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Dedicated to Professor Josef Novak on the occasion of his 90th birthday 

1 . INTRODUCTION 

Using Iseki characterization of regular semigroups by their one-sided ideals ([3], 

p. 34, exercise 11), Bedfich Pondelicek introduced and investigated in [19] a cer-

tain binary relation on the system of all closure operations on the carrier set of a 

semigroup and then characterized among others regular and one-sided regular semi-

groups. In the paper [20] the same author obtained analogous results for topological 

semigroups with continuous closed translations which possess namely compact topo-

logical semigroups. 

The present contribution aims at characterizing regular ordered semigroups (sim-

ilarly as in the paper [20]) under the assumption that left and right translations are 

not only isotone (which is the usual compatibility condition of orderings with binary 

operations in ordered semigroups) but even strongly isotone mappings. Such map-

pings were introduced by L. L. Esakia—[4], [5] and also used by him in connection 

with investigations of non-classical logics and generalizations of the Stone duality. It 

is to be noted that closure operations which are tools of characterizations of regular-

ity of ordered semigroups following ideas of [19] and [20] have their origin as object 

of special investigations in the well known Cecil's topological seminar, one of whose 

excellent active members was Professor Josef Novak. 

As a basic fact let us recall the Iseki characterization theorem ([10], [3], p. 34, [19], 

p. 220): 

1.1. A semigroup (5, •) is regular if and only if A D B = A • B for every right 

ideal A and every left ideal B of(S,-). 
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A strongly isotone mapping of a (quasi) ordered set into another one ([4], [5]) 

is a special case of a strong homomorphism of relational systems in the sense of 

papers [15]—[18] modified for ordered sets. Recall that a mapping / of an ordered 

set (N, ^x) into an ordered set (Y, ^y) is said to be strongly isotone if f(x) ^y y 

holds for (x,y) G X x Y if and only if there exists x' G X such that x ^x x' and 

/ (* ' ) = V-

If [M)< means the end of (A", fS) (or the upper set or the dual ideal) generated 

by M (in particular, [x)< is the principal end—or the principal dual ideal—or the 

principal upper cone generated by x G X) we can easily obtain the following char-

acterization ([5], L, §4, Proposition 4.14): 

1.2. Let (Xi, ^i), i = 1,2 be (quasi) ordered sets, let f: Xi —•> K2 be a mapping. 

Then the following conditions are equivalent: 

1° The mapping f: (Kj, ^ i ) —» (X2, ^2) is strongly isotone. 

2° For any end A of (Ki, ^ j) the image f(A) is an end of (N2, ^2) and for any 

end B of (X2, ^2) the preimage f~l(B) is an end of (A'i, ^1). 

3° For any element x G X2 we have (f~1(x)}<l — f ~l((x}<0). 

4° For any element x G Xi we have f([x)<±) — [/( r))<2-

Terminology concerning semigroups in general is taken over from the basic mono-

graph [3] or [9]; the terms of the ordered semigroups theory can be found in [6]. 

2 . SC-ORDERED SEMIGROUPS 

Definition. An ordered semigroup (S, •, ̂ ) is said to satisfy the condition of a 

left (right) strong compatibility of the ordering with the binary operation—briefly the 

LSC (RSC)-condition, or (5, •, ̂ ) is called an LSC-ordered (RSC-ordered) semigroup 

if for any triad of elements a, b. r G S such that a-b ^ c there exists an element c' G S, 

c' ^ b (c' ^ a) with the property c — a-c' (c — c' -b). If an ordered semigroup satisfies 

both conditions simultaneously we say shortly that it is an SC-ordered semigroup. 

Since a semigroup (5,-) with an order ^ is an ordered semigroup if and only if 

any left and right translation of it is an isotone selfmap of the ordered set (S, ^ ) , it 

is easy to see that the following lemma holds. 

Lemma 2.1 . For an ordered semigroup (5,- ,^) the following conditions are 

equivalent: 

1° (5 , - ,^) is an LSC-ordered (RSC-ordered) semigroup. 

2° Any left translation \(l : (5, ^) -> (S, ^ ) , a G S (light translation 

Qa: (5, ^ ) -» (5, ^ ) , a G S) is a strongly isotone mapping. 
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3° For any pair of elements a, b £ S we have a • [b)< = [a • b)< ([a)< • b = [a- b)<). 

4° For any pair of elements a, b £ S we have [O • b)< C O - [b)< ([a • b)_ _ [O)_ • OJ. 

E x a m p l e s . 1. If + , •, _ means the usual addition, multiplication, ordering of 

real numbers, respectively, then the ordered semigroups (N, + , _ ) , ( ( R + , + , ^ ) (where 

N, (R+ is the set of all positive integers, positive real numbers, respectively) and the 

group (IR+, •, _ ) are commutative SC-ordered semigroups, but the ordered semigroup 

(N, •, _ ) satisfies neither the LSC-condition nor the RSC-condition. 

2 . If S C N x N denotes the divisibility relation (i.e. (m,n) £ S if and only if m\n) 

then (N,-,5) is an SC-ordered monoid . Indeed, for arbitrary x £ [m • n)s we have 

m - n\x, i.e. x = m - n - k, thus x = m • p, where p = n • k £ [n)$, hence x G m • [11)5 

and the monoid (N, •) is commutative. 

3 . For any upper semilattice (L, V) considered as an ordered band (L, V, _ ) (where 

a = b iff a V b = b) we have tha t this band is an SC-semigroup. Indeed, for a,b,c £ L 

the condition a V b _ c implies a V c = c, b _ c and it remains to put 6' = c. On 

the other hand if the ordered band (L, A, _ ) contains more than one element, then 

it is not an SC-ordered semigroup. In the case considered, (L,A) contains also a 

two-element chain, say {a, b} C L, a < b and b G [a)< = [a Aa )< , b 0 {a} = a A [O)<. 

4 . Consider the unit closed interval I = [0,1] C U with the usual ordering _ . Let 

us denote Ii = (0,1], a ol b = min{a + b, 1} for any pair a, b G Ii, I2 = (0,1] U {CJ}, 

where LU $ I2, 1 < a>, 

f a + b if a + b_l, 
a o2 b = < 

[ a ; if a + b>l, 

a, b G I2, where x G I2 implies :?:+<„ = LJ+X = _ , I3 = [ | , 1] C [R, ao 3 b = max{. j , ab}, 

a, b G I3. Further, for any pair O, b G I = [0,1] define 

a o4 b = a + b - ab, a o5 b = (a + O)/(l + ab). 

Tlien (Ij, Oj, _ ) , j = 1, 2 ,3 are commutative linearly ordered semigroups, (I, o4 , _ ) , 

( I , o 5 , _ ) are linearly ordered monoids (cf. [G], chapt. X, §2). 

We show tha t (IJ,OJ,=) for j = 1,2 and (I,oA., _ ) for k = 4, 5 are SC-ordered, 

(I3, o3, _ ) is not SC-ordered. Indeed, in the first case for O, b,c £ (0,1], a + b _ c we 

put b' = c — a, thus b _ b'', a + b' = c and similarly in the second case. 

Consider ([0,1], o4, _ ) . Let O,b,:r; G [0,1] be numbers such tha t Oo4b = a + b-ab _ 

x. Then for a < 1 we have b _ (T - a ) / ( l - a) _ 1 and denoting b' = (x - a)/(l - a) 

we have x = a + b' - ab' = a o4 b', where b _ b'. If a = 1 then a o4 b = 1 = x, hence 

[a o4 b, 1] C a o4 [b, 1] for any pair a,b £ [0,1]. 
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In the case of the ordered monoid ([0,1], o5, ^ ) consider a, b, x G [0,1] such that 

a o 5 6 = ( o + 6)/( l - r ab) ^ x. Suppose x = 1. Then for b' = 1 we have 

x = 1 = (a + 1)/(1 -\-a) =a or> 1 = a o5 b\ 

where b' ^ b. If 0 ^ x < 1 then aT < 1 and the equality (a + b)/(l+ab) ^ x implies 

b ^ (x — a)/(l — ax). Let us denote b' = (x — a)/(l — ax). Since - a ^ l , 0 < 1 — a:, we 

have — a(l — x) < 1 —x, which implies x — a < 1 — ax and 0 ^ b' = (x — a) / ( l — ax) ^ 1

Further, b'—ab'x — x-a, thus .r = (a+b')/(l-r-ab') = ao5b, hence [ao5b, 1] C ao5[b, 1]. 

In the case of the ordered semigroup (I3, o3, ^) we liave \ o3 \ = \ and for c = | 

we get c 7-- \ o3 x for any number a; G [ ,̂ 1]. 

A verification that the centralizer of an acyclic set transformation, i.e. a mapping 

of a set into itself (which is acyclic for the sake of simplicity) yields an example of 

an SC-ordered monoid needs some calculation. So we formulate that fact in a form 

of a separate proposition. Simultaneously we get an example of a locally finite forest 

with a (pointwise) SC-ordered monoid of local automorphisms (the terminology is 

compatible with [23] and [1]. 

Let X 7-: 0, let <p: X -> X be an acyclic mapping, i.e. no iteration (Dn, n G N 

possesses any fixed point. For / , g G End(X, p) = ({</': X -» X; <p o ip = 1/; o ^ } , o) 

(the monoid of all mappings commuting with (D, with the binary operation which is 

the composition of mappings) we define / ^ g if f(x) ^ g(x) for all x G X, where 

a, b G X, a ^ b means that </?" (a) = b for some n G No (= N U {0}). 

Proposition 2.1. Let p be an acyclic mapping of a nonempty set X into itself. 

Then (End(X,(D), ^ ) is an SC-ordered monoid. 

P r o o f . First, suppose that / , g G End(K, <p) satisfy / ^ g, i.e. f(x) ^ g(x) 

for any x € X. Let b G End(K",</?), x £ X be arbitrary elements. Then g(x) — 

pn' (f(x)) for some nx G N0 and 

(hog)(x) = h(<pn< (f(x))) = ^ ( / i ( / ( : v ) ) ) = pn'((hof)(x)), 

thus (li o /)(x) ^ (li o g)(x), i.e. ho f ^ ho g. Further, for the element y = Ji(x) 

there exists ny G No such that 

g(h(x)) = <fin»(f(h(x))), 

which means (f oh)(x) ^ (goh)(x) and thus / o b ^ goh. Hence (End(K,(/?), ^ ) 

is an ordered monoid. That means that for an arbitrary pair / , g G End(X,p) we 

have 

[fUvogC[fog)^, fo{g)^C{fog)^. 
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If we prove the inclusion [ / ° g ) ^ C ([/)^v,°g)n(/o[O)^^), then in view of Lemma 2.1 

the proof of Proposition 2.1 will be complete. 

Thus, suppose / ,g G End(A",<p). Let 

(X,cp) = ^ ( A a , ( / ? a ) 

be the orbital decomposition of the mapping <p: X —> X, i.e. {A a : a G A} is the 

system of all blocks of the KW-equivalence 

~v> = {(*.!/) € X x A : 3(77i,7i) eM0xN0: ipm(x) = (Dn(y)} 

(cf. [14]). Denote <pa = <,O|Aa for any a G A. Suppose h 6 [f o O)^. For any .x G X 

there exists TIX G N0 such that Ji(x) = (v?n' o / o </)(.r). We show that for any index 

a G A and any pair x, y G Ar
a we have nx = 7iy. 

First, suppose x,y G A"a, ;r < a H, where ^ a = ^ n(Ar
a x A"a). Then y = <pin(x) 

for a suitable integer m e N and 

% ) = ^n"(/(3(2/))) = <fin»(f(g(<Pm)(x))) = <pn»+m((fog)(x)), 

h(y) = h(<pm(x)) = <pm(h(x)) = <pm(<pn'((f o </)(*))) 

= ^ m + n ' ( ( / ° <?)(*)), 

i.e. 

(1) <pn«+m(z)=<pm + n'(z), 

where z = (/ o g)(x) G A. Since the mapping </> is acyclic, (1) implies nx = ny. 

Now suppose x,H G A â are arbitrary different elements. The ordered set (Xa, ^ a ) 

is an upper semilattice. Putting t = sup{:r,y} we have x ^ t, y ^a t and by the 

above consideration we obtain nx = nt = ny. 

Now for any a G A, x G A"a let us denote na = //a. and define mappings / i , Oi: 

X —» A" in the following way: For any pair (a,x) G A x A a put 

Mx)=<pn"(f(x)), gi(x)=<pn"(g(x)). 

Then / ^ / i , g ^ gi and it is easy to see that j \ , gx G End(Ar, <p). Further, we 

have h(x) = <pn" ( ( / o g)(x)) = <pn-> (f(g(x))) = / t («,(..:)) = ( L o g)(x), as well as 

/.(a) = <pn"(f(g(x))) = (<pn- of)(g(x)) = (fov"")(g(x)) 

= f(<pn-(g(m=f(9i(x)) = (fogl)(x). 

hence h = f1og = f o9l. Therefore h € ([/)<;„ o -9) n (/ o [g)^v). D 
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By [6], chapt. X, §1 an ordered semigroup (S, •, ̂ ) is said to be 

(i) sharply ordered, if O, b, c £ S, O < b implies a • c < b • c, c • a < c • b, 

(ii) strongly ordered (or briefly strong), if for any triad O, b, c £ S such that 

O • c ^ b • c (or c • O ^ c • b) we have a ^ b. 

It is to be noted that an ordered groupoid is sharply ordered if and only if it 

satisfies the weak cancellation law: a • c = b • c (or c • a = c • b) implies either a = b 

or O, b are ^-incomparable. A strongly ordered groupoid is cancellative and thus 

sharply ordered ([6], chapt. X, §1). 

Proposition 2.2. Let (S,- ,^) be an ordered semigroup which is either right 

cancellative RSC-ordered or left cancellative LSC-ordeivd. Then (S, •, ̂ ) is strongly 

ordered and thus also sharply ordered. 

P r o o f . Let (S, •, ̂ ) be a RSC-ordered right cancellative semigroup, a, b, c £ S 

such elements that a • c ^ b • c. Then b • c € [O • c)< = [O)< • c, thus b • c = a' • c fo

a suitable element O' £ S, O ^ O'. This implies b = O', thus O fS b which means that 

the semigroup (S, •, ̂ ) is strongly ordered. 

Similarly we get the dual assertion using the relationship c - a ^ c - b. • 

A useful tool for the investigation of the structure of regular semigroups is the 

so called natural partial order introduced by S. Nambooripad in [13] and indepen-

dently by R. Hartwig in [7]. This was generalized by H. Mitsch in [11] for arbitrary 

semigroups—see also [12], where semigroups with the right compatibility of the natu-

ral partial order (called also Nambooripad-Hartwig's order in the case of regular semi-

groups) with multiplication are characterized—[12], Proposition 3.1. Corollary 3.2 

of this Proposition says that for any commutative semigroup the natural partial or-

der is compatible with multiplication. In a non-commutative case it is compatible if 

and only if the underlying regular semigroup (S, •) is pseudo-inverse (which means 

e.g. that e • S • e is an inverse semigroup for any idempotent e £ S)—[13], Theorem 

3.3. The strong compatibility of the Nambooripad-Hartwig's order on a commuta-

tive regular semigroup which is then completely regular and inverse, characterizes 

the complete simplicity of a semigroup in question. 

According to [8], Theorem 5.1 the Nambooripad-Hartwig's order on a regular 

semigroup is determined by a certain condition which in a commutative case appears 

in the following form: 

For x, y £ S, x ^ y whenever there exists a £ S such that a • x2 = x, a • y2 = y 

and a • x • y = x. 

Recall that a primitive semigroup is a regular semigroup in which every non-zero 

idempotent is minimal among the non-zero elements of S and that a completely 

simple semigroup is a primitive semigroup without zero. 
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Theorem 2.1. Let (S, •) be a commutative regular semigroup without zero, let ^ 

be the Nambooripad-Hartwig's order on S. Then the semigroup (S, •) is completely 

simple if and only if (S,-,^) is an SC-ordered semigroup. 

P r o o f . Since by [13], Theorem 1.4 a regular semigroup without zero is com-

pletely simple if and only if the Nambooripad-Hartwig's order = is the identity 

relation, then in view of the well-known fact that = is compatible with a binary 

operation on an inverse semigroup (cf. also [13], Theorem 3.3) it is sufficient to show 

that if (S,-,=) is SC-ordered then the order = is the identity relation on 5. (The 

opposite implication is evident.) 

Suppose the semigroup (S, •, =) is SC-ordered, x,y G S being such a pair of ele-

ments that x = y. Then for some a G S we have a • x2 = x, a • y2 = y, a • x • y = x 

and 

y € [#k = [" ' r ' 2/k = lx ' a • 2/k = T'[a- y)<:, 

thus y = x • s for some s G S such that a • y = s. Then 

a • x • y = a • x2 • s = x • s = y. 

D 

By [13] a mapping / of an ordered set (X, =x) into an ordered set (Y, ^ y ) is said 

to be reflecting orders of for all y, y' G f(X) with y' =Y y and x G X with f(x) = y 

there exists x' G X, x' ^x x and f(x') = y'. An important property of homomor-

phisms of regular semigroups is that they preserve and reflect Nambooripad-Hartwig 

orders ([13], Theorem 1.8). 

If / is a surjective mapping of an ordered set (A', =x) onto (Y, =Y) then / reflects 

orders if and only if (f(x)]< C /(T]<v for any x G A". Indeed, if a surjective 

mapping / : (X,=x) -> (Y,=Y) reflects orders, x G Ar, y' G (f(x)]^Y, i.e. y' =Y 

f{x), then y' = f(x') for some x' G X,x' =x x thus y' = f(x') G f(x]^x. Hence 

(f(x)]<Y C f(x]<x. Conversely, if the last inclusion holds for any x G X, y, y' G 

f(X) = y with y' =Y y and x G A" with f(x) = y, then y' G (f(x)]<Y which 

implies y' G f(x]<x and thus // = f(x') for some r' G (T]<v, i.e. ;r' ^x x. Hence 

/ reflects orders. Since a mapping / : (X,=x) —> (Y^Y) is isotone if and only if 

/( : r]<Y — (f(x)]<Y ^or an.V x ^ ^^ w o Sot iR y i ° w 01" the above formulated facts: 

Theorem 2.2. Let (5,-), (T, •) be pseudo-inverse semigroups, =s, —T their 

Nambooripad-Hartwig orders, / : (5,-) —> (F, •) /JO a surjective homomorphism. 

Then f is a strongly isotone homomorphism of the ordered semigroup (S,-,^1) 

onto the ordered semigroup (T, •, ^ f 1 ) -
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3 . CHARACTERIZATION OF REGULAR SC-ORDERED SEMIGROUPS 

As in papers [19], [20] and elsewhere, by a closure operation on a set S we under-

stand any mapping U: exp S -> exp S satisfying the usual axioms: 

(i) U(0) = 0 (ii) XCS^XC U(K), (hi) X CY CS=> V(X) C U(F) , 

(iv) U2(K) = K, for any K, Y C S, (i.e. a U-space in the Cech sense). 

For x G S we write briefly V(x) instead of U ({.*:}). The system of all closure 

operations on S will be denoted by ^ (S) and its subsystem of all totally additive 

operations by £}(S). Further, 

T(V) = {X; X C S, V(X) = K}, T'(V) = T(V) \ {0} 

and U ^ V if and only if V(X) C V(K) for any subset X C S. 

Let (S, •) be a semigroup. In accordance with [19]. [20], for any non-empty subset 

X of S we put R(X) = X-S\ L(X) = SVK , R(0) = L(0) = 0. Then R, L G J2(S) 

and ^ ' ( R ) (JF'(L)) is the system of all right (left) ideals of the semigroup (S, •). 

Definition. ([19], II-Def. 6.) For a semigroup (S, •), Os stands for a binary 

relation on ^ (S ) defined by 

Qs = {(U, V) G tf(S); (A, B) G T'(V) x T'(V) ^> An B = A - B}. 

A survey of properties of the relation gs yields the following theorem summarizing 

some results of papers [19], [20]: 

Theo rem 3.1 . ([19], L. 2, Th. 9, Th. 10, [20], L. 3). Let (S, •) be a semigroup, 

V, Ui , V, Vi G V(S). Then we have: 

1° I f U ^ U i , V<: Vx and(U,V) £ gs, then ( U ^ V ^ G O s . 

2° (U, V) G gs if and only if R ^ U, L ^ V and simultaneously x G V(x) • V(.T) 

for any x G S. 

3° IfV(x) = Ui(rc), V(;r) = Vi(rr) for any xe S then (U, V) G Os if and oniv if 

( U ^ V O G O s . 

4° A semigroup (S, •) is regular if and only if (R. L) G Os-

Now, let (S, •, ̂ ) be a semigroup with an ordering ^ on its carrier S. For any non-

empty subset X of S denote by C(X) = [K)< (the end or cone generated by the set X 

within the ordered set (S, ^ ) , C(0) = 0). Evidently by C G <S(S). Further we define 

mappings R , L : expS -> expS by R(K) = R(K) U C(K) , L(K) = L(X) U C(X) 

for any subset X of S. 
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Lemma 3.1. Let (S, •, _) be a semigroup with an ordering _ on S. Then R = R 

if and only if R o C = C o R = R. 

P r o o f . Suppose R = R, X C S. Since R = R2 = R o R = R o R , we have 

R(K) = R(R(X)) = R(R(K) U C(X)) = R(X) U R o C(K) , 

which implies R o C ^ R and by virtue o f R ^ R o C w e get R o C = R. Similarly, 

R(X) = R(R(K ) ) = R2(K) U C o R(X) = R(X) U C o R(K ) , 

thus C o R ^ R, consequently C o R = R. 

Now suppose R o C = C o R = R, X CS. Then 

C(X) C R o C(X) = R(X) and R(X) = R(X) U C(X) C R(X) , 

hence R = R. • 

It is to be noted that the just proved assertion holds for an arbitrary reflexive 

binary relation r on S which need not be an ordering. If (5, •,_) is an ordered 

monoid satisfying the LSC-condition then R = R. Indeed, for any X C 5, X / 0 

and x G C(X) there exists y G X such that y _ x. Clearly, y • 1 _ x, thus there 

exists z e S such that x = y-zeX-S = R(X). Then we have C(X) C R(X), 

hence R(K) = R(K) U C(K) = R(X). 
Now we consider ordered semigroups which need not contain identity elements. 

Lemma 3.2. If (5, •, _) is an RSC-ordered semigroup, then R o C = C o R e 

-2(5). 

P r o o f . If a; € 5, then 

R o C(x) = [a;)< • S1 = U [xh ' s U \.XH = U tx ' s)g U t x )s 
sG5 seS 

= [ U
 x

 • {
s
>)<

u
 I

:r
)^ = l

x
 •

5
) ^

u l*)^ = i
x
 •

 sl
k =

 c
 °

 R ( x
) -

Since R, C G «S(5), we have R o C = C o R and from the evident fact that the 

composition of two commuting idempotent mappings is an idempotent mapping we 

g e t C o R G ^ ( S ) . • 
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Let (5 , •, ^ ) be an ordered semigroup without the identity element. The ordering 

^ can be extended onto ( 5 1 , •) in two quite natura l ways such that (5 1 , - ) becomes 

an ordered monoid: 

( 5 1 , ^) = {1} + (5, ^ ) (the cardinal sum), 

( 5 1 , ^ ) = {1} 0 (5, ^ ) (the ordinal sum). 

In the first case (when ( 5 1 , •, ^ ) is called the cardinal unit extension of (5 , •, ^ ) ) the 

element 1 is incomparable with any other element of 5 , in the second case (when 

( 5 1 , •, ^ ) is called the ordinal unit extension of (5, •, ^ ) ) , 1 is the least element of 

the poset ( 5 2 , ^ ) ; in this case the monoid ( 5 1 . - . S ) is positive ordered, i.e. it is 

ordered and for any pair a, b G 5 1 we have a ^ a • b< b ^ a • b (cf. [6], chap. X, 

§1, p. 217). Another unit extension preserving the positivity and the negativity 

in (5 , •, ^ ) under the assumption of equality of one-sided cones is described in [6], 

chap. X, §3 (Theorem 3). 

In the next par t of this paragraph, we shall suppose that ( 5 1 , •, ^ ) is one on the 

above mentioned extensions of (5 , •, ^ ) . Of course, if the cardinal unit extension of 

an ordered semigroup satisfies either LSC-condition or RSC-condition, then it is an 

antichain. 

L e m m a 3 .3 . Let (5 , •, ^ ) he an SC-ordered semigroup. Then 

R = R , L = L mid R o C = C o R = R, L o C = C o L = L 

P r o o f . For arbitrary x G 5 we have by Lemma 3.2 

C O R ( T ) = [ T - 5 1 ) ^ = T - [S[)^ = T - 5 1 = R ( T ) C R O C ( T ) = C O R ( T ) , 

thus C o R = R o C = R and by Lemma 3.1 we have R = R. Similarly we get the 

dual assertions. • 

It follows from the above considerations that characterizations of regularity of 

SC-ordered semigroups are reduced to the case contained in Theorem 3.1 (i.e. Theo-

rem 10, [19]). The substantial difference between regularity of topological semigroups 

with continuous closed translations ([20]) and SC-ordered semigroups consists in the 

fact tha t in the first case R < R, L < L in spite of equalities R ( T ) = R(.r) , 

L ( T ) = L(.r) holding in both cases. If (5 , •) is a monoid or (5 , •, ^ ) is an SC-ordered 

monoid, we have that (5 , •) is regular if and only if H(.r) = R ( T ) - L ( T ) (= R ( T ) -L(.r)) 

for any x G 5 , where H(N ) = R(X) 0 L(X) for each subset X of 5 . 

Indeed, according to Iseki theorem 1.1 we have Ar\D — AD for any pair ( A D) G 

.F ' (R) x T'(L). In particular, by virtue of Lemma 3.3 we have for any element T G 5 : 

H ( T ) = R(:r) n L ( T ) = R ( T ) • L ( T ) =. R(.r) • L ( T ) . 
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On the other hand, let a e S be an arbitrary element. Since 

aea- S1 n S1 • a = R(a) n L(a) = H(a) = 

= R(a) • L(a) = a - Sl - Sl - a = a • S[ • a = a • S • a, 

the element a is a regular element of the monoid (S, •). 

Example 5. Consider the set Z[i] of all Gauss integers and define a mapping <p>: 

l[i] -» Z[i] by 

f a + 1 if b = 0, 
(.D(a + bi) = < 

I 1 otherwise. 

Since (Z[i],(D) is a connected unar which is a line with short tails (in the terminol-

ogy of [22], [1]), its endomorphism monoid End(Z[i],(D)—which is not a group—is 

regular by [22], Theorem 1 (cf. also [2], Theorem 1) and by Proposition 2.1 of this 

paper (End(Z[i],(jD), ^ ) is SC-ordered. Evidently the monoid End(Z[i],(.D) (i.e. a 

centralizer of (D within (Z[i]zM, o)) is noncommutative. Let k e Z, k > 1 be chosen 

arbitrary but fixed and put / = (Dfc. 

First, we define a mapping g G End(Z[i],(/?) which will be a regular conjugate of 

/ , i.e. such that (/, g) forms a regular pair ([21], p. 264), which means / o g o f = / , 

9 o f o g = g. Denote M = {a + bi e Z[i]; b ^ 0}, M0 = M U {0}. Let a: 1 -> Z 

be the successor function, i.e. a(p) = p + 1. If S0 is a set formed by mappings £: 

Z[i] -» Z[i] such that f |Z = idz and £|M0 is a selfmapping of M0 with the fixed point 

0 and Si is formed by mappings ip: l[i] -> l[i] such that i/;|Z = an for a suitable 

n e 1 \ {0} and ip\M0 is a constant mapping with the value ?i, we have 

End(Z[i],(D) = S0 U Si, S0 n Si = 0. 

Now we show that Si C End(Z[i],/) = End(Z[/],<pfc). Suppose ^ ^ Si and 

p e 1 \ {0} such that V |̂Z = O'\ ^(M) = {p}. Let z = a + bi G Z[i]. If b = 0 then 

( / o ̂ ) ( z ) = (Dfc(Op(a)) = ap+k(a) =a + p + k = ap(a + k) = ^k(z)) 

if b ^ 0 then 

(/ o V)(г)  = / Ы  =p  + k = a"(к)  = -Ф(к)  = ф{<p
к
{a + Ы)) 

=  Ы>of)(z). 
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Since / o S0 = <fk ° So = {<Pk} = So ° fk = So ° /- we have 

R ( / ) = / ° (5o U Si) = (/ o S0) u (/ o Si) = (So o / ) U (S! o / ) = (S0 u Si) o / 

= L(/) , 

and thus 

(2) H ( / ) = R ( / ) n L ( / ) = R ( / ) = L(/) . 

By the definition of an ideal we have R ( / ) o R( / ) C R( / ) . 

On the other hand, since p2k G <D2/c o Si o Si, <p'2k o Si C (p2k o Si o Si, we get 

R ( / ) o R( / ) = ( { / } U (<pk o Si)) o ({pk} U (</ o Si)) 

= {ip2k} U (p2k o Si) U ((£2/c o Si o Si) = p2k o Si o Si. 

Suppose a G R( / ) - If g = ^/c, then a G </?2/c o Si. Indeed, if ip G Si is such a 

mapping that ty\l = O"^, then g = <pk = p2k o ij' e p2k o Si C R( / ) o R( / ) . If 

g = p2k o t/Ji, where ipi G Si, t/'i |_ = O"n, then p\k o 0, — (D2/l' o £ G </?2/c o Si, where 

f: Z[z] -> Z[z] satisfies f |Z = a'1"*, thus 

R ( / ) _ ^ 2 / c o 5 i o S i = R ( / ) o R ( / ) , 

therefore—with respect to (2)--we have 

R ( / ) o L(/) = R( / ) o R( / ) = R( / ) = H ( / ) . 

In what follows, we are going to show that within the class of positive ordered 

semigroups the regularity of an SC-ordered semigroup can be established with the 

use of the end operation C only. In order to prove that, we formulate some charac-

terizations of semigroups belonging to the class of positive SC-ordered semigroups. 

Recall that an element a of an ordered semigroup (S, •, ̂ ) is said to be positive 

if x ^ a • x, x ^ x • a for all x G S, and (S, •, _) is called positive ordered if all its 

elements are positive ([6], chap. X, §1). An ordered semigroup (S, •, ̂ ) is said to be 

naturally ordered if it is positive ordered and for any pair a,b € S such that a < b 

there exist x,y G 5 with the property 

a • x = y • a = b. 

Lemma 3.4. If (S, •, ̂ ) is a positive ordered semigroup, then R = R if and only 

ifR = C. 
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P r o o f . Suppose R = R. Then C ^ R o C and by Lemma 3.3, R o C = R, thus 

C ^ R. For any y G R(x) = x • S1, where x G 5, we have y = x • s with a suitable 

s G S1 , hence T ^ .r • s = H, consequently R(T) C C(.z;) and we have R = C. 

If R = C, then R = R2 = R o C = C o R and again by Lemma 3.3 we get R = R. 

• 

Theorem 3.2. Let (5, •, ̂ ) he a positive ordered semigroup. Then the following 

conditions are equivalent: 

1° (5, •, ̂ ) is naturally ordered. 

2° (5, •, ̂ ) is an SC-ordered semigroup. 

3° R = R, L = L. 

4° R = C = L. 

5 ° R o C = C o R = R, L o C = C o L = L. 

P r o o f . By Lemma 3.4 and by the assertion which is dual to it we have that 3° 

is equivalent to 4°. By Lemma 3.1 (and by assertion dual to it) we have that 3° is 

equivalent to 5°, thus 4° is equivalent to 5°. (The implication 4° => 5° is trivial.) 

1° =-> 2°: Suppose a,b,c G S are elements such that a • b ^ c. If a • b = c, we put 

c' = a, c" = b and thus c' • b = a • c" = c. Suppose a • b < c. Then there exist .T, y G 5 

such that x • a - b = a - b - y = c. Denote c' = ;v • a, c" = b • y. Then c' - b = a - c" = c 

and since the semigroup (5, •, ̂ ) is positive ordered, we have 

a ^ :r • a = c', b ^ b • y = c", 

consequently, this semigroup is SC-ordered. 

The implication 2° => 3° is contained in Lemma 3.3. 

3° =t> 1°: Suppose a,b G 5, a < b. Since 3° is equivalent to 4°, we have 

be [a)^ =a-S
1
 =S

l
 • r/, 

thus a - x = y • a = b for some pair x, y G 5, hence 1° holds. • 

Corollary. If a positive ordered semigroup satishes either R = R or L = L, 

then it is a douhle semigroup (i.e. its any one-sides ideal is two-sided), in particular, 

a positive SC-ordered semigroup is douhle. 

By a natural partial ordering on a band (5, •) we understand—in accordance with 

[3], §1.8—an ordering ^ defined by a ^ b if and only if a • b = b • a = a. Thus a 

commutative band is a lower semilattice with respect to ^—[3], Theorem 1.12. 

Theorem 3.3. Let (S, •, _) he a naturally ordered semigroup or a positive SC-

ordered semigroup. Then the following conditions are equivalent: 
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1° (5, •) is regular. 

2° COsC. 

3° (5, •) is a commutative band, i.e. a lower semilattice (5, ^ ) , where ^ = _ _ 1 . 

P r o o f . The implication 1° => 2° follows from Theorem 3.1,4° and Theorem 3.2. 

2° => 3°: The relation CO5C means X C)Y = X • Y for any pair of dual ideals (or 

ends) X, Y of the poset (5, _ ) . Since (5, •, _) is SC-ordered, we have 

(3) C(a) • C(6) = C(a • b) for any pair a,b e S. 

Indeed, 

C(a) • C(6) = [a)< • [6)< = ( (J {S}) • [/j)< = (J s • [&)< 

a^s a^s 

= U[ s-% = [(U{-9}H< = [[a^-% = c2(a-6) = c(a-ft)-
a^s a^s ~ 

Then for any a G 5 we have 

C(a) = C(o) n C(a) = C(a) • C(a) = C(a2), 

thus a2 = a, i,e, (5,-) is a band. Since (5, •, _) is positive ordered, for any pair 

a, b G S we have 

a • b _ (b • a) • (6 • a) = b • a _ (a • b) • (a • b) = a • 6, 

hence a • b = b • a. 

Finally, for a, b G 5 we have a _ b if and only if either a = b or a < b and by (3) 

C(b) = C(a) n C(b) = C(a) • C(6) = C(a • 6) = C(b • a), 

thus a- b = b - a = b, i.e. b ^ a and we get 3°. 

Since the implication 3° => 1° is evident, the proof is complete. D 
According to [19], Lemma 6 we get 

Corollary 1. If (5, •, _) is a positive SC-ordered semigroup satisfying the con-

dition CQSC, then (5, •) is a semilattice of groups. 

From Theorems 3.1, 3.2, 3.3 and in view of the evident fact that an upper semi-

lattice is positive SC-ordered with respect to binary join operator (Example 3) we 

also obtain: 
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Corollary 2. For an ordered semigroup (5 , - ,^) the following conditions are 

equivalent: 

1° (5, •, ̂ ) is a regular naturally ordered semigroup. 

2° (5, •, ̂ ) is a positive SC-ordered semigroup satisfying the condition CO5C. 

3° (5, •, ̂ ) is a positive SC-ordered semigroup satisfying the condition RO5L. 

4° (5, •) is a commutative band, i.e. a lower semilattice (5, ^ ) , wheTe ^ = ^~ . 
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