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ABSTRACT

We describe the near real-time transient-source discovery engine for the intermediate Palomar
Transient Factory (iPTF), currently in operations at the Infrared Processing and Analysis Center
(IPAC), Caltech. We coin this system the IPAC/iPTF Discovery Engine (or IDE). We review
the algorithms used for PSF-matching, image subtraction, detection, photometry, and machine-
learned (ML) vetting of extracted transient candidates. We also review the performance of our
ML classifier. For a limiting signal-to-noise ratio of 4 in relatively unconfused regions, bogus
candidates from processing artifacts and imperfect image subtractions outnumber real transients
by ≃ 10 : 1. This can be considerably higher for image data with inaccurate astrometric and/or
PSF-matching solutions. Despite this occasionally high contamination rate, the ML classifier
is able to identify real transients with an efficiency (or completeness) of ≃ 97% for a maximum
tolerable false-positive rate of 1% when classifying raw candidates. All subtraction-image metrics,
source features, ML probability-based real-bogus scores, contextual metadata from other surveys,
and possible associations with known Solar System objects are stored in a relational database
for retrieval by the various science working groups. We review our efforts in mitigating false-
positives and our experience in optimizing the overall system in response to the multitude of
science projects underway with iPTF.

Subject headings: methods: analytical — methods: data analysis — methods: statistical — techniques:
image processing — techniques: photometric
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1. Introduction

The Palomar Transient Factory (PTF; Rau et
al. 2009) and its successor survey currently under-
way, the intermediate Palomar Transient Factory
(iPTF; Kulkarni 2013) have been advancing our
knowledge of the transient, variable, and dynamic
sky at optical wavelengths since March 2009.
From new classes of supernovae (Maguire et al.
2014; White et al. 2015), identifying gamma-ray
burst optical afterglows (Singer et al. 2015) and
counterparts to gravitational wave triggers (Kasli-
wal et al. 2016), exotic stellar outbursts (Miller
et al. 2011; Tang et al. 2014), Milky Way to-
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mography (Sesar et al. 2013) to near-Earth aster-
oids (Waszczak et al. 2016) and comets (Waszczak
et al. 2013), iPTF continues to deliver1, serving
as a testbed for the development of future time-
domain surveys. iPTF uses a 92-megapixel cam-
era mosaicked into eleven functional 2048×4096
CCDs covering 7.26 deg2 on the Palomar 48-inch
Samuel Oschin Schmidt telescope. The single ex-
posures reach a depth of (Mould) R ≃ 21 mag
(5σ) in 60 sec. The pixel scale is ≈ 1′′ and the
image quality is ≈ 2.2′′ (median FWHM), imply-
ing the Point Spread Function (PSF) is better
than critically sampled slightly more than 50% of
the time. Further details of the hardware, survey
design, and on-sky performance are described in
Law et al. (2009, 2010) and Ofek et al. (2012). An
overview of the image pre-processing and photom-
etry pipelines, and archival system is described in
Laher et al. (2014).

The near real-time discovery of transients from
iPTF imaging data is currently performed us-
ing an image differencing pipeline at the Na-
tional Energy Research Scientific Computing Cen-
ter (NERSC; Cao et al. 2016). New incoming im-
ages are astrometrically and instrumentally cal-
ibrated, then aligned, PSF-matched, and differ-
enced with deeper reference images supplied by the
Infrared Processing and Analysis Center (IPAC,
Caltech; Laher et al. 2014). Transient candidates
are extracted from the differenced images then vet-
ted using a classification engine (Bloom et al. 2012;
Rusu et al. 2014). The NERSC infrastructure has
contributed immensely to the success of PTF and
iPTF.

We have implemented an enhanced version of
the discovery pipeline to complement the pipeline
at NERSC. In 2017, the iPTF project will be re-
placed by the Zwicky Transient Facility (ZTF) us-
ing a new camera on the same telescope (Bellm
et al. 2014; Smith et al. 2014). The ZTF camera
will have a field-of-view of ∼ 47 square degrees,
enabling a full scan of the Northern visible sky ev-
ery night, at a rate ∼ 15 times faster than iPTF to
similar depths. The massive high-rate data stream
and volume expected from ZTF will require ad-
vancements in algorithms and data-management

1For a list of all publications to date, see
http://www.ptf.caltech.edu/iptf

practices despite the (inevitable) growth in hard-
ware technology. This will pave the way to the
Large Synoptic Survey Telescope (LSST; Ivezić et
al. 2014) that is expected to yield at least 100×
as many astrophysical transients per image expo-
sure than ZTF. In anticipation of this data del-
uge, we have embarked on a new efficient dis-
covery pipeline and infrastructure at IPAC. Our
design philosophy is flexibility, i.e., being able
to operate in a range of complex astrophysical
environments (including the galactic plane), ro-
bustness to instrumental glitches, adaptability to
a wide range of atmospheric seeing and trans-
parency, minimal tuning (unless warranted by in-
strumental changes), optimality (in the signal-to-
noise sense), reliability in extracted candidates to
moderately low S/N levels, and fast delivery of
vetted candidates to enable follow-up in near real-
time.

Searches for astrophysical transients (by virtue
of changes in flux and/or position) have tra-
ditionally been conducted using either of two
approaches. The first involves differencing of
astrometrically-aligned, PSF-matched images from
two epochs: the science or target image contain-
ing the potential transient sources, and a deeper
reference or template image serving as a “static”
representation of the sky, for example, defined
from an average of images from multiple historical
epochs. The difference image is then thresholded
to find and measure excess signals, i.e, the tran-
sient candidates. This approach was (and in some
cases continues to be) used by numerous synoptic
surveys, e.g., OGLE (Wyrzykowski et al. 2014),
ROTSE (Akerlof et al. 2003), La Silla-QUEST
(Hadjiyska et al. 2012), Pan-STARRS (Kaiser et
al. 2010), and PTF (Law et al. 2009). Although
simple in theory, a challenging aspect of discov-
ery via image differencing is the prior matching of
PSFs between the input images. This has lead to
an intensive, ongoing research effort (e.g., Alard
& Lupton 1998; Alard 2000; Woźniak 2000; Yuan
& Akerlof 2008; Bramich 2008; Becker et al. 2012;
Bramich et al. 2016; Zackay, Ofek & Gal-Yam
2016). The ultimate goal is the elimination of sys-
tematic instrumental residuals, e.g., induced by
non-optimal calibrations and/or PSF-matching
upstream. These would otherwise contaminate
lists of extracted transient candidates, i.e., the
false positives that would need to be dealt with
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later (see below). In practice, one strives to min-
imize their occurence in difference images such
that in a global sense, the resulting pixel fluctu-
ations and photometric uncertainties of bona fide
flux transients approach expectations from Pois-
son noise and/or detector read-noise.

The second approach involves positionally-
matching source catalogs extracted from images
at different epochs and searching for large flux
differences between the epochs, e.g., as used by
the Catalina Real-time Transient Survey (CRTS;
Drake et al. 2009). This method avoids system-
atics from color-correlated source-position mis-
alignments due to differential chromatic refrac-
tion, an effect that can be severe for some facil-
ities. However, this method requires a relatively
large flux-difference threshold to ensure reliability.
This is at the expense of a higher missed detec-
tion rate (incompleteness) at low flux levels, par-
ticularly in regions with a complex background
and/or high source-density (e.g., the galactic
plane) where positional-matching is a challenge.
On the other hand, assuming optimally calibrated
and instrumentally-matched inputs, image differ-
encing excels in regions where source confusion
is high and/or where complex, fast-varying back-
grounds are present (e.g., near or within galaxies).
Due to its adaptability to a wide range of astro-
physical environments, the PTF project adopted
image differencing as its primary means for dis-
covery.

Following the extraction of transient candidates
from differenced images, a somewhat daunting
problem is deciding which are bogus (i.e., spurious)
or real and worthy of further study. The existing
iPTF discovery pipeline at NERSC accomplishes
this using a “supervised” machine-learned (ML)
classifier (Bloom et al. 2012; Brink et al. 2013).
Here, a pre-labelled training set of previously dis-
covered real transients are first “fit” to a two-class
(real or bogus) non-parametric model described by
a number of selected source “features” (or met-
rics). This model is then used to predict the class
(real or bogus) of future candidates according to
some probability threshold. The probabilities are
also referred to as RealBogus (or quality) scores.

The iPTF discovery pipeline at NERSC typi-
cally yields a few to ten real “interesting” tran-
sients per night (excluding Solar-System objects
and periodic or reoccuring variables in regions

with a high stellar density). For ZTF, we ex-
pect at least 100 such transients per night. Cur-
rently however, real iPTF transients can be out-
numbered by spurious candidates (false positives)
by more than two orders of magnitude, despite ef-
forts to minimize their incidence through careful
pre-calibration. The problem gets worse if one is
interested in finding the rare gems down to low
S/N levels (e.g., Masci et al. 2012). Depending on
the science goals, the vetted candidates need to
be delivered in a timely manner to the respective
science working groups for follow-up. At NERSC,
this currently takes ∼ 30 minutes since observa-
tion. The goal is to get this below ∼ 15 min-
utes. Large numbers of false-positives can strain
any machine-learned vetting process and affect its
reliability (Brink et al. 2013). It is crucial that the
vetting process be efficient and reliable.

We have developed an automated image-
differencing, transient-extraction and vetting sys-
tem at IPAC; hereafter, the IPAC/iPTF Discovery
Engine (or IDE). This infrastructure is currently
in use for iPTF and is expected to be a foun-
dation for ZTF in future. We have 6+ years of
PTF science data in hand (ongoing with iPTF)
and an experienced team at NERSC that aided in
developing and refining all aspects of an industrial
strength discovery engine—from instrumental cal-
ibration to vetted transient candidates. Guided by
previous implementations of the image subtraction
problem, this paper reviews our algorithms, op-
timization strategies, experiences, and liens. We
also describe our probabilistic (real–bogus) classi-
fication scheme for vetting transient candidates,
Quality Assurance (QA) metrics, and database
(DB) schema.

We note that two of the core pipeline steps
in IDE: (i) image-differencing (that includes pre-
conditioning of image inputs), and (ii) extraction
of raw transient candidates therefrom, are both
implemented in a stand-alone software module
called PTFIDE. In this paper, we use the acronym
PTFIDE when referring to these specific process-
ing steps, otherwise, we use IDE when referring
to the overall processing system. The latter in-
cludes all pre-calibration steps (prior to PTFIDE),
machine-learned vetting and archival steps (post-
PTFIDE). Furthermore, when referring to astro-
physical transients, we use the term “transient”
in a generic sense, i.e., all types of flux-excesses
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that can be detected in difference images (in both
the positive and negative sense, relative to a ref-
erence image template): moving objects, periodic
or aperiodic variable sources, or short-lived “fast”
events. The goal of IDE is to deliver reliable tran-
sient candidates to the various science working
groups for further follow-up. From hereon, these
science working groups will be referred to as “sci-
ence marshals”, or simply marshals.

This paper is organized as follows. In Sec-
tion 2 we give an overview of IDE and provide
references for more information on each subsys-
tem, both in this paper and elsewhere. Sec-
tion 3 gives a broad overview of the image dif-
ferencing and extraction module PTFIDE and its
dependencies: input parameters, reference-image
building, and output products. Section 4 ex-
pands on the specific processing steps in PTFIDE:
gain and background matching, astrometric re-
finement, reference-image resampling, and PSF-
matching. This includes a summary of all image-
based and transient-candidate source metrics, and
their use in deriving simple initial quality scores.
Section 5 reviews the DB schema for storing all
difference image-based and source-based metrics.
The machine-learned vetting infrastructure, which
includes training, tuning, and its overall perfor-
mance is described in Section 6. Advisories and
lessons learned during development and testing are
given in Section 7. Future and potential enhance-
ments to IDE are discussed in Section 8 and con-
clusions are given in Section 9.

2. Overview of the Near Real-time Discov-
ery Engine

The raw camera-image files are first sent from
the Palomar 48-inch Samuel Oschin Schmidt tele-
scope to the San Diego Supercomputing Center via
a ≈ 100 Mbit/s microwave link and then pushed
to Caltech and IPAC over an internet line of at
least the same bandwidth. At IPAC, the camera-
image files are ingested into an archive and associ-
ated metadata is stored in a relational database for
fast retrieval and processing soon thereafter (see
below).

Figure 1 gives an overview of the near real-
time discovery pipeline. An executive pipeline
wrapper controls the various steps: preprocess-
ing which performs basic instrumental and astro-

metric calibration per CCD image (light purple
boxes); PTFIDE — the image-differencing and
transient extraction module (red boxes); then re-
turning to the pipeline executive for archiving,
DB-loading, and machine-learned vetting (light
purple boxes). The preprocessing steps are from
a stripped down version of the PTF/iPTF frame-
processing pipeline. This executes asynchronously
and independently of IDE following ingestion of
an entire night’s worth of image data. The pur-
pose of this pipeline is to provide accurately cali-
brated images and source catalogs for future pub-
lic distribution. This pipeline and the IDE pre-
processing steps borrowed therefrom (light purple
boxes in Figure 1) are described in detail in La-
her et al. (2014). Below we summarize the major
processing steps. The steps specific to PTFIDE
(red boxes) are expanded in Sections 3–6. Opera-
tional details and tools used by the various science
marshals (green boxes) will be discussed in future
papers. In particular, the streak-detection func-
tionality that is designed to detect moving objects
in difference images, i.e., that streak in individual
exposures is described in Waszczak et al. (2016).

The 92-megapixel raw camera-image files (one
per exposure) are processed by the real-time
pipeline soon after they are ingested, check-
summed, and registered in the database at IPAC.
The ingest process also loads a jobs database table
that is automatically queried by the pipeline exec-
utive to initiate the camera-splitting pipeline (La-
her et al. 2014). This pipeline splits the camera-
images into twelve 17MB CCD image files (with
overscan regions included), and noting that one
of the CCDs is defective. An initial astrometric
solution is derived and attached to their FITS2

headers. This astrometric solution is not the final
(and best) calibration attached to the CCD im-
ages prior to image-differencing with PTFIDE. It
is used to support source-catalog overlays, quick-
look image visualizations, and quality assurance
(QA) from the archive. The individual raw CCD
frames in FITS format are copied to a local sand-
box directory and associated metadata (including
quality metrics and image usability indicators) are
stored in a database to facilitate retrieval for the
next processing steps.

2FITS stands for “Flexible Image Transport System”; see
http://fits.gsfc.nasa.gov
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Fig. 1.— Processing flow in the near real-time IPAC/iPTF Discovery Engine (IDE). The color-coding
separates the various modular steps: preprocessing, archival, and machine-learned vetting (light purple);
core image-differencing and transient extraction module: PTFIDE (red); external science applications and
follow-up marshals (green). See Section 2 for details.
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A number of preprocessing and instrumental
calibration steps are then applied to the raw CCD
image. These include a dynamic (floating) bias
correction and a static “superbias” correction, a
flat-field (pixel-to-pixel responsivity) correction,
and cropping to remove overscan regions. The
superbias and flat-field calibration maps are re-
trieved from an archive. These are generally the
latest (closest-in-time) products available for the
night being processed, i.e., that were made by
combining data from a prior night. For the flat-
field calibration in particular, quality metrics are
used to check that the responsivity pattern falls
within the range expected for a specific CCD and
filter. If not, a pristine “superflat” is used. This
preprocessing also initiates and populates a 16-bit
mask image to record bad hardware pixels for the
specific CCD frame, badly calibrated pixels, and
saturated pixels. This mask is further augmented
below to record image artifacts and object detec-
tions.

At this stage, we have a bias-corrected, “flat-
tened” CCD image and accompanying mask im-
age. Sources are then extracted from the CCD
image using SExtractor (Bertin & Arnouts 1996;
Bertin 2006a) primarily to support astrometric
calibration – the most important calibration step
in the real-time pipeline since its accuracy is cru-
cial to attaining good quality difference images
(Section 4.2). The SExtractor module is executed
twice. The first run is to compute an accurate
value of the overall image seeing (point-source
FWHM) from the mode of a filtered distribution
of individual source FWHM values. This estimate
is used to support more optimal source-detection
in the second SExtractor run via a point-source
matched filter. The first SExtractor run also folds
in the object detections into the image mask, or
rather the contiguous pixels contributing to each
object above the specified threshold. The cre-
atetrackimage module is also executed to detect
satellite and aircraft tracks in the CCD image and
record their locations in the image mask. These
occur with a frequency of typically several times
per night and the same track can cross multiple
CCDs. Metrics for each track are also computed
(e.g., length and median intensity) and stored in a
database table. For details on track identification
and characterization, see Laher et al. (2014). The
second SExtractor run generates a source catalog

for input into the astrometric calibration step.

Astrometric calibration is initially performed
using SCAMP (Bertin 2006b, 2014). SCAMP is
executed using one of two possible astrometric ref-
erence catalogs as input: if the CCD image over-
laps entirely with a field from the Sloan Digital
Sky Survey (SDSS), the SDSS-DR9 Catalog (Ahn
et al. 2012) is used; otherwise, the UCAC4 Cat-
alog (Zacharias et al. 2013) is used. If SCAMP
fails to find an astrometric solution using either of
these catalogs, it is rerun with the USNO-B1 Cat-
alog (Monet et al. 2003). In addition to solving
for the standard World Coordinate System (WCS)
first-order terms (for a gnomonic sky-projection;
Calabretta & Greisen 2002), SCAMP simultane-
ously solves for field-of-view distortion using the
PV polynomial convention on a per-image basis.
The solution implicitly captures both the fixed
camera-distortion and any variable atmospheric
refraction effects at the time of exposure. The
WCS solution and PV distortion coefficients are
written to the CCD image FITS header. To en-
able other downstream (as well as generic analysis)
software to map from pixel to sky coordinates and
vice-versa, the PV coefficients are converted to the
SIP representation (Shupe et al. 2005) using the
pv2sip module (Shupe et al. 2012). The associ-
ated SIP coefficients are also written to the FITS
header.

The astrometric (and distortion) solution from
SCAMP is then validated. The first validation
step coarsely checks that the standard first-order
WCS terms (pointing, rotation, and scale) are
within their expected ranges according to specific
prior values. The second validation step involves
re-extracting sources from the astrometrically-
calibrated CCD image (again using SExtractor)
and matching them to a filtered subset of sources
from the 2MASS Point Source Catalog (PSC;
Skrutskie et al. 2006). A matching radius of 2′′

is used and a minimum of 20 2MASS matches
must be present. If the number of matches ex-
ceeds this minimum, the axial root-mean-squared
(RMS) position differences are root-sum-squared
(RSS’d) and compared against a threshold that is
dependent on galactic latitude. This threshold (t)
lies in the range 0.3′′ . t . 0.7′′ corresponding to
galactic latitudes 0◦ . |b| . 90◦. The threshold is
interpolated from a look-up table of predetermined
values according to the galactic latitude of the in-
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Fig. 2.— Distributions of the astrometric RMS per CCD image along each axis with respect to: (a) the
SDSS-DR9 Catalog using 68,310 images, and (b) the 2MASS PSC using a subset of 24,168 images containing
sufficient matches. See text for details.

put image. The reason for a latitude-dependent
threshold is due to the less reliable RMS estimates
in position differences following source matching
when the source density is high. We are less tol-
erant of larger RMS estimates in this regime due
to the higher probability of false matches.

If the above validation checks on the astrom-
etry are not satisfied, another attempt is made
at the astrometric calibration, this time by ex-
ecuting the Astrometry.net module (Lang et al.
2010). This module uses the 2MASS PSC as the
astrometric-reference catalog. Astrometry.net also
solves for distortion on a per-image basis, how-
ever, its representation is only in the SIP format.
To ensure proper execution of other downstream
pipeline modules that depend exclusively on the
PV representation, the SIP coefficients are con-
verted to PV equivalents using the sip2pv mod-
ule (Shupe et al. 2012) and written to the FITS
header. The solution from Astrometry.net is val-
idated in the same manner as above using the
2MASS PSC. If the acceptability criteria are still
not satisfied, a bit-flag is set in a database table
for use downstream. Metrics to assess the astro-
metric performance on each image are computed

and also stored in the database to facilitate future
analysis and trending (for details, see Laher et al.
2014).

Figure 2a quantifies the astrometric perfor-
mance of the real-time pipeline for 68,310 iPTF
CCD images acquired from 2015 January 1 to
2015 May 1 that used the SDSS-DR9 Catalog
in their SCAMP solution. This catalog covers
≃ 14,555 deg2 at galactic latitudes of typically
|b| & 30◦ and has an overall astrometric accuracy
(RMS per axis) of ≃ 50 milli-arcseconds (mas)
with respect to earlier UCAC releases (Pier et al.
2003). The median RMS per iPTF CCD per axis
is typically 115 mas with respect to SDSS-DR9.
The astrometric performance outside the SDSS-
DR9 footprint (calibrated using either UCAC4
or USNO-B1; see above) is similar, except how-
ever for exposures observed in regions with a high
source-density (e.g., the galactic plane) where sys-
tematics are more prevalent. These systematics
are currently being addressed since iPTF includes
a number galactic-plane science programs. Fig-
ure 2b shows the RMS distributions for a sub-
set of 24,168 CCD images from the same SDSS-
DR9 overlap region with respect to the 2MASS
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Fig. 3.— (a) Distributions of the elapsed time for various processing steps in the (near-)real-time discovery
engine per CCD image. (b) Total elapsed time from acquisition of a CCD image exposure to vetted candidates
extracted therefrom. Metrics were derived using 1340 camera-image exposures.

PSC. Here, only images containing > 200 2MASS
matches each were used. The median astrometric
accuracy with respect to 2MASS degrades to ≃
190 mas per axis. This larger RMS is somewhat
expected since the 2MASS PSC has an accuracy
of typically 150-200 mas (Skrutskie et al. 2006).

Preprocessing in the real-time pipeline also in-
cludes a step to detect and mask artifacts induced
by bright-source reflections in the telescope op-
tics, primarily ghosts and halos. The ghosts are
due to bright sources lying off the telescope’s opti-
cal axis, while halos are more coincident with the
offending source. These features are located by
first searching for bright (parent) stars from the
Tycho-2 Catalog (Høg et al. 2000) with V < 6.2
mag. The positions of ghosts are then isolated us-
ing a pre-determined geometric mapping from the
parent stars to expected ghost positions. Circular
areas are flagged in the CCD bit-mask image to in-
dicate probable ghosts and halos. Given the ghost
and halo sizes vary with the brightness of the par-
ent star, a conservative maximally-sized masking
area is used. The positions of ghosts, halos and
their parent stars are stored in the database to fa-
cilitate future analysis. Lastly, the preprocessing

phase computes a number of QA metrics for the
image pixels and accompanying mask, a summary
of which can be found in Laher et al. (2014). These
are also loaded into the database.

There is no absolute photometric calibration in
the preprocessing phase of the real-time pipeline
to assign image-specific photometric zero-points.
Instead, the raw pixel signals are later throughput
(gain)-matched to a reference image template dur-
ing PTFIDE processing using sources extracted
therefrom (Section 4.2). This reference image has
an associated photometric zero-point and there-
fore serves as the generic zero-point for all real-
time products that are matched to it, including
the difference image products downstream. For
details, see Sections 3.3 and 4.9.2. For an overview
on the performance of the initial photometric cali-
bration of the CCD images (on which the reference
and difference-image products ultimately depend),
see Ofek et al. (2012).

Figure 3 shows the typical durations of the pri-
mary steps in the real-time pipeline: from acquisi-
tion of a camera exposure to vetted candidates,
ready to be examined by the science marshals.
The median total time lag since exposure acqui-
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sition (Figure 3b) is ≃ 16 minutes and the 95th

percentile is . 22 minutes. When broken down
into the various steps, the bulk of the lag is in the
transfer of image data from the telescope to IPAC
(≃ 9 minutes). This includes database ingestion
and archiving, which amount to no more than sev-
eral seconds per camera exposure. The preprocess-
ing, PTFIDE and final archival steps amount to no
more than ≃ 7 minutes, although there is a long
tail in the PTFIDE runtime which we attribute to
the extraction and processing of transient candi-
dates from “bad” difference-images, i.e., contain-
ing an excess of residual artifacts (Section 6.2).
The timing metrics shown in Figure 3 are those
inferred at the time of writing using 1340 camera-
image files and all eleven CCD images therein.
The overall lag is expected to decrease in the near
future, in particular in the transfer of image-data
from the telescope to IPAC.

At the time of writing (pertaining to iPTF oper-
ations), the IDE pipeline executes on a Linux clus-
ter of 23 machines consisting of 232 64-bit physi-
cal CPU cores in total: 11 machines have 8 Intel R©

Xeon R© cores running at 3.0 GHz each and the
remaining 12 machines have 12 similar cores run-
ning at 2.4 GHz each. All the machines, file and
database servers are connected by a 10 Gbit net-
work. Given the 12-core machines can admit two
threads per core, this cluster can in principle allow
for 376 concurrent processes. However, since much
of the processing involves a considerable amount of
disk I/O, we achieve close to maximum through-
put with only one thread per physical core, and
therefore we usually execute at most 232 simul-
taneous threads. As raw camera-image files are
received during the night, multiple instances of
the camera-splitting pipeline are first run across
all idle processor cores (until filled) to generate
the individual raw CCD-images. These images
then enter the processing queue and the level of
core-parallelism now occurs at the CCD-image
level through all the remaining pipeline steps (Fig-
ure 1).

The IDE pipeline was designed to be flexible
enough to also process archival (preprocessed) im-
age data. This mode facilitates pipeline tuning, it-
erative training of machined-learned classifiers in
response to changing detector properties and/or
science goals, but it also supports archival research
in general, i.e., ad-hoc discovery projects using dif-

ferent pipeline parameters and thresholds. This
“offline” execution mode only runs the PTFIDE
steps (red boxes in Figure 1) using preprocessed
image data that were previously instrumentally-
calibrated and archived by the regular PTF/iPTF
frame-processing pipeline (Laher et al. 2014). This
is because the preprocessed intermediate products
from the initial phase of the IDE pipeline (light
purple boxes in Figure 1) are not stored in a long-
term archive.

To summarize, we have given a general overview
of the near real-time IDE pipeline, with particu-
lar emphasis on the preprocessing steps needed to
generate instrumentally and astrometrically cal-
ibrated CCD-images for input into the image-
differencing and transient extraction module
(PTFIDE). The primary outputs from the pre-
processing step are a calibrated science image
exposure, an accompanying bit-mask image, and
metrics that quantify the astrometric performance
and quality of the image-pixel data. The details
on how these metrics and products are used in
PTFIDE are discussed in Section 4.

3. PTFIDE Module Overview and Prelim-
inaries

This section gives a broad overview of the
PTFIDE software, dependencies, design assump-
tions, input data and formats, tunable parameters,
and outputs – both primary products for archival
and ancillary products for debug and analysis.
PTFIDE is a standalone Unix command-line tool
written in Perl, making extensive use of Perl Data
Language (PDL) modules and libraries (Glaze-
brook & Economou 1997). It also calls other
software executables written in C, C++ and For-
tran (for a summary of the dependencies, see Sec-
tion 3.1). All the software can be built and config-
ured to run under most Linux operating systems,
including Mac OS X.

Figure 4 summarizes the main processing steps
in PTFIDE, from preparing the inputs, to ex-
tracted transient candidates and metrics ready for
loading into a relational database. A summary of
all input files, parameters, and their default values
is given in Section 3.2. One of the most important
inputs is the reference image and its accompanying
source catalog. Requirements regarding its con-
struction are given in Section 3.3. Output prod-
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ucts, formats, and their level of importance are
summarized in Section 3.4. The details of each
computational step in Figure 4 are expanded in
Section 4.

3.1. Software Design Philosophy, Depen-
dencies, and Parallelization

To expedite the delivery of science quality prod-
ucts following the commencement of iPTF, some
of the processing steps in PTFIDE leverage ex-
isting astronomical software tools. This is mostly
heritage software that has been well tested by the
astronomical community and refined over time.
Table 1 summarizes the external (third-party)
software components used in PTFIDE and other
dependencies.

One of the design goals was robustness against
missing or corrupted input data with appropriate
error handling and reporting upon pipeline termi-
nation. Depending on the error, any missing (or
out-of-range) data or associated metadata are re-
placed with default values in an attempt to salvage
as many products as possible. Warnings are issued
and logged if these occur. Furthermore, different
pipeline exit codes are assigned according to the
different anomalies (fatal and benign) encountered
in processing. These status codes are stored as a
bit-string in a database table to enable follow-up
or to avoid querying unusable (or non-optimal) sci-
ence products in future. Another design consider-
ation was the ability to generate as many interme-
diate products and write as much information as
possible from each processing step (Section 3.4).
This was to facilitate offline debugging and tun-
ing since many of the steps have complex interde-
pendencies. This debug mode is controlled by a
command-line switch and is typically turned off in
operations to minimize runtime.

The base language in PTFIDE is Perl. This
code executes both the external software mod-
ules and performs its own image-processing com-
putations through use of the Perl Data Language
(PDL; Glazebrook & Economou 1997). PDL is an
object-oriented extension to Perl5 that is freely
available as an add-on module. PDL is optimized
for computations on large multidimensional data
sets by making use of the hyper-threading capa-
bilities of modern processor technologies. That
is, PDL has its own threading engine that uses
constructs from linear algebra to process large ar-

rays as efficiently as possible using parallel com-
putations. This is crucial since most of the steps
in PTFIDE are CPU-bound. This low-level par-
allelism occurs on the individual processor cores
where our basic processing unit is a single CCD-
image. A higher level of parallelism is achieved by
using all of the 232 CPU cores in our Linux clus-
ter (described in Section 2). Here we typically ex-
ecute 232 simultaneous threads (one CCD-image
per core at any time). This gives us close to max-
imum throughput.

3.2. Primary Inputs and Parameter Sum-
mary

PTFIDE is driven by the Perl script ptfide.pl.
The inputs can be broadly separated into the fol-
lowing: an instrumentally-calibrated CCD-image
exposure (the science image); an accompanying
bit-mask (pixel-status) image; a spatially overlap-
ping reference image; an accompanying source cat-
alog for the reference image; configuration files for
the various external software modules; processing
parameters, thresholds, and control switches.

All image files are in FITS format (defined in
Section 2). Input parameters and thresholds may
be supplied on either the ptfide.pl command-line
or in a configuration file, while image FITS-file
names, other configuration files, and switches can
only be supplied on the command-line. Table 2
summarizes all the inputs to ptfide.pl with a brief
explanation for each. The default parameter val-
ues are those currently used for iPTF. More de-
tails on some of the parameters can be found in
Section 4. Table 2 is intended to give a gen-
eral overview of the capabilities and flexibility of
PTFIDE, and is not a complete synopsis for exe-
cuting the software if you were to obtain a copy.
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Fig. 4.— Processing flow in the PTFIDE (image differencing and extraction) module. These steps are
contained in the first red box of the real-time pipeline flowchart in Figure 1. See Section 4 for details.

Table 1

External (third-party) software used by PTFIDE

Software or Library Versiona Purpose

Perl ≥ 5.16.2 Core language for scripting and performing arithmetic operations.
PDL ≥ 2.4.10 Perl module for vectorized image processing; built with “bad-value” and GSL support.
GSL ≥ 1.15 GNU Scientific Library (numerical library).
Astro-WCS-LibWCS ≥ 0.93 Perl module to support World Coordinate System (WCS) transformations.
Ptfutils, Pars 1.0 In-house developed Perl modules specific to PTF data processing.
xy2xytrans 2.0 For fast image-to-image pixel position transformations.
libtwoplane 1.0 Library to support xy2xytrans module.
wcstools ≥ 3.8.7 Contains WCS library to support multiple modules listed here.
cfitsio ≥ 3.35 FITS file-manipulation library to support multiple modules listed here.
SExtractor 2.8.6 For initial source extraction to support internal source-matching steps.
SWarp 2.19.1 For image resampling and interpolation using WCS.
DAOPhot II, 1/15/2004 Source detection, aperture photometry, and PSF-estimation.
Allstar II, 2/7/2001 PSF-fit photometry and support for PSF-estimation (included in DAOPhot package).

aVersion number shown is that in use at the time of writing.
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Table 2

Inputs to PTFIDE (script ptfide.pl)

Inputa Defaultb Purposec

-cfgide · · · Optional input configuraton file listing all numerical parameters and thresholds defined below;
these override those on the command-line, if any.

-scilst · · · Input filename listing science image FITS file(s).
-msklst · · · Input filename listing mask image FITS file(s) accompanying -scilist.
-ref · · · Input FITS filename of reference image (co-add).
-catref · · · Input reference image source catalog file from SExtractor; -cn specifies required columns.
-cn 2,3,4,42,10,57,

60,63,72,78,27,
48,14,15,45

List of integers defining locations of required columns in the -catref input file.

-catfilt 0.5,100,19.0,
1.3

Thresholds for filtering reference source catalog: min/max tolerable values for CLASS STAR,
ISOAREAF IMAGE, MAG APER, and ratio AWIN WORLD/BWIN WORLD.

-od · · · Directory name for output products (including any debug output).
-cfgswp · · · Input configuration file for SWarp module.
-cfgsex · · · Input configuration file for SExtractor to support position/gain matching.
-cfgsexpsf · · · Input configuration file for SExtractor to support association with PSF extractions.
-cfgcol · · · Input SExtractor column name configuration file to support position/gain matching.
-cfgcolpsf · · · Input SExtractor column name configuration file to support association with PSF extractions.
-cfgfil · · · Input filename for SExtractor convolution kernel filter.
-cfgnnw · · · Input SExtractor neural network configuration file for star/galaxy classification.
-cfgdao · · · Input generic DAOPhot parameter file.
-cfgpht · · · Input DAOPhot photometry parameter file.
-tmaxpsf 2000.0 Threshold [#bckgnd sigma] above background in reference image for maximum usable pixel

value when creating PSF.
-tdetpsf 50.0 DAOPhot find-threshold [#bckgnd sigma] for PSF creation from reference image.
-tmaxdao 3000.0 Threshold [#bckgnd sigma] above zero-background in difference image for maximum usable

pixel value for source extraction.
-tdetdao 3.5 DAOPhot find-threshold [#bckgnd sigma] for source extraction on difference image.
-tchi 8.0 Threshold on chi metric from Allstar program below which extractions on difference image are

retained; larger => more non-PSF-like profiles are retained.
-tshp 4.0 Threshold on sharp metric from Allstar program where extractions on difference image with

–tshp ≤ sharp ≤ +tshp are retained; values of sharp ≃ 0 => sources are more PSF-like.
-tsnr 4.0 Threshold on flux signal-to-noise ratio in PSF-fit photometry above which difference image

extractions are retained.
-fatbits 8,9,10,12 Fatal bits to mask as encoded in input mask images (-msklist input); set to 1 for no masking.
-satbit 8 Saturation bit# in mask images for determining saturation level in science images.
-expnbad 3 Mask an additional (expnbad × expnbad) - 1 pixels around each input masked science and

reference image pixel; provides more complete blanketing.
-eg 1.5 Native electronic gain of detector [e-/ADU]; used for pixel-uncertainty estimation.
-sxt 2.0 SExtractor detection threshold [#sigma] to support position/gain matching.
-rad 3.0 Match radius [pixels] for associating reference and science frame extractions for position re-

finement and gain matching.
-nmin 200 Minimum number of reference-to-science image source matches above which to proceed with

position refinement and gain matching.
-dgt 1.5 Minimum relative gain factor [%] above which to proceed with relative gain correction.
-dpt 0.07 Minimum offset [pixels] above which to proceed with position refinements (dX or dY).
-dgsnt 5.0 Minimum S/N ratio in gain factor above which to proceed with relative gain correction.
-dpsnt 5.0 Minimum S/N ratio in deltas above which to proceed with position corrections (dX or dY).
-gridXY 4,8 Number of image partitions per axis to support differential SVB computation.
-tpix 2.0 Threshold t [#sigma] for replacing pixel values > mode + t∗sigma in an image partition to

support differential SVB computation.
-tmode 500.0 Threshold t [%] for replacing all pixels of a partition with global mode if its local mode is

> (1 + t[%]/100) ∗ “global mode”; to support differential SVB computation.
-tsig 100 Threshold t [%] for replacing all pixels of a partition with local mode if its robust sigma is

> (1+t[%]/100) ∗ “median of all partition sigmas”; to support differential SVB computation.
-rfac 16 Image-pixel sampling factor to speed up filtering for differential SVB computation.
-szker 41 Median-filter size for downsampled image to support differential SVB computation [pixels].
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Table 2—Continued

Inputa Defaultb Purposec

-ker LANCZOS3 Interpolation kernel type for SWarp module.
-zpskey IMAGEZPT Keyword name for photometric Zero Point in science image FITS headers.
-zprkey IMAGEZPT Keyword name for photometric Zero Point in reference image FITS header.
-pmeth 2 Method to derive PSF-matching kernel between sci and ref images: 1 => old Alard-Lupton

(1998) method (now deprecated); 2 => Pixelated Convolution Kernel (PiCK) method.
-conv auto For -pmeth 2: image to convolve; can be sci, ref, or auto. The auto option uses the sci and ref

FWHM values to select the image to convolve.
-kersz 9 For -pmeth 2: linear size of PSF-matching kernel stamps [pixels].
-kerXY 3,3 For -pmeth 2: number of image partitions along X,Y to represent spatially-dependent kernel.
-psfsz 25 For -pmeth 2 if -rpick was set: linear size of PSF stamps created from point source cutouts.
-apr 9.0 For -pmeth 2 if -rpick was set: source aperture radius [pixels] to compute flux for normalizing

PSFs and background level outside this.
-nmins 20 For -pmeth 2 if -rpick was set: minimum number of sources in an image partition above which

PSF-creation is attempted.
-nmaxs 150 For -pmeth 2 if -rpick was set: use n brightest sources per image partition for PSF-creation.
-rpickthres 4.0,5.0,0.0004,

40,0.045
For -pmeth 2 if -rpick was set: list of parameter thresholds for creating PSFs: N-sigma thresh-
old for stack-outlier rejection; N-sigma threshold for spatial outlier-detection and winsorisation;
maximum tolerable RSS of spatial RMSs of PSF products for (re)assigning partition inputs
for kernel derivation; minimum distance to edge to avoid when selecting sources from sci and
ref images; threshold td for d = |R − median{R}| where R = ratio of PSF pixel sums and
PSFs with d > td are rescaled to the median{R} of all image partitions.

-nbreftb 65 For -pmeth 2: number of pixel rows to force as “bad” at top and bottom of internal images
used for kernel derivation to account for edge effects in resampled reference image.

-nbreflr 35 For -pmeth 2: number of pixel columns to force as “bad” at left and right of internal images
used for kernel derivation to account for edge effects in resampled reference image.

-bckwin 31 For -pmeth 2: linear window size for median filtering of [downsampled] reference image when
computing spatially varying background; note: downsampling factor is fixed at 16x per axis.

-tsat 0.65 For -pmeth 2: factor threshold to perform more conservative tagging of resampled ref image
pixels satisfying ≥ tsat ∗ saturate where tsat ≤ 1 and saturate is from resampled ref image
header. This assumes the ref image was made using the mkcoadd.pl co-addition software.

-goodcuts 5.3,1.2,5.0,
0.02,22,4,0.8,
35,14.3,7.0,2,
0.07,0.2

For -pmeth 2: list of parameter thresholds for performing simple 1-D cuts on source metrics for
assigning “goodcand” flag in output extraction tables: chi, sharp, snrpsf, magfromlim, nneg,
nbad, magdiff, mindtoedge, magnear, dnear, elong, |1− ksum|, kpr.

-baddiff 80,15,15,3,140,
0.2,0.7,0.15,
0.15,1.5,1.5

List of parameter thresholds for performing simple 1-D cuts on difference-image metrics for
assigning “good” flag in output QA file: diffpctbad, dmedchi, davgchi, diffsigpixmin, diffsig-
pixmax, dmedksum, medkpr, ncandscimrefratio, ncandrefmsciratio, dinpseeing, dconvseeing.

-uglydiff 80,15,15,140,
0.2,0.7,0.35

List of parameter thresholds for performing simple 1-D cuts on difference-image metrics to
decide if should proceed with source extraction on difference images: diffpctbad, dmedchi,
davgchi, diffsigpixmax, dmedksum, medkpr, maxminksum.

-qas 41,2008,
41,4056

Coordinate range of rectangular region in image for computing QA metrics in difference images
if -qa switch was set; format is: xmin, xmax, ymin, ymax where pixel numbering is unit based
and 1 ≤ xmin < xmax ≤ NAXIS1; 1 ≤ ymin < ymax ≤ NAXIS2.

-apnum 3 Internal aperture number for which DAOPhot aperture photometry information should be
propagated to output PSF-fit photometry table.

-forceparams ra, dec, 43 List of parameters to support “forced sub-image mode” if -forced switch was set; parameters
are: ra [deg], dec [deg], linsize [pixels].

-kerlst · · · Input filename listing FITS image cubes storing prior-derived, spatially-dependent PSF-
matching kernels for each science image to support “forced sub-image mode”.

-phtcalsci · · · Switch to perform absolute photometric calibration of input science image after gain-matching
to ref-image by computing a ZP using the calibrated MAG AUTO values in the ref-image
SExtractor catalog; this ZP will allow “big-aperture” (and PSF-fit) absolute photometry on
the input science image before further gain refinements in the PSF-matching step downstream.

-phtcaldif · · · Switch to perform absolute photometric calibration on science image after possible gain re-
finement and before image-differencing with ref-image by computing a ZP using the calibrated
MAG AUTO values in the ref-image SExtractor catalog; this ZP will allow “big-aperture”
(and PSF-fit) absolute photometry on the science and difference images.
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Table 2—Continued

Inputa Defaultb Purposec

-wmode · · · Switch to compute image modes (instead of medians) for the differential SVB correction.
-rpick · · · Switch to use robust version of the PiCK method (-pmeth 2) when deriving PSF-matching

kernel, i.e., via the construction of image PSFs using point-source cutouts.
-psffit · · · Switch to perform PSF-fit photometry on difference images with prior PSF estimation off

[possibly convolved] reference image.
-apphot · · · Switch to perform fixed-aperture photometry on difference images using DAOPhot.
-dontextract · · · Switch to only estimate spatially-varying PSF; no extraction or photometry is performed.
-forced · · · Switch to execute in “forced sub-image mode” where only “sci minus ref” difference image

stamps (and ancillary files) centered on input ra, dec (-forceparams inputs) are made.
-outstp · · · Switch to generate image cutouts of candidates from “sci minus ref” difference images.
-pg · · · Switch to compute sci-to-ref relative astrometric and gain corrections, and apply if significant.
-pcln · · · Switch to “pre-clean” (remove) output products directory specified by -od.
-qa · · · Switch to generate QA metrics on difference images before and after PSF-matching within

image slice defined by -qas string; results are written to standard output and an ASCII file.
-d · · · Switch to write debug information to standard output, ASCII files and FITS images.
-v · · · Switch to increase verbosity to standard output.

aThis same name (with prefix “–”) is used in the ptfide.pl command-line specification.

bDefault values, where shown, are optimal for the iPTF real-time pipeline. Command-line switches are “off” by default.

cSome of these are further discussed in Section 4.
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3.3. Reference Image Construction and
Requirements

The purpose of a reference image is to pro-
vide a “static” representation of the sky, or more
specifically, a historical snapshot as defined by the
state of the sky recorded in previous image expo-
sures. This image provides a benchmark against
which future exposures can be compared (i.e., dif-
ferenced) to assist with transient discovery, both
temporally (for flux changes) and/or spatially (for
motion changes). The reference images also pro-
vide “absolute anchors” for assigning a photomet-
ric calibration to the incoming real-time science
images and difference images derived therefrom.
They are also used to check and refine astrometric
solutions prior to differencing. Details are given
below.

The reference images are co-adds (stack aver-
ages; see below) of several to fifty high-quality
CCD-images selected from the image archive.
Therefore, they have a higher S/N than the in-
dividual exposures. Besides supporting transient
discovery, they can also benefit other science ap-
plications that require deeper photometry. So far
in iPTF, the goal has been to construct reference
images that are optimal for single-exposure image
differencing and transient discovery. These don’t
necessarily achieve the highest possible depths
(S/N) by using all available (good quality) im-
ages. This may be performed at a later date on
completion of the survey and with different input
image selection criteria.

Reference images are generated by a separate
pipeline in iPTF operations that executes asyn-
chronously and is independent of the real-time
pipeline. This pipeline is only triggered when
enough good quality images are available for a
given field, CCD, and filter in the archive. The
generation process is iterative in that reference im-
ages are remade and refined if an existing product
is identified to be of low quality or unusable, pro-
vided better quality image-data are available. The
input-image selection criteria for reference image
generation were outlined in Laher et al. (2014).
Given their importance, we repeat them below and
expand on some of the details. These were derived
from analyses of the distributions of numerous im-
age metrics in June 2013. The goal was to cover
as much of the iPTF-visible sky as possible ac-

cording to the available depth-of-coverage across
all visited fields at the time.

1. The image must be astrometrically and pho-
tometrically calibrated in an absolute sense
to an accuracy that’s no worse than that
achieved on average by the on-going survey.
This image would have been processed and
archived by the frame-processing pipeline
which executes independently of the real-
time pipeline (Laher et al. 2014).

2. The astrometric calibration (including full
distortion solution) must have passed all val-
idation steps (Section 2). This includes a
separate check on the higher-order terms of
the distortion polynomial.

3. The spatially-binned photometric Zero Point
values (provided by the ZP Variations Map
or ZPVM from photometric calibration)
must lie within ±0.15 mag. Furthermore,
the source color-term coefficients derived
from photometric calibration (as described
in Ofek et al. (2012)) must lie between the
overall observed 1st and 99th percentiles.

4. The seeing (inferred from the mode of the
point-source FWHM distribution) is < 3.6′′.

5. The 5-σ limiting magnitude, estimated us-
ing both theoretical and empirically-derived
inputs is Rlim > 20 mag.

6. The number of sources extracted from the
image (via SExtractor) is ≥ 300. This rein-
forces the previous criterion and ensures the
transparency was not too low or image noise
not too excessive.

7. The minimum number of input images that
must satisfy the above criteria before pro-
ceeding with reference image generation is
Nmin = 5.

If Nmin ≥ 5, the image limiting magnitudes
Rlim are then sorted in descending order (faintest
to brightest). Next, co-add limiting magnitudes
mc

lim are predicted cumulatively and incremen-
tally per-image for this list of candidate images.
The resulting values of mc

lim are then compared
to a predefined set of six target magnitude limits
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desired for the final co-add; e.g., for the iPTF R
filter, these are defined:

mt
lim(n) = Rmed

lim + 2.5 log10

(√
Nmin

)
+ 0.5n

≃ {21.5, 22.0, 22.5, 23.0, 23.5, 24.0},

where 0 ≤ n ≤ 5, Rmed
lim is the typical (median)

5-σ limiting magnitude of a single R-band ex-
posure (Law et al. 2009), and Nmin = 5. The
faintest target limit mt

lim(nf ) is then identified
as the faintest mt

lim that just falls below the co-
add limit predicted from the entire image-list:
mc

lim ≥ mt
lim(nf ). The number of images N to

co-add is then the smallest possible N whose cu-
mulative mc

lim comes closest to mt
lim(nf ), i.e.,

N = min{arg min
N

[∣∣mc
lim −mt

lim(nf )
∣∣] , 50},

where 50 is the maximum number of images al-
lowed at this stage.

The requirement of an upper cutoff in the in-
put image FWHM (3.6′′; criterion #4 above) is
an important consideration since it influences the
quality (effective point-source FWHM) of the re-
sulting reference image and image subtractions de-
rived therefrom. It is desirable to generate a ref-
erence image whose effective FWHM is smaller
than that generally expected in the science (tar-
get) images. This ensures the higher S/N refer-
ence image is preferentially convolved (smoothed)
to match the science image PSF prior to subtrac-
tion in PTFIDE. Not only will this minimize the
relative fraction of correlated pixel-noise in the
difference images (i.e., since noise will be domi-
nated by the science image), it ensures robustness
and minimizes the potential for error when using
an automatic method to decide on which image
to convolve. This is because the decision metrics
themselves are inherently noisy and one cannot be
confident that the correct image will always be se-
lected. For the interested reader, Huckvale et al.
(2014) present an analysis on ways to select the
best reference image and convolution direction for
optimal image subtraction in the presence of vari-
able seeing. The median FWHM of the iPTF sci-
ence images is ≈ 2.2′′. Therefore, it is inevitable
that some cases will require the science image to
be convolved when matching PSFs. This is not
detrimental since PTFIDE can automatically se-
lect the image to convolve, with some margin for

error (see below). The desire to have a lower cut-
off for the input image FWHM when constructing
reference images is mentioned here as a future im-
provement, specifically to optimize image subtrac-
tion. As mentioned, the requirement of FWHM
< 3.6′′ was driven by data availability (after ac-
counting for all other selection criteria) and a need
to generate reference images for a large fraction of
the iPTF survey fields in short order.

Before co-addition to create a reference image,
the input list of high-quality overlapping CCD-
images (for a given field and filter) are astromet-
rically refined as an ensemble. This is performed
in a relative image-to-image sense using SCAMP
with inputs provided by SExtractor. Their distor-
tion solutions (in the PV format) are also refined
self-consistently. This improves the astrometric
solutions of the input images as well as the overall
astrometry in final co-adds.

Following astrometric refinement, the images
are fed to an in-house developed co-addition tool
(mkcoadd.pl) specifically written for iPTF. This
software first determines the WCS geometry of
the output co-add footprint using WCS metadata
from all the input images. The co-add pixel scale
is set to the native value determined for the center
of the focal plane: 1.01′′/pixel, and the footprint
X,Y dimensions are fixed at 2500 pixels × 4600
pixels throughout. These dimensions can accomo-
date for slight offsets in the reconstructed image
pointing within a field. Retaining the native pixel
scale for co-add images ensures they more-or-less
remain (marginally) critically sampled in median
seeing conditions. A future consideration would be
to use half the native pixel scale to take advantage
of the natural dithering offered by random offsets
in telescope pointing across image epochs. This
dithering would benefit input lists that are dom-
inated by undersampled images (i.e., acquired in
better than median seeing) so that the effective
PSF can be better sampled when all images are
combined.

Bad and saturated pixels are internally set to
NaN in each CCD-image using their accompany-
ing masks. This facilitates easier omission and
tracking of all bad pixels downstream. Respec-
tive image-median levels are then subtracted. This
stabilizes (or homogenizes) the images against
temporally-varying backgrounds before they are
combined (see below). These backgrounds are not
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always astrophysical, for example, there is con-
tamination from scattered moonlight and internal
scattering from other bright objects whose line-
of-sight may not directly fall on the focal plane.
The individual image background levels are stored
for later use. Each image is then “de-warped”
(distortion-corrected) and interpolated onto the
output co-add grid using its astrometric and dis-
tortion solution. This is accomplished using the
SWarp software (Bertin et al. 2002). For an im-
age observed at epoch t, the pixel values ptij at
distortion-corrected positions i, j are interpolated
and resampled using a 2D Lanczos kernel of win-
dow size three:

L(x′, y′) = sinc(x′)sinc(x′/3)sinc(y′)sinc(y′/3), (1)

where −3 < x′ < 3 and −3 < y′ < 3, and the
signal at pixel position x, y in the output grid is
given by

St(x, y) =

x+3∑

i=x−3

y+3∑

j=y−3

ptijL(x− i, y − j). (2)

This generates a new set of images for epochs t =
1, 2, 3...N that have been corrected for distortion,
all sharing the same WCS geometry, i.e., that of
the final co-add footprint.

The choice of a Lanczos kernel (equation 1),
particularly with window size three, is motivated
by three reasons. First, it is close to optimal
for PSFs that are sampled close to or above the
Nyquist rate, i.e., its sinc-like properties can re-
construct well-sampled signals to good accuracy.
By “optimal”, we mean in the context of con-
serving information content. Second, its sinc-like
nature also ensures that uncorrelated input noise
remains close to uncorrelated on output. Third,
its relatively compact “support” minimizes alias-
ing and the spreading of bad and saturated pixels
on output. Given the ≈ 1′′ pixel size, one small
downside is that localized ringing can occur when
the PSF is severely undersampled, i.e., when the
seeing falls below ≈ 1.6′′.

Since the epochal images will have been ob-
served at different atmospheric transparencies,
their photometric throughput (or effective photon-
to-DN gain factors) will be different. Throughput-
matching the images to a common photometric
gain or Zero Point (ZP) value is therefore neces-
sary before combining them. This can be done in

a relative sense (by computing source-flux ratios
across images and rescaling pixel values therein)
or in an absolute sense using the image-ZP values
derived from photometric calibration upstream.
We have chosen to use the absolute ZP values to
compute the gain-factors. This is accomplished
by throughput-matching all images to a common
target zero point of ZPc. This value becomes the
final co-add (reference image) ZP, where currently,
all archived PTF reference images have ZPc = 27
magnitudes. The gain-corrected pixel values in
a resampled image at epoch t with specific zero
point ZPt are given by

St
c(x, y) = St(x, y) 10−0.4(ZPt−ZPc). (3)

The resampled and throughput-matched epochal
images with pixel signals St

c(x, y) are then com-
bined using a lightly-trimmed weighted-average.
Outlier-trimming is performed on the individ-
ual pixel stacks (along the t dimension) by
first computing robust measures of the location
and spread: respectively the median (p50) and
σ ≃ 0.5[p84 − p16], where the px are percentiles.
Pixels that satisfy |St

c − p50| > 9σ are rejected
from their temporal-stack at position x, y prior to
combining the remaining pixels using a weighted-
average (see below). Our choice of a relatively
loose trimming threshold (9σ) is driven by our
goal to remove the largest outliers only (e.g., cos-
mic rays and unmasked satellite trails), therefore
preserving as much information as possible.

The pixels in a stack are weighted using an in-
verse power of the seeing (FWHMt) in the images
they originated from, i.e.,

wt =

(
FWHM0

FWHMt

)α

, (4)

where FWHM0 is a constant fiducial value cur-
rently set to the modal value of 2′′ and is unimpor-
tant since it cancels following normalization in the
final weighted average. α is a parameter that con-
trols the overall importance of the weighting. This
weighting is purely motivated by empirical and
practical considerations as an attempt to handle
the time-dependent seeing in a qualitative sense,
i.e., in that relatively more weight is given to im-
ages acquired in better seeing. There is no theo-
retical justification that satisfies some optimality
criterion like maximal S/N, however, it’s interest-
ing to note that α = 2 corresponds to the case
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where wt ∝ 1/Np ∝ 1/σ2
psf , where Np is the ef-

fective number of noise pixels3 for a Gaussian-like
PSF and σ2

psf is the flux-variance that would result
from PSF-fit photometry on the image (see also
Masci & Fowler 2009). Therefore when α = 2, the
weighting is effectively inverse-variance weighting
of the images according to the expected point-
source flux uncertainties from PSF-fitting. Besides
being optimal for PSF-fitting (simultaneously over
the entire image stack), and particularly when the
input noise is Gaussian, we found through sim-
ulation and analysis of on-sky data that α = 2
can lead to significantly distorted PSFs and slight
degradations in the co-add pixel S/N. This is due
to the undersampled nature of the PSF when the
seeing is better than average in iPTF exposures.
We found that values of 0.7 ≤ α ≤ 1.4 for the
range of seeing encountered (and a forced cutoff
of FWHM < 3.6′′; see above) work best. As a
compromise, we assumed α = 1 throughout. This
choice is similar to that adopted by Jiang et al.
(2014) for combining SDSS image data. These
authors also included inverse-variance weights in
their weighting scheme, with pixel variances com-
puted from the background RMS in each input
image.

The Nr remaining pixels in a stack following
outlier rejection are combined using a weighted
average to produce the co-added pixel signal:

S(x, y) =

Nr∑
t=1

wtS
t
c(x, y)

Nr∑
t=1

wt

+ mediant{Bt
c}, (5)

where St
c(x, y) and wt are given by equations (3)

and (4) respectively. The Bt
c are the individual

image background levels that were initially sub-
tracted from each image (see above) then rescaled
using the same throughput-match factors in equa-
tion (3). A median of all these levels is computed
and used as a fiducial background for the final co-
add. We also generate an image of the uncertain-
ties in the weighted averages S(x, y). For co-add
pixel x, y, this can be written: σ =

√∑
t W

2
t σ

2
t

where Wt = wt/
∑

t wt and σt is the uncertainty
(e.g., a prior) for the input pixel signal at x, y, t.

3see http://wise2.ipac.caltech.edu/docs/release/allsky/
expsup/sec4 6ci.html

We assume that the noise is spatially and tempo-
rally uncorrelated across images. Instead of us-
ing explicit priors for σt (e.g., from a pixel-noise
model), we approximate σt using an unbiased and
unweighted estimate of the population standard-
deviation in the stack of St

c(x, y) values. The un-
certainty in S(x, y) (equation 5) then becomes:

σS(x, y) =

[ ∑
t w

2
t

(
∑

t wt)
2

1

Nr − 1

×
Nr∑

t=1

[
St
c(x, y) − S(x, y)

]2
]1/2

.

(6)

The effective ≃ 1/
√
Nr scaling is implicitly rep-

resented by the fractional term involving wt. An
image of the pixel depth-of-coverage, Nr(x, y), is
also generated.

The astrometric solution in the reference im-
age is validated against the 2MASS PSC using a
procedure similar to that described in Section 2.
Sources are extracted and measured from the ref-
erence image using both aperture (SExtractor) and
PSF-fit photometry (DAOPhot). Ancillary prod-
ucts for the PSF-fit catalog include a DS9-region
file and estimates of the spatially-variable PSF
represented in both DAOPhot’s look-up-table for-
mat and as a grid of FITS-image stamps. QA
metrics for the image and catalog products are
also generated. All product files and metrics are
archived and stored in relational database tables
for fast retrieval in real-time processing. Each
product is uniquely identified according to sur-
vey field, CCD, filter, pipeline number, version,
and archive status flag. The pipeline number sup-
ports variants of the reference image pipeline tai-
lored for different science applications, for exam-
ple, a specific time range, number of input images,
and/or different filtering criteria than the default
used to support real-time processing. As men-
tioned, the reference image library is periodically
updated as low-quality or unusable products are
identified from analyses of outputs from the real-
time pipeline, provided enough good quality images
are available (see above).

The reference image and its SExtractor catalog
for a given survey field, CCD, and filter are two
of the primary products used in PTFIDE (Sec-
tion 4). As mentioned, these provide an “abso-
lute anchor” for assigning a photometric ZP to
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all the new incoming, spatially coincident science
images and subtractions derived therefrom. The
ZP value in the FITS header of a reference im-
age is the “target” fiducial value ZPc onto which
selected input images were gain-matched prior to
co-addition (equation 3). The absolute accuracy
of ZPc is therefore determined by the accuracy of
the input image ZPt values. These were initially
derived from photometric calibration in the frame-
processing pipeline using the SDSS-DR9 catalog
(Ofek et al. 2012; Laher et al. 2014). The in-
put instrumental magnitudes used to perform this
calibration are Kron-like aperture measurements
from SExtractor, also referred to as mag auto. At
the time of writing, these are the only instrumen-
tal magnitudes in iPTF products that can be tied
to an absolute photometric system via the image
ZPt values. The individual (spatially-averaged)
image ZPt values are accurate to 2-4% (abso-
lute RMS; Ofek et al. 2012). These could be
less accurate on sub-image scales due to possi-
ble residual spatial variations in the instrumen-
tal response. The ZPt-inherent gain-match errors
will propagate into the reference image pixel val-
ues following image rescaling (equation 3). These
errors will only be captured by the empirical un-
certainty estimates in equation (6) (with its im-
plicit ≃ 1/

√
Nr scaling) assuming no systematics

in the ZPt derivations upstream. A future goal
is to calibrate the ZPt values to better than 1%,
preferably using PSF-fit photometry.

3.4. Summary of Output Products

PTFIDE output products are files that are
generically named: InputImgFilename type.ext
where InputImgFilename is the root filename as-
signed to the CCD image following pre-calibration
upstream (Section 2) and type.ext is a mnemonic
for the type of PTFIDE product generated. The
extension (ext) can be either fits (for FITS-
formatted image), tbl for ASCII table in the stan-
dard IPAC format, psf for PSF file in DAOPhot’s
look-up-table format, reg for DS9 region-overlay
file, log for logfile, or txt for other ASCII files.

Table 3 lists the primary PTFIDE products
generated per CCD image. By “primary”, these
represent the products that are later used for real-
time transient discovery and/or general archival
science applications, for example, light-curve gen-
eration using forced-photometry on the differ-

ence images. The image, PSF, QA, and log
files are copied to long-term storage and their
paths/filenames registered in relational database
tables. The table (tbl) files contain the extracted
transient candidates and associated metrics (Sec-
tion 4.9.5), one for the positive and another for the
negative difference image. The metadata for each
transient are later stored in database tables (see
Section 5). The metrics in the diffqa.txt QA files
(Section 4.8.2) are stored in a separate database
table. The generation of positive (sci – ref) and
negative (ref – sci) difference images may seem
somewhat redundant since one is simply the neg-
ative of the other. The purpose of having a nega-
tive difference is to enable detection of transients
that dissapear below the reference image baseline
level, for example, variable stars that are observed
in their “low” state relative to their time-averaged
(reference image) flux. Our source detection soft-
ware is designed to detect positive signals only
and therefore it is necessary to negate the positive
difference image and extract any new transients
(or excursions in variable flux) that happened to
be below the reference level at that epoch.

Table 4 lists the secondary or ancillary PTFIDE
products that can be generated per input CCD
image. These are diagnostic files to support of-
fline analysis, debugging and tuning, and are not
generated by the (real-time) production pipeline.
They are generated in addition to the products in
Table 3 if the “debug” (-d) switch was specified
for ptfide.pl. Furthermore, some products are only
generated when ptfide.pl is executed in sub-image
mode (with the -forced switch; Section 4.10).
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Table 3

Primary Outputs from PTFIDE

Output file suffixa Format Descriptionb

pmtchscimref.fits FITS image Final PSF-matched “science minus reference” difference image.
pmtchscimrefpsffit.tbl IPAC table Table of extracted transient candidates with PSF-fit and aper-

ture photometry, and source metrics corresponding to the
pmtchscimref.fits difference image.

pmtchscimrefpsffit.reg ASCII DS9 region/source-overlay file for all transient candidates in
pmtchscimrefpsffit.tbl.

pmtchrefmsci.fits FITS image Final PSF-matched “reference minus science” difference image.
pmtchrefmscipsffit.tbl IPAC table Table of extracted transient candidates with PSF-fit and aper-

ture photometry, and source metrics corresponding to the
pmtchrefmsci.fits difference image.

pmtchrefmscipsffit.reg ASCII DS9 region/source-overlay file for all transient candidates in
pmtchrefmscipsffit.tbl.

pmtchdiffunc.fits FITS image Image storing 1-σ pixel uncertainties corresponding to the
pmtchscimref.fits and pmtchrefmsci.fits difference images.

pmtchkerncube.fits FITS cube Image stamps of spatially-dependent PSF-matching convolution ker-
nels with metadata in header. Each plane of cube stores kernel image
for a specific partition in input science image.

pmtchconvrefdao.psf ASCII File storing PSF template generated by DAOPhot from the kernel-
convolved reference image. Only generated if the reference image was
convolved to match the science image seeing (FWHM).

resamprefdao.psf ASCII File storing PSF template generated by DAOPhot directly from the
reference image, with no convolution. Only generated if the science
image was convolved to match the reference image FWHM.

diffqa.txt ASCII File storing QA metrics on image-differencing process and statistics
on number of transients extracted.

ptfide.log ASCII Log file storing processing diagnostics and verbose output.

aThis is also a mnemonic for the product type; see Section 3.4.

bMore details are given in Section 4.
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Table 4

Ancillary (debug-mode) outputs from PTFIDE

Output file suffixa Descriptionb

badmsksci.fits Bad pixel mask for science image that includes spatially-expanded bad pixels.
badmskref.fits Bad pixel mask for reference image (mostly showing saturated regions).
scisatpixels.fits Image showing locations of only saturated pixels in science image.
sx ref filt.tbl Table of filtered sources from input reference-image SExtractor catalog to support gain-

matching and position refinement.
sx ref filt.reg DS9 region/source-overlay file corresponding to sx ref filt.tbl.
sxrefremap.tbl Table of positions and fluxes of filtered reference image sources from sx ref filt.tbl with po-

sitions mapped onto science image frame to support source-association in SExtractor run.
sx.tbl SExtractor catalog of science image extractions matched to filtered and remapped reference

image sources from sxrefremap.tbl; to support gain-matching and photometric calibration.
sx.reg DS9 region/source-overlay file corresponding to sx.tbl.
sxbck.fits Diagnostic background image computed by SExtractor when generating sx.tbl catalog.
sxbckrms.fits Diagnostic background RMS image computed by SExtractor when generating sx.tbl catalog.
sxobjects.fits Diagnostic image showing objects extracted by SExtractor when generating sx.tbl catalog.
resampref.fits Reference image resampled onto science image frame.
resamprefunc.fits Pixel-uncertainty image corresponding to resampref.fits.
resamprefwt.fits Weight image from resampling of reference image using SWarp.
newscitmp.fits Science image gain-matched and positionally refined relative to reference image.
inpsvb.fits Regularized image used to compute smoothly-varying differential background (SVB) image.
svb.fits Image of smoothly-varying differential background; used to correct science image.
newscibmtch.fits Science image with differential background, photometric gain, and astrometry matched to

resampled reference image, before PSF-matching.
newsciuncbmtch.fits Pixel-uncertainty image corresponding to newscibmtch.fits.
diffbmtch.fits Internal “science minus reference” difference image before any PSF-matching.
noconv pm stpn .fits Point-source image stamp indexed by n in partition m of image that is not convolved.
toconv pm stpn .fits Point-source image stamp indexed by n in partition m of image that will be convolved.
noconv pm psfcoad.fits Final co-added PSF from all point-source stamps in partition m of image that is not con-

volved; used to derive PSF-matching kernel for partition m .
toconv pm psfcoad.fits Final co-added PSF from all point-source stamps in partition m of image that will be con-

volved; used to derive PSF-matching kernel for partition m .
noconv pm psfcoaddepth.fits Pixel depth-of-coverage map corresponding to noconv pm psfcoad.fits.
toconv pm psfcoaddepth.fits Pixel depth-of-coverage map corresponding to toconv pm psfcoad.fits.
sxrefremapcorr.tbl Equivalent to sxrefremap.tbl but performed on regularized science image (gain-matched,

position-refined, and PSF-matched with additional gain-corrections) prior to differencing.
scibefdiff.fits Regularized science image (gain-matched, position-refined, and PSF-matched with additional

gain-corrections); input for SExtractor to generate sx scibefdiff.tbl catalog.
sx scibefdiff.tbl SExtractor catalog of science image extractions matched to filtered and remapped ref image

sources from sxrefremapcorr.tbl; to support photometric calibration of difference image.
pmtchconvref.fits Convolved reference image prior to differencing; only produced if ref image was convolved.
pmtchconvsci.fits Convolved science image prior to differencing; only produced if sci image was convolved.
pmtchdiffmsk.fits Bad-pixel mask for final difference images; includes effects of convolution from PSF-matching.
pmtchdiffchisq.fits Image of binned pseudo-χ2 values for difference image after PSF-matching.
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Table 4—Continued

Output file suffixa Descriptionb

pmtchconvref.cooc DAOPhot output file listing initial detections from pmtchconvref.fits for PSF generation.
pmtchconvref.lstc DAOPhot output file listing stars picked from pmtchconvref.fits for PSF generation.
pmtchconvref.lst.regc DS9 region/source-overlay file corresponding to pmtchconvref.lst.
pmtchconvref.neic Allstar/DAOPhot output file listing neighbors of the stars listed in pmtchconvref.lst.
pmtchconvrefdaosub.fitsc Allstar/DAOPhot output image showing PSF-subtracted sources from pmtchconvref.fits.
pmtchconvrefdaopsf.fitsc Image of spatially varying PSF represented as a grid of 16× 32 postage stamps.
pmtchscimref.coo DAOPhot output file listing initial detections from pmtchscimref.fits difference image.
pmtchrefmsci.coo DAOPhot output file listing initial detections from pmtchrefmsci.fits difference image.
pmtchscimrefdaosub.fits Allstar/DAOPhot output image showing PSF-subtracted sources from pmtchscimref.fits.
pmtchrefmscidaosub.fits Allstar/DAOPhot output image showing PSF-subtracted sources from pmtchrefmsci.fits.
pmtchscimrefapphot.tbl Table containing concentric aperture photometry for extracted transient candidates from the

pmtchscimref.fits difference image; only generated if the –apphot switch was set.
pmtchscimrefapphot.reg DS9 region/source-overlay file for all sources in pmtchscimrefapphot.tbl.
pmtchrefmsciapphot.tbl Table containing concentric aperture photometry for extracted transient candidates from the

pmtchrefmsci.fits difference image; only generated if the –apphot switch was set.
pmtchrefmsciapphot.reg DS9 region/source-overlay file for all sources in pmtchrefmsciapphot.tbl.
pmtchscimrefsex.tbl SExtractor catalog for pmtchscimref.fits difference image to associate with PSF-fit extrac-

tions; used to assign source-shape metrics.
pmtchrefmscisex.tbl SExtractor catalog for pmtchrefmsci.fits difference image to associate with PSF-fit extrac-

tion; used to assign source-shape metrics.
pmtchconvscistamp.fitsd Convolved sci image stamp prior to differencing; only produced if sci image was convolved.
pmtchconvrefstamp.fitsd Convolved ref image stamp prior to differencing; only produced if ref image was convolved.
imgtoconvstamp.fitsd Stamp image that is not convolved with PSF-matching kernel. Can be either sci or ref image.
imgnoconvstamp.fitsd Stamp image that will be convolved with PSF-matching kernel. Can be either sci or ref.
msktoconvstamp.fitsd Mask image stamp corresponding to imgtoconvstamp.fits.
msknoconvstamp.fitsd Mask image stamp corresponding to imgnoconvstamp.fits.
uncscistamp.fitsd Pixel-uncertainty image stamp corresponding to regularized science image.
uncrefstamp.fitsd Pixel-uncertainty image stamp corresponding to regularized reference image.
pmtchkernstamp.fitsd Image of PSF-matching kernel used to convolve image stamp; extracted from archival

pmtchkerncube.fits file.

aThis is also a mnemonic for the product type; listed in approximately the same order as generated by ptfide.pl, along with the
primary products in Table 3.

bMore details are given in Section 4.

cOnly generated if the resampled reference image was convolved with the PSF-matching kernel, otherwise, the pmtchconvref filename
string is replaced with resampref if the science image was convolved.

dOnly generated in “forced” sub-image mode if the -forced switch was specified in processing; see Section 4.10.
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4. PTFIDE Processing Steps

The input pre-calibrated CCD images need to
satisfy a number of criteria prior to processing
through PTFIDE. These criteria use a number
of quality metrics computed upstream during pre-
processing (Section 2). Inputs that do not satisfy
these criteria are expected to be of low quality and
are not used for transient discovery. Instead, they
are assigned a status flag (that is encoded into
an overall processing bit-string at the end of pro-
cessing) and stored in a database table for future
reference. The criteria currently used to declare a
CCD image as “good” and worthy for image dif-
ferencing are as follows:

1. The seeing FWHM on the corresponding
raw exposure image satisfies 0 < FWHM
≤ 4.75′′. Values of FWHM > 4.75′′ are
also a good proxy for low atmospheric trans-
parency. Over the course of iPTF, ≃ 0.04%
of exposures are above this limit.

2. The calculation of the seeing FWHM used in
(1) was based on a sufficient number of point
sources and is not a “NaN”. The latter may
occur due to bad inputs.

3. At least 500 sources were found by SExtrac-
tor for use in the astrometric calibration us-
ing SCAMP.

4. The WCS solution from SCAMP used > 300
source matches with the astrometric catalog.

5. The WCS solution could be derived using
SCAMP with no errors or warnings. I.e.,
the astrometric calibration did not fallback
to Astrometry.net.

6. At least 20 sources were matched with the
2MASS PSC for validating the WCS.

7. The axial RMS position differences using the
2MASS matches are within the maximum
tolerable value (which depends on galactic
latitude; see Section 2).

8. The first-order WCS terms (pointing, rota-
tion, and scale) are within range.

9. The higher-order terms of the distortion
polynomial are within range.

Below we expand on the processing steps out-
lined in the PTFIDE processing flow of Figure 4.
This includes additional details not shown in this
figure. The descriptions make extensive use of
the input parameters and output products sum-
marized in Tables 2, 3, and 4.

4.1. Mask-creation and Bad-pixel Expan-
sion

The input bit-mask image for the CCD science
image is first AND’d with the fatal-pixel bit-string
template specified by –fatbits. This identifies those
pixels to omit from processing. To enable track-
ing downstream, these pixels are forced to NaN
and all good (usable) pixels are reset to 1 in an
internal image mask. This mask is then further
processed and regularized by forcing an additional
(N ×N) − 1 pixels around each masked (NaN’d)
pixel to also be “bad”, where N = input from –ex-
pnbad parameter. This provides more complete
blanketing of bad pixel regions, e.g., for saturated
sources in particular whose unmasked edges and
associated bleed artifacts will lead to residuals in
the difference images and hence unreliable extrac-
tions. This expansion operation is also performed
on saturated pixels in the resampled reference im-
age, i.e., following reprojection onto the science
image frame (Section 4.3). These internal regular-
ized science and reference image masks are prop-
agated downstream. In debug mode, they can
be written to FITS format with filename suffixes
badmsksci.fits and badmskref.fits respectively.

Another reason for spatially expanding all bad
input pixels is that both the reference image re-
sampling and the later PSF-matching step that
involves convolving one of the images (Section 4.7)
will cause bad-pixel regions to implicitly “grow”.
A forced expansion provides a more conservative
blanketing that’s matched in both images prior
to subtraction. Both the science and reference
image masks are later combined (following PSF-
matching) to produce a final effective bad-pixel
mask ( pmtchdiffmsk.fits) for both difference im-
ages: pmtchscimref.fits and pmtchrefmsci.fits.
Furthermore, all bad pixels in the difference im-
ages are tagged with value -999999.
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4.2. Relative Gain-matching and Astro-
metric Refinement

Two important preprocessing steps are photo-
metric throughput (or gain)-matching and a (pos-
sible) astrometric alignment of the science image
with the reference image. As discussed in Sec-
tion 3.3, the reference image provides an “absolute
anchor” for assigning a photometric Zero Point
(ZP) and a WCS to the final difference image
products. The relative photometric and astromet-
ric corrections are first derived and validated, and
then only applied to the science image if found to
be statistically significant. We describe each in
turn below.

First, the input reference image catalog from
SExtractor (–catref) is filtered to retain pri-
marily isolated point sources using the follow-
ing SExtractor-derived metrics: CLASS STAR
(minimum stellarity index); ISOAREAF IMAGE
(maximum effective isophotal area); MAG APER
(faintest magnitude based on a fixed 14-pixel di-
ameter aperture); and the ratio AWIN WORLD /
BWIN WORLD (maximum effective source elon-
gation). The thresholds for these metrics are spec-
ified by the –catfilt input. Another requirement is
that all sources be “clean” and uncontaminated
with no bad SExtractor flags, i.e., FLAGS = 0.
A 14-pixel diameter aperture is used so that in-
tegrated source fluxes are relatively immune to
seeing variations for the range of seeing encoun-
tered. This choice however is not optimal for
crowded fields (see below). An intermediate fil-
tered reference image catalog is then generated
with filename sx ref filt.tbl.

The source x, y positions in the filtered ref-
erence image catalog are then mapped into the
coordinate frame of the science image using the
xy2xytrans utility. The reason for this is to sup-
port efficient source-matching within SExtractor
when run in source-association mode (below) since
it only supports source-matching in x, y coordi-
nates. A new intermediate catalog is made with
filename suffix sxrefremap.tbl that stores photo-
metric information for the filtered reference image
sources and with x, y positions in the WCS of the
science image. It is not guaranteed that this WCS
is correct; hence any possible astrometric errors
will be reflected in the remapped x, y positions.
These positions will be used below to refine the

overall astrometry. SExtractor is then executed
in source-association mode using the filtered and
position-remapped reference catalog sources. This
entails finding the nearest science image sources
with S/N above input threshold –sxt and within a
radial tolerance of –rad. A source-matched catalog
table is generated ( sx.tbl) with an accompanying
DS9 region file ( sx.reg). This table is used to de-
rive the gain and astrometric corrections.

4.2.1. Gain and Astrometric corrections

The relative photometric gain factor Dg is es-
timated using a median of the flux ratios of all
Nm science-to-reference source matches, where all
fluxes are based on a 14-pixel diameter aperture4:

Dg = mediani

{(
fsci
fref

)

i

}
. (7)

The uncertainty in Dg is estimated from the Me-
dian Absolute Deviation (MAD), appropriately
rescaled for consistency with Gaussian statistics
in the limit of large Nm, and further inflated by√

π/2 to account for the fact that the median in
equation (7) is noisier than a mean:

σ(Dg) =

√
π

2Nm
1.483mediani

{∣∣∣∣
(
fsci
fref

)

i

−Dg

∣∣∣∣
}
.

(8)

Global position offsets along the x and y axes
are also computed using medians of the source-
position differences:

Dx = mediani{(xref − xsci)i},
Dy = mediani{(yref − ysci)i},

(9)

with uncertainties that are also based on the MAD
estimator, similar to equation (8). Note that
these represent overall orthogonal offsets between
the science and reference images, and do not ac-
count for possible spatially-dependent offsets, for
example, that would result from an erroneous dis-
tortion solution for the science image (as cali-
brated upstream; see Section 2). Recall that the
reference-image pixels have already been corrected
for distortion during the co-addition process (Sec-
tion 3.3). Therefore, the assumption here is that

4These will be affected by source confusion in crowded fields.
In future, we will use PSF-fit photometry from both images,
that includes source-deblending.
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the distortion solution is reasonably accurate over
the CCD image, and that any systematics in the
relative astrometry are purely global shifts along
either x or y or both.

Furthermore, to gauge the spread in the Nm

input flux ratios (equation 7) and position offsets
(equation 9), 5th – 95th percentile ranges are also
computed for these quantities. A large spread in
the flux ratios for example (relative to some ex-
pected nominal value) may indicate that the flat-
fielding was inaccurate upstream. A large spread
in the position offsets may indicate that the dis-
tortion calibration was inaccurate. These metrics
are stored in a database table for trending.

The gain correction factor Dg (equation 7) is
only used to rescale the science image pixel values
to match those in the reference image if the follow-
ing criteria are satisfied: the number of matches
Nm from which it was derived exceeds –nmin; the
quantity 100|1 − Dg| exceeds –dgt; and its sig-
nificance or S/N ratio, |1 − Dg|/σ(Dg), exceeds
–dgsnt. Similarly, the orthogonal position cor-
rections Dx, Dy are only applied to the science
image WCS parameters if the following criteria
are satisfied: the number of matches Nm also
exceeds –nmin; either |Dx| or |Dy| exceed –dpt;
and their S/N ratios, |Dx|/σ(Dx) or |Dy|/σ(Dy),
exceed –dpsnt. Note, since the Dx, Dy are con-
stant corrections (independent of position), it suf-
fices to simply correct the coordinate origin defin-
ing the science image WCS. These are the FITS
keyword values CRPIX1 and CRPIX2, and are
corrected to the new values CRPIX1 − Dx and
CRPIX2−Dy respectively. This adjustment then
ensures that the reference image is reprojected
(and registered) onto the correct science image
WCS later on (see Section 4.3).

As a detail, there are occasions when the input
science image was already absolutely photometri-
cally calibrated and associated with a ZP value,
for example, when PTFIDE is executed in offline
mode on processed archival data. In this case,
an initial global gain correction factor G is com-
puted using the science and reference image ZP
values according to equation (3). The Dg factor
(equation 7) is still computed, but it becomes a
delta-correction on top of G. The final effective
gain correction factor for rescaling the science im-
age pixels is then D′

g = G/Dg, where Dg is only
applied if the above criteria are met, otherwise it

is reset to 1. Therefore, regardless of whether the
science image had a valid ZP calibration, PTFIDE
always computes a relative gain correction factor
in order to place the science image pixels on the
same scale as those in the reference image as best
as possible.

4.2.2. Photometric Zero Point Refinement

After rescaling the science image pixels, the
above method then implies that the reference im-
age ZP will enable absolute photometry on the sci-
ence image, and eventually the difference images
derived therefrom. However, it is important to
note that the reference image ZP will only allow an
absolute calibration of the same type of instrumen-
tal photometry that was initially used to calibrate
that ZP. At the time of writing, the instrumen-
tal photometry used for the absolute photometric
calibration of PTF/iPTF data are the Kron-like
MAG AUTO aperture measurements from SEx-
tractor (Ofek et al. 2012). As discussed in Sec-
tion 3.3, these are used together with sources from
the SDSS-DR9 catalog to derive the absolute ZPs
in all archival image products, including reference
images. Unfortunately, the MAG AUTO mea-
surements tend to systematically underestimate
the total instrumental flux, with a bias that de-
pends non-trivially on the image seeing. This
bias is of order 4—8%. Therefore, the current
reference image based ZPs are only applicable
to MAG AUTO-like measurements performed on
the gain-corrected science and difference images.
On the other hand, the primary instrumental pho-
tometry extracted from PTFIDE image products
is PSF-fitting (Section 4.9.2). A refinement to the
ZP is therefore necessary.

To enable an absolute calibration of other fla-
vors of photometry, for example PSF-fitting or
big-aperture photometry on the real-time science
and difference images, we compute a new ZP
value for insertion into their FITS headers, de-
noted ZPSCI. This is only performed by PTFIDE
if the –phtcalsci switch was specified. This new
ZP is computed using the (absolutely calibrated)
MAG AUTO magnitudes of the same filtered ref-
erence image point sources as used for the relative
gain-correction above, with matching 14-pixel di-
ameter aperture measurements from the science
image, corrected for any residual Dg. If the num-
ber of source-matches exceeds 100, the new ZP is
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estimated as

ZPSCI = mediani{(MAG AUTOabs
ref −

MAG APERinst
sci )i}.

(10)

A robust RMS based on percentiles, ZPSCIRMS,
is also computed to quote as a possible system-
atic uncertainty on ZPSCI. It’s important to note
that the MAG APERinst

sci instrumental photome-
try used here is from a relatively large fixed (14-
pixel diameter) aperture. The ZPSCI value will
also be applicable to PSF-fit instrumental pho-
tometry because analyses have consistently shown
that this agrees, within measurement error, with
the instrumental fluxes from “large” aperture pho-
tometry. I.e., both flavors of photometry catch the
same total instrumental flux for the range of see-
ing encountered. Therefore, to enable an absolute
calibration (on the SDSS system) of the photome-
try from PTFIDE image products, involving either
PSF-fitting and/or “large” apertures, it is advised
that the ZPSCI values be used. We note that this
reverse engineering to recover the correct ZP for
PSF-fit photometry will disappear in the future
when our photometric calibration system is up-
graded to use PSF-fit photometry throughout.

To summarize, we have at this stage an inter-
nally regularized science image whose pixels are
gain-matched to those in the input reference im-
age, and with a possibly refined WCS that matches
the reference image astrometric solution. This
intermediate science image can be written to a
FITS-formatted file with suffix newscitmp.fits.
Other metadata that depend on the gain-matching
operation are recomputed and also propagated
along. These are the science image saturation level
and the pixel electronic gain (used for uncertainty
estimation later). Along with the MAG AUTO-
based ZP inherited from the reference image, a
new ZP is also available, ZPSCI, to enable a more
accurate absolute calibration of PSF-fit photom-
etry downstream. It’s important to note that
these corrections represent initial adjustments at
the global image level. Other refinements to the
relative photometric gain and/or astrometry are
possible at the local (sub-image) level later when
we apply the spatially-dependent convolution ker-
nels to match the image PSFs (Section 4.8).

4.3. Reprojection of Reference Image

The reference image is “warped” onto the na-
tive pixel grid of the science image (accounting
for distortion) using its refined WCS as described
in Section 4.2.1. The SWarp utility (Bertin et
al. 2002) is used to perform the reprojection and
resampling. This software conveniently uses the
science image’s distortion polynomial with coef-
ficients encoded in the PV-format, derived up-
stream during astrometric calibration (Section 2).
Pixels are interpolated using a 2D Lanczos kernel
of window size three (equation 1), i.e., the same as
that used when constructing the reference images.
See Section 3.3 for a discussion of its advantages.

It is imperative that the distortion solution
for the science image be as accurate as possible
over the entire frame to avoid mapping the ref-
erence image pixels into the “wrong” locations.
Even slight inaccuracies (down to a tenth of pixel)
will lead to systematic residuals in the differ-
ence images. One could mitigate these spatially-
dependent astrometric residuals by fitting for a
differential (relative) distortion between the sci-
ence and reference images and if significant, cor-
recting the science image distortion prior to re-
projection. We found this to be unnecessary for
now since for the bulk of iPTF fields, the spatially-
binned source-position residuals between the sci-
ence and reprojected reference image sources have
maximal RMS values of . 0.12′′ per axis. This
maximum RMS per image is computed over 6×12
spatial bins, where the binning is intended to cap-
ture local systematics in the distortion solution of
the science image. 0.1′′ is typically the maximum
tolerable residual to obtain good quality difference
images for iPTF under median seeing or worse, at
the location of R & 16 mag sources. Presently
however, the residuals are generally larger in the
densest regions of the galactic plane since that’s
where the astrometric calibration is most challeng-
ing. This is a work in progress.

The resampled reference image can be written
to a FITS-formatted file with suffix resampref.fits.
An accompanying weight-image file is also gen-
erated ( resamprefwt.fits). This weight image is
used to generate a mask image for the resam-
pled reference image ( basmskref.fits) that primar-
ily tags saturated pixels. These pixels are then
“expanded” to account for their growth during the
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interpolation and PSF-matching process (see Sec-
tion 4.1).

4.4. Differential Spatially-Dependent Back-
ground matching

The slowly-varying background (SVB) compo-
nent in the rescaled and astrometrically-refined
science image is matched to that in the resam-
pled reference image. This background matching
step helps minimize systematics in the difference-
image photometry later on (through estimation
of the local background), particularly when the
differential background between the science and
reference image varies non-linearly with position.
The background correction map is estimated us-
ing a robust image-partitioning method performed
on a preliminary science - reference difference im-
age, where the inputs are already gain matched
(Section 4.2.1) and astrometrically aligned (Sec-
tion 4.3) but not yet PSF-matched. Bad and
saturated pixels from both images are masked in
the difference image prior to processing. The rea-
son for computing the background correction map
from a raw difference image is that this minimizes
any biases from bright extended emission (e.g.,
galaxies). Furthermore, the presence of residu-
als at the point-source level due to the lack of
PSF-matching (at high spatial frequencies) does
not impact the estimation process.

The difference image is first partitioned into
M × N rectangles where M,N are specified by
–gridXY (see Table 2). Pixel modes (or optionally
medians) are computed both globally (for the en-
tire image) and within each partition using only
unmasked pixels. Modes are only computed if the
–wmode switch was specified, otherwise medians
are computed. In the steps described below, mode
can be interchanged with median if the latter was
used.

First, for each partition, we replace all pixel
values therein with the global mode if its local
mode exceeds or is below the global mode by a
relative percentage specified by –tmode, i.e., if
100|mode − globalmode|/globalmode > tmode is
satisfied. Furthermore, we replace any outlying
pixel values pi in all partitions with their respec-
tive local mode if |pi − mode| > tσ is satisfied,
where t is a threshold specified by –tpix and σ
is a robust local RMS estimated from a trimmed
standard-deviation of the low-tail pixel distribu-

tion in the partition, i.e., below its local mode.

The resulting outlier-trimmed modal map is
further regularized by replacing all pixels in those
partitions with the global image mode whose local
σ (robust RMS) is
> tsig × median{σ’s from all partitions}, where
tsig is a relative threshold specified by –tsig. This
avoids noisy partitions (e.g., due to excessive Pois-
son noise from bight emission) from affecting the
differential SVB estimate. At this stage, the regu-
larized difference image can be written to a FITS-
formatted file with suffix inpsvb.fits.

Next, we down-sample the regularized differ-
ence image using the binning factor specified by
–rfac. This binning uses a local averaging of pix-
els and is performed to speed up the filtering in
the next step. The down-sampled map is median
filtered using a window size specified by –szker to
smooth out the partition boundaries. The result-
ing image is up-sampled back to the original image
pixel dimensions for use downstream. This is the
final SVB correction map and can be written to a
FITS-formatted file with suffix svb.fits.

The SVB correction map is subtracted from
the input (gain-matched) science image to pro-
duce a new regularized science image (file suffix
newscibmtch.fits). This now has a SVB whose

pattern matches that in the resampled reference
image. Figure 5 shows an example of an input sci-
ence and resampled reference image, and the dif-
ferential (low-pass filtered) SVB image generated
therefrom. At this stage, a preliminary difference
image (still with no PSF-matching) can be gener-
ated with suffix diffbmtch.fits to check the quality
of the background matching. An example is shown
on the far right of Figure 5.

4.5. Pixel-level Uncertainty Estimation

At this stage, images of the 1-σ uncertain-
ties corresponding to the gain and background-
matched science and resampled reference images
are initialized for propagation downstream. These
pixel uncertainties are later updated to account
for additional processing on the images.

We use a robust semi-empirical method to com-
pute the pixel uncertainties. First, we find the
minimum background pixel variance σ2

bcksci and
mode mbcksci over all partitions of the science
image. These are the same partitions from the

27



Draft manuscript for Publications of the Astronomical Society of the Pacific

Fig. 5.— Left to right: an example science and reference image containing the M13 Globular Cluster. The
image stretch is intended to amplify background variations. The difference of these images is used to generate
the differential slowly-varying background (SVB) map where the minimum-to-maximum range is ≃ 18 DN
(or a few percent). The SVB map is then subtracted from the science image. When the reference image is
subtracted from the new (background-matched) science image, this results in the spatially uniform difference
image on the far right. This difference has the same image stretch as the SVB map. Black regions are bad
and saturated pixels.
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background matching step above (Section 4.4).
The variances are computed from a robust pixel
RMS based on a trimmed standard-deviation of
the low-tail pixel distribution in each partition.
The minimum value is used for conservatism in
the sense that any biases from bright emission
and/or source-confusion are minimal. The 1-σ un-
certainty for a pixel signal fDN in the science im-
age is approximated by:

σsci ≈
[
S

(
fDN −mbcksci

g

)
+ σ2

bcksci

]1/2
, (11)

where S is a scale factor to account for the gain-
matching operation (Section 4.2.1) and is needed
since the actual counting of photoelectrons (for the
Poisson term) is always with respect to the native
detector ADU counts. g is the detector’s electronic
gain in e−/DN (input parameter –eg). We have
subtracted an estimate of the background from
the pixel signals since any Poisson-noise from the
background is already implicitly included in the
σ2
bcksci term and we remove any unknown (hidden)

bias level that is not induced by photoelectrons.
This avoids overestimating the Poisson contribu-
tion from the background. Furthermore, σ2

bcksci

implicitly includes the read-noise component. Pix-
els with fDN −mbcksci < 0 are reset to zero.

For the reference image pixel uncertainties,
we first compute a robust background pixel
variance σ2

bckref from the same (“minimally-
contaminated”) partition as used for the science
image. Given that the reference image was created
from a co-add of science images with variable pho-
tometric ZPs (that were later used to throughput-
match the images; Section 3.3), the Poisson-noise
contribution will be difficult to estimate precisely
from first principles. Instead, we approximate the
1-σ uncertainty for a pixel signal in the reference
image by scaling from the science image uncer-
tainties (equation 11) and the relative background
RMS estimates:

σref ≈ σsci

(
σbckref

σbcksci

)
. (12)

This is expected to be a reasonable approximation
since the pixel signals (in DN) are guaranteed to
be conserved between the rescaled science image
and resampled reference image, to within measure-
ment error. In other words, the signals contribut-
ing to the Poisson component are not expected to

change much between these images and any 1/
√
N

diminution in the overall noise in the reference im-
age from co-addition is effectively handled by the
ratio σbckref/σbcksci.

An important effect that is not accounted for
in the pixel uncertainties of the resampled refer-
ence image at this stage is the possibility of corre-
lated pixel noise. This could arise from both co-
addition (during construction of the initial refer-
ence image) and the reinterpolation step (onto the
science image pixel grid; Section 4.3). Account-
ing for spatially correlated noise is more impor-
tant when estimating the photometric uncertain-
ties of extracted sources from difference images
(Section 4.9.2). The contribution of correlated
noise from reference images however is expected to
be small. This is because first, as discussed in Sec-
tion 3.3, correlated noise will be negligible due to
the choice of a sinc-like interpolation kernel, and
second, because of the 1/

√
N diminution from co-

addition. The difference image noise will be domi-
nated by that in the science image. The difference
image pixel uncertainty estimates are described
in Section 4.8. The science and reference image
pixel-uncertainty images can be written to FITS
format with suffix names newsciuncbmtch.fits and
resamprefunc.fits respectively.

4.6. Preparation of Inputs for PSF-matching

Our overall goal is to derive a kernel image
K(u, v) where u, v are relative pixel coordinates,
which when convolved with one of the input im-
ages (science or reference), will match their PSFs
in some optimal manner. The details of how this
kernel is represented and derived are outlined in
Section 4.7. Following the global-matching steps
above (i.e., registration, gain and background-
matching), the PSF-matching problem can be gen-
eralized by attempting to model one of the input
images in terms of the other through K(u, v) and
some local differential background dB. For in-
stance, let us assume the science image pixel values
Iij can be modeled from those in an overlapping
reference image Rij where the point-source profiles
therein are significantly more narrow (in terms of
overall FWHM):

Iij = [K(u, v) ⊗Rij ] + dB + ǫij . (13)

ǫij is a noise term, usually a correction to the
random noise component inherent in the R im-
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age since the latter is not strictly noiseless. Note,
if I was determined to be the better seeing image
(according to some ∆FWHM threshold based on
prior metrics; see Section 4.7), then R and I would
be interchanged in equation (13) without loss of
generality. Aside from modeling differences in PSF
shape, K(u, v) will also (implicitly) model local
residuals in the relative photometric gain and/or
astrometry, for later removal when K(u, v) is ap-
plied.

Regardless of how K(u, v) is parameterized (see
below), the crucial inputs for an optimal solution
(in the least-squares sense) are accurate repre-
sentations of the PSFs as a function of position
in both the science and reference images. These
PSFs then effectively take-on the role of I and
R in equation (13). To account for spatial de-
pendencies, we estimate the PSFs over a grid of
Nm = Nx × Ny image partitions where Nx, Ny

are specified by –kerXY (currently = 3 × 3 or
≃ 11.5′ × 23′ for iPTF). The boundaries of the
partitions are made to overlap by a length equal
to half the kernel image width (input –kersz; cur-
rently = 9 pixels). The partition size is deter-
mined from an analysis of the coherency in PSF-
shape versus position, balanced against the typ-
ical number of point-sources expected therein in
order to obtain PSFs of reasonable S/N when all
sources are combined. Our derivation of K(u, v) is
highly sensitive to input noise and therefore every
attempt is made to maximize the pixel S/N in the
final PSF images, for all image partitions.

Figure 6 gives an overview of the steps used
to construct the 2 × Nm high quality PSF im-
ages for all partitions in the preprocessed science
and reference images. The primary input is a list
of “clean” point-sources from the input reference
SExtractor catalog, with x, y centroid positions in
the resampled reference image frame. These are
the same filtered point-sources used for the rel-
ative gain-matching and astrometric refinement
steps described in Section 4.2. The sources are
assigned to their specific image partitions and we
require a minimum of Nmin = 20 sources (pa-
rameter –nmins) per partition. The maximum
is capped at Nmax = 150 (–nmaxs) where if ex-
ceeded, the brightest Nmax sources in the partition
are selected. This maximum is imposed for run-
time reasons, but still provides a sufficient overall
S/N when all sources are combined.

For a given image partition m, square stamps
of linear size –psfsz (= 25) pixels centered on
the reference-image-based source centroids are cut
from the (already registered) science and reference
images. The reason for using the same (refer-
ence) position on both images is that we want to
preserve any possible local astrometric shift be-
tween stamps of the same source from each im-
age. This shift (if significant) will persist into
the final respective PSF images and be subse-
quently captured by the kernel solution K(u, v).
This will allow any local systematic shifts to be
corrected following the application of K(u, v) to
its respective image partition (Section 4.8). The
point-source cutouts are then filtered to remove
cases with large numbers of masked pixels. Each
stamp is then interpolated into a new pixel grid so
that the input (fractional-pixel) source centroids
are made to fall close to their geometric centers,
i.e., to correct for the truncation error when cre-
ating the initial cutouts using integer pixel coor-
dinates. This registration step is important prior
to stacking the point-source stamps. The stamps
are then background-subtracted to ensure a zero-
median background level outside an aperture with
size specified by –apr. Pixel signals inside this
aperture from only the reference image cutouts are
then integrated and used to flux-normalize each
matching science and reference image cutout of the
same source. The reason is similar to that men-
tioned above for source positions – it preserves any
possible residual in the relative gain that can later
be modeled and removed by K(u, v).

If the debug switch was set, the point-source
image cutouts can be individually written to FITS
format with file suffixes noconv pm stpn.fits and
toconv pm stpn.fits for the science and reference

image respectively, where m is the partition iden-
tification index and n is the source index therein.

The homogenized point-source cutouts for par-
tition m are then separately stacked for the science
and reference images. The first step involves using
robust statistics to identify and mask outlying pix-
els in the pixel stacks. The stamps are combined
using a weighted average where weights are the
inverse of the pixel variances computed from the
background in each stamp (outside an aperture
with radius –apr). This results in two PSF images
for partition m, one for the science and another
for the reference image. The PSF images are fur-
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Fig. 6.— Processing flow for the creation and allocation of PSF image products for each common science and
reference image partition. These are used to derive the spatially-dependent PSF-matching kernel between
the science and reference image. See Section 4.6 for details.
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ther cleaned for possible pixel outliers using Win-
sorization (e.g., Kafadar 2003). Here, pixels that
exceed some threshold (a multiple of the robust
spatial RMS above or below the background) are
replaced with the threshold value. This replace-
ment (when used with a high threshold) does not
inadvertently distort the PSF shape. The input
parameters and thresholds for the above steps are
specified by the –rpickthres input string.

The source-cutout and stamp-stacking pro-
cess is performed on all Nm partitions. This
results in two preliminary (science and refer-
ence) PSF images per partition, assuming there
were enough point sources therein (i.e., exceeding
Nmin). If the debug switch was set, these can
be written to FITS format with filename suffixes
noconv pm psfcoad.fits and toconv pm psfcoad.fits

for the science and reference image respectively,
where m is the partition index. Accompanying
pixel-depth maps showing the final number of
stacked pixels are also generated with psfcoad.fits
replaced by psfcoaddepth.fits in these filenames.

These PSFs are preliminary in the sense that
there is no guarantee that all are of sufficient qual-
ity with good overall S/N across all partitions. For
example, a partition could fall on a highly con-
fused region, exhibit a complex background, or
not have enough good quality point-sources. To
account for this, we further regularize the PSFs
for approximate consistency across all partitions.
This includes replacing a “bad” PSF with a better
quality one from a neighboring partition. A con-
sequence of this replacement is that the selected
PSFs (for a common science and reference parti-
tion) will no longer represent the true PSF shapes
for that partition. This is a small loss since this re-
placement does not occur often, and when it does
occur, the overall PSF variation is small enough
that the impact to the PSF-matching is negligible
when another partition’s PSFs are used. These
regularization steps are described in more detail
below, with control parameters also specified by
the –rpickthres input.

We first correct any PSF pairs with a large
residual gain relative to all other PSF pairs from
other partitions. The residual gain is estimated
using the ratio of the sum of normalized PSF
pixel values for the pair. Ratios that deviate by
more than some threshold from the median pixel-
sum ratio over all partitions have their respec-

tive PSF pixels rescaled to match the median ra-
tio. This median ratio is typically unity due to
the global gain-matching performed earlier (Sec-
tion 4.2). Note that this “gain-homogenization”
is only intended to correct PSF pairs with large
outlying residuals in their relative gain. Next, we
allocate the final PSF pairs to each partition by
enuring that first, there were enough sources to
make PSFs in the first place (i.e., ≥ Nmin) and
second, that the RSS of their robust spatial RMSs
were below some threshold. If either of these con-
ditions are not satisfied for a partition, we assign
PSFs from that partition with the lowest RSS’d
RMS value. Each overlapping science and refer-
ence image partition is now associated with a high
quality pair of PSFs, ready for the PSF-matching
step. Figure 7 shows an example of the PSFs for
two image partitions and the resulting matching
kernels K(u, v) using the formalism in Section 4.7.
As expected, the reference image PSFs will have a
higher S/N and appear smoother since the refer-
ences were initially created from a stack of science
images.

Fig. 7.— Example PSF image products for two
separate image partitions: top row corresponds to
a partition at the bottom left of a CCD image and
bottom row is for a partition at top right of the
same image. From left to right: PSF for science
image, PSF for reference image, and the resulting
PSF matching kernel derived using the method in
Section 4.7. Pixel sizes are the same throughout.
The kernel images are enlarged for clarity.

32



Draft manuscript for Publications of the Astronomical Society of the Pacific

4.7. Derivation of PSF-matching Kernel

Given high S/N representations of the science
and reference-image PSFs for a spatial partition,
with PSF pixel values Iij and Rij respectively
at common coordinates i, j, we outline below the
method used to obtain an optimal solution for the
convolution kernel K(u, v) and differential back-
ground dB in equation (13). Following previous
approaches, these can be derived by minimizing a
weighted sum of the squared residuals between a
model and some new image (here the science image
PSF); for example, using the objective function:

χ2
o =

∑

i,j

[
Iij − [K(u, v) ⊗Rij ] − dB

σij

]2
, (14)

where σij are prior pixel uncertainties in the Iij
that may include some scaled contribution from
Rij (see below). Equivalently, equation (14) can
be recast in vector-matrix notation:

χ2
o = (I −M)

T
Ω−1

cov (I −M) , (15)

where Ωcov is the full error-covariance matrix to
account for possible correlated errors between the
input pixels, and M is the model-image with ele-
ments:

Mij = [K(u, v) ⊗Rij ] + dB. (16)

Strictly speaking, the objective function χ2
o can

only be compared to a true χ2 distribution with
degrees-of-freedom Ndof for the purpose of vali-
dating model solutions using probabilistic infer-
ence if the input data errors are normally dis-
tributed; i.e., ǫij ∼ N(0, σ2

ij). These errors can
be interdependent (and if so, need to be captured
by Ωcov), but they do need to be identically dis-
tributed for χ2-validation purposes. The null hy-
pothesis is that the model (equation 16) “gener-
ated” the Iij . Furthermore, for linear parameter-
izations of K(u, v) (see below), the minimization
of χ2

o reduces to a generalized linear least-squares
problem with a solution that is unique and opti-
mal in the maximum-likelihood sense for normally
distributed errors.

Another important consideration is that the in-
put errors ǫij are heteroskedastic, i.e., they are not
identically distributed with constant variance over
the input pixels i, j. This is because we are ex-
clusively fitting point-source data where Poisson

noise dominates. The noise-variance will have a
spatial dependence following the shape of the PSF
profile (Iij). Even though this dependence can be
accounted for by using prior weights derived from
the pixel uncertainties (1/σ2

ij or Ω−1
cov) that implic-

itly include Poisson-noise, their direct use in χ2
o

will lead to biased estimates for K(u, v) and dB.
This was explored in a different context by Mighell
(1999). A number of complex variance-stabilizing
methods exist to ensure unbiased estimates. For
simplicity, we omit the use of prior weights when
estimating K(u, v) and dB. Our solution will
still be optimal in the least-squares sense and will
also be close to the maximum-likelihood solution
for normally-distributed errors in general. Even
though the exclusion of weighting in equation (14)
prohibits the use of goodness-of-fit tests in an ab-
solute (probabilistic) sense, relative changes in the
global χ2

o can be used to validate the performance
of different kernel solutions when applied to full
images (see Section 4.8.2). For completeness, we
continue to carry the σij term (as represented in
equation 14) in our derivations below. In the end,
our estimates are really solutions to an ordinary
linear least-squares (OLS) problem.

Our construction in equations (13) and (14) as-
sumes that the image containing the “narrower”
PSF is the one that should be convolved. However,
there is no guarantee that this image is always
the reference PSF (Rij) and hence without loss
of generality, Iij and Rij can be interchanged. It
is therefore important to predefine the convolution
direction. This can be specified by the –conv input
string. The choices are sci, ref, or auto. The sci
and ref options always force the science (Iij) or ref-
erence (Rij) image pixels to be convolved respec-
tively. The auto option allows an automatic selec-
tion of the image to convolve and is our current
operating mode. This selection is based on com-
paring global-image measures of the FWHM val-
ues of filtered stars from the science and reference
images. The FWHM values are from 2D Gaus-
sian fits performed by SExtractor. These values
are medianed to yield two measures: FWHMsci

and FWHMref . The automatic selection is based
on the value of the relative difference

δ = 1 − FWHMsci

FWHMref
. (17)

Currently if δ ≥ 0.03, the science image is se-
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lected for convolution, otherwise the reference im-
age is selected, i.e., as depicted in the estima-
tion equations above. The threshold for δ was
tuned by examining distributions in FWHMsci

and FWHMref from many images and setting a
conservative value to allow for uncertainty in the
median FWHM estimates. In other words, the
fuzzy interval −0.03 < δ < 0.03 implies the over-
all sci and ref PSF FWHM measures are consistent
within measurement error. Note that the FWHM
measure is assumed to be a good proxy for PSF
shape in general, at least to first order for the pur-
pose of defining a convolution direction. When the
PSF FWHMs are consistent, no useful information
is expected in the kernel solution, i.e., aside from
noise and perhaps variations incurred by higher-
order PSF-shape differences. The kernel then ef-
fectively becomes a single spike (i.e., a δ-function)
where in principle, no PSF-matching would be re-
quired.

Usually (for & 85% of science image exposures
encountered), the reference images are those se-
lected for convolution since by design, these were
constructed from archival science images with
moderately better seeing than average, in addition
to being weighted by their inverse-seeing (Sec-
tion 3.3). However, for cases where the science
image (Iij) is selected for convolution, the roles of
Iij and Rij are interchanged in equations (14) and
(16) so that Iij convolved with K(u, v) becomes
the model-image fitted to the data, Rij . This com-
plicates the error and weighting structure if a true
χ2 objective function (based on equation 14) were
to be used for estimation since the “model” would
be noisier than the data being fitted. This is an-
other reason for omitting the use of prior weights
in the objective function and treating it as a sim-
ple OLS problem. The application of K(u, v) to
the noisier Iij image also causes a larger fraction
of the noise to be correlated in the final difference
image. This is further discussed in Section 4.8.

As mentioned above, linear parameterizations
for K(u, v) are the simplest to solve from a com-
putational standpoint, for example, by expanding
K(u, v) as a linear combination of n basis func-
tions:

K(u, v) =

n∑

i

aiKi(u, v), (18)

and solving for the n coefficients ai. A tradi-

tional choice for the Ki(u, v) are Gaussians of
different width, each modified by a 2D shape-
morphing polynomial. The ai are further ex-
panded into another polynomial in x, y to model
possible dependencies over the focal plane. This
is the classic PSF-matching algorithm of Alard &
Lupton (1998) and Alard (2000), and extended by
Yuan & Akerlof (2008). This algorithm has been
successfully used by several time-domain surveys,
e.g., OGLE (Wyrzykowski et al. 2014), La Silla-
QUEST (Hadjiyska et al. 2012), Pan-STARRS
(Kaiser et al. 2010) and the SDSS-II Supernova
Survey (Sako et al. 2008). Initially, we extensively
validated this method for PTF (at IPAC, Caltech)
as implemented in the HOTPANTS5 and DIAPL
utilities (Woźniak 2000). A major limitation was
the specification of a number of fixed configura-
tion parameters. These parameters are not fit-
ted, i.e., the Gaussian widths (at least four were
needed) and the polynomial orders (six more pa-
rameters). The overall performance was sensitive
to the precise choice of these parameters. Fur-
thermore, the basis functions were not complex or
flexible enough to model the bulk of the data en-
countered in the survey, under a continuum of at-
mospheric conditions and unforeseen instrumental
behaviors. Despite attempts to constrain the ba-
sis function constants using a-priori information
in a dynamic manner (e.g., as prescribed by Israel
et al. (2007)), a generic-enough representation for
K(u, v) under this framework that kept the false-
positive rate amongst transient candidates appre-
ciably low and at a manageable level eluded us.

A more flexible “shape free” basis representa-
tion for K(u, v) was proposed by Bramich (2008).
Here the kernel is discretized into L×M pixels and
each pixel value therein, Klm, is treated as a free
parameter in the OLS fitting problem. This free
form basis is also referred to as the delta function
representation where the kernel can be expressed
as a 2D array of delta functions:

K(u, v) = Klmδ(u− l)δ(v −m). (19)

A kernel size of 9 × 9 pixels (input parameter
–kersz) then has 81 orthonormal basis functions
when expanded as a linear combination accord-
ing to equation (18). For comparison, the best

5see http://www.astro.washington.edu/users/becker/v2.0/
hotpants.html
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Gaussian-basis model mentioned above has 252
free parameters for effectively the same amount of
input data in the estimation process. Apart from
the kernel image size and threshold parameters
used to creating the regularized PSF-inputs (Sec-
tion 4.6), there are no shape-based tuning parame-
ters for the delta-function representation. For this
reason, it can accomodate more generic shapes, as
well as capture offsets in the astrometry on scales
used to construct the input PSF data Iij and Rij ,
coming from effectively a Nx×Ny image partition.
As we shall discuss, this unconstrained specifica-
tion is both good and bad.

With this representation, the model image
(equation 16) can be written in terms of the un-
known coefficients Klm as follows:

Mij = dB +
∑

l

∑

m

KlmR(i+l)(j+m) (20)

The objective function to minimize (the equivalent
of equation 14) then becomes:

χ2
o =

∑

i,j

1

σij

[
Iij − dB −

∑

l

∑

m

KlmR(i+l)(j+m)

]2
.

(21)

The optimal values of Klm and dB are those that
minimize χ2

o, i.e., where the partial derivaties of
χ2
o with respect to each parameter are all zero:

(
∂χ2

o

∂Klm

)

l=lo,m=mo, dBo

= 0,

(
∂χ2

o

∂dB

)

l=lo,m=mo, dBo

= 0.

(22)

These are evaluated at the specific parameter val-
ues indexed by lo,mo for Klm and dBo to yield
two general relations:

Kp

∑

i,j

R(i+lo)(j+mo)R(i+l)(j+m)

σij
+

dBo

∑

i,j

R(i+lo)(j+mo)

σij
−

∑

i,j

IijR(i+lo)(j+mo)

σij
= 0

(23)

and
(
∑

p

Kp

)
∑

i,j

R(i+lo)(j+mo)

σij
+ dBo −

∑

i,j

Iij
σij

= 0

(24)

respectively. The kernel pixel indices in equations
(23) and (24) have the ranges:

− (L− 1)/2 ≤ lo ≤ (L− 1)/2

− (M − 1)/2 ≤ mo ≤ (M − 1)/2
(25)

where (lo,mo) = (0, 0) corresponds to the cen-
ter pixel of the kernel with dimensions L × M
pixels and p is a one-dimensional index: p =
1, 2, 3, ..., LM . For a given lo,mo,

p = lo + Lmo + (LM + 1)/2. (26)

Equations (23) and (24) lead to a simultaneous
system of LM + 1 equations in LM + 1 unknowns
that can be written in the vector-matrix form:

AX = B, (27)

where X is a vector containing the LM kernel-
pixel unknowns Kp (= Klm) and differential back-
ground estimate dBo.

Equation (27) can be inverted using standard
techniques, and at first, X was estimated directly
using a LU -decomposition of A. However, in ac-
cord with previous analyses (e.g., Becker et al.
2012), the unconstrained nature of a pure delta-
function representation can make the Klm solu-
tions very sensitive to noise and contamination
from non-PSF related signal in the inputs Iij and
Rij . The model-fit is therefore subject to over-
fitting. This is the so-called bias versus variance
tradeoff where one is after a solution that is expres-
sive enough to avoid biases, but not so complex as
to introduce excessive variance when the solutions
are later applied to match the PSFs in an entire
input image or partition. In the end, one is after
the true PSF-matching kernel for the two images.
Despite our attempts to mitigate noise in the in-
put PSF co-add stamps (Iij and Rij ; Section 4.6),
noise is inevitable. One way to avoid overfitting
and still maintain optimality is to invoke regular-
ization in the estimation process.
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4.7.1. The Regularized PiCK Method

Becker et al. (2012) implemented a regularized
version of the delta-function kernel model by in-
troducing a tunable smoothing constraint in the
χ2 objective function. This function is propor-
tional to the second spatial derivative in the input
pixels and is intended to penalize fits that are too
irregular as a result of high-frequency noise. This
regularization method was explored and validated
in detail by Bramich et al. (2016) from the aspect
of maximizing photometric accuracy in final dif-
ference images. This extension is attractive, but
it did not become known to us until after we had
implemented an alternative regularized version of
the delta-function model (see below). This worked
very well on PTF image data. We will refer to
this method as the Pixelated Convolution Kernel
method (or PiCK for short).

Instead of imposing a regularizing constraint on
the objective function as in Becker et al. (2012),
our approach involves regularizing the coefficient
matrix A in equation (27). We perform a spectral
decomposition, also known as an eigendecomposi-
tion of A:

A = V W V T , (28)

where V is an orthogonal matrix (V T = V −1) and
W is a diagonal matrix:

W = diag (w1, w2, . . . , wi, . . . , wLM+1) (29)

with eigenvalues w1 ≥ w2 ≥ w3 ≥ . . . wLM+1 ≥ 0.
The corresponding linearly independent eigenvec-
tors of A reside in the columns of V . Given A is a
real symmetric matrix, such a decomposition can
always be found. This decomposition allows us to
examine the basis vectors that will contribute to
the kernel solution. The least-important eigenvec-
tors of A are those associated with input noise and
can be identified by their relatively small eigen-
values, below some threshold. These can then be
“zeroed-out”. For example, the inverse of A can
then be written:

A−1 = V W−1 V T , (30)

where

W−1 = diag
(
w−1

1 , w−1
2 , . . . , w−1

i , . . . , w−1
LM+1

)

(31)
for all wi > 0. For values wi = 0 (within machine
precision), the w−1

i are replaced by zero in W−1.

This special replacement corresponds to the classic
Singular Value Decomposition (SVD) method for
handling singular (ill-conditioned) matrices. The
inverse defined by equation (30) then becomes the
pseudo-inverse of A. This approximation is better
conditioned for obtaining a solution to the matrix
equation in (27).

The essence of the PiCK method is to make
this SVD-like replacement more generic and less
restrictive on the specific wi to replace. The goal is
to also make A more regularized against noisy in-
put data (including singular cases) by finding the
largest eigenvalue wk such that wk/max{wi} < T
for some threshold T (see below). For all i ≥ k,
we reset w−1

i = 0 in W−1 and then proceed to
obtain a solution. Following the decomposition in
(30), the solution vector X in equation (27) can
be written

X =
LM+1∑

i

(
1

wi
V T
i B

)
Vi. (32)

In this form, it can be seen that the noisiest (least-
relevant) eigenvectors Vi according to w−1

i ≈ 0
will not significantly contribute to X. There-
fore, they can be eliminated by forcing w−1

i = 0.
These eigenvectors can be also identified by their
relatively small dot-products with the B vector,
|V T

i B|, as shown in Figure 8.

The threshold T is dynamically derived on a
per image-partition basis, i.e., where an inversion
of equation (27) via (30) is performed. This uses
the following semi-empirical criterion:

T = min

{
10−6, 10th percentile in

wi

max [wi]

}
,

(33)
where the second argument corresponds to the
low-tail percentile of the max-normalized wi dis-
tribution. The values in equation (33) were tuned
by examining the eigendecompositions of A using
iPTF image data acquired across different envi-
ronments, from low source-density to densities ap-
proaching those in the galactic plane. A range of
T values were then tested by exploring the impact
of the corresponding regularized solutions on the
overall fit χ2 (equation 21). Examples of these
eigendecompositions are shown in Figure 8. The
criterion in equation (33) corresponds to approxi-
mately an inflexion point in the relative eigenvalue
size. This choice is also conservative in the sense
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Fig. 8.— Relative eigenvalue strength (crosses) and eigenvector magnitude (circles) versus eigenvector index
i. Increasing i corresponds to progressively higher spatial frequencies, eventually approaching the pixel
noise. Horizontal dashed lines correspond to dynamically derived truncation thresholds; see Section 4.7.1.
Results are shown for two kernel solutions derived for image partitions with two different source densities,
left: moderate to low-density typical of high galactic latitudes; right: a density that is ∼ 80× higher.

that the amount of legitimate high-frequency in-
formation thrown away (not associated with noise)
is expected to be insignificant as determined by
the change in χ2 with and without regularization
(T = 0). I.e., we ensure that ∆χ2 . 2σχ2 = 2

√
2ν,

where ν is the effective number of degrees of free-
dom. In the current setup for iPTF,

ν = (psfsz × psfsz) − (LM + 1)

= (25 × 25) − (9 × 9 + 1) = 543.
(34)

The regularization threshold T is also depen-
dent on the size of the kernel assumed (= L ×M
free parameters to solve) since this determines the
relative fraction of noise contributing to the Klm

estimates. The kernel image size was tuned before-
hand to be small enough to avoid introducing too
many free parameters that would result in overfit-
ting on noisy backgrounds in the PSF stamps, but
large enough to accomodate the range of seeing
(point-source profile widths) encountered. This
ensures both unbiased kernel solutions and min-
imal variance following their application, i.e., a
compromise in the bias versus variance tradeoff
mentioned above.

When a PSF-matching kernel image with esti-
mates Klm is available, a measure of the relative
residual gain between the science and reference
image pixels for a specific image partition (from
which Iij and Rij were extracted) is given by the
sum:

Ksum =
∑

l

∑

m

Klm. (35)

The Ksum values (across all image partitions) can
be used to assess the accuracy of the global rel-
ative gain correction computed upstream (Sec-
tion 4.2.1). More importantly, they provide local
estimates of any residual photometric gain where
if significant, can be used to refine the gain factor
at the image partition level prior to differencing
(see Section 4.8). Ksum also provides a diagnostic
to assess the quality of the kernel solution. For ex-
ample, an image partition with a Ksum that signif-
icantly deviates from unity compared to that of its
neighboring partitions could indicate a problem in
the estimation process, perhaps triggered by bad
or low-quality input PSFs. For details, see the
discussion on quality assurance in Section 4.8.2.

To summarize, we have extended the “free
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Fig. 9.— Top left and right: zoomed-in region on a preprocessed science and resampled reference image
respectively containing a portion of the M13 Globular Cluster and measuring ≃ 5′ on a side. The magenta
regions are saturated pixels. Middle left and right: PSF-matching kernels based on no regularization (from
a näıve inversion of equation 27) and with regularization respectively (Section 4.7.1). These are enlarged for
clarity. Bottom left and right: difference images resulting from “science minus kernel-convolved reference”
for the unregularized and regularized kernels respectively. Saturated pixel regions were reset to zero in
the difference images. These were also spatially-expanded from their original size (top images) due to the
convolution process. The bright source-like residuals in the difference images are on the locations of known
RR-Lyrae variable stars. For an animation of products for the entire CCD across multiple epochs, see
http://web.ipac.caltech.edu/staff/fmasci/home/idemovies/d4335ccd8f2movie.html.
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form” delta-function model representation to de-
rive PSF-matching kernels by performing a simple
regularization of the matrix system used for the
least-squares solution. This uses an eigendecom-
position to retain the most significant basis vectors
within a statistically validated threshold. We have
coined this the PiCK method. Figure 9 shows ex-
amples of input images, kernels, and the resulting
difference images for a relatively dense field with
and without regularization included. The relative
change in χ2 (equation 21) going from the unreg-
ularized to regularized solution for the entire im-
age shown in Figure 9 is ≈ −3.5%. The PiCK
method leads to smoother PSF-matching kernels
and hence difference images in general. It is also
robust against contamination in the input PSFs
(Iij and Rij), for example when constructed from
high source-density regions.

4.8. Kernel Application and Difference
Image Products

The PSF-matching convolution kernel is first
normalized to unity to yield

K̃lm =
Klm

Ksum
, (36)

where Ksum was defined by equation (35). K̃lm

is then convolved with the specific image partition
that was initially selected for convolution using the
method in Section 4.7, i.e., defining the convolu-
tion direction. The reason for decoupling Ksum

(the local relative gain factor) from the raw ker-
nel Klm is so that any residual gain correction can
be refactored and applied as a multiplicative cor-
rection on the science image pixels only, and not
the resampled reference image, regardless of the
convolution direction. This is consistent with our
modus operandi in PTFIDE: all corrections are ap-
plied to the science image pixels, in order to match
the photometrically and astrometrically calibrated
reference image as best as possible.

If the reference image was selected for convolu-
tion, the difference image pixel values for an im-
age partition from which the kernel and differential
background estimates were derived can be written:

Dij =

[
Iij − dBo

Ksum

]
−
∑

l

∑

m

K̃lmR(i+l)(j+m).

(37)

If the science image was selected for convolution,
the difference image pixel values for the image par-
tition can be written:

Dij =

[
dBo + Ksum

∑

l

∑

m

K̃lmI(i+l)(j+m)

]
−Rij .

(38)

Two difference images per science, reference
image pair are generated, a positive (sci – ref)
and negative (ref – sci) difference image. As de-
scribed in Section 3.4, this is to enable the de-
tection of transients and variables that happen
to be below the reference-image baseline level at
any observation epoch. The positive and nega-
tive difference images are written to FITS format-
ted files with filename suffixes pmtchscimref.fits
and pmtchrefmsci.fits respectively. If the de-
bug switch was set, ancillary products represent-
ing the different components of equations (37) or
(38) prior to differencing can also be generated
(see Table 4). These are the final science im-
age, convolved or not with Ksum and dBo applied:
scibefdiff.fits, and the convolved counterpart: ei-

ther K̃ ⊗ Rij or K̃ ⊗ Iij : pmtchconvref.fits or
pmtchconvsci.fits respectively.

The science and reference image bad-pixel
masks generated upstream (Section 4.1) include
the effects of convolution where bad pixel re-
gions are expanded accordingly. These are com-
bined to produce a final effective bad-pixel mask
for both the positive and negative difference im-
ages. If the debug switch was set, this can also
be written to FITS format with filename suffix
pmtchdiffmsk.fits. Furthermore, all bad pixels

in the difference images are tagged with value
-999999.

An image of the 1-σ uncertainties correspond-
ing to the Dij images (equation 37 or 38) is also
generated. These uncertainties are estimated by
RSS’ing the input uncertainties for the science and
reference images (equations 11 and 12 respectively
in Section 4.5) with a correction for correlated-
noise:

σDij
= Fc

√
σ2
sci + σ2

ref . (39)

The correlated-noise correction factor Fc accounts
for the diminution in the pixel RMS noise (lost to
covariance) due to the convolution process. Recall
that this convolution may have been performed on
either the science or reference image (see above).
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Fc is approximated as the ratio of the robust pixel
RMS in the actual difference image to the RSS’d
background RMSs in the science and reference im-
ages prior to any convolution:

Fc ≈
σbckdiff√

σ2
bcksci + σ2

bckref

. (40)

The background variances in the denominator of
equation (40) are the same estimates used in equa-
tions (11) and (12) of Section 4.5. The pres-
ence of correlated-noise in the difference image
will underestimate the photometric uncertainties
of extracted sources therefrom if not properly ac-
counted for on the spatial scales of interest (i.e.,
the spatial-extent on which the photometry is per-
formed). Note that Fc does not represent any cor-
rection at the source level. Its purpose is to cap-
ture any modification to the input uncertainties
(σsci and σref ) due to smoothing from the PSF-
matching process. The source level correction is
computed and applied during the source extrac-
tion step (see Section 4.9.2).

4.8.1. Photometric Zero Point Quality Check

Following application of the spatially-dependent
convolution kernels and associated gain-corrections
(Ksum) to the science image pixels (equations 37
and 38), we compute a new photometric zero-
point for the adjusted science image. This ZP
will also be applicable to the difference images
generated therefrom. It provides a sanity check
on the global-image ZPSCI value computed up-
stream using the input absolutely calibrated ref-
erence image photometry (see Section 4.2.2). As
mentioned, ZPSCI enables a more accurate abso-
lute calibration of either PSF-fit or “big”-aperture
photometry.

The new ZP is only computed if the –phtcaldif
switch was specified on input. If so, it is writ-
ten as the ZPDIF keyword with accompanying
RMS ZPDIFRMS to the FITS headers of both
the positive and negative difference images. The
computation uses exactly the same methodology
as outlined in Section 4.2.2. If the debug switch
was set, a catalog of the reference-to-science image
matches used to compute ZPDIF is generated with
suffix sx scibefdiff.tbl. When the PSF-matching
and additional gain-refinement steps perform as
intended, ZPDIF is generally consistent with ZP-

SCI, within random measurement error. Large de-
viations in ∆ZP = ZPSCI − ZPDIF usually
imply a problem with either the PSF-matching
kernel(s), the input astrometry, or its later refine-
ment since astrometric accuracy will indirectly af-
fect the source matching step used to estimate the
ZPs. ∆ZP therefore provides a powerful quality
assurance metric.

4.8.2. Difference-Image Quality Assurance Met-
rics

Metrics and diagnostics for a difference image
product are shown in Table 6. These encom-
pass information on photometric zero-points; pixel
statistics before and after PSF-matching; proper-
ties of the PSF-matching kernels; statistics on the
input science and reference images; global image
FWHM values; and the number of candidates ex-
tracted (Section 4.9). These metrics are used to
support later machine-learned vetting (Section 6).

In PTFIDE processing, two checks are per-
formed to assess the quality of the difference im-
age: (i) “atrocious” and unusable for extracting
candidates, and (ii) simply “bad” and warranting
visual examination before use. PTFIDE does not
extract candidates if (i) is satisfied, but does pro-
ceed to extract candidates if (ii) is satisfied. The
indicator flag for either condition is the status flag
in Table 6 [= 0 (bad) or 1 (good)]. Even though
candidates are extracted under (ii) during process-
ing, these are not loaded into the database (Sec-
tion 5). The rationale is that “bad” subtractions
will lead to thousands of spurious candidates and
strain both database loading as well as machine-
learned vetting downstream. The conditions for
(i) and (ii) are determined using one-dimensional
cuts on a number of metrics from Table 6 as fol-
lows.

First, a difference image is flagged “atrocious”
if the following criteria are satisfied:

diffpctbad > thres a1 or

(∆χ2
med > thres a2 &

∆χ2
avg > thres a3) or

diffsigpix > thres a4 or

|1 −medksum| > thres a5 or

medkpr > thres a6 or

(maxksum−minksum) > thres a7,

(41)
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where in terms of the metrics listed in Table 6,

∆χ2
med =

chisqmedaft− chisqmedbef

chisqmedbef
,

∆χ2
avg =

chisqavgaft− chisqavgbef

chisqavgbef

(42)

and the seven thresholds (thres ai) are specified
by the –uglydiff input string with defaults defined
in Table 2.

If the difference image is not labelled atrocious
according to the criteria in (41), it is subject to
the less-severe criteria below. These are applied
after transient candidates are extracted. The met-
rics used here are therefore a subset of those from
above (but with lower “badness” thresholds) and
others related to the number and properties of can-
didates extracted. See Table 6 for definitions.

diffpctbad > thres b1 or

(∆χ2
med > thres b2 &

∆χ2
avg > thres b3) or

diffsigpix < thres b4 or

diffsigpix > thres b5 or

|1 −medksum| > thres b6 or

medkpr > thres b7 or

ncandfiltrat(posdiff) > thres b8 or

ncandfiltrat(negdiff) > thres b9 or

refinpseeinga

sciinpseeing
> thres b10 or

refconvseeingb

sciinpseeing
> thres b11.

(43)

The eleven thresholds (thres bi) are specified by
the –baddiff input string with defaults defined in
Table 2. If the criteria in (43) are satisfied, status
= 0 is assigned to indicate a possibly “bad” differ-
ence. This flag is propagated to the subtractions
table of the transients database (Section 5).

Table 5 summarizes the percentages of atro-
cious, bad, and good difference images obtained
from real-time processing for two sky regions span-
ning different galactic latitudes and longitudes.
These regions sample the extremes in source-
density: near the galactic center and bulge, and

a This ratio is used if the reference image was convolved,
otherwise the inverse of this ratio is used.
b This ratio is used if the reference image was convolved,
otherwise the ratio is refconvseeing/refinpseeing.

high galactic latitudes. These were covered by
iPTF from August 2015 to January 2016. The
high fraction of failures near the galactic center (or
bulge) can be attributed to adverse effects from
high source confusion on the processing steps prior
to differencing, for example, astrometric calibra-
tion, and/or gain and PSF-matching. All these
steps depend on source-matching of some kind
between the science and reference images, and is
severely challenged in regions of high source den-
sity. For examples of bad or unusable difference
images and their causes, see Section 6.2.

If the debug switch was set, an image of the
locally-smoothed pixel chi-square is generated for
both positive and negative difference images. This
is analogous to a reduced χ2 and is defined as:

χ2
d =

〈
D2

ij

σ2
Dij

〉

ij

, (44)

where the angled brackets denote boxcar averag-
ing over pixels i, j that fall within 8× 8 pixel bins
over the difference image. The image generated
from equation (44) is written to a FITS formatted
file with suffix pmtchdiffchisq.fits. Large values in
χ2
d (significantly above unity) may indicate resid-

uals from imperfect instrumental calibrations, un-
derestimated pixel uncertainties, or the presence
of real transient sources. Small values (χ2

d ≪ 1)
will imply that the pixel uncertainties are overes-
timated.
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Table 5

Difference Image Quality Statistics

Quality |b| ≤ 5◦; 320◦ ≤ l ≤ 40◦ |b| ≥ 70◦; 0◦ ≤ l < 360◦

(1824 diff. images) (7629 diff. images)

atrociousa 25.0% 0.42%

badb 34.5% 11.18%
goodc 40.5% 88.40%

aFlagged according to the criteria in (41).

bFlagged according to the criteria in (43).

cSatisfy neither (41) or (43).
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Table 6

Difference image-based Quality Assurance Metrics from PTFIDE

Metrica Description

zpmaginpsci Photometric zeropoint (ZP) estimate of science image before rescaling to reference [mag]
zpmaginpsciunc 1-σ uncertainty in zpmaginpsci [mag]
zpmagcormed Median ZP correction offset to zpmaginpsci over all partitioned convolution kernel sums [mag]
zpmagcormin Min. ZP correction offset to zpmaginpsci over all partitioned convolution kernel sums [mag]
zpmagcormax Max. ZP correction offset to zpmaginpsci over all partitioned convolution kernel sums [mag]
zpmaginpscicor Refined photometric zeropoint (ZP) of science image following application of kernel sums:

“zpmaginpsci + zpmagcormed” [mag]
zpfacinpsci Photometric scale factor applied to science image to match reference image ZP
zpfacinpsciunc 1-σ uncertainty in zpfacinpsci
zpref Photometric zeropoint (ZP) of input reference image [mag]
nmatch Number of sources matched within 3.0 pixels between science and reference images to support

initial gain-matching and astrometric refinement
fluxrat Median flux ratio of matched sources prior to global gain-matching: fluxsci/fluxref
pctfluxrat 5th − 95th percentile range in ’fluxrat’ values of matched sources
deltax Median positional difference along X-axis using matched sources: Xref −Xsci [pixels]
sigdeltax 1-σ uncertainty in deltax [pixels]
pctdeltax 5th − 95th percentile range in deltax values across matched sources [pixels]
deltay Median positional difference along Y-axis using matched sources: Yref − Ysci [pixels]
sigdeltay 1-σ uncertainty in deltay [pixels]
pctdeltay 5th − 95th percentile range in deltay values across matched sources [pixels]
medksum Median pixel-sum of all image-partitioned raw convolution kernel sums
minksum Minimum pixel-sum of all image-partitioned raw convolution kernel sums
maxksum Maximum pixel-sum of all image-partitioned raw convolution kernel sums
medkdb Median differential background over all image-partitioned raw convolution kernels [DN]
minkdb Minimum differential background over all image-partitioned raw convolution kernels [DN]
maxkdb Maximum differential background over all image-partitioned raw convolution kernels [DN]
medkpr Median 5th − 95th percentile pixel range of all image-partitioned raw convolution kernels
minkpr Minimum 5th − 95th percentile pixel range of all image-partitioned raw convolution kernels
maxkpr Maximum 5th − 95th percentile pixel range of all image-partitioned raw convolution kernels
zpdiff Photometric zero point of difference image [mag]
ngoodpixbef Number of good pixels in difference image before PSF-matching [pixels]
ngoodpixaft Number of good pixels in difference image after PSF-matching [pixels]
nbadpixbef Number of bad pixels in difference image before PSF-matching [pixels]
nbadpixaft Number of bad pixels in difference image after PSF-matching [pixels]
medlevbef Difference image median level before PSF-matching [DN]
medlevaft Difference image median level after PSF-matching [DN]
avglevbef Difference image average level before PSF-matching [DN]
avglevaft Difference image average level after PSF-matching [DN]
medsqbef Median of squared differences before PSF-matching [DN2]
medsqaft Median of squared differences after PSF-matching [DN2]
avgsqbef Average of squared differences before PSF-matching [DN2]
avgsqaft Average of squared differences after PSF-matching [DN2]
chisqmedbef Difference image chi-square using median before PSF-matching
chisqmedaft Difference image chi-square using median after PSF-matching
chisqavgbef Difference image chi-square using average before PSF-matching
chisqavgaft Difference image chi-square using average after PSF-matching
scibckgnd Modal background level in science image after gain and background matching [DN]
refbckgnd Modal background level in ref-image after gain, background matching, and resampling [DN]
scisigpix Robust sigma per pixel in science image after gain and background matching [DN]
refsigpix Robust sigma per pixel in ref-image after gain, background matching, and resampling [DN]
scigain Effective electronic gain in science image after gain-matching [e-/DN]
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Table 6—Continued

Metrica Description

scisat Saturation level in science image after gain-matching [DN]
refsat Saturation level in reference image after resampling [DN]
scimaglim Expected 5-σ magnitude limit of science image after gain and background matching [mag]
refmaglim Expected 5-σ mag. limit of ref-image after gain, background matching, and resampling [mag]
diffbckgnd Median background level in difference image [DN]
diffpctbad Percentage of difference image pixels that are bad/unusable [%]
diffsigpix Robust sigma per pixel in difference image [DN]
diffmaglim Expected 5-σ magnitude limit of difference image [mag]
sciinpseeing Seeing (point source FWHM) of input science image [pixels]
refinpseeing Seeing (point source FWHM) of input reference image [pixels]
refconvseeing Seeing (point source FWHM) of reference image after convolution [pixels]
ncandraw Number of candidates extracted from difference image before any internal filtering (for pos-

itive and negative difference)
ncandfilt Number of candidates extracted from difference image after internal filtering using chi, sharp,

and snr source metrics; this is the actual number loaded into database (for positive and
negative difference)

ncandgood Number of candidates from difference image likely to be real using 1-D cuts on several
extracted source features (for positive and negative difference)

nrefsrcstodifflim Number of reference image extractions to difference-image mag limit (diffmaglim)
ncandfiltrat ratio: ncandfilt / nrefsrcstodifflim (for positive and negative difference)
status Good/bad difference image status flag (= 1 or 0); based on combining a number of internal

image metrics (see Section 4.8.2). Only candidates from status = 1 subtractions are loaded
into database for vetting

aA majority of these are loaded into the subtractions relational database table (Section 5) to support trending and machine-learned
vetting (Section 6).
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4.9. Candidate Transient Detection and
Photometry

The detection and photometry of transient can-
didates on both the positive and negative differ-
ence images is performed using an automated im-
plementation of the DAOPhot tool (Stetson 1987,
2000). This includes the subsidiary program All-
star which performs PSF-fit photometry on the
detections found by DAOPhot. The primary out-
put photometry for characterizing transient can-
didates is PSF-fitting. Fixed concentric aperture
photometry is also generated as a diagnostic. The
benefits of PSF-fit photometry cannot be stressed
enough, at least for detecting transient events. For
example, this provides better photometric accu-
racy to faint fluxes; the ability to de-blend con-
fused sources; and simple metrics to distinguish
point (PSF-like) sources from artifacts. These
metrics can be used to maximize the reliability
of candidates.

Perl routines were written to automate all
decision-related and processing steps in DAOPhot.
These steps would have been done interactively in
classic DAOPhot. This includes all file I/O, pa-
rameter handling, checking of outputs, and quality
assurance. The steps are summarized below.

4.9.1. Point Source Detection

DAOPhot first detects sources for input into
either the PSF-determination step or final PSF-
fitting step using a matched filter via its find algo-
rithm. The filter is constructed from a Gaussian
with a proxy for the image FWHM computed up-
stream using SExtractor on the science image.
This Gaussian is convolved with the image in
question to construct the point-source matched
filter, i.e., an internal product that is optimized
for point-source detection. This assumes that
the PSF is approximately spatially uniform over
the image, and for the purpose of detection, the
penalty in detection S/N by not using the precise
spatially-varying PSF is negligible. This image
is then background-subtracted using local esti-
mates of the background. The pixel-uncertainty
product from equation (39), which effectively
includes contributions from detector read-noise,
background, and Poisson noise at the location of
sources, is internally readjusted to account for the
matched filtering. The ratio of the match-filtered,

background-subtracted image and its correspond-
ing uncertainty image is then thresholded. Either
the –tdetpsf or –tdetdao S/N parameter threshold
is used depending if PSF-determination or final
dectection is desired respectively. If the debug
switch was set, the detection tables from these
steps are written to files with extension .coo (see
Table 4 for filenames).

4.9.2. PSF Determination, PSF-fitting and Aper-
ture Photometry

PSF generation and PSF-fit photometry (or
source extraction of any form) are only attempted
if the input difference image was determined to be
of sufficient quality according to a number of qual-
ity metrics (see Section 4.8.2). If not, PTFIDE
processing terminates gracefully after the image
differencing step. Furthermore, PSF-fit photome-
try can be intentionally turned off by omitting the
–psffit switch.

The base parameters specific to DAOPhot and
Allstar reside in configuration files specified by
–cfgdao and –cfgpht, with some of the more im-
portant (threshold-like) parameters therein over-
ridden by the command-line inputs: –tmaxpsf,
–tdetpsf, and –tmaxdao. Also, some parame-
ters are computed dynamically within ptfide.pl
and override those from both the input files and
command-line. These parameters are those that
depend on the image noise, usable pixel range,
and image FWHM: RE, LO, HI, FW, PS, FI, and
nested aperture radii Ai where i = 1 . . . 6. The pa-
rameters that depend on the input FWHM (FW)
are the linear-half-size of the PSF image stamp,
PS (for PSF-creation only); the PSF-fitting radius,
FI; and the aperture radii Ai, all in units of pix-
els. Respectively, these parameters are adjusted
according to:

PS = min (19, int{max [9, 6FW/2.355] + 0.5}) ,

F I = min (7,max [3, FW ]) ,

Ai = min (15, 1.5max [3, FW ]) + i− 1,
(45)

where i = 1 . . . 6, and “min”, “max”, “int” denote
the minimum, maximum, and integer part of the
argument.

When ptfide.pl is run in PSF-fit photome-
try mode (with the –psffit switch), only one
aperture measurement corresponding to a sin-
gle fixed aperture is written to the primary out-
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put tables: file suffixes pmtchscimrefpsffit.tbl and
pmtchrefmscipsffit.tbl for the positive and neg-

ative difference images respectively. This is the
aperture number i corresponding to the user-
specified parameter –apnum (currently = 3). If
however, the –apphot switch was also specified,
all nested aperture measurements (i = 1 . . . 6)
are written to separate tables with file suffixes
pmtchscimrefapphot.tbl and pmtchrefmsciapphot.tbl.

These products are not currently generated in pro-
duction. It’s important to note that the aperture
measurements are not curve-of-growth corrected
to account for the variable seeing. They only serve
as diagnostics (or source “features”; Table 7) to
support machine-learned vetting (Section 6).

The PSF used for PSF-fitting is estimated au-
tomatically using utilities within DAOPhot and
Allstar. Its shape over a CCD image is modeled
as a linear function in x, y. This dependence is
sufficient to catch spatial variations in the PSF
and avoids introducing too many free parameters.
The PSF is always estimated from the resampled
and possibly convolved reference image (following
PSF-matching). This is because the reference im-
age (convolved or not) is expected to have a higher
S/N than the science image. In the end, we want
to estimate the PSF on an image whose point-
source profiles match those in the difference im-
age (either positive or negative). In theory, given
that the only operations performed on the input
images prior to differencing are gain, background
and PSF-matching, and given that differencing is
a linear operation, either the science or reference
image would have sufficed for PSF estimation.

For iPTF, no more than the brightest 200 point
sources with magnitudes ≥ 15.5 are automati-
cally selected per CCD image to estimate an ini-
tial spatially-varying PSF. This is refined in a sec-
ond iteration by subtracting neighboring sources
(in the wings) from the initially chosen PSF stars
and then re-estimating the PSF. This second iter-
ation can be rather slow if there are many neigh-
bors since it involves PSF-fitting to obtain the
fluxes and positions of the neighbors to subtract.
To speed up the process, we regulate the number
of neighbors to consider by only subtracting the
brightest 1000 neighbors to all the initially PSF-
picked stars. Therefore, given a random distribu-
tion of sources and ≤ 200 sources picked for PSF
generation, & 5 (brightest) sources on average will

be subtracted prior to refinement of the PSF in the
second iteration. This makes the PSF estimation
relatively fast and robust, and there are always
enough stars in an image to yield a reasonably ac-
curate PSF model.

The PSF model is stored in the default DAOPhot
format, with output file suffix pmtchconvrefdao.psf
if the reference image was convolved, otherwise
resamprefdao.psf if the science image was con-

volved. This file consists of a look-up table of
corrections to a best-fitting Gaussian basis model
over the image. Other basis functions are avail-
able, but we found a Gaussian works reasonably
well for PTF data (in terms of photometric ac-
curacy). This basis representation also has the
least number of free parameters. If the debug
switch was set, the DAOPhot-formatted PSF
file is converted to a FITS image of 16 × 32
PSF-stamps for visualization (output file suffix
pmtchconvrefdaopsf.fits). Other ancillary files,

e.g., the list of PSF-picked stars, their neighbors,
and DS9 region files are also generated (see Ta-
ble 4).

Following PSF estimation, sources are detected
on the positive and negative difference images
above a specific threshold as described in Sec-
tion 4.9.1. PSF-fit photometry is then performed
using Allstar. This program estimates seven quan-
tities per input detection: flux; flux uncertainty
(to be rescaled later, see below); refined image x,
y position; uncertainties in x, y; and two met-
rics from the fit: chi, and sharp (see below).
We do not iteratively subtract the PSF to un-
cover new sources that were missed in the first
detection pass, e.g., because they were hidden in
the wings of brighter sources. This is commonly
done for crowded fields. Given we are extracting
sources from difference images, source-crowding
(or rather, blending of transient candidates) is
largely absent, even in areas of high source den-
sity. One can argue however for cases where in-
strumental residuals could blend with real tran-
sient sources. This is also rare, but nonetheless the
components of a blend only need to be detected
in the first place so that simultaneous PSF-fitting
can yield fluxes and other metrics for further ex-
amination downstream.

The PSF-fit fluxes are converted to absolute
calibrated magnitudes using the ZPSCI image ze-
ropoint computed upstream (Section 4.2.2). This

46



Draft manuscript for Publications of the Astronomical Society of the Pacific

places the photometry on the PTF filter sys-
tem (Ofek et al. 2012). Note that the suppos-
edly refined ZPDIF value (Section 4.8.1) is not
used since analyses have shown that it exhibits a
greater variance than ZPSCI. This arises from sys-
tematics in the PSF-matching and relative gain-
matching process. The source x, y positions are
converted to R.A., Dec. using the difference im-
age WCS (inherited and refined from the refer-
ence image WCS). This information is written to
the transient-candidate extraction tables (one for
each difference image; see above). DS9 region files
also accompany these tables (see Table 3 for file-
names).

4.9.3. Correcting Uncertainties for Correlated
Noise

Another detail is correcting the flux uncertiain-
ties from PSF-fitting for correlated pixel-noise in
the difference image. As discussed in Sections 4.5
and 4.8, correlated noise arises from the reference-
image construction process (interpolation and re-
sampling), but the more dominant effect is from
convolution by the PSF-matching kernel, where ei-
ther the science or reference image may have been
convolved. Given that the reference image has a
higher S/N in general, and that this is the image
that is usually convolved (by design), the fraction
of the pixel noise that is correlated in a difference
image is likely to be small. For example, if the
reference image is made from a stack of Nf sci-
ence images all with similar pixel noise-variances,
the fractional contribution to the difference image
pixel-noise from the (convolved) reference would
be ≃ (1 + Nf )−0.5. If the science image were con-
volved however, the fractional contribution would
be greater, i.e., ≃ (1 + [1/Nf ])−0.5, approaching
100% if Nf is large.

We use a simple method to correct the source-
flux uncertainties from PSF-fit photometry be-
fore writing them to the photometry tables. The
flux uncertainties from Allstar are estimated us-
ing some combination of the difference image pixel
uncertainties (equation 39) within the effective
fitting area of the PSF. Following convolution
(smoothing) of the one of the images, these will un-
derestimate the true source-flux uncertainty. The
true uncertainty contributed by the convolved im-
age can be recovered by scaling its pixel uncer-

tainties by the effective number of noise pixels8

defining the convolution kernel:

Nk =

[
∑

l

∑

m

K̃2
lm

]−1

, (46)

where K̃lm are the unit-normalized pixel values of
the kernel image (equation 36). Nk effectively rep-
resents the correlation length (or in this case the
correlation area) in pixels. Therefore, we seek a
correction factor C for scaling the difference im-
age source flux variance which can also be written
in terms of its science and reference image contri-
butions, after convolution by K̃lm:

Cσ2
srcdiff = σ2

srcsci + Nkσ
2
srcref , (47)

where we assume (for illustration) that the ref-
erence image was convolved. If the science im-
age was convolved, Nk would be multiplying the
science image variance term. Since all the flux-
variance terms in equation (47) are some weighted
combination (or effectively an RSS) of the pixel
noise variances, in the limit of background-
dominated noise, the correction factor can be es-
timated from:

C ≈
σ2
bcksci + Nkσ

2
bckref [conv]

σ2
bckdiff

, (48)

where the variances now denote robust esti-
mates of the background pixel RMS in the sci-
ence, [convolved] reference, and difference images.
These quantities are estimated within respective
image partitions, i.e., the same partitions used
to compute the kernel images (and hence Nk).
This construction was verified using Monte Carlo
simulations8.

4.9.4. Coarse Filtering of Raw Candidates

The raw candidates initially extracted from the
difference images as described in Section 4.9.2
undergo loose filtering prior to writing them
to the transient-candidate tables (file suffixes
pmtchscimrefpsffit.tbl and pmtchrefmscipsffit.tbl

for positive and negative difference images respec-
tively). The intent is to catch the most deviant
non-PSF-like residuals from the difference images

8see http://web.ipac.caltech.edu/staff/fmasci/home/

mystats/ApPhotUncert corr.pdf
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and remove them. This somewhat relieves traffic
on database loads (Section 5) and the machined-
learned vetting step (Section 6) which also heavily
relies on interactions with the database.

This simple filtering can result in reductions of
up to a factor of five in the number of raw transient
candidates initially detected from the point-source
match-filtered image down to S/N ≃ 3.5 (–tdetdao
input threshold; Table 2). It’s worth mentioning
that this relatively low initial detection threshold
is to ensure completeness prior to further filter-
ing and analysis downstream, including photomet-
ric S/N. The filtering applied to the raw detected
candidates is chi ≤ −tchi; |sharp| ≤ −tshp;
snrpsf > −tsnr, where the thresholds on the
right are currently 8, 4, and 4 respectively (from
Table 2).

All these parameters are source-based met-
rics from PSF-fitting and are defined as follows:
chi – the ratio of the RMS in PSF-fit residu-
als to that expected using prior pixel uncertain-
ties; sharp – effectively the difference between the
squared FWHM of the source light profile (from
a 2D Gaussian fit) and that expected from the
PSF template model derived for the image, i.e.,
FWHM2

obs − FWHM2
psf ; and snrpsf – the pho-

tometric signal-to-noise ratio using the PSF-fitted
flux and uncertainty. Relatively large values of chi
and/or |sharp| indicate deviations from the nomi-
nal PSF template estimated upstream for the dif-
ference image (Section 4.9.2). The optimum values
of chi and sharp are 1 and 0 respectively. For ex-
ample, a cosmic-ray spike would yield sharp ≪ 0
and an extended source sharp ≫ 0, as well as
chi ≫ 1 for both these cases. The number of
candidates that satisfy initial filtering using chi,
sharp, and snrpsf are recorded as ncandfilt in the
QA output table (Table 6).

Figure 10 shows an example of the distribution
in chi versus sharp for raw transient candidates ex-
tracted from a collection of iPTF difference images
acquired during late 2015 to early 2016, mostly at
high galactic latitudes. The solid rectangle shows
the region covered by “reliable” (likely-real) can-
didates according to a machine-learned classifica-
tion (realbogus) score of ≥ 0.8 (see Section 6 for
details). The rectangle boundaries span 1 - 99 per-
centile ranges along each axis for these likely-real
candidates only. Note that the machined-learned
classifier uses over 40 metrics (or features from Ta-

bles 6 and 7) for scoring, of which chi and sharp
are the most important.
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Fig. 10.— chi versus sharp parameters from PSF-
fitting (using DAOPhot) for transient candidates
extracted from ≃ 30, 000 difference images. Only
candidates with 14.0 ≤ RPTF ≤ 18.5 and S/N
> 5 were used. The solid rectangle spans the 1
- 99 percentile range along each independent axis
for candidates with a real-bogus machine-learned
reliability score of ≥ 0.8 (see Section 4.9.4 for de-
tails).

4.9.5. Candidate Source Metadata and Features

In addition to the measurements and met-
rics from PSF-fitting (see above), the transient-
candidate extraction tables are augmented with
more metrics and features to support machine-
learned vetting (Section 6). Most of these met-
rics are listed in Table 7. The shape metrics,
for example aimage, bimage, elong, are computed
by first executing SExtractor, then associating
the extractions (with metadata) with those from
DAOPhot above. Furthermore, the source met-
rics with names that end in nr in Table 7 refer to
those of the nearest reference image source. These
are assigned by associating the DAOPhot extrac-
tions with the input reference-image catalog, also
originally from SExtractor.

Prior to implementation of the machine-learned
vetting (Section 6), we resorted to simple one-
dimensional cuts on a number of metrics in Table 7
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in order to isolate those candidates as probably
real transients. Unlike machine-learning, this in-
volved no probabilistic classification of candidates
into likely reals and bogus transients. It only pro-
vided a means to isolate candidates for further
follow-up. The most powerful metrics and filter-
ing logic we have found to label a candidate as
“interesting” are as follows:

chi < thres s1 &

|sharp| < thres s2 &

snrpsf > thres s3 &

magfromlim ≥ thres s4 &

nneg ≤ thres s5 &

nneg 6= −999 &

nbad ≤ thres s6 &

nbad 6= −999 &

|magdiff | ≤ thres s7 &

mindistoedge > thres s8 &

magnr > thres s9 &

distnr > thres s10 &

elong < thres s11 &

|1 − ksum| ≤ thres s12 &

kpr < thres s13

(49)

where the metric names on the left are defined
in Table 7 and the corresponding thresholds
(thres si) are specified by the –goodcuts input
string with defaults defined in Table 2. The num-
ber of candidates that satisfy the above criteria
per difference image are recorded as ncandgood in
the QA output table (Table 6).

Figure 11 shows the number of transient can-
didates extracted from a collection of iPTF dif-
ference images acquired during late 2015 to early
2016, mostly at high galactic latitudes. These are
shown as a function of the (point-source) FWHM
and density of sources extracted from the sci-
ence image using SExtractor to a fixed magni-
tude limit of RPTF ≃ 20.5 mag. Three differ-
ent levels of candidate filtering are shown: first,
the number initially extracted using the loose fil-
tering described in Section 4.9.4 (ncandfilt); sec-
ond, the number resulting from the simple one-
dimensional cuts in Section 4.9.5 (equation 49;
ncandgood); and third, the number satisfying a
machine-learned classification (realbogus) score of

> 0.73. This score corresponds to a false posi-
tive rate of . 1% (see Section 6). A noteworthy
feature in Figure 11b is the significant reduction
in the number of initial candidates at relatively
high source densities following simple 1-D filtering
(yielding ncandgood) or machine-learned vetting.
In the end, the number that are visually-scanned
and subject to scrutiny before further follow-up
are those that were machine-learned vetted (dia-
monds in Figure 11).

We have constructed animations of difference-
images for two PTF CCD footprints made from
image data acquired at > 200 observation epochs.
These can be accessed from the following URLs:

• Field containing the M13 Globular Cluster:
http://web.ipac.caltech.edu/staff/fmasci

/home/idemovies/d4335ccd8f2movie.html

• Field heavily used for supernova searches:
http://web.ipac.caltech.edu/staff/fmasci

/home/idemovies/d4450ccd2f2movie.html

Each epochal difference image is annotated with
the two candidate numbers mentioned above (and
shown in Figure 11): ncandfilt (or Nraw in
the animation frames) and the number follow-
ing machine-learned vetting above a realbogus (rb)
cut: N(rb > 0.73).

4.9.6. Photometric Performance

One way to assess the photometric accuracy
of the difference-image extractions is to examine
the repeatability in their photometry under differ-
ent observing conditions and/or input noise as-
sumptions. Instead, we explore the photomet-
ric repeatability empirically at prior source po-
sitions across a stack of difference images gen-
erated from spatially-overlapping exposures ac-
quired over a range of observation epochs. Unfor-
tunately we cannot perform this test on real flux-
transients and variables because they intrinsically
vary and will confuse repeatability statistics. We
have resorted to exploring the scatter in photomet-
ric measurements from forced photometry on a list
of prior source positions detected in a reference im-
age co-add. The majority of the sources here will
be non-variable and non-detected in the difference
images. Even though undetected, their photomet-
ric residuals will persist, therefore providing sen-
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Fig. 11.— Number of transient candidates extracted per positive difference image as a function of (a) seeing
FWHM and (b) integrated source density to RPTF ≃ 20.5 mag in the corresponding science image exposure.
Extractions are from ≃ 30, 000 difference images. To estimate the number of candidates per deg2, multiply
the vertical axes by ≃ 1.56 deg−2. See Section 4.9.5 for details.

sitive probes of all random (and systematic) er-
rors affecting the end-to-end difference image con-
struction process in a relative sense across epochs.
These residuals would arise from image misalign-
ments, erroneous photometric-gain matching, flat-
fielding errors, PSF-matching errors, Poisson noise
from the science and reference images, and other
instrumental/detector noise. At some level, there
are also airmass-dependent color-refraction effects
and astrometric scintillations.

It’s important to note that these residuals
will also include systematics from the forced-
photometry process itself. For example, for forced
PSF-fit photometry, these would include errors
in the PSF estimates for each epochal image and
their placement on the purported source positions
in the difference image (the prior positions se-
lected from the reference image). Therefore, the
photometric variance inferred using forced PSF-fit
photometry is likely to overestimate the true vari-
ance (or relative photometric accuracy) of detected
transients in a difference image. As a reminder,
the primary photometry measured for detected
transients in PTFIDE is PSF-fit photometry (Sec-
tion 4.9.2) where both flux and position are esti-

mated per source. In forced photometry on prior
positions, only fluxes are estimated.

Figure 12a shows an example of the robust
RMS in repeated forced PSF-fit photometry using
26,385 targets selected to R ≃ 22 mag from the ref-
erence image co-add. A portion of this reference
image is shown in Figure 12d where it contains
part of the North America Nebula. This was cre-
ated from 20 good-seeing CCD images. Note that
the complexity of this field is atypical of iPTF in
general, but it provides a good test of image differ-
encing in complex environments. Each reference-
target position probes > 150 difference images,
generated from CCD images acquired over several
months. The robust stack RMS is based on half
the 84.13 − 15.86 percentile difference in all pho-
tometric measurements per target position. This
measure is relatively immune to outliers. This
RMS is shown as a function of reference image
magnitude and can be interpreted in the context of
real transients extracted from difference images as
follows. A real transient with PSF-fit magnitude
RPTF is expected to have a 1-σ uncertainty in the
frequentist sense no larger than the RMS shown in
Figure 12a (i.e., relative to repeated measurement
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if the same event with the same intrinsic flux were
re-observed).

Figure 12b shows stack-RMS estimates for the
same prior target positions, but using forced aper-
ture photometry instead. A fixed aperture of ra-
dius 6 arcsec was used throughout. Comparing
with the forced PSF-fit photometry in Figure 12a,
there are two noteworthy differences: first, aper-
ture photometry results in a higher photometric
precision at bright fluxes; and second, aperture
photometry has a shallower limiting magnitude (5-
σ limits are depicted by the vertical dashed lines).
The converse of these applies to PSF-fit photom-
etry. PSF-fit photometry lacks precision (relative
to aperture photometry) at bright fluxes because
knowledge of the underlying PSF is more criti-
cal. Systematic errors in the shape of the PSF-
template and/or its centroiding will inflate errors
in the photometry by a greater amount. Aperture
photometry is more immune to these effects. The
encouraging observation is that PSF-fit photome-
try leads to a fainter sensitivity limit (or more ac-
curate photometry at fainter fluxes), in this case
by ≃ 0.7 magnitudes.

For comparison, Figure 12c shows the perfor-
mance of PSF-fit photometry extracted directly
from a set of science image CCD exposures falling
in a field flanking the North America Nebula. This
has a background that is not as complex. As ex-
pected, the precision at bright fluxes is consider-
ably higher that that inferred from forced PSF-
fit photometry on difference images (Figure 12a).
This is also higher than that achieved by forced
aperture photometry (Figure 12b). Furthermore,
the limiting magnitude from PSF-fitting on sin-
gle CCD exposures is in general deeper (by at
least 0.8 mag) than all other types of photome-
try performed for iPTF, for example SExtractor’s
mag auto measure (Section 3.3; Ofek et al. 2012).
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Fig. 12.— (a) RMS in photometric repeatability from forced PSF-fit photometry on difference images over-
lapping a ≃ 35′ × 70′ CCD footprint falling on the North America Nebula. Prior positions used to seed the
forced photometry are from the reference-image (co-add); (b) Same as (a) but using forced aperture photom-
etry on the same positions; (c) RMS in photometric repeatability from single-exposure PSF-fit extractions
(not forced on prior positions) from a nearby CCD footprint; (d) A ≃ 30′×55′ portion of the reference image
containing part of the North America Nebula and from which source positions where used for (a) and (b).
The vertical dashed lines in (a), (b), and (c) indicate the approximate 5-σ magnitude limits. The linked
solid circles are binned medians.
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Table 7

Transient Candidate Source Metrics and Features from PTFIDE

Metrica Description

xpos X-image coordinate [one-based pixels]
ypos Y-image coordinate [one-based pixels]
ra J2000 Right ascension [degrees]
dec J2000 Declination [degrees]
magpsf Magnitude from PSF fit [mag]
sigmagpsf 1-σ uncertainty in PSF-fit magnitude [mag]
flxpsf Flux from PSF fit [DN]
sigflxpsf 1-σ uncertainty in PSF-fit flux [DN]
magap Magnitude from aperture photometry [mag]
sigmagap 1-σ uncertainty in magap [mag]
flxap Flux from aperture photometry [DN]
sigflxap 1-σ uncertainty in flxap [DN]
snrpsf Ratio: flxpsf / sigflxpsf
sky Local sky background level [DN]
nneg Number of negative pixels in a 7 x 7 box
nbad Number of bad pixels in a 7 x 7 box
distnr Distance to nearest reference image extraction [arcsec]
magnr Magnitude of nearest reference image extraction [mag]
sigmagnr 1-σ uncertainty in magnr [mag]
arefnr aimage (major axis RMS) of nearest reference image extraction [pixels]
brefnr bimage (minor axis RMS) of nearest reference image extraction [pixels]
normfwhmrefnr Ratio: (fwhm of nearest ref-image extraction) / (average fwhm of ref-image)
elongnr Elongation of nearest reference image extraction (= arefnr / brefnr)
chi Chi value from PSF fit
sharp Sharpness value from PSF fit
nneg2 Number of negative pixels in a 5 x 5 box
nbad2 Number of bad pixels in a 5 x 5 box
magdiff Magnitude difference: magap - magpsf [mag]
fwhm FWHM from Gaussian profile fit [pixels]
aimage Windowed RMS along major axis of source profile [pixels]
aimagerat Ratio: aimage / fwhm
bimage Windowed RMS along minor axis of source profile [pixels]
bimagerat Ratio: bimage / fwhm
elong Elongation = aimage / bimage
seeratio Ratio: fwhm / (average fwhm of science image)
mindistoedge Distance to nearest edge in frame [pixels]
magfromlim Magnitude difference: diffmaglim - magpsf [mag]
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Table 7—Continued

Metrica Description

ksum Pixel sum of psf-matching kernel for image partition containing source
kdb Differential background associated with psf-matching kernel estimate for image par-

tition containing source [DN]
kpr 5th − 95th percentile range of pixel values in psf-matching kernel for image partition

containing source
rbb Real-bogus quality score from machine-learned vetting
stridc Primary key from Stars table, if match is available
luidc Primary key from LU (Local Universe) table, if match is available
cvsidc Primary key from CVs (Cataclysmic Variable Stars) table, if match is available
qsoidc Primary key from QSOs (Quasi-Stellar Objects) table, if match is available
lcidc Primary key from LCs (Light Curves) table, if match is available
rockidc Primary key from Rocks (Asteroids) table, if match is available

aA majority of these are loaded into the candidates and features relational database tables (Section 5) to support trending
and machine-learned vetting (Section 6).

bThe real-bogus score is assigned following the loading of of all source metrics, features, and difference image-based metrics
(Table 6).

cThis is assigned following an association with a pre-loaded static database table (See Figure 13).
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4.10. Forced, sub-image (archival) Mode

PTFIDE can be executed in a mode where it
operates exclusively on square sub-image cutouts.
This is enabled if the –forced switch is speci-
fied. The science and reference image cutouts
have a center (equatorial) position and side-length
(pixels) specified by –forceparams (Table 2). In
this mode, PTFIDE also expects as input a pre-
computed (archived) PSF-matching kernel im-
age FITS-cube, for example initially generated
with suffix pmtchkerncube.fits from a prior run of
PTFIDE. The planes of this cube store the con-
volution kernels corresponding to partitions of the
parent image (Section 4.7) and is supplied via the
–kerlst input. This cube also stores metadata on
each kernel, for example, the parent-image par-
tition pixel ranges to which these apply, includ-
ing all gain-correction factors. The appropriate
kernel image for the parent-image partition con-
taining the image cutouts (science and reference)
is then applied (as in Section 4.8) to match their
PSFs. Image-differencing is then performed on
the cutouts.

Only a positive (science – reference) difference
image stamp with accompanying uncertainty and
mask image are generated in this mode. There is
no source detection. Further outputs are gener-
ated if the debug switch was set (see end of Ta-
ble 4). The purpose of this mode is to support
later forced photometry on a target position of in-
terest. This position would be the same used to
generate the initial image cutouts. Operating on
stamp cutouts using pre-existing kernel images is
very fast, particularly when difference-images con-
taining specific source positions over a historical
observation range are needed. This avoids regen-
erating entire difference images, including all as-
sociated PSF-matching kernels and corrections. It
also avoids archiving entire difference images in
the first place.

5. Transients Database Schema

This section describes the schema and related
workings of the iPTF Transients Database in cur-
rent operations, along with how it will be improved
for ZTF in future. Figure 13 depicts a simplified
snapshot of the schema, in which each box repre-
sents a separate database table with a given name
and some number of columns. The major table

columns are listed. The columns in bold font are
the table’s primary keys. The columns in bold-
italicized font are the alternate primary keys. The
columns in regular font are not-null columns, and
those in regular-italicized font are null columns (in
which null values may also be stored). “F.K.” rep-
resents a foreign key, and “1 1*..” indicates a
relationship of one record to many records.

The Subtractions table stores a variety of meta-
data for both the positive and negative differ-
ence images generated for each processed CCD
image. The boolean isdiffpos discriminates be-
tween the two subtraction types. Many of the
QA metrics from PTFIDE defined in Table 6 are
included in this database table. Associated with
each record are the observation time (jd is the Ju-
lian date) and foreign-key database IDs of the cor-
responding field, filter, chip, reference image, and
pre-processed science image. A stored difference-
image filename contains the full pathname, and
in its record, is accompanied by an MD5 check-
sum, a timestamp for when the record was cre-
ated, and a status flag for whether the subtraction
satisfied a number of QA criteria: status = 1 if
so, status = 0 if not (see Section 4.8.2). Mul-
tiple versions of difference images are possible if
the pipelines are rerun, and therefore the version
number and vbest flag for which version is best
(generally the latest) are also stored. The primary
key for this table is subid, while the alternate pri-
mary keys are pid, isdiffpos, and version.

The Candidates and Features tables hold meta-
data for all transient candidates extracted from
difference images with status = 1 only. The
records in these tables store many of PTFIDE’s
source-based metrics and features, which are listed
in Table 7. Included are null columns for storing
the foreign-key database IDs of the closest posi-
tional matches to astronomical objects of interest
(as discussed below). These are updated after the
corresponding record is loaded, where a null value
indicates either there is no match or no match was
attempted. While candid is a unique candidate in-
dex assigned in sequence by the database, tblid is
a relative number assigned to each candidate for a
given difference image. The versioning mechanism
in the Features table is not used at this time.

The RealBogus table stores the scores computed
by the machine-learned classifier for all transient
candidates (see Section 6). The RB score is a value

55



Draft manuscript for Publications of the Astronomical Society of the Pacific

Fig. 13.— Schema design for the iPTF Transients Database in current operations. See Section 5 for details.
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in the range [0, 1] where a higher value indicates
the candidate is more likely to be a real transient.
Improved versions of the classifier are forthcom-
ing, and a mechanism for tracking them in this
database has been implemented.

The KnownRocks table contains the predicted
positions (ephemerides) and magnitudes of all
known numbered asteroids through the end of
year 2019. The predictions are spaced 1 day
apart. This table contains ≈ 400, 000 asteroids
and ≈ 1500 epochs for each, giving a total of
≈ 600 million rows. For each positive subtrac-
tion, the known rocks within its sky-footprint are
found and loaded into the Rocks table. A 30′′

cone search (accounting for uncertainty) is used
to find the nearest rock to each candidate, and the
corresponding rockid is updated in the Candidates
record.

The Stars table holds the positions and magni-
tudes derived from PTF R-band reference-image
catalogs for sources that have been classified to be
stars by a star/galaxy classifier (Miller et al. 2016).
Candidates are matched to stars in this table to
within 1′′, and the resulting Candidates record is
updated with primary key strid of the match.

A typical database query would be for tran-
sient candidates within an observation-time and
RB-score range, with an additional constraint
that each be associated with at least another
candidate (potentially from the same source) at
approximately the same sky position, but with
observation-times and magnitudes that differ by
specified tolerances. Transients that have been
spectroscopically confirmed and classified are in-
serted into the Transients table. The iPTF Tran-
sients Marshal, which is a web-based tool for an-
alyzing lightcurves, is updated continuously with
records from this table. Approximately 64 thou-
sand classified transients are currently stored.

The database schema will be streamlined in fu-
ture for ZTF so that it is scalable and more effi-
cient. Sets of complete Candidates records will be
fully constructed ahead of time for bulk database-
loading. This will require the unique candidate
IDs to be formed predictively rather than from a
database sequence. Any redundant and unneces-
sary columns in the Features table will be elimi-
nated. Also, the Candidates and Features tables
may be combined into a single table. Partitioning
the Candidates, Features, and perhaps other tables

into child tables that isolate different observation-
time ranges will also be considered, as this will
allow for faster queries by taking advantage of con-
straint exclusion in the PostgreSQL database.

6. Machine-Learned Vetting

The machine-learned vetting of sources is neces-
sitated by the overwhelming number of artifacts
produced by image subtraction and subsequently
extracted during source finding. The true ratio of
real astronomical sources (referred to as reals) ver-
sus artifacts generated by image subtraction (re-
ferred to as boguses) is unknown since the majority
of sources extracted are unexamined. We estimate
the bogus to real ratio for PTFIDE is typically
greater than 10 to 1. This necessitates the use
of automated systems to discriminate between bo-
guses and reals in order to filter out unreliable can-
didates and prioritize detections for further study.

We refer to systems that perform this task as
“RealBogus” systems, a term coined by Bloom et
al. (2012). The use of machine learning for the
vetting of astronomical transients extends back
to PTF (Bloom et al. 2012). Machine learn-
ing systems are typically statistical classifiers that
are able to score candidates on a spectrum from
zero (bogus) to one (real). Classifiers are trained
with annotated data exemplars as opposed to
expert-specified rules. Three machine learning
systems are currently in use for iPTF (Brink et
al. 2013; Woźniak et al. 2013; Rebbapragada et
al. 2015) for vetting outputs from the image dif-
ferencing pipeline at NERSC. The results there-
from are combined to minimize missed detections.
Machine-learned vetting is also being used for
other surveys that use image differencing for tran-
sient discovery, for example, the Dark Energy
Survey (Goldstein et al. 2015) and Pan-STARRS
(Wright et al. 2015).

Here we briefly describe the construction and
evaluation of the RealBogus system for PTFIDE
and leave the details to a future paper.

6.1. Classifier Description

The RealBogus system for PTFIDE, like all its
predecessors, is based on a random forest clas-
sifier. For an overview of random forests, see
Breiman (2001), Hastie et al. (2009), and Masci et
al. (2014). We use an ensemble of 300 trees trained
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on 10,000 real and 10,000 bogus candidates. The
proportion of trees reporting a classification of real
is reported as the candidate’s score. Each candi-
date is described via a set of features that forms
an input vector into the classifier. The current set
of 89 features are outputs from PTFIDE and con-
sist of both image-based and source-based features
(Tables 6 and 7 respectively). This excludes irrel-
evant and trivial information such as source IDs,
database counters, positions (i.e., ra, dec), and the
constant photometric zero-points.

Figure 14 shows a feature importance diagram
that provides an estimate of the relative impor-
tance of each feature to the classification process.
Only the twenty most important features are dis-
played. Despite the high number of features, the
top two features for discriminating between real
and bogus candidates are sigmagpsf (the 1-σ uncer-
tainty in the PSF-fit magnitude) and status (a flag
for whether the difference image satisfied a number
of QA criteria; see Section 4.8.2). It’s important to
note that the relative feature importance ranking
in Figure 14 does not account for any correlation
between features. For example, the chi and sharp
features are expected to be highly correlated. Re-
moval of one of these features will still result in a
good classifier, while removing both will not. I.e.,
the presence of either one but not necessarily both
is important for overall classifier performance.

Fig. 14.— Relative importance of the first twenty
most-important features. A higher “importance
value” implies the feature is better at discriminat-
ing between real and bogus transients.

6.2. Training Data

The training data must be well sampled with
respect to the true distributions of real and bo-
gus candidates on any given night. The RealBo-
gus system for PTFIDE benefited from predeces-
sor systems at NERSC in that we could repro-
cess images containing real candidates discovered
at NERSC and recover them with PTFIDE. We
queried the NERSC database for all objects that
were spectroscopically-confirmed to be a super-
nova, variable star, gap transient, cataclysmic
variable or nova. This resulted in 372 candi-
dates. We augmented this set with data be-
longing to the lightcurves of these candidates at
all observation epochs. This resulted in 15,168
real candidates in total. All images contain-
ing this candidate set were reprocessed with
PTFIDE. Of these 15,168 candidates, 2,153 were
lost due to PTFIDE failures, of which 11 were
spectroscopically-confirmed. Of the remaining re-
coverable 13,015 candidates, we recovered match-
ing transients for 11,075 (≃85.1%) with PTFIDE.
361 of these were spectroscopically-confirmed of
which we recovered 310 (≃85.8%). We reserved
10,000 of the 11,075 for training and reserved the
remaining 1,075 as an independent test set for
final validation.

Bogus candidates are pipeline artifacts that
must be sampled directly from the PTFIDE
database. We randomly sampled 20,000 candi-
dates exclusive of known reals and declare them
as bogus. We reserve 10,000 for training and an-
other 10,000 as an independent test set. Figure 15
shows an example of the various kinds of bogus
transients extracted. Some are induced from bad
or inaccurate upstream instrumental calibrations,
while others are due to inadvertently unmasked
detector glitches or artifacts from the optical sys-
tem.

It is impossible to ensure the purity of our sam-
ples without examining each candidate individu-
ally. The bogus set may include missed detections
while our labeled sets of real candidates may con-
tain artifacts. Future work includes plans to assess
training set contamination via a machine learning
technique called active learning (e.g., Richards et
al. 2012).

58



Draft manuscript for Publications of the Astronomical Society of the Pacific

Fig. 15.— A sample of “bad” difference images with “bogus” transients. Their causes are as follows: (a)
bad astrometric calibration; (b) bad photometric-throughput (gain) matching brought about by spatial
variations in either atmospheric transparency or bad flat-fielding; (c) bad astrometric calibration in a high
source-density field; (d) bad PSF-matching brought about by bad seeing and inability of the PSF-matching
kernel to accommodate the disparity between science and reference image FWHM values; (e) same as (d);
(f) moving-object streak; (g) bright-source halo artifact; (h) bright-source glint; (i) incomplete masking of a
saturated source; (j) incomplete masking of a bright source and its halo and charge bleed artifacts; (k) bad
background matching and photometric-throughput (gain) matching; (l) incomplete masking of the edges of
a bad-pixel column.

6.3. Evaluation and Setting Decision Thresh-
olds

We have two methods of evaluation. The first
is to use ten-fold cross-validation in order to form
a receiver operating characteristic (ROC) curve
that measures the false positive rate (FPR) and
false negative rate (FNR) at a continuum of de-
cision thresholds from 0 to 1. In ten-fold cross-
validation, all 20,000 labeled examples (exclusive
of the independent test sets) are randomly split
into 10 groups, where one fold is held out as the
test fold and the classifier is trained on the re-
maining nine. The test fold is rotated and the

predicted outcomes from the ten classifiers are av-
eraged across the folds. Methodologically, cross-
validation usually assumes examples are indepen-
dent and identically-distributed. That is not the
case here, since light curve observations from the
same source (especially variable stars) may span
both the training and test folds. We use cross-
validation as a guide when comparing competing
versions of the classifier, rather than for assessing
the system’s overall performance. In fact, cross-
validation is prone to overfitting if the labeled pop-
ulation does not well represent the general popula-
tion of candidates. Figure 16 shows the ROC curve
for the classifier using cross-validation, where the

59



Draft manuscript for Publications of the Astronomical Society of the Pacific

Fig. 16.— Receiver operating characteristic (or
ROC) curve. See Section 6.3 for details.

y-axis shows the true positive rate (TPR = 1−
FNR). The FNR at 1% FPR, the maximum FPR
tolerated by the science teams, was 3.51% from
cross-validation.

The second evaluation of the system looks at
score distributions on the two independent test
sets of real and bogus examples. This gauges per-
formance and determines the system’s decision
threshold. Candidates that score above the deci-
sion threshold are presented to the science teams
for inspection, while those below will likely remain
unexamined. We classify the candidates in the test
set of randomly selected candidates and note the
threshold that admits only 1% of the set as false
positives. Similarly, using the independent test set
of known reals, we classify this set and note the
threshold that admits only 5% as false negatives
(or missed detections). The thresholds resulting
in a 1% FPR and 5% FNR were 0.735 and 0.724
respectively. As a result, the decision threshold
for the RealBogus classifier was set to 0.73. Fig-
ure 17 shows the distribution of RealBogus scores
obtained from PTFIDE run on iPTF data. As
seen in Figure 17a, the decision threshold of 0.73
corresponds to a plateau followed by a knee in the
distribution above which the FPR falls below 1%.

6.4. Further Work on Machine-Learned
Vetting

Areas of future work include plans for iden-
tifying and eliminating training set contamina-
tion. We have built an active learning prototype
that identifies candidates that are likely misla-

beled, and present those to the science teams for
cleaning. We have also developed a new way to
randomly sample against the PTFIDE candidates
database to ensure our bogus sample is not overly
biased towards certain types of artifacts and is
representative of the full distribution of observing
conditions. Finally, we have used machine learn-
ing to analyze the frequency of certain types of bo-
gus artifacts produced by PTFIDE in order to un-
derstand the software and faciliate improvements.
Details on these methods will be published in a
forthcoming paper.

7. Advisories and Lessons Learned

The iPTF realtime processing system has
evolved considerably over the last few years
through feedback received from the various sci-
ence programs across the collaboration. The sys-
tem was developed by a small team with very
limited resources. Communication between the
development team and the principle users of the
products was paramount. The success of a large
astronomical survey requires (i) a clear definition
of the science goals; (ii) a definition of the precise
deliverables and services needed to achieve those
goals, and (iii) a tractable system engineering plan
to enable implementation of (ii) according to the
available resources. Below we list some of the chal-
lenges and pitfalls encountered over the course of
development and how these were addressed in the
short-term. We also present thoughts on how spe-
cific aspects could have been improved if resources
allowed.

1. Tuning and optimization of all processing
components is an iterative process that re-
quires real on-sky data acquired with your
survey instrument. Do not rely on the com-
missioning period to optimize everything to
perfection. Resources (and schedule) are
limited. More eyes on the data, the better,
and this can only occur by harnessing the
expertise of the scientific community. Imme-
diate visibility to data products is therefore
crucial in the early phases of the survey.

2. Implement “offline” versions of your primary
production pipelines to allow for experimen-
tation and ongoing tuning. This ensures
minimal disruption to the production sys-
tem that is serving users. Communicate all
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Fig. 17.— (a) Histogram of the RealBogus (RB) scores for transient candidates extracted from ≃ 22, 000
R-band (positive) difference images down to S/N ≃ 4. These are from exposures acquired from Dec 2015
to Feb 2016, mostly at moderate to high galactic latitude; (b) Cumulative fraction as a function of RB. See
Section 6.3 for details.

planned updates in advance and only deploy
when all stakeholders have confirmed and
understood the updates.

3. Allow versioning control of all pipeline soft-
ware parameters and instrumental calibra-
tions together with the software versions
they were optimized for. This will allow
for easier traceability and reproducibility of
specific science products in future.

4. Have a well defined quality-assurance plan
for the entire observing and data-processing
system. This entails implementing QA met-
rics for each subsystem and a means to com-
municate this information across all sub-
systems with associated tolerances on what
should be declared bad or unusable. For ex-
ample, implementing automated checks at
the raw-data level (close to realtime) alerts
the team of bad data and that no associated
products are expected downstream. A mod-
ular and visible end-to-end QA/alerting sys-
tem allows for easier accountability of failed
products, traceability of errors, and recov-

ery.

5. Related to the previous point, routine moni-
toring should include overall performance of
the network, data-transfer rates, and all as-
pects of the compute cluster.

6. Assign ownership and responsibility of key
components of the system to individuals of
the team. For example, this may consist of
collecting performance metrics, analysis re-
ports, and/or providing feedback for improv-
ing aspects of the data-processing system.
Having all communication channels defined
at the outset will enable priorities to be bet-
ter managed later.

7. Time-domain surveys are dynamic, literally.
For example, science goals or their priorities
may change over time in response to scien-
tific outcomes or analyses early in the survey.
Goals may also change in response to unfore-
seen problems in instrumentation, hardware,
and/or algorithmic or processing details. Be
prepared to adapt. Modularity in all pipeline
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software and hardware components to acco-
modate change and growth is therefore cru-
cial.

8. In the context of realtime discovery using
image-differencing, the accuracy of upstream
calibrations is crucial. This primarily refers
to astrometric and photometric calibration.
Flat-fielding in particular is important for
the latter. Proper trending and QA of all
calibration products prior to their use in pro-
cessing is therefore necessary to avoid a flood
of false-positives downstream. Early notifi-
cation of bad calibrations and a means to
either recreate them on-the-fly or fallback to
archived versions should be planned.

9. Have a plan to assess the overall perfor-
mance of image-differencing and transient-
discovery over the course of the survey. This
may involve for example tracking the relative
efficiency and reliability of candidates ex-
tracted from pre-defined survey fields known
to contain a good statistical sample of vari-
able stars. Alternatively, one could inject
synthetic episodic transients for offline anal-
ysis. The important thing is that the ap-
propriate metrics and methodologies to en-
able this monitoring be identified and imple-
mented prior to commencement of the sur-
vey.

10. Image-differencing is a game of (i) mini-
mizing false-positives at the expense of also
maintaining a low false-negative rate, and
(ii) maximizing the photometric accuracy
of extracted transient candidates. These
sensitively depend on the initial extraction
S/N. The power of using machine learning
to probabilistically classify candidates into
either real or bogus cannot be overstated.
False-positives are inevitable, and we advise
setting a maximum tolerable threshold for
their occurence at the outset to enable tun-
ing of the relevant extraction and scoring
thresholds. The latter will evolve as algo-
rithms and software improve.

11. The efficacy of a machine-learned vetting in-
frastructure depends intimately on the data
it was trained on (in the context of super-
vised learning). This should be kept in check

over the course of a survey according to
the different science applications and pos-
sible changes in survey design. For exam-
ple, if a decision is made to survey more
of the galactic plane, the machined-learned
classifier should be retrained accordingly us-
ing data from the same region. This mini-
mize biases when predicting the reliability of
transient candidates.

12. A supervised machine-learned classifier will
have been trained on products from a spe-
cific version of pipeline software. Any algo-
rithmic or parameter changes in the pipeline
usually requires complete retraining of the
classifier. This dependency will incur a de-
lay in the software delivery cycle and must
be accommodated. We have not yet stream-
lined this delivery and integration process
since classifier (re)training can be time-
consuming. We advise that any classifier-
retraining be performed on a stable version
of the pipeline software. Both can then be
updated as shortcomings are identified dur-
ing the survey.

13. Plan on reprocessing any or all of your data,
for example, to recover from failures in pro-
cessing and/or hardware outages. Having a
reprocessing plan in place also enables one
to regenerate products for a future archive
using a consistent set of pipeline parameters
and software. These may have evolved over
the course of the survey.

8. Enhancements and Future Work

A number of shortcomings were identified over
the course of development of the iPTF Discovery
Engine. Some of these are at the algorithmic level
and some relate to data management practices. In
2017, iPTF will be replaced by the Zwicky Tran-
sient Facility (ZTF) using a new camera (Bellm et
al. 2014; Smith et al. 2014). The ZTF camera will
image 47 square degrees per exposure and will scan
the entire Northern visible sky every night, at a
rate ∼ 16 times faster than iPTF to similar depths.
The high data rates and volumes from ZTF will
require a redesign of some of the subsystems to
minimize latencies from processing and the deliv-
ery of transient candidates for human scanning.
The planned upgrades are as follows:
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1. Improve the efficiency of loading and re-
trieval of candidates into/from the Tran-
sients Database described in Section 5. The
plan is to periodically construct lists of pre-
machine-vetted candidates ahead of time at
intervals throughout a night and batch-load
them. Source features and metrics will be
consolidated into single (“flatter”) database
tables. We will also consider retaining only
candidates and associated metadata for the
last 30 nights or more to enable more effi-
cient near real-time discovery and lightcurve
generation. Older transient candidates will
roll-off to a growing archival database. The
reason for this is to keep the number of can-
didate records for active-querying, i.e., close
to their discovery epoch, relatively small.

2. Transient candidates and image-cutouts for
human scanning will need to be delivered to
a web-server for external viewing using pre-
defined (or cached) database queries submit-
ted by an automated process at regular in-
tervals throughout a night. Currently for
iPTF, there is no limit on how many queries
can be submitted and by whom. Having
many scanners submit similar queries in an
uncoordinated manner has at times led to
severe bottlenecks.

3. Astrometric calibration needs to be made
more robust against changes in source den-
sity, seeing, depth, atmospheric refraction,
and telescope tracking. This includes the
ability to properly model and capture time-
dependent distortion effects from the optical
system and atmosphere.

4. Absolute photometric calibration will need
to be performed on a per-image basis in
the realtime pipeline using PSF-fit extrac-
tions matched to a properly vetted exter-
nal photometric catalog covering the en-
tire visible sky. The use of PSF-fit pho-
tometry in particular is paramount. PSF-
fitting will automatically account for see-
ing variations and regions with high source-
confusion through de-blending. This will en-
sure that instrumental zeropoints can be ac-
curately determined for a larger fraction of
the images since these will dictate the qual-
ity of the photometric-gain matching prior

to image-differencing. As discussed in Sec-
tion 4.2.1, gain-matching is currently per-
formed by matching “big-aperture” photom-
etry. There is also a refinement of the
reference-image photometric zeropoint (Sec-
tion 4.2.2) so it can used for PSF-fit mea-
surements. Such reverse-engineering is time-
consuming and fragile. Simple fixes will be
made upstream to streamline these steps.

5. Extend PTFIDE to include some of the op-
timal methodologies for co-addition, image-
differencing, source detection, and photom-
etry presented in the detailed study by Za-
ckay, Ofek & Gal-Yam (2016).

6. Consider using pre-classified star catalogs
constructed initially from reference image
catalogs (e.g., via machine-learning) to prop-
erly seed inputs for deriving PSF-matching
kernels.

7. Consider dynamic updates to reference im-
age products as the survey proceeds in order
to use the best-quality epochal data acquired
to date. In other words, the reference-image
library can be progressively refined to ensure
more optimal image-differencing as the sur-
vey proceeds.

9. Conclusions

We have described an industrial strength
transient-discovery engine (IDE) currently in use
to support near real-time discovery for iPTF at
IPAC/Caltech. A refined version will be used
for ZTF in the future. Guided by previous imple-
mentations of the image-subtraction problem, this
paper reviews our algorithms, optimization strate-
gies, machine-learned vetting scheme, and expe-
riences. The end-to-end pipeline requires little
intervention and tuning, and is resilient to bad in-
put data and/or inaccurate instrumental calibra-
tions upstream. Our development approach was
to make all processing steps as modular as possible
to allow for easier debugging and tractability.

Our goal has been reliable transient discovery
and robustness in the methods used to vet can-
didates for follow-up. These methods were re-
fined using the knowledge gained from 5+ years of
archived science-quality PTF data. The elements
we find that are most crucial for image-differencing
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performance, and hence the efficiency and reliabil-
ity of transient discoveries are: (i) astrometric cal-
ibration; (ii) flat-fielding; and (iii) related to this,
photometric calibration (either relative or abso-
lute). Having these calibrations optimized (in the
maximal S/N sense) paves the way to more accu-
rate PSF-matching and image-differencing. This
also relieves the amount of work needed down-
stream to weed out false positives, by both human
and machine. Despite differences in the details of
instrumentation, image quality and/or survey de-
sign, IDE provides a testbed for future large time-
domain surveys.
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