Sigma_{1}$ by the $map:X\otimes Y\mapsto Y\otimes X$). $\Sigma_{1}$ together with $\Sigma_{2}$ spans
the Lie algebra of SO(4), which is Sp(l) $Sp(1)=SO(4)^{\sim}/\{1, \epsilon\}$ , where $2\omega_{1}\mapsto\epsilon=(\delta_{2}, \delta_{2}\epsilon)$

in $SO(4)^{\sim}=Sp(1)\times Sp(1)$ and $\epsilon_{1}+\epsilon_{2}\mapsto\delta_{2}$ in the Sp(l) containing $\Sigma_{1}$ , while $\epsilon_{1}-\epsilon_{2}\mapsto\delta_{2}\epsilon$

in the other Sp(l) containing $\Sigma_{2}$ . Both $\delta_{2}$ and $\delta_{2}\epsilon$ appear as $-1$ in SO(4). Thus $\epsilon$ is
involutive. The monomorphism $f_{n}$ : $SO(n)^{\sim}\rightarrow SO(n+1)^{\sim}$ carries $\epsilon$ into $\epsilon,$

$f_{n}$ is the lift
of the standard inclusion: $SO(n)\rightarrow SO(n+1)$ induced by the one: $R^{n}\rightarrow R^{n+1}=R^{n}\oplus R$ :
$x\mapsto x+O$ . In this sense $\epsilon$ is independent of $r$ , as opposed to $\delta$ .

3.7. REMARK. This is a good place to give more geometric illustrations of the
case $2^{o}$ in Corollary 2.13. One knows $2\omega_{1}\mapsto\epsilon$ in $SO(n)^{\sim}$ (Case $2^{o}$). $\epsilon$ is a pole of 1, and
the geodesic $arcg[1, \epsilon;2\omega_{1}]$ from 1 to $\epsilon$ in the direction of $2\omega_{1}$ meets the oriented
Grassmannian $G_{2}^{\sigma}(R^{n})=G_{2}(R^{n})^{\sim},$ $a$ component of the centrosome $C(1, \epsilon)$ (See 1. $5b$), at

the midpoint. In $SO(n)$ , one has $\omega_{1}\mapsto P_{1}\in G_{2}(R^{n});g[1, P_{1} ; \omega_{1}]$ joins 1 to $P_{1}$ on the
polar $G_{2}(R^{n})$ (Case 1). Also $\omega_{r-1}+\omega_{r}\mapsto P_{r-1}$ in $SO(2r)$ (Case 2’); $P_{r-1}$ lies on the
polar $G_{2r-2}(R^{n}),$ $n=2r$ . The projection $\pi$ of $SO(n)$ onto $SO(n)^{*}$ carries the two distinct
polars $G_{2}(R^{n})$ and $G_{2r-2}(R^{n})$ onto $a$ single polar $\pi G_{2}(R^{n})$ just as $\pi$ does $P_{1}$ and $P_{r-1}$

onto $a$ singleton; thus both $\pi g[1, P_{1} ; \omega_{1}]$ and $\pi g[1, P_{r-1} ; \omega_{r-1}+\omega_{r}]$ lead to the polar
$\pi G_{2}(R^{n})$ but the former is shorter. For the final example, one has $2\omega\mapsto-1$ in $SO(2r)$

and $\omega_{1}+\omega_{r}\mapsto$[a point $p$ in the polar DIII $(r)^{*}$] in $SO(2r)^{\$},$ $r$ even, (both in Case 2’);

$g[1, -1 ; 2\omega_{1}]$ meets $a$ component DIII $(r)$ of $C(1, -1)$ in $SO(2r)$ at the midpoint. In
$SO(2r)^{*},$ $r$ even, the projections of $g[1, J_{r} ; \omega_{r}]$ and $g[1, p;\omega_{1}+\omega_{r}]$ lead to a single
polar DIII $(r)^{*}$ .

We now work on the other classical groups. It is important to fix the position of
the subspaoe located in the $am$bient spaoe in the sequel. We plaoe $U(n)$ at $F(\iota, SO(2n))$ ,

where $\iota:=ad(J_{n})=ad(J\otimes 1_{n})$ ; in other words, a unitary matrix $A+iC,$ $A$ its real part
and $C$ the imaginary one, is identified with $1_{2}\otimes A+J\otimes C$ in $SO(2n)$ . Then we may
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choose the maximal torus $A(U(n))$ of $U(n)$ to be the same as $A(SO(2n))$ fixed earlier
and that of the subgroup $SU(n)$ as its subtorus. Also we use the same orthonorma
basis $(\epsilon_{j}),$ $1\leqq j\leqq n$ , for its Lie algebra of $\mathfrak{a}(U(n))$ as the one for that of$A(SO(2n))=A(U(n))$
$\mathfrak{a}(SU(n))$ is given by the equation $\sum p^{i}=0$ in $\mathfrak{a}(U(n))$ . The highest root $\alpha^{\sim}$ for $SU(n)i$

$\epsilon_{1}-\epsilon_{n}=a_{1}+\alpha_{2}+\cdots+\alpha_{r},$ $r=n-1$ ; henoe G-Aut$(SU(n))_{\langle 1)}$ has index 2 in G-Aut$(SU(n))$
$n>1$ . $G- Aut(SU(n))$ is the ”inner” automorphism group of the normalizer $\{1, K_{n}\}SU(n$

of $SU(n)$ in $SO(2n),$ $K_{n}:=K\otimes 1_{n}$ , and it is $F(\iota, SO(2n)^{*})$ . Indeed $ad(K_{n})$ acts on $U(n$

as the complex conjugation $\kappa$ . The polar of 1 which contains $K_{n}$ is callet
$AI(n)=SU(n)/SO(n)$ . If $n=2m$ is even, there is another polar, $AII(n)=SU(n)/Sp(m)$

which contains $K\otimes J\otimes 1_{m}$ . $SU(n)$ is l-connected and the center is $\{\zeta^{k}\otimes 1_{n}|k\in A$

$0\leqq k<n\}$ , where $\zeta$ is the $2\times 2$ matrix $\exp(2\pi J/n)$ . A shortest geodesic to $\zeta^{k}1_{n}$ is tangen

to the k-th fundamental weight $H^{k}=\omega_{k}=\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{k}-(k/n)(\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{n})$

$1\leqq k\leqq r$ . One sees $2\omega_{k}\mapsto\zeta^{k}1_{n}$ in $SU(n)$ and $\omega_{k}\mapsto ad(P_{k})$ in $SU(n)^{*},$ $1\leqq k\leqq r$ . One has
however, $ad(P_{n-k})=ad(P_{k})$ . If $SU(n)$ were thought of as $a$ group of $n\times n$ complex
matrices, $ad(P_{k})$ should be written $ad(I_{k})$ . $\omega_{j}+\omega_{k},j<k$ , gives $ad(P_{k-j})$ . Since the cente
of $SU(n)$ is cyclic, every involution of $SU(n)$ can act on every quotient group of $SU(n)$

We have proved.

3.8. PROPOSITION (Case of $A_{r}$). (i) In case $n$ is odd, $ad(P_{k}),$ $1\leqq 2k\leqq r$, and $ad(K_{n}$

form a representative system of the conjugate classes of the group involutions of th $($

covering groups $SU(n)/Z_{p}$ of $SU(n)^{*}$ and it is commutative. (ii) In case $n=2m$ is even
those involutions together with $ad(K\otimes J\otimes 1_{m})$ form a system of the same property
(iii) Whether or not $n$ is even, G-Inv$(SU(n)/Z_{p})$ is bijective with the restrictions $0$.
$F(ad(ad(J_{n})), G- Inv(SO(2n)))$ to $SU(n)$ ; that is, the restriction of the centralizer of $ad(J_{n}$

in G-Inv$(SO(2n))$ gives G-Inv$(SU(n)^{*})$ bijectively and every group involution of $SU(n)^{\prime}$

lifts to an involution of every covering group.

We plaoe $Sp(m)$ at $F(ad(K\otimes J\otimes 1_{m}), SU(2m))$ , where $SU(2m)=F(ad(J_{2m}), SO(4m))$

This $Sp(m)$ may be written $F(\kappa\circ ad(J\otimes 1_{m}), SU(2m))$ , where $J\otimes 1_{m}$ is a member $0$

$SO(2m)\subset SU(2m)$ . We use $F(\kappa ad(J_{m}), A(SU(2m)))$ as our maximal torus $A(Sp(m))$

We write $\epsilon_{k}$ for $\epsilon_{k}-\epsilon_{k+m},$ $1\leqq k\leqq m$ , and call them orthonorm$a1$ in the Lie algebri
$\mathfrak{a}(Sp(m))$ . The highest root $\alpha^{\sim}$ is $2\epsilon_{1}=2(\alpha_{1}+\alpha_{2}+\cdots+\alpha-1)+a_{r}$ and $\omega_{k}=\epsilon_{1}+\epsilon_{2}\dashv$

$+\epsilon_{k},$ $1\leqq k\leqq m$ . There is no outer involution. The center of the l-connected grou]

$Sp(m)$ is $\{\pm 1\}$ . To $\omega_{k}$ there corresponds $ad(P_{k})$ restricted to $Sp(m),$ $1\leqq k<m$ , wher
$P_{k}\in SO(2m)$ . To $H^{m}=*\omega_{m}$ there corresponds $ad(J_{m})$ , where $J_{m}eSO(2m)$ ; and one $ha$

$2H^{m}\mapsto-1$ .

3.9. PROPOSITION (Case ofC). (i) $ad(P_{k}),$ $1\leqq k<r$ , and $ad(J_{m})$form a representativ

system of the group involutions of conjugate classes of $Sp(m)$ and $Sp(m)^{*}$ and it $i$

commutative. (ii) G-Inv$(Sp(m))$ is bijective with the restrictions of $F(ad(ad(ad(K\otimes J_{m}))))$

$G- Inv(SU(2m)))$ to $Sp(m)$ .

Now we tum to the exceptional groups. We assume some knowledge of $E_{8}includin|$
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its existence, but not of $E_{6},$ $E_{7}$ or $F_{4}$ . We denote by these both the compact l-connected
groups and their root systems. $E_{8}$ contains $SO(16)^{t}$ and we will show that all the group
involutions of $E_{8}$ are conjugate to those of $SO(16)^{t}$ extended to $E_{8}$ .

3.10. PROPOSITION (Case of $E_{8}$). $E_{8}$ has two involutions, denoted by $\sigma^{VIII}$ and $\sigma^{IX}$

corresponding to the two polars; $\sigma^{VlI1}:=ad(\epsilon)$ and $\sigma^{1X}:=ad(\epsilon P_{2})$ in terms ofmembers of
the subgroup $SO(16)^{\iota}=F(ad(\epsilon), E_{8})$ (See the proof). $\sigma^{VIII}$ and $\sigma^{IX}$ make a commutative
representative system of the conjugate classes of the group involutions of $E_{8}$ .

$PR\infty F$ . We write $a(q^{1}, \cdots, q^{r})$ for a linear combination $q^{1}\alpha_{1}+\cdots+q\alpha_{r}$ of the
simple roots and, similarly, $\epsilon(p^{1}, \cdots, p^{r})$ for $p^{1}\epsilon_{1}+\cdots+p^{r}\epsilon_{r}$ . Then the highest root
$\alpha^{\sim}=\alpha^{\sim}(E_{8})$ is $\alpha(2,3,4,6,5,4,3,2)$ . There is no outer involution. By Theorem 2.11,
there is a meridian $M^{-}(p)$ for the polar $M^{+}(p)$ of the unit element 1 that corresponds
to the first number 2 in the above expression of $\alpha^{\sim};$ $M^{-}(p)=F(ad(p), E_{8})$ , the centralizer
of $p$ . Its Lie algebra is $D_{8}$ . We choose a common Cartan subalgebra $\mathfrak{a}(D_{8})=\mathfrak{a}(E_{8})$ .
Besides we make $\epsilon_{1},$ $\cdots,$ $\epsilon_{j},$ $\cdots,$ $\epsilon_{8}$ , the orthonormal basis vectors for $\mathfrak{a}(E_{8})$ , correspond
to the vectors $\epsilon_{8},$ $\epsilon_{7},$ $\cdots,$ $\epsilon_{k},$ $\cdots,$ $\epsilon_{2},$ $-\epsilon_{1}$ , considered earlier for $D_{8},j+k=9$ for $1\leqq j\leqq 7$ ,

notationwise, referring to the tables at the end of Chap. 6 of [B]; thus the root system
$R(E_{8})$ is the union of $R(D_{8})$ and the weights of the half-spin representation $\omega_{7}=\omega_{7}(D_{8})$

of $D_{8}$ . One sees that $M^{-}(p)$ is the semi-spinor group $SO(16)^{\sim}/\{1, \delta\epsilon\}$ which we denote
by $SO(16)^{\$}$ . It meets the polar $M^{+}(p)$ at $\epsilon$ , the only pole of 1 in $SO(16)^{\$}$ ; hence $ p=\epsilon$ .
The polar is called EVIII. $\sigma^{VI\mathbb{I}}$ is $ad(\epsilon)$ acting on $E_{8}$ by definition. $\omega_{7}(D_{8})$ , etc. being
abbreviated to $\omega_{7}$ , etc. one sees $\omega_{1}(E_{8})=-2\omega_{1},$ $\omega_{2}(E_{8})=\omega_{8}-3\omega_{1},$ $\omega_{3}(E_{8})=\omega_{7}-4\omega_{1}$ ,
$\omega_{4}(E_{8})=\omega_{6}-6\omega_{1},$ $\omega_{5}(E_{8})=\omega_{5}-5\omega_{1},$ $\omega_{6}(E_{8})=\omega_{4}-4\omega_{1},$ $\omega_{7}(E_{8})=\omega_{3}-3\omega_{1}$ , and
$\omega_{8}(E_{8})=\omega_{2}-2\omega_{1}$ . Next from the second coefficient 2 in $\alpha^{\sim}$ and Theorem 2.11, one
obtains another meridian $M^{-}(q)$ , where the point $q$ lies in the direction of
$\omega_{8}(E_{8})=\omega_{2}-2\omega_{1}$ , a root of $D_{8}$ . Again by Theorem 2.11, $M^{-}(q)$ is a dot product of
Sp(l) and $a$ simple group with the root system $E_{7}$ . $q$ is the common pole of 1 in Sp(l)

and the group $E_{7}$ ; one sees $q$ equals $\epsilon 1_{2}\otimes I_{2}=\epsilon P_{2}$ . $\sigma^{IX}$ is $ad(\epsilon P_{2})$ by definition. The polar
$M^{+}(q)$ is called EIX. $\sigma^{VlU}$ commutes with $\sigma^{1X}$ , sinoe they $ha$ve been defined by two
members of a maximal torus. They form a representative system of the congruence
classes of the group involutions of $E_{8}$ by Theorem 2.11. QED

3.11. REMARK. Clearly $\epsilon P_{2}$ is conjugate with $P_{2},$ $\epsilon I_{4}$ and $I_{4}$ in $SO(16)^{\$}$ ; indeed
all these lie in the polar $G_{4}^{o}(R^{16})$ of 1 in $SO(16)^{\hslash}$ . In $pa$rticular, $\sigma^{VIII}$ is conjugate wi$th$
$ad(P_{2})$ even in $SO(16)^{\$}$ . We record $SO(16)^{\#}=F(\sigma^{VIII}, E_{8})$ and $Sp(1)\cdot E_{7}=F(\sigma^{IX}, E_{8})$ .
These are the meridians for the polars EVIII and EIX respectively.

3.12. REMARK. There are many ways of checking $re$sults because of abundant
interrelationship between the spaces. Here is $a$ simple example. It is not hard to see
that, among the polars $\{\epsilon\},$ $2$ copies of DIII(8)*, $G_{4}^{\sigma}(R^{16})$ and $G_{8}(R^{16})^{t}$ of $SO(16)^{\#}$ , one
of DIII $($8 $)^{*}$ and $G_{4}^{\sigma}(R^{16})$ lie in EIX; indeed $\omega_{7}(D_{8})$ and $\alpha_{1}(D_{8})$ are conjugate in $E_{8}$ (or

with respect to its Weyl group $W(E_{8}))$ so that this DIII $($8 $)^{*}$ in EIX contains $J\otimes I_{1}$ (on
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the l-parameter subgroup with the initial tangent $\omega_{7}(D_{8}))$ and the other DIII(8)

contains $\epsilon J\otimes I_{1}$ . Assuming the knowledge of the Euler numbers of the polars of $SO(16)^{t}$

one finds that the Euler number $\chi EIX$ is $120=56+64$ and $\chi EVIII=1+64+70=13_{\sim}$

thus $1+\chi EVIII+\chi EIX$ equal$s2^{8}$ , as it should.

3.13. PROPOSITION (Case of E7). E7 has three group involutions, $\sigma^{V},$ $\sigma^{V1}$ and $\sigma^{V}$

corresponding to the 3 polars in $E_{7}^{*}=E_{7}/Z_{2}$ . Here $\sigma^{V}:=ad(K\otimes 1_{8})|E_{7};\sigma^{VI}$ is $ad(\epsilon)=\sigma^{VI}$

restricted to $E_{7}$ ; and $\sigma^{VII}$ is $ad(J_{2}P_{1})|E_{7}$ , where $J_{2}$ is a member ofSp(l) (that is, the membe
$J\otimes 1_{2}$ of $\Sigma_{1}$ in Remark 3.6) and $P_{1}$ is that of $SO(12)^{\sim}$ , both of which are subgroups $c$

$Sp(1)\cdot SO(12)^{\sim}\subset E_{7}\cap SO(4)^{\sim}\cdot SO(12)^{\sim}\subset SO(16)^{\$}$ , if $E_{7}$ is located in $F(\sigma^{IX}, E_{8})$ . $\sigma^{V},$
$\sigma^{\uparrow}$

and $\sigma^{VII}$ make a commutative representative system of the conjugate classes of the grou
involutions of $E_{7}$ and of $E_{7}^{*}$ .

$PR\infty F$ . We plaoe $E_{7}$ at the position in $E_{8}$ specified in the above. Thus a Carta
subalgebra $\mathfrak{a}(E_{7})$ of $E_{7}$ is given by the equation $p^{1}=p^{2}$ , i.e. one has $\mathfrak{a}(E_{7})--$

$\{\epsilon(p^{1}, \cdots,p^{8})\in a(E_{8})|p^{1}=p^{2}\}$ . We choose $a$ system of simple roots $\alpha_{1},$ $\cdots,$ $\alpha_{7}$ , jus
omitting $\alpha_{8}$ from those in $R(E_{8})$ . One has the fundamental weights $\omega_{1}(E_{7})=-\omega_{2}--$

$-\omega_{2}(D_{8})$ , $\omega_{2}(E_{7})=\omega_{8}-(3/2)\omega_{2}$ , $\omega_{3}(E_{7})=\omega_{7}-2\omega_{2}$ , $\omega_{4}(E_{7})=\omega_{6}-3\omega_{2}$ , $\omega_{5}(E_{7})--$

$\omega_{5}-(5/2)\omega_{2},$ $\omega_{6}(E_{7})=\omega_{4}-2\omega_{2}$ , and $\omega_{7}(E_{7})=\omega_{3}-(3/2)\omega_{2}$ , where the right $han($

sides involve fundamental weights of $D_{8}$ only. Now that the location of E7 has bee
fixed in $E_{8}$ together with its Cartan subalgebra, we are ready to determine th
polars of $E_{7}^{*}$ (which are all contained in those of $E_{8}$ somehow) and the involution
of $E_{7}^{*}$ by heavy use of Theorem 2.11 as in the foregoing proof. The highest roc
$\alpha^{\sim}(E_{7})$ is $\omega_{1}(E_{7})=a(2,2,3,4,3,2,1)$ . There is no outer involution; in particular ever
involution is the restriction of that of $E_{8}$ to $E_{7}$ .

The first coefficient 2 gives the meridian $Sp(1)\cdot SO(12)^{\sim}=E_{7}\cap SO(16)^{\#}$ . This $m$eet

the polar, called EVI, at $P_{2}$ , sinoe $\omega_{1}(E_{7})=-\omega_{2}\mapsto P_{2}$ . It is more convenient to denot
this $P_{2}$ by $\delta_{2}$ , which is the pole of 1 in Sp(l). One has $Sp(1)\cdot SO(12)^{\sim}=(Sp(1)\rangle$

$SO(12)^{\sim})/\{1, (\delta_{2}, \delta_{6}\epsilon)\}$ , as one knows $\delta_{2}=\delta_{6}\epsilon$ in $SO(16)$ . The Cartan subalgebra $\mathfrak{a}(D_{e}$

of $SO(12)^{\sim}$ is spanned by $\epsilon_{3},$ $\epsilon_{4},$ $\epsilon_{5},$ $\epsilon_{6},$ $\epsilon_{7}$ and $\epsilon_{8}$ , that is, $\mathfrak{a}(D_{6})\perp\{\epsilon_{1}, \epsilon_{2}\}$ . The poles $c$

$1$ in $Sp(1)\cdot SO(12)^{\sim}$ are identified with $\epsilon$ , $\delta_{6}$ and $\delta_{6}\epsilon$ in $SO(12)^{\sim}$ . One ha
$2\omega_{6}(D_{6})=\epsilon_{3}+\cdots+\epsilon_{8}\mapsto\delta_{6}$ in $E_{7}$ , while $\omega_{1}(E_{7})\mapsto\delta_{2}=\delta_{6}\epsilon$ . Sinoe $\omega_{8}(E_{8})\mapsto\delta_{6},$ $\delta_{6}$ is th
pole in $E_{7}$ by the definition of $E_{7}$ ; the center of $E_{7}$ is $\{1, \delta_{6}\}$ .

The second coefficient 2, thus, gives the meridian with the root system $A_{7}$ in th

bottom sp$aceE_{7}^{*}$ but not in $E_{7}$ , sinoe $2\omega_{2}(E_{7})\mapsto\delta_{6}$ . In $E_{7}$ the centrosome has th

component, called EV, in correspondenoe with $\omega_{2}(E_{7})$ . The meridian in $E_{7}^{*}$ is $SU(8)/2$

because of the relative position of the root $a_{2}(E_{7})$ to the Dynkin diagram of $A_{7}$ withi
the extended Dynkin diagram of $E_{7}$ ; indeed $\alpha_{2}(E_{7})$ indicates the isotropy representa

tion $\omega_{4}(A_{7})$ for EV, or $\alpha_{2}(E_{7})=-\omega_{4}(A_{7})$ with respect to an appropria $te$ basis fc
$\mathfrak{a}(E_{7})=\mathfrak{a}(A_{7})$ .

The 6-th coefficient 2 in $\alpha^{\sim}(E_{7})$ gives the other polar EVI in $E_{7}$ , which can shar
the meridian $Sp(1)\cdot SO(12)^{\sim}$ with the first EVI because of the other pole $\epsilon$ of 1 $i$
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$Sp(1)\cdot SO(12)^{\sim}$ . This EVI is therefore $a$ subspace of EVIII, while the first $EVI\ni\delta_{2}$

(which is $P_{2}$ in $SO(16)^{t}$) is contained in EIX. The pole $\delta_{\text{\’{o}}}$ of 1 in $E_{7}$ gives rise to the

covering transformation for the double coverin $g$ map; $E_{7}\rightarrow E_{7}^{*}$ , and the translation $\delta_{6}$

$pe$rmutes the two polars, sinoe it carries $\delta_{2}=\delta_{6}\epsilon$ into $\epsilon$ . Henoe the covering map projects

the two polars onto $a$ single polar EVI in $E_{7}^{*}$ . We choose $\sigma^{VI}:=ad(\epsilon)|E_{7}$ .

The 7-th coefficient 1 in $\alpha^{\sim}(E_{7})$ give $s$ the sub$g$roup $T\cdot E_{6},$ $T\cong U(1)$ , and the other

component of the centrosome $C(1, \delta_{6})$ , denoted by EVII, which project respectively to

a meridian and the corresponding polar in $E_{7}^{*}$ . Here $E_{6}$ is of course the l-connected

group of the root system $E_{6}$ . $T\cdot E_{6}$ denotes $(T\times E_{6})/Z_{3}$ ; indeed $\omega_{7}(E_{7})$ is an initial

tangent to $T$ and $or$thogonal to $\mathfrak{a}(E_{6})$ in $\mathfrak{a}(E_{7})$ , whenoe the orthogonal projection of

$\alpha^{\sim}(E_{7})$ into $\mathfrak{a}(E_{6})$ is $-(2/3)\omega_{3}=\omega_{1}(E_{6})$ , the denominator suggesting the oenter $Z_{3}$ of

$E_{6}$ ; also $\mathfrak{a}(E_{6})$ is defined by the equation $p^{2}=p^{3}$ in $\mathfrak{a}(E_{7})$ . We add that $\sigma^{VII}$ is conjugate

with $ad(J_{6}),$ $J_{6}\in SO(12)^{\sim}$ , sinoe the vector $\omega_{7}(E_{7})$ in $\mathfrak{a}(E_{7})$ is carried into $\omega_{6}(D_{6})$ by the

reflection with respect to the root $\neq\epsilon(1,1, -1,1,1,1,1)ofE_{7}$ . For another consequenoe,
$J_{6}$ lies on DIII(6), a component ofSp(1) $\cdot SO(12)^{\sim}\cap EVII$ , and $J_{2}P_{1}$ does on $S^{2}\cdot G_{2}^{o}(R^{12})$ ,

the other component.

Now $K_{8}:=K\otimes 1_{8}$ is an involutive member of $SO(16)^{\#}$ . $ad(K_{8})$ stabilizes our maximal
torus $A=A(E_{8})$ and acts on it as the symmetry $s_{1}$ . Henoe $ad(K_{8})$ fixes every involutive

member of $A$ . In particular it stabilizes $E_{7};K_{8}$ is a member of $Sp(1)\cdot E_{7}$ and not of $E_{7}$ .
Also it follows that the subspaoe $F(s_{1}\circ ad(K_{8}), G)_{\langle 1)}$ ofG has equal rank to that of G

for any comp$actad(K_{8})$-invariant subgroup $G$ of $E_{8}$ with a maximal torus contained

in $A$ . This applies to $E_{7}$ as well as any group $F(S, E_{8})$ defined for a finite set $S$ of $ad(t)$ ,

$t$ involutive members of $A$ . Therefore the subspaoe $F(s_{1}\sigma^{V}, E_{7})_{(1)}=$ : EV of $E_{7}$ has

rank $=7$ and shares the root system with $E_{7}$ .
Finally, we come to the statement on the representative system. In view ofTheorem

2.11, there are involutive members of $E_{7}^{*}$ in the directions of $\omega_{1}(E_{7}),$ $\omega_{2}(E_{7}),$ $\omega_{6}(E_{7})$ ,

$\omega_{7}(E_{7})$ and nothing more up to conjugacy. $\omega_{1}(E_{7})$ corresponds to $\sigma^{V1}$ , sinoe $\omega_{1}(E_{7})\mapsto\delta_{2}$

which projects to the sam$e$ element of $E_{7}^{*}$ as $\epsilon$ does, that is, one has $\omega_{1}(E_{7})\mapsto\epsilon$ in $E_{7}^{*}$ .
Sinoe $\omega_{6}(E_{7})\mapsto\delta_{2}P_{2}=\delta_{6}\epsilon P_{2}$ in $E_{7}$ hence $\omega_{6}(E_{7})\mapsto\epsilon P_{2}$ in $E_{7}^{*}$ , we assert that $\omega_{6}$ gives
$\epsilon$ ; in fact $2\epsilon_{3}\mapsto\epsilon$ and $2\epsilon_{3}$ is conjugate with $\omega_{6}$ by the Weyl group of E7’ as one easily

sees. Thus both $\omega_{1}(E_{7})$ and $\omega_{6}(E_{7})$ correspond to the class of $\sigma^{V1}$ . One sees that $\omega_{7}(E_{7})$

gives $\sigma^{VII}$ , since $\omega_{7}(E_{7})=\omega_{3}-(3/2)\omega_{2}=-\neq\omega_{2}+\epsilon_{3}=-\neq\omega_{2}+\omega_{1}(D_{6})\mapsto J_{2}P_{1}$ . Therefore
$\omega_{2}(E_{7})$ must give $\sigma^{V}$ ; this can be checked directly with computations. QED

3.14. REMARK. We record $F(\sigma^{VI}, E_{7})=Sp(1)\cdot SO(12)^{\sim}$ One has $U(1)\cdot E_{6}=$

$F(\sigma^{V11}, E_{7})$ . $\sigma^{VII}$ is conjugate with $ad(J_{6}),$ $J_{6}\in SO(12)^{\sim}$ We add some explanations

without proof. The involution $ad(K_{8})$ on $E_{7}^{*}$ equals $ad(b)$ for a member $b$ in
$S^{2}\cdot G_{6}(R^{12})^{\iota}\subset EV^{*}\subset E_{7}^{*}$ . The involutive member $c$ of $E_{7}^{*}$ in the direction of $\omega_{2}(E_{7})$

lies in DIII $($6$)^{*}\subset EV^{*}$ . The intersection $SO(4)^{\sim}\cdot SO(12)^{\$}\cap EV^{*}$ is the disjoint union of

these two subspaces; in particular the Euler number $\chi EV^{*}=\chi S^{2}\cdot G_{6}(R^{12})^{t}+\chi$

DIII(6)* $=20+16=36$ . Similarly $SO(4)^{\sim}\cdot SO(12)^{\$}$ meets EVII* in the disjoint union of
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$S^{2}\cdot G_{2}^{o}(R^{12})$ and DIII(6)*; thus $\chi EVII^{*}=12+16=28$ . The same group $SO(4)^{\sim}\cdot SO(12)$

meets the $0$ther polar EVI in the disjoint union of $S^{2}\cdot DIII(6),$ $G_{4}^{o}(R^{12})$ and a single
point; $\chi EVI=32+30+1=63$ . Finally the sum $\chi EV^{*}+\chi EVII^{*}+\chi EVI+\chi\{1\}=2^{7}$

cross-checking our result partly.

3.15. REMARK. We descri $be$ the polars of $EV^{*}$ for a later use. Their meridian.
have the same root system $s$ with multiplicity one and the same fundamental groups $a^{t}$.
those of the meridians in $E_{7}^{*}$ , henoe they are $AI(8)/Z_{4},$ $S^{2}\cdot G_{6}(R^{12})^{\$}$ and $T\cdot EI$ ir
correspondenoe with $SU(8)/Z_{4},$ $Sp(1)\cdot SO(12)^{\$}$ and $T\cdot E^{6}$ respectively in $E_{7}^{*}$ , where El
is the space with the root system of $E_{6}$ with multiplicity 1. The c-orthogonal to $AI(8)/Z_{4}$

in $EV^{*}$ is isomorphic with itself by the explained property of $ad(K_{8})$ . The isotrop3
subgroup for $U(1)\cdot EI$ (and for EI) is $Sp(4)^{*}$ , which, placed as the c-orthogonal to El
at 1 in $E^{6}$ , meets the polars, EII and EIII, of 1 in $E^{6}$ at polars CI $($4$)^{*}\lrcorner\llcorner G_{1}(H^{4})$ anc
the polar $G_{2}(H^{4})^{*}$ in $Sp(4)^{*};CI(4)^{*}$ and $G_{2}(H^{4})^{*}$ are the polars in EI.

3. $15a$ . REMARK. The fixed point set $F(\sigma^{v}, E_{7}^{*})=2\times SU(8)/Z_{4}$ ( $2$ copies). It canno
be connected, sinoe $F(\sigma^{V}, E_{7}^{*})_{\langle 1)}=SU(8)/Z_{4}$ is the meridian to $EV^{*}$ which has the polart
$G_{4}(C^{8})^{*},$ $AI(8)/Z_{4}$ and AII(4)*, but the last two cannot be polars of $SU(8)/Z_{4}$ .

3.1 $5b$ . REMARK. We have shown that the oentrosome $C(1, \delta_{6})$ in $E_{7}$ is the disjoin
union of EV and EVII. Sinoe these are not isomorphic with each other, the projectior
$\pi$ of $E_{7}$ onto $E_{7}^{*}$ restricts to double covering maps of EV and EVII. Therefore the polar.
in $E_{7}^{*}$ are $\pi(EV)$ , EVI and $\pi(EVII)$ . Moreover $\pi(EV)$ and $\pi(EVII)$ are the bottoms EV”

and EVII* by 1.9.

3.16. REMARK. The polars EVI and $S^{2}\cdot EV$ of 1 in $Sp(1)\cdot E_{7}$ are contained in tht
polar EVIII in $E_{8}$ , while the polars EVI and $S^{2}\cdot EVII$ are in EIX. The ratio
$d(1, EVIII)^{2}$ : $d(1, EIX)^{2}$ of the distanoe squared from the unit element to the polar:
is 2: 1, by 2.14 and $\Vert\omega_{1}(E_{8})\Vert^{2}$ : $\Vert\omega_{8}(E_{8})\Vert^{2}=2:1$ .

3.17. PROPOSITION (Case of $E_{6}$). $E_{6}$ admits four group-involutions $\sigma^{I},$ $\sigma^{II},$ $\sigma^{II1}$

and $\sigma^{IV}$ which constitute a complete system of the conjugate classes. Here $\sigma^{1}:=$

$ad(K_{8})|E_{6}=\sigma^{V}|E_{6};\sigma^{u}:=ad(P_{2})|E_{6};\sigma^{U1}$ is the restriction $ad(\epsilon)|E_{6}$ ; and $\sigma^{1V}$ $:=ad(Q_{2})|E_{6}$

$Q_{2}$ denoting the member of $SO(16)^{\$}$ which corresponds to $K\otimes(1_{4}\oplus 0_{4})+1_{2}\otimes(0_{4}\oplus 1_{4}$

in $SO(16)$ if $E_{6}$ is located in $F(\sigma^{VI1}, E_{7})$ . The inner ones among these are $\sigma^{II}$ and $\sigma^{III}$

These $\sigma^{I},$ $\sigma^{I1},$ $\sigma^{III}$ and $\sigma^{IV}$ commute with each other. $Q_{2}$ is conjugate with $P_{2}$ and $I_{4}$ in
$SO(16)^{t}$ .

$PR\infty F$ . We place $E_{6}$ at the position in E7 as stated; thus our Cartan $suba1gebr^{r}$

$\mathfrak{a}(E_{6})$ of $E_{6}$ is given by the equation $p^{2}=p^{3}$ in $\mathfrak{a}(E_{7})$ , that is, $\mathfrak{a}(E_{6})=\{p^{1}\epsilon_{1}+\cdots+$

$p^{8}\epsilon_{8}$ I $p^{1}=p^{2}=p^{3}$ }. We choose $a$ system of simple roots $\alpha_{1},$ $\cdots,$ $\alpha_{6}$ , just omitting $\alpha$ .
from those in $R(E_{7})$ . One has the fundamental weights $\omega_{1}(E_{6})=-(2/3)\omega_{3}$

$\omega_{2}(E_{6})=\omega_{8}-\omega_{3},$ $\omega_{3}(E_{6})=\omega_{7}-(4/3)\omega_{3},$ $\omega_{4}(E_{6})=\omega_{6}-2\omega_{3},$ $\omega_{5}(E_{6})=\omega_{5}-(5/3)\omega_{3}ane$

$\omega_{6}(E_{6})=\omega_{4}-(4/3)\omega_{3}$ , where the right hand sides involve fundamental weights of $D_{(}$
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only. The highest root $\alpha^{\sim}(E_{6})$ is $\omega_{2}(E_{6})=\alpha(1,2,2,3,2,1)$ . $G- Aut(E_{6})$ is the extension

of G-Aut $(E_{6})_{(1)}$ by $\{1, \sigma^{1}\}$ ; in fact the composite $\sigma^{1}\circ w_{o}$ realizes the symmetry of the

Dynkin diagram, where $w_{o}$ denotes the member of the Weyl group that has the greatest

length [B]. This outer involution makes $\omega_{1}(E_{6})$ conjugate with $\omega_{6}(E_{6})$ and $\omega_{3}(E_{6})$ with
$\omega_{5}(E_{6})$ . One sees that the center of $E_{6}$ has order 3 and is generated by $a$ member in

the direction of $2\omega_{1}(E_{6});E_{6}$ has no pole.

The first coefficient 1 in $\alpha^{\sim}(E_{6})$ indicates the meridian $U(1)\cdot SO(10)^{\sim}$ and the

corresponding involutive member $b$ lies in $U(1)$ which has a tangent vector $\omega_{1}(E_{6})$ . The

subgroup $U(1)\cdot SO(10)^{\sim}$ of $E_{6}$ is contained in $SO(6)^{\sim}\cdot SO(10)^{\sim}$ , that of $SO(16)^{\$}$ . Hence

one finds $ b=\epsilon$ ; thus $ 3\omega_{1}(E_{6})\mapsto\epsilon$ . We might add that the subgroup $U(1)\cdot SO(10)^{\sim}$

projects onto the isomorphic group $(U(1)/Z_{3})\cdot SO(10)^{\sim}$ of $E_{6}^{*}$ . The polar is denoted by

EIII, which is $a$ subspaoe of EVIII.
The second coefficient 2 in $\alpha^{\sim}(E_{6})$ indicates the meridian $Sp(1)\cdot SU(6)$ . $\omega_{2}(E_{6})$ is

tangent to Sp(l). The polar which $\omega_{2}(E_{6})=a^{\sim}(E_{6})$ defines is denoted by EII; EII is $a$

subspace of EIX.

The third coefficient 2 gives the same polar EII. In fact $3\omega_{3}(E_{6})$ is congruent

with the root $\alpha_{1}(E_{6})$ modulo the unit lattioe of $E_{6}$ . Similarly for $\omega_{5}(E_{6});3\omega_{5}(E_{6})$ is
congruent with the root $\alpha_{6}(E_{6})$ . Also $\omega_{6}(E_{6})$ is congruent with $\alpha_{2}(E_{6})+\alpha_{5}(E_{6})$ ; hence

it leads to the polar $G_{8}^{o}(R^{10})$ in $SO(10)^{\sim}$ . $G_{8}^{o}(R^{10})$ is contained in EIII; in fact $w_{\sigma}$ carries
$\omega_{1}(E_{6})$ to $-\omega_{6}(E_{6})$ .

Therefore $E_{6}$ and $E_{6}^{*}h$ave exactly two polars $(\neq\{1\})$ EII and EIII; EII corresponds

to $\omega_{2}(E_{6}),$ $\omega_{3}(E_{6})$ and $\omega_{5}(E_{6})$ , while EIII corresponds to $\omega_{1}(E_{6})$ and $\omega_{6}(E_{6})$ . (As to

the Euler numbers, one has $\chi EII+\chi EIII+1=36+27+1=2^{6}.$ ) We have classified the

inner involutions of $E_{6}$ .
We turn to the outer involutions. We have to determine the polars of G-Aut$(E_{6})$ .

To do it, we look at $F:=F(\sigma^{VI1}, E_{7}^{*})$ . This is not connected, since, on one hand,
$F(\sigma^{VII}, E_{7})$ is $T\cdot E_{6}$ , where $T$ is the circle $U(1)$ with the initial tangent $\omega_{7}(E_{7})$ and, on
the other hand, $ad(K_{8})$ acts on $T$ as the point symmetry $s_{1}$ ; thus the oentrosome $C(1, \delta_{6})$

in $T$ projects into $F$, givin $g$ another component. For another proof, the group $T\cdot E_{6}$ in
$E_{7}^{*}$ meets the polar EVII* at a point $p$ and EIII, while the spaoe EVII* having the root

system $C_{3}$ must have another polar of $p$ , which is $T\cdot EIV$ by definition. We have also

proved that $F$ acts on $E_{6}$ through the adjoint action as G-Aut$(E_{6})$ ; recall G-Aut$(E_{6})$

has two components. The component $F_{\langle q)}$ has to meet the polar $EV^{*}$ of the same root

system as $E_{7}$ exactly for the reason why $F$ is disconnected; one has $F_{\langle 1)}\cap EV^{*}=EII$

and $F_{\langle q)}\cap EV^{*}=T$ . EI. Now the picture is complete for our purpose; G-Aut$(E_{6})$ contains
exactly two conjugate classes ofouter involutions. We will show that these $a$re represented
$re$spectively by $\sigma^{1}$ and $\sigma^{IV}=ad(Q_{2})$ as defined in the proposition, after some study of $Q_{2}$ .

$Q_{2}$ is conjugate with $P_{2}\in G_{4}^{o}(R^{16})\subset EIX$ in $SO(16)^{\#}$ . $ad(Q_{2})$ acts on $\mathfrak{a}(E_{8})$ carrying
$\epsilon_{j}$ into $-\epsilon_{j},$

$j\leqq 4$ , and fixing $\epsilon_{k},$ $k>4$ . Hence a straightforward calculation shows that

EIX has the root system $F_{4}=F_{4}(8,1)$ , which means the shorter roots $h$ave multiplicity

8 and the longer ones have multiplicity 1. In particular the space EIX has rank 4.
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Therefore the space EIV $\subset EVII\subset EIX$ has rank $\leqq 4$ ( $=2ac$tually). On the other hand
EI corresponding to $\sigma^{1}$ clearly has rank $6=rank(E_{6})$ .

Finally, $Q_{2}$ commutes with $K_{8}$ , both of which commute with every involutive
member of our maximal torus $A(E_{8})$ . QED

3.18. REMARK. It does not take too much $wo$rk to soe that $F(\sigma^{1}, E_{6})=Sp(4)^{*}$

$F(\sigma^{II}, E_{6})=Sp(1)\cdot SU(6),$ $F(\sigma^{1II}, E_{6})=U(1)\cdot SO(10)^{\sim}$ and $F(\sigma^{1V}, E_{6})=F_{4}$ (See the nexl
proof for $F_{4}$). Their c-orthogonal spaces are EI, EII, EIII and EIV $re$spectively.

3.19. PROPOSITION (Case of $F_{4}$). Two involutions $\sigma_{F}^{I}$ and $\sigma_{F}^{II}$ make a representativ$g$

system ofthe conjugacy classes of the group involutions of the group $F_{4}$ ; here $\sigma_{F}^{I}:=ad(P_{2})$

$P_{2}\in SO(8)^{\sim}\subset F_{4}$ , and $\sigma_{F}^{II}:=ad(\epsilon)|F_{4}$ if $F_{4}$ is positioned at $F(\sigma^{1V}, E_{6})$ in $E_{6}$ . The systen
$\{\sigma_{F}^{I}, \sigma_{F}^{II}\}$ is commutative.

$PR\infty F$ . Recall that $ad(Q_{2})$ acts on $\mathfrak{a}(D_{8})$ with the fixed point set $f(ad(Q_{2}), \mathfrak{a}(D_{8})^{\backslash }$,

spanned by $\epsilon_{k},$
$5\leqq k\leqq 8$ . This is also spanned by the roots $\alpha_{5}=\epsilon_{5}-\epsilon_{6},$ $\alpha_{6}=\epsilon_{6}-\epsilon_{7}$

$a_{7}=\epsilon_{7}-\epsilon_{8},$ $\alpha_{8}=\epsilon_{7}+\epsilon_{8}$ of SO(16), which form a system of simple roots of the Lie
algebra $D_{4}$ of a subgroup $SO(8)^{\sim}$ . One has $F(ad(Q_{2}), R(E_{6}))=R(D_{4})$ . We write $\mathfrak{a}(F_{4)}^{t}$

for $F(ad(Q_{2}), \mathfrak{a}(D_{8}))$ ; in fact, the projection of $R(E_{6})$ onto $\mathfrak{a}(F_{4})$ is $R(F_{4}),$ $tha|$

is, $F(ad(Q_{2}), R(E_{6}))=F_{4}$ . Thus $R(F_{4})$ consists of $R(D_{4})$ , $\pm\epsilon_{k},$ $5\leqq k\leqq 8$ , and
$*\epsilon(0,0,0,0, \pm 1, \pm 1, \pm 1, \pm 1)$ in our setting. The highest root is $\alpha(2,3,4,2)$ (in the
numbering of [B]). Henoe $F_{4}$ has two polars, FI and FII; the meridians are isomorphie
with $Sp(1)\cdot SP(3)$ and $SO(9)^{\sim}$ respectively. Now the proposition is obvious. QED

3.20. REMARK. We explain more about the polars of $F_{4}$ . FII has rank 1, since
none ofthe roots $\neq\epsilon(O, 0,0,0, \pm 1, \pm 1, \pm 1, \pm 1)$ (which make $R(F_{4})-R(B_{4})$) is strongly
orthogonal to any one among themselves. On the other hand, the polars of $SO(9)^{\sim}a$re
$G_{4}^{o}(R^{9}),$ $G_{8}^{o}(R^{9})=S^{8}$ and the pole $\epsilon$ . Thus $S^{8}$ is the only polar in FII, the Cayle}
projective plane, and $G_{4}^{o}(R^{9})$ is a subspaoe of FI. Henoe the Euler numbe]

$\chi FI=\chi G_{4}^{o}(R^{9})=12$ , while $\chi FII=1+\chi S^{8}=3$ obviously. The polars of $P_{2}$ in FI are
$S^{2}\cdot CI(3)$ and $G_{2}(H^{3})$ , which make those of 1 in $Sp(1)\cdot Sp(3)$ together with $P_{2}$ and
$G_{1}(H^{3})\subset FII$ .

Now we come to the last exceptional group $G_{2}$ . The subgroup $SO(8)^{\sim}$ of $F_{4}$ admits
a group automorp$hism$ of $SO(8)^{\sim},$ $T$ , such that (1) $T^{3}=1$ and (2) $T$ cyclically $pe$rmutes
the three poles of 1 in $SO(8)^{\sim}$ . One has $G_{2}=F(T, SO(8)^{\sim})$ by definition. $T$ is outer; in
fact $T$ acts on the fundamental group of $SO(8)^{*}$ nontrivially. One may assume that rI
stabilizes $a(D_{4})=\mathfrak{a}(F_{4})$ . By (2), $T$ cyclically permutes the three simple roots $\alpha_{5},$ $\alpha_{7}$ and
$\alpha_{8}$ of $D_{4}$ and fixes $a_{6}$ (See the proof of 3.19 for these roots). It follows that the grour
$G_{2}$ does have the root system $G_{2};\beta_{1}$ $:=\alpha_{6}$ and $\beta_{2}:=a_{5}+\alpha_{7}+a_{8}$ make a system 01
simple roots. The highest root $\alpha^{\sim}(G_{2})$ is $3\beta_{1}+2\beta_{2}$ .

3.21. PROPOSITION (Case of $G_{2}$). Every group involution $\neq 1$ of $G_{2}$ is conjugate
with $ad(P_{2})$ of $SO(8)^{*}$ restricted to $G_{2}$ .
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PROOF. $TheautomorphismTstabilizestheonlyremainingpo1arG_{4}^{o}(R^{8})inSO(8)^{\sim}$

which has the root system of $SO(8)^{\sim}$ Therefore the only polar in $G_{2}$ is GI: $=$

$F(T, G_{4}^{o}(R^{8}))$ . The meridian is $SO(4)\cong F(ad(P_{2}), G_{2})\subset SO(4)^{\sim}\cdot SO(4)^{\sim}$ QED

We summarize the above discussions $on$ the involutions of exceptional spaces from
$a$ different angle; we describe the effect of each of the involutions given by the involutive
members $\epsilon,$ $P_{2},$ $K_{8}$ and $Q_{2}$ of $SO(16)^{\$}$ or its appropriate subgroups. This will elucidate
the interrelationship between exceptional spaces and the effects of involutions. Some
inclusions in the diagrams below $may$ be different from those defined earlier.

3.22. PROPOSITION (Effect of $\epsilon$). One has the commutative diagram of mono-
morphisms:

$SO(9)^{\sim}\rightarrow$ $SO(10)^{\sim}$ $\rightarrow$ $SO(12)^{\sim}$ $\rightarrow SO(16)^{t}$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$SO(9)^{\sim}$ $U(1)\cdot SO(10)^{\sim}$ $Sp(1)\cdot SO(12)^{\sim}$ $SO(16)^{\#}$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$F_{4}$ $\rightarrow$ $E_{6}$ $\rightarrow$ $E_{7}$ $\rightarrow$ $E_{8}$

$\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$

FII $\rightarrow$ EIII $\rightarrow$ EVI $\rightarrow$ EVIII ,

in which $ad(\epsilon),$ $\epsilon\in SO(9)^{\sim}$ , stabilizes and so acts on all the spaces above equivariantly.
On each column, the second space $B$ is the fixed point set $F(ad(\epsilon), C)$ of $ad(\epsilon)$ acting on
the third space $C$ which is a group. And $B$ is c-orthogonal to $D=C/B$ at 1 in $C$ .

3.23. COROLLARY. ’ The isotropy representations for FII, EIII, EVI and EVIII are
the restrictions of the half-spin representation of $SO(16)^{t}$ to the corresponding subgroups
in the second row; inparticular these spaces have dimensions $2^{4},2^{5},2^{6}$ and $2^{7}$ respectively.

3.24. PROPOSITION (Effect of $P_{2}$). One has the commutative diagram of mono-
morphisms:

SO(4) $Sp(1)\cdot Sp(3)\rightarrow Sp(1)\cdot SU(6)\rightarrow Sp(1)\cdot SO(12)^{\sim}\rightarrow Sp(1)\cdot E_{7}$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$G_{2}$ $\rightarrow$ $F_{4}$ $\rightarrow$ $E_{6}$ $\rightarrow$ $E_{7}$ $\rightarrow$ $E_{8}$

$\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$

GI $\rightarrow$ FI $\rightarrow$ EII $\rightarrow$ EVI $\rightarrow$ EIX

$\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$

$G_{4}^{o}(R^{9})$ $\rightarrow$ $G_{4}^{o}(R^{10})$ $\rightarrow$ $G_{4}^{o}(R^{12})$ $\rightarrow G_{4}^{o}(R^{16})$ ,

in which $ad(P_{2}),$ $P_{2}\in F(T, SO(8)^{\sim})\subset SO(8)^{\sim}$ , acts on all the spaces equivariantly. $On$
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each column, the groups $A$ above $B$ in the second row are the centralizers $F(ad(P_{2}),$ $B$

The orthogonal space $B/A$ is the space $C$ in the third row. Take a member $q$ of $F$

which is conjugate with $P_{2}$ and commutes with $P_{2}$ . Then the connectedfixed point $St$

$F(ad(q), C)_{\langle 1)}$ is the space $D=G_{4}^{o}(R^{n})$ below $C$ in the diagram.

3.25. REMARK. The $sp$aces $C$ in the third row with GI replaced by $F_{4}$ are all $($

the spaces that have the root system $F_{4}$ . The spaces $C$ in the third row are all pola]

in the groups in the second row. Except for $G_{2}$ , those l-connected groups in the secon
row have exactly two polars $\neq 1$ of 1 in them; the other polars appear in the fourt
row of the diagram in the preceding proposition 3.22. The spaces $G_{4}^{o}(R^{n})$ in the fourt
row have the root system $B_{4}$ .

3.26. PROPOSITION (Effect of $K_{8}$). $ad(K_{8})$ stabilizes all the spaces in the commutati’

diagram below and commutes with the monomorphisms (indicated by the arrows) in it:

$Sp(1)\cdot Sp(3)\rightarrow Sp(4)^{*}\rightarrow SU(8)/Z_{2}\rightarrow SO(16)^{\$}$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$F_{4}$ $\rightarrow$ $E_{6}$ $\rightarrow$ $E_{7}$ $\rightarrow$ $E_{8}$

$\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$

FI $\rightarrow$ EI $\rightarrow$ EV $\rightarrow$ EVIII.

On each column, thefirst space $A$ is thefixed point set $F(ad(K_{8}), B)$ in the second spa‘

$B$ which is a group. The third space $C$ is the component $F(s_{1}\circ ad(K_{8}), B)_{(1)}$ through 1 ‘

thefixed point set of the space involution acting on B. $A$ is orthogonal to $C$ at 1. And
has the isomorphic root system with that of $B$, with multiplicity 1. (Inclusions such $p$

$SO(16)^{\iota}\rightarrow E_{8}$ in the diagram are different from those defined earlier.)

3.27. PROPOSITION (Effect of $Q_{2}$). $ad(Q_{2}),$ $Q_{2}=K\otimes(1_{4}\oplus 0_{4})+1_{2}\otimes(0_{4}\oplus 1_{4})$

$SO(16)^{\$}$ , acts on the spaces in this commutative diagram ofmonomorphisms:

$F_{4}$ $F_{4}$ $T\cdot E_{6}$ $T\cdot E_{6}$ $S^{3}\cdot E_{7}$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$E_{6}$ $\rightarrow$ $T\cdot E_{6}$ $\rightarrow$ E7 $\rightarrow$ $S^{3}\cdot E_{7}$ $\rightarrow$ $E_{8}$

$\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$

$EIV\rightarrow T\cdot EIV\rightarrow$ EVII $\rightarrow S^{2}\cdot EVII\rightarrow$ EIX ,

in which the groups in thefirst row are thefixedpoint sets of $ad(Q_{2})$ acting on the $ grou\iota$

below them, the second row shows monomorphisms as the fixed point sets of sing

involutions and the spaces in the third row are the completely orthogonal spaces to $tha^{t}$

in thefirst row at 1.

3.28. REMARK. In the Satake diagrams of EIV, EVII and EIX, the black vertic $($

are $\alpha_{5},$ $a_{6},$ $\alpha_{7}$ and $\alpha_{8}$ (of $D_{8}$) and there are $no$ arrows.
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3.29. REMARK. The diagram below exhibits all the l-connected spaces $G/K$ whose
automorphism groups $G$ $a$re simple and exceptional (and which $a$re not groups) along
with monomorphisms between them. (FII is the unique polar in EIV.)

EIV

$\nearrow$ $\backslash $

$ G_{1}(H^{3})\rightarrow$ FII $\rightarrow$ EIII $\rightarrow$ EVII

$*$ $*$ $\backslash $

GI $\rightarrow$ FI $\rightarrow$ EII $\rightarrow$ EVI $\rightarrow$ EIX

$\backslash \backslash $ $\backslash \searrow$
$\backslash \searrow$ $\backslash $

EI $\rightarrow$ EV $\rightarrow$ EVIII $\rightarrow$ $E_{8}$

Bibliography

[A] S. ARAKI, On root systems and an infinitesimal classification ofirreducible symmetric spaces, J. Math.
Osaka City Univ., 13 (1962), 1-34.

[At] K. ATSUYAMA, The connection between the symmetric $spa\infty E_{8}/Ss(16)$ and projective planes, pre-

print.
[B] N. BOURBAKI, Groupes et Alg\‘ebres de Lie, Chap. 48.

[C] J.-H. CHENG, Graded Lie algebras of the second kind, Trans. Amer. Math. Soc., 302 (1987), 467-

488.
[CN-1] B.-Y. CHEN and T. NAGANO, Totally geodesic submanifolds of symmetric spaces, I, Duke Math.

J., u (1977), 745-755.
[CN-2] –, Totally geodesic submanifolds of symmetric spaces, II, Duke Math. J., 45 (1978), 405-

425.
[CN-3] –, A Riemannian invariant and its applications to a problem of Borel and Serre, Trans.

Amer. Math. Soc., r8 (1988), 273-297.
[H] S. HELGASON, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press (1978).

[KN] S. KOBAYASHI and K. NOMIZU, Foundations ofDifferential Geometry, Vols. 1&2, Interscience Publ.

(1963,$ $1969).

[N] T. NAGANO, The involutions of compact symmetric spaces, Tokyo J. Math., 11 (1988), 57-79.
[NS-1] T. NAGANO and M. SUMI, The spheres in symmetric spaces, Hokkaido Math. J., 20 (1991), 331-

352.
[NS-2] –, The structure of the symmetric space with applications, Geometry of Manifolds, K.

Shiohama, ed., Academic Press (1989), 111-128.
[OS] T. OSHIMA and J. SEKIGUCHI, The restricted root system of a semisimple symmetric pair, Adv.

Studies Pure Math., 4 (1984), 433497.
[T-1] M. TAKEUCHI, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci.

Univ. Tokyo, 12 (1984), 81-192.
[T-2] M. TAKEUCHI, Basic transformations of symmetric R-spaces, Osaka J. Math., 25 (1988), 259-

297.
[T-3] M. TAKEUCHI, Two-number of symmetric R-spaces, Nagoya Math. J., 115 (1989), 43-46.



82 TADASHI NAGANO

[U] K. UHLENBECK, Harmonic maps into Lie groups (Classical solutions of the chiral model), J. Dif
Geom., 30 (1989), 1-50.

Present Address:
DEPARTMENT or MATHEMATICS, SOPHIA UNIVERSITY
KIOICHO, CHIYODA-KU, TOKYO 102, JAPAN


