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The Ising Decision Maker: A Binary Stochastic Network for Choice
Response Time

Stijn Verdonck and Francis Tuerlinckx
KU Leuven, University of Leuven

The Ising Decision Maker (IDM) is a new formal model for speeded two-choice decision making derived

from the stochastic Hopfield network or dynamic Ising model. On a microscopic level, it consists of 2

pools of binary stochastic neurons with pairwise interactions. Inside each pool, neurons excite each other,

whereas between pools, neurons inhibit each other. The perceptual input is represented by an external

excitatory field. Using methods from statistical mechanics, the high-dimensional network of neurons

(microscopic level) is reduced to a two-dimensional stochastic process, describing the evolution of the

mean neural activity per pool (macroscopic level). The IDM can be seen as an abstract, analytically

tractable multiple attractor network model of information accumulation. In this article, the properties of

the IDM are studied, the relations to existing models are discussed, and it is shown that the most

important basic aspects of two-choice response time data can be reproduced. In addition, the IDM is

shown to predict a variety of observed psychophysical relations such as Piéron’s law, the van der

Molen-Keuss effect, and Weber’s law. Using Bayesian methods, the model is fitted to both simulated and

real data, and its performance is compared to the Ratcliff diffusion model.

Keywords: choice response time, statistical mechanics, diffusion models, stochastic Hopfield network,

speed–accuracy tradeoff

Supplemental materials: http://dx.doi.org/10.1037/a0037012.supp

The speeded two-choice response time (RT) task is a well-
established paradigm in experimental psychology for investi-
gating the principles underlying simple decision making. In the
psychological literature, several successful models have been
proposed based on the idea of the accumulation of noisy evi-
dence over time (Link & Heath, 1975; Ratcliff, 1978; Ratcliff &
Smith, 2004; Stone, 1960; Usher & McClelland, 2001; Vickers,

1970). An important class of accumulator models, of which the
drift diffusion model is the prime example, relies on a single or
a few linear stochastic differential equations (SDEs). Decades
of careful research resulted in excellent fits between the best
accumulator models and behavioral data from speeded two-
choice RT tasks. Initially, these models were conceived as
abstract representations of the decision process. In the last
decade however, there has been an increasing trend of investi-
gating their neurophysiological underpinnings (Ditterich, 2010;
Gold & Shadlen, 2007; Niwa & Ditterich, 2008; Ratcliff, Che-
rian, & Segraves, 2003; Ratcliff, Hasegawa, Hasegawa, Smith,
& Segraves, 2007; Rorie, Gao, McClelland, & Newsome, 2010;
Smith & Ratcliff, 2004).

More recently, the speeded two-choice RT task has raised interest
in the field of computational neuroscience. In this field, models are
usually defined at a basic neurocomputational level, providing a
microscopic description of individual neurons and their interactions as
they combine into a neural network. The type of network typically
used when modeling human brain dynamics is the so-called integrate-
and-fire network, which closely matches the experimentally observed
pulse-firing-based neuronal communication (Amit & Brunel, 1997).
Wang (2002) used this framework to design a network specifically for
the speeded two-choice RT task. In their analysis, Wong and Wang
(2006) reduced this high-dimensional network to fewer dimensions,
eventually leading to a set of two nonlinear SDEs, which connects
back to the diffusion models mentioned earlier. Interesting work on
the reduction of networks to one-dimensional nonlinear SDEs has
been done by Roxin and Ledberg (2008). Although sometimes re-
ferred to in psychological literature (Bogacz, Brown, Moehlis, Hol-
mes, & Cohen, 2006), the Wong and Wang integrate-and-fire network
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and its two-dimensional nonlinear derivates (see also Eckhoff, Wong-
Lin, & Holmes, 2011) are rarely (if ever) fit to real behavioral data.
According to us, one of the reasons for this restraint is that these
networks are analytically overly complex and therefore not suffi-
ciently developed as genuine candidates for practical choice RT
modeling. Consequently, there seems to be a need for a network
approach that is analytically less intricate than the integrate-and-fire
two-choice decision network but still preserves all essential nonlinear
properties of multiple attractor networks that cannot be emulated by
simple linear SDE models.

In this article, we present a more abstract alternative to the above
mentioned integrate-and-fire two-choice decision network. Our start-
ing point is the relatively simple Hopfield network (Hopfield, 1982)
or formally equivalent dynamic Ising model (Amit, Gutfreund, &
Sompolinsky, 1985a,1985b). This network model is based on binary
neurons that evolve through time according to an abstract dynamical
transition rule. It stands in contrast with the integrate-and-fire net-
work, in which the individual neuron model and its time evolution are
inspired by more detailed electrochemical principles. We call our
specific application of the dynamic Ising model the Ising Decision
Maker (IDM). The basic architecture consists of two pools of neurons,
with pairwise excitatory connections within a pool and pairwise
inhibitory connections between pools. Like Wong and Wang’s net-
work, the IDM operates as a multiple attractor network. When it
comes to accurately describing neural dynamics, an integrate-and-fire
network is generally considered to be more appropriate because its
neurons and their dynamics are more closely related to the biophysi-
ological reality. However, features typical for multiple attractor net-
works in general can already be reproduced by a simple Ising model
(e.g., multiple stable states). Moreover, both the integrate-and-fire
network and the Ising model are used for fitting observed correlations
between neurons, leading to comparable results (Cocco, Leibler, &
Monasson, 2009; Tkacik, Schneidman, Berry, & Bialek, 2009). From
this perspective, the Ising model supplied with a suitable dynamics
could prove to be a sufficient description of the neurocomputational
mechanics underlying the speeded two-choice RT task, even despite
the obvious loss of biophysiological detail compared to the integrate-
and-fire approach. The IDM is an abstract model of information
processing that gives expression to the microscopic biological reality
of correlated stochastic neurons in a statistical mechanical framework.
In this sense, the IDM follows the recommendation formulated by
Forstmann, Wagenmakers, Eichele, Brown, and Serences (2011), p.
276: “Abstract models should ideally start to incorporate assumptions
about the neural substrate.”

In what follows, we first formulate the basic principles of the IDM
at an equilibrium level and then the associated dynamics. Next, we do
a formal comparison with existing SDE-based psychological models.
Subsequently, we show through simulations that the model is able to
reproduce all qualitative aspects of speeded two-choice RT tasks
currently captured by traditional diffusion models. Using Bayesian
methods, we then fit the IDM to both simulated data (to investigate
recovery) and real data. The IDM is compared to different versions of
the Ratcliff diffusion model in a model-selection context. Finally, the
IDM is shown to explain some additional phenomena, like Piéron’s
law (with increasing, but weak, stimulus intensity, the choice RT
decreases; see, e.g., Pins & Bonnet, 1996), the van der Molen-Keuss
effect (with increasing, but very large, stimulus intensity, the choice
RT increases again; see Jaśkowski & Włodarczyk, 2006; van der
Molen & Keuss, 1979), and a decision-level version of Weber’s law.

IDM: The Ising Decision Maker

In this section, we start by explaining the general stochastic
Hopfield network (Amit et al., 1985a,1985b; Hopfield, 1982).
After having discussed the basic concepts of this type of network,
we tailor a version providing a basic neurocomputational descrip-
tion of the speeded two-choice RT task and elaborate this into a
workable model.

Stochastic Hopfield Network

The stochastic Hopfield network or Ising model1 consists of N

binary neurons. Each neuron i has an activity Si, which can be
either 0 (inactive) or 1 (active). The activities for all N neurons can
be collected in a microscopic state vector S � �S1, . . . , SN�. The
defining quantity of the network is the energy function E(S), which
associates an energy value with every one of the 2N possible
configurations of S � �S1, . . . , SN�:

E(S) � ��
i�j

wijSiSj � �
i

�iSi (1)

with parameters wij and �i determining the structure of the net-
work. The weight parameter wij describes the interaction strength
between neurons i and j, and �i describes the activity threshold for
neuron i. In the first term of Equation 1, the summation runs over
all distinct pairs of interacting neurons (thus, i � j).2 As an
example, a three-neuron version of this network is graphically
represented in Figure 1.

The network is stochastic, which means that S is a binary
random vector. For the equilibrium distribution of the microscopic
states, the canonical ensemble is assumed. The term canonical

ensemble has roots in statistical mechanics (e.g., Schroeder, 1999),
but for all practical purposes, it means that the probability distri-
bution of S, Pr(S), is a Boltzmann distribution,

Pr(S) � Z�1e��E(S), (2)

in which Z is the so-called partition function:

Z � �
S

e��E(S). (3)

The role of Z is that of a normalization factor, such that Pr(S) is a
valid probability mass function that sums to one over all possible
configurations of S. The parameter � � 0 is traditionally referred
to as thermodynamic beta or inverse temperature. If it is close to
infinity, the system will be forced into those configurations with
absolute lowest energy; as it decreases, the system can also occupy
energetically less favorable states. At � � 0, all 2N microscopic
states are equally probable.

1 A simple statistical mechanical model based on binary units was first
explored by Ising (1925) (following an idea of his supervisor, Lenz), in the
context of ferromagnetism. We have chosen to name our model the Ising
Decision Maker to make the formal and historical link with statistical
physics more explicit. Many of the tools we use in this article have been
developed in this branch of physics, and it seems reasonable to assume that
the large body of available literature could fuel further advances.

2 Note that an alternative formulation uses activity values of �1 and 1;
this leads to a formally identical energy function but with redefined wij

and �i.
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The description up until this point does not contain any infor-

mation about the way the stochastic vector S evolves through time.

In most cases, a sequential Metropolis algorithm is used (e.g.,

Newman & Barkema, 1999). Every Markov chain time step, a new

candidate configuration S� is constructed by randomly selecting a

single neuron and changing its activity (0 to 1 and 1 to 0). The

system will evolve from S to S� with probability �:

	 � min{e��(E(S*)�E(S)), 1}. (4)

In the long run, the Metropolis algorithm leads to the sampling of

S according to the Boltzmann distribution from Equation 2.

The IDM Design

We now construct a specific instance of the stochastic Hopfield

network representing the supposed abstract neural correlate of

speeded two-choice perceptual decision making. The N available

neurons are divided into two disjunct pools that are self-exciting

and mutually inhibiting. In addition, each pool is excited by a

different aspect of an external stimulus through the interaction

with a two-component external field that represents the relevant

sensory data passed on by earlier predecision systems more di-

rectly connected to the physical stimulus.

Equilibrium description. Consider two pools S1 and S2 of N1

and N2 neurons, respectively, with N1 � N2 � N. An individual

neuron from pool p (p � 1, 2) is represented as Spi (with i �

1, . . . , Np). It is assumed that all neurons in pool p have an equal

threshold �p 	 0. In addition, we define a positive time-varying

two-component external field input (b1(t), b2(t)), each component

supplying evidence for the related pool and choice alternatives. In

the absence of a stimulus, the external field is (0, 0). When a

stimulus is presented, the field changes to some stimulus-specific

two-component value characterizing the stimulus shown. Al-

though one could consider stimuli gradually changing through

time (e.g., Ratcliff & Rouder, 2000), we stick to the basic speeded

choice experiment where a stimulus is either present or not. At any

given time t, we consider the external field (b1(t), b2(t)) to be either

(0, 0) or some stimulus-specific two-component value.

All neurons are positively correlated with their fellow pool
members, and the strength of these excitatory connections is given
by wp

� (with wp
� 
 0). Between the two pools, neurons are

negatively correlated with � w12
� the strength of the inhibitory

connections (meaning w12
� 
 0).

With all neurons interconnected, the total energy of the two-pool
decision network, for a configuration S � (S1, S2), is

E(S) � �w1
��

i�j

S1iS1j � w2
��

i�j

S2iS2j � w12
��

i,j
S1iS2j

�(b1 � �1)�
i

S1i � (b2 � �2)�
i

S2i,
(5)

where the time dependence of the external field is implicit. In
the first two terms of Equation 5, the summation runs over all
distinct pairs of interacting neurons inside a single pool (lim-
iting the summation to distinct pairs implies taking i � j). Using
constant interaction strengths w1

�, w2
�, and � w12

� makes all
neurons inside a pool interchangeable without consequence for
the system’s energy. The use of constant interaction strengths
can therefore be seen as an effective mean field approximation
(see, e.g., Schroeder, 1999). In the context of a mean field
approximation, the assumption of full connectivity is no longer
relevant and can easily be departed from by lowering the
interaction strengths. A graphical representation of the IDM
network design is shown in Figure 2.

Next, let us make the transition from this microscopic level of
description to a macroscopic level. For this purpose, we define a
macroscopic vector variable y � (y1, y2) that represents the aver-
age activity of the neurons in each pool. This vector of mean
activities y � (y1, y2) is a vector-valued function f of the total
microscopic configuration S: y � f(S) � (f1(S), f2(S)). The mean
activity in pool p (p � 1, 2) is defined as

yp � fp(S) �
�i Spi

Np

, (6)

which means that 0 � yp � 1. Working with mean activity rather
than summed activity makes it easier to compare instances of the
model with a different number of neurons. Note that the mapping
from S to y � (y1, y2) is a many-to-one mapping because several
binary vectors S may lead to the same pair of mean activities y �

(y1, y2).
In a next step, we express the properties of the system in terms

of the macroscopic variable y instead of the more detailed micro-
scopic S. Expressing the energy from Equation 5 as a function of

Figure 1. Graphical representation of a stochastic Hopfield net or Ising

model with three neurons.

Figure 2. Graphical representation of the Ising Decision Maker network

design.
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y1 and y2, we get the following (see Appendix A for a detailed
derivation of the first equation):

E(S) � � w1
��(N1y1)

2 � N1y1

2 �� w2
��(N2y2)

2 � N2y2

2 �
� w12

� N1N2y1y2 � (b1 � �1)N1y1 � (b2 � �2)N2y2

� �
w1

�N1
2

2
y1

2 �
w2

�N2
2

2
y2

2 � w12
� N1N2y1y2

(7)

��N1b1 � N1��1 �
w1

�

2 ��y1 � �N2b2 � N2��1 �
w2

�

2 ��y2

� � W1
�y1

2 � W2
�y2

2 � W12
� y1y2 � (B1 � �1)y1 � (B2 � �2)y2

� E(y1, y2) � E(y),

(8)

where Wp
� �

wp
�Np

2

2
, W12

� � w12
� N1N2, Bp � Npbp, and �p �

Np��p �
Wp

�

2 �.3 In this article, we additionally assume both pools

have the same number of neurons, meaning Np �
N

2
; their thresh-

olds are the same, so �p � �; and their excitatory interactions have
the same strength w�, so wp

� � w�. This simplifies Equation 8 to

E(y) � �W�y1
2 � W�y2

2 � W�y1y2 � (B1 � �)y1 � (B2 � �)y2.

(9)

The derivation shows that all configurations S mapping onto the
same macroscopic variable y have equal energy: E(S) � E(y) for
y � f(S). If we now compute the probability of a macroscopic
outcome y based on Equation 2, we find (summing over all
microscopic configurations that result in y)

Pr(y) � �
S|y�f(S)

Pr(S) � �
S|y�f(S)

Z�1e��E(S)

� � �
S|y�f(S)

1�Z�1e��E(y) � (y)Z�1e��E(y)

� Z�1e�(y)��E(y) � Z�1e��(E(y)���1�(y))

� Z�1e��F(y),

(10)

where 	(y) is the Boltzmann entropy of the system for y:

�(y) � log((y)), (11)

and 
(y) is the number of configurations S that results in y.4 In the
final line of the derivation, we use F(y) to denote the Helmholtz
free energy of the system limited to y (see, e.g., Schroeder, 1999):

F(y) � E(y) � ��1�(y). (12)

The total partition function Z can also be written in terms of F(y):

Z � �
y

e��F(y),

allowing Pr(y) to be formulated exclusively in terms of F(y) and �.
In addition, 
(y), defined as the number of microscopic states

for a given y, is easily calculated from the microscopic combina-
torics as follows:

(y) � 

p

(yp)

� 

p
� Np

Npyp
�

� 

p

Np!

(Npyp) ! (Np(1 � yp))!
.

The entropy of y can then be approximated for large Np through
Stirling’s formula (log�n!� � nlogn � n) as

�(y) � log�

p

Np!

(Npyp) ! (Np(1 � yp))!
� � �

p

Np(yplog(yp) � (1 � yp)log(1 � yp)). (13)

Again assuming Np �
N

2
, the final formula for the entropy of the

system reads

�(y) � �
N

2�
p

(yplog(yp) � (1 � yp)log(1 � yp)).

Combining this approximation with Equation 12 gives

F(y) � E(y) � ��1�(y)

� � W�y1
2 � W�y2

2 � W�y1y2 � (B1 � �)y1 � (B2 � �)y2

���1
N

2�
p

(yplog(yp) � (1 � yp)log(1 � yp)).

(14)

Inserting the expression for the free energy from Equation 14 into
Equation 10 gives the probability distribution of the pair of mean
activities y � (y1, y2).

The probability distribution of y now has seven parameters:
W�, W�, �, N, B1, B2, and �. However, not all of these parameters
are uniquely identifiable because one may multiply � with a constant
K and multiply the parameters W�, W�, �, B1, and B2 with K–1

without changing the probability mass function Pr(y). Hence, to
identify the model, we could set � to an arbitrary value. For reasons
of completeness, we leave � in the following equations.

When studying the properties of the probability mass func-
tion Pr(y), we can focus our attention on the free energy surface
F(y) because of the simple monotonic relationship between
Pr(y) and F(y). It is good to keep in mind that a minimum of
F(y) corresponds to a maximum in the probability distribution
Pr(y).

In Figure 3, we show what the free energy surface may look
like at the beginning of an IDM trial and how it deforms under
the influence of the external field (B1, B2), increasing instan-
taneously from (0, 0) to some finite two-component value when

3 The functions E(S) and E(y) are separate functions and can be distin-
guished by the notation of their argument.

4 In physics, the right-hand side of Equation 11 is often preceded by a
scaling factor known as the Boltzmann constant kB. This constant links the
microscopic energetic description of a physical system (e.g., an ideal gas)
to the Kelvin temperature scale, but this has little meaning in the context
of the IDM and is therefore set to 1.
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a stimulus is presented. The parameter values giving rise to
these surfaces can be found in Table 1, under the header
Equilibrium, and in the figure caption. Note that we use the
parameter values from Table 1 as a basis for all the simulations
discussed in this article (if other values are used, this is clearly
indicated). In Figure 3, it can be seen that under the influence
of the external field B, the free energy changes from a three-
minima surface before stimulus onset (one dominant spontaneous
state with low activity for both pools and two less likely decision
states with increased activity for one pool and slightly decreased
activity for the other) to a two-minima surface during stimulus pre-
sentation where there are only two decision states, both of them
showing increased activity for one pool and slightly decreased activity
for the other. When the stimulus is dropped, the free energy returns to
its initial input-free shape.

Although completely defined by the two variables B1 and B2,
for some applications it is interesting to decompose the external
field (B1, B2) into a selective (Bs1, Bs2) and nonselective (Bns,
Bns) component:

B1 � Bs1 � Bns,

B2 � Bs2 � Bns,
(15)

with Bs1, Bs2, Bns � 0. Evidently, the nonselective component
impacts both pools identically, whereas the selective component

may have a different value per pool. Additionally, the selective
component (Bs1, Bs2) can be reformulated, introducing stimulus

distinctness C as a signed proportion (i.e., C � � � 1, 1�) and input
strength Bs as the overall strength of the selective part of the
input:

Table 1
Parameter Values of the Ising Decision Maker Used for

Simulations (Unless Defined Otherwise)

Parameter Description Value

Equilibrium
W� Self-excitation 52,500
W� Mutual inhibition 8,400
� Internal threshold 51,450
N Total number of neurons 2,000
B Two-component external field Different values
� Inverse statistical temperature 1/24

Dynamical
� Collective step size 0.01
t Time step 1 ms
h Detection box size 0.4

Nondecision
Ter Nondecision time 0 ms

Figure 3. An example of what the free energy function F(y) may look like during the time course of a single

Ising Decision Maker trial (extremely high free energy function values near the boundaries have been clipped

off). The left graph shows the free energy surface at the beginning of the trial (when B1 � B2 � 0): There is one

dominant spontaneous state with low activity for both pools and two less likely decision states for which one of

the pools is moderately active but not the other. When the external field is turned on (i.e., the stimulus is

presented), the spontaneous state disappears, and only two decision minima are present, showing increased

activity for one pool and slightly decreased activity for the other. Two examples are shown in the middle figures:

The upper figure is caused by a stimulus with equal external field components B1 � B2 � 3,000, the lower figure

by a stimulus with one dominant field component B1 � 3,300 	 B2 � 2,700. When the external field is switched

off again (i.e., the stimulus disappears), the initial free energy surface returns. The remaining parameters used

here are the equilibrium parameters shown in Table 1.
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B1 � Bs(1 � C) � Bns,

B2 � Bs(1 � C) � Bns.
(16)

A stimulus distinctness of zero means the stimulus is completely
uninformative and both alternatives should be considered equally
correct. In that case, there is an equal amount of evidence for both
alternatives, or B1 � B2. A strictly positive value for stimulus
distinctness C means B1 	 B2 and assigns more evidence to the
first alternative then the second, making the first alternative the
objectively correct choice (unless the assignment of stimuli to
categories is stochastic, as in Ratcliff & Rouder, 1998, in which
case B1 	 B2 can occur, while Alternative 2 is the correct one).
The case of negative distinctness C, where B2 	 B1 and the second
alternative is the correct choice, can be reinterpreted as a case of
positive distinctness by simply switching pool labels. Indeed,
because both pools are identical in design (same number of neu-

rons N

2 , same W�, same �), swapping B1 and B2 is identical to
swapping y1 and y2. Stimulus distinctness C is not allowed to be
greater than one because this would lead to a negative value for
Bs2. Note that Figure 3 also shows that stimulus distinctness is
linked with an asymmetry in the free energy surface across the
main diagonal of the (y1, y2)-plane (lower middle plot). Nonzero
stimulus distinctness (meaning that there is more evidence for one
of the two response options) leads to a lower free energy and
consequently higher probability of one of the two decision states.
In the case of zero stimulus distinctness (upper middle plot), both
decision states are equally likely as the corresponding free energy
minima have the same shape and depth. In the section entitled
Modes of Operation of the IDM, below, we study in greater detail
the different free energy surfaces that can be generated using
various parameter values.

The proposed parameterization of the external input field is a bit
more sophisticated than is common for the modeling of a stimulus
(e.g., a simple drift rate in the Ratcliff diffusion model or a dual
drift rate in most two-dimensional diffusion models), but it pro-
vides an operational definition of the stimuli presented in a variety
of experiments. We start by recognizing the fact that a stimulus has
different aspects, all of them possibly having an impact on the two
available decision pools. Some aspects of the stimulus, if in a
suitable range, are not relevant to the discrimination task at hand
(e.g., the brightness of a dot when asked to determine if it appears
left or right from the middle of the screen is not relevant unless it
is subthreshold). The sum of these decision-irrelevant or nonse-
lective aspects can still result in an external field on both pools as
long as it is equal for all the stimuli being discriminated. The
aggregate impact of the nonselective aspects is modeled as the
nonselective stimulus strength Bns and is considered to be constant
in a standard two-choice RT experiment. The stimulus aspects that
are related to the discrimination at hand (e.g., the location of the
dot when asked to determine if it appears left or right from the
middle of the screen) are allowed to have a different impact on
both pools, which is represented by the decision-relevant or selec-
tive evidence for both alternatives, denoted as Bs1 and Bs2.

Regarding the input parameters, two additional things should be
noted. First, it is not unusual to assume that the total amount of
evidence supplied to the network is constant for a standard two-
choice RT experiment (Ratcliff et al., 2007). This means that the
selective evidence parameters Bs1 and Bs2 can be reformulated as
Bs and C, with Bs constant for all available stimuli. The only

parameter that still depends on the stimulus is distinctness C.
Second, for the simple two-choice RT paradigm, Bns and Bs are not
uniquely defined; they can only be measured independently in a
specific experimental design. In the sections on the van der Molen-
Keuss effect and Weber’s law (see below), we demonstrate the use
of the complete input parameterization.

Dynamics of the IDM. Having explained the equilibrium
properties of the IDM, we now turn to the dynamical aspects of the
model. Although the underlying stochastic Hopfield network is
often equipped with a single neuron updating Metropolis dynam-
ics, the equilibrium description given above is valid for many other
Markov chain dynamics. In this article, we first discuss the tradi-
tional single neuron updating case and then focus on a Markov
chain defined on the macroscopic level, considering changes of y

rather than S. How this macroscopically defined dynamics can be
interpreted as a form of collective change of microscopic activity
is explained. Throughout the rest of the article, only the macro-
scopically defined dynamics is used.

First, in order to attach a physical time to the discrete, dimen-
sionless Markov chain time, we quantify one Markov chain time
step as t. We then define time t as an integer multiple n of t:

t � n�t, (17)

with n the number of Markov chain time steps completed. The
parameter t determines the time scale of the dynamics and is one
of the parameters that need to be estimated when fitting the model
to data (see below).

Microscopically defined dynamics based on single neuron

updates. In this paragraph, we consider the traditional Metrop-
olis dynamics based on single neuron updates as described in the
section on the stochastic Hopfield network. Because, for a large N,

the effect of changing a single neuron’s activity on the mean
activity is small, we can locally approximate energy, entropy, and
free energy as linear functions of mean activity and write the
resulting dynamics as a set of diffusion equations at the macro-
scopic level (Kikuchi, Yoshida, Maekawa, & Watanabe, 1991). As
calculated in Appendix B, the diffusion equations are

dy1 � ��D
�F(y)

�y1

dt � �2DdW1,

dy2 � ��D
�F(y)

�y2

dt � �2DdW2,

(18)

where W1 and W2 are two uncorrelated Wiener processes and

D �
2

eN2�t
.

Macroscopically defined dynamics based on collective neuron

updates. An interesting question is what happens when instead
of sequentially updating individual neurons, we allow larger sets of
neurons to undergo a collective change in activity during one and
the same time step. There are a number of ways this could be
achieved on a microscopic level, but deriving the exact macro-
scopic effect is a challenging affair. However, it is easy to see that
collective neuron updating can result in macroscopic changes (i.e.,
in y1 and y2) that exceed the impact of a single neuron update.

An easy and straightforward way to incorporate collective neu-
ron updating into the IDM is by allowing larger steps of the mean
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activities. More specifically, we assume that at every time step, a
proposed change in (y1, y2) is sampled from a bivariate normal
probability distribution ��0, �2I2� (with I2 the two-dimensional
identity matrix). This proposal is then accepted or rejected based
on the Metropolis acceptance probability that is connected to the
free energy difference between the proposed and the current mac-
roscopic configuration.5 The parameter � regulates the size of the
proposed activity steps and is referred to as the collective step size.
As a result, when � is large, the IDM uses large activity steps and
scans the free energy surface in a rough, coarse manner. We refer
to such large step dynamics as coarse-grained dynamics. When �

is small, the IDM uses small activity steps, and the resulting
dynamics is more sensitive to the local shape of the free energy
surface. Regardless of the value of �, however, in the long run, the
Boltzmann distribution will be obtained.

The dynamics described above is defined on a macroscopic
level and may seem disconnected from the microscopically de-
fined sequential dynamics mentioned earlier. However, for van-
ishing collective step size � and time step t, it connects back to
the previous diffusion result (see Appendix C):

dy1 � ��D
�F(y)

�y1

dt � �2DdW1,

dy2 � ��D
�F(y)

�y2

dt � �2DdW2,

(19)

where W1 and W2 are two uncorrelated Wiener processes and

�2

2�t
¡ D. (20)

Apart from the expression of the diffusion constant, this result is
exactly the same as the one obtained with microscopically defined
sequential dynamics.

For nonvanishing collective step size �, however, it is no longer
possible to approximate the dynamics as a diffusion equation. This
deviation from local gradient behavior, brought about by collective
neuron updating, has interesting properties for the modeling of
instruction-related speed–accuracy tradeoff (SAT; see below).
Throughout the rest of this article, we use the macroscopically defined
dynamics with collective step size �. The values of the parameters �

and t that are used in the simulations can be found in Table 1 (if
other values are used, they are clearly indicated). Taking sufficiently
small values for � and t will bring the system to the diffusion limit,
which it has in common with the microscopically defined dynamics.
In this limiting case, the parameters � and t can be replaced by a
single diffusion constant D, as is shown in Equation 20.

Starting position. In contrast to traditional accumulator and
diffusion models, the starting position of an IDM decision trajec-
tory is not defined as a separate parameter. It is embedded in the
free energy function itself, where the absence of an external field
before stimulus presentation forces a low activity for both pools
(see Figure 3, left plot). This gives rise to a stable spontaneous
distribution, which serves as a random starting position for the
activity at the moment the external field (B1, B2) (induced by the
stimulus) is introduced. The introduction of the external field
typically leads to two decision states (two minima) in the free
energy surface (see Figure 3, middle plots) that force the decision
trajectory away from its starting point and toward one of the

decision states. Thus, from the very moment the external field is
introduced and the spontaneous state is dissolved, the decision
clock starts running (t � 0).

Stopping rule. The decision clock is stopped when the deci-
sion trajectory arrives at one of the decision states. This arrival is
detected by means of a specific stopping rule. In this case, square
detection boxes placed around the two decision minima are used
(see Figure 4). After stimulus presentation, the decision part of the
trial is completed as soon as the system enters a box and the choice
pertaining to the associated decision minimum is made.

All existing dynamical models of decision making struggle with
the stopping issue in one form or another, and several algorithms
have already been proposed. By far the most popular choice for
two-dimensional dynamical systems is a set of (perpendicularly
intersecting) absorbing boundary lines. However, as is shown in
the section on the van der Molen-Keuss effect (see below), for very
high stimulus intensities, the IDM displays potentially relevant
exotic behavior that can only be unlocked if the decision process
is allowed to advance to high activities for both pools simultane-
ously so it can approach the decision state from another angle. This
is not possible using a traditional absorbing boundary line, but it is
possible using a detection box. For regular stimuli, however (see
the simulations and the fit to a real data set below), neural activities
tend to cross the absorbing boundary at low-activity rates for the
competing pool, and there is almost no difference between using a
line or a box. In other words, the detection box behaves like an
absorbing boundary line for normal stimuli, while still allowing
interesting behavior for high stimulus intensities. As indicated in
Table 1, the detection box size h used in simulations is 0.4.

Nondecision time. For even the simplest of decision tasks, the
two-component external field (B1, B2) is the result of predecision
information processing that in itself takes time to complete. Fur-
thermore, after a decision is made, a physical reaction is required
to complete the speeded two-choice RT trial, which again takes
time. As is common in the diffusion modeling literature (e.g.,
Luce, 1986; Ratcliff & Rouder, 1998), we model all this extra
nondecision RT as a simple constant Ter that needs to be added to
the IDM-generated decision time to obtain the total RT. For most
of the illustrative simulations in this article, we take Ter to be zero.
This way only the actual decision time is obtained. For the param-
eter recovery study in the application section, however, data are
simulated with a typical nondecision time of 0.3 s.

Recapitulation: A typical decision trial. The IDM provides
a dynamical description of the decision-making system for the
entire duration of the choice trial: before, during, and (if desired)
even after the exposure to the stimulus. As illustrated in Figure 3,
the free energy surface changes dramatically between these stages.
Initially, when input is absent (B1 � B2 � 0), there is a locally
stable spontaneous state where the system is forced to wait in
anticipation of a stimulus. When a detectable stimulus is presented
to the IDM, the free energy surface is instantly deformed to a
surface with two clear decision states. In an attempt to reestablish
equilibrium, the system now evolves to one of the two locally

5 To compensate for the fact that not every macroscopic state of activity
represents the same number of microscopic states, free energy (and not just
energy) has to be used in the Metropolis algorithm. This way, detailed
balance is preserved, and the same IDM equilibrium distribution is ob-
tained as outlined before.
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stable decision states. The evolution of the mean activities of the
two pools of neurons is described by a discrete-time Markov chain
(i.e., using a Metropolis algorithm). The proposed activity steps
are sampled from a bivariate normal distribution. Upon choice
detection (when crossing the boundaries of one of the square
detection boxes), the appropriate motor response is triggered. The
effective decision-making process is timed between the introduc-
tion of the external field to the network and the detected arrival at
a decision state. To account for the entire observed interval be-
tween stimulus presentation and final response, an amount of
nondecision time can be added. In the simplest experimental
paradigm, once present, the stimulus does not change until a
response is given, upon which the trial is considered completed.
Unless specified otherwise, we assume this to be the case.

Choice probabilities and RT distributions. For a given
stimulus (with an associated external field), the IDM generates a
pair of RT distributions (�1(t), �2(t)), for Choices 1 (correct) and
2 (incorrect), respectively. More specifically, �p(t) represents the
fraction of trials that arrive at the detection box corresponding with
decision p at time t, and its support ranges from Ter (the minimum
choice RT) to ��. Strictly speaking, the support of �p(t) is
discrete (because of the use of discrete-time Markov chain dynam-
ics; see Equation 17). However, because the time step t is
typically several orders of magnitude smaller than the width of the
actual RT distribution, the underlying discreteness has no practical
consequence for the smoothness of the RT distribution. Therefore,
we interpret �p(t) as a step-function density with a continuous
support, so we can use standard calculus and terminology when
handling it. The probability of decision p occurring regardless of
RT is 	p � ��p�t�dt. The accompanying mean RTs are denoted

as �p �
1

	p
�t�p�t�dt. The cumulative distribution is denoted as

�p�t� � �0
t

�p�u�du.

Comparison of the IDM to Other Models

Several models for speeded two-choice RT have been formulated
as a single SDE or a set of SDEs (for a comprehensive overview, see
Bogacz et al., 2006). In this section, we compare the IDM with the
most important existing models. As most models in the comparison

are based on continuous diffusion equations, it makes sense to com-
pare them to the continuous diffusion limit of the IDM.

Let us take as a starting point the following general multivariate
SDE:

dy � � � U(y)dt � cdW, (21)

where y is a stochastic variable changing over time (the depen-
dence on time t is suppressed in our equations), W is a vector of
uncorrelated Wiener processes, U(y) is the potential function, and
c is the diffusion constant (in the SDE sense6). The dynamical
system described in Equation 21 minimizes its potential function
U(y) stochastically by drifting along the negative gradient of U(y).
The fundamental idea of this section is to compare different
accumulator and diffusion models with respect to the potential
functions the decision maker tries to minimize.

Let us start with relating the IDM to Equation 21. If we set

cIDM � �2D and

UIDM(y) � �DF(y),

we get Equation 19. This shows that for the diffusion limit of the
IDM, the potential function that is minimized is the (scaled) free
energy. We may insert the expression of F(y) in Equation 19 to
obtain a more detailed expression for the IDM drift rate vector (or
gradient of the potential function):

��D
�F(y)

�y1

� ��D[�2W�y1 � W�y2 � (B1 � �)]

�D
N

2
(log(y1) � log(1 � y1)),

��D
�F(y)

�y2

� ��D[�2W�y2 � W�y1 � (B2 � �)]

�D
N

2
(log(y2) � log(1 � y2)).

(22)

The drift rates are coupled (i.e., y1 and y2 appear in both drift
rates), and they are nonlinear functions of y1 and y2.

The Ratcliff Diffusion Model

A very popular model is the Ratcliff diffusion model (Ratcliff,
1978; Ratcliff & McKoon, 2007; Ratcliff & Rouder, 1998; Wagen-
makers, 2009). The key part of the model is the following one-
dimensional SDE:

dy � �dt � cdW. (23)

Each stimulus is characterized by a specific drift rate � that
quantifies its net evidence toward one of the alternatives. For each
trial of the experiment, the decision process starts at y � z (with
0 � z � a) and continues until one of two boundaries 0 or a is
reached. A decision is made depending on which boundary is
crossed. The potential function characterizing Equation 23 is linear
and only specified up to an arbitrary constant k:

6 All other instances of the term diffusion constant in the text are used in
the Focker–Planck sense and are symbolized by D.

Figure 4. Illustration of the stopping rule: The square detection boxes are

superimposed on the contour lines of the free energy surface. The length of a

side h or box size is the only parameter, and in our simulations, it is fixed to

0.4. A choice is made as soon as the evolving activities hit one of the boxes.
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URDM(y) � ��y � k. (24)

A graphical representation of this potential function is shown in

Figure 5a. The actual state of the system is defined by its position on

the y-axis. The system tends to move in a downhill direction, that is,

in a direction opposite to the gradient of the potential function U. This

evolution is made stochastic by the Wiener noise. Once the system

crosses one of the decision boundaries, the corresponding decision is

made, and the diffusion process is stopped. Often, the model param-

eters are defined as realizations of random variables, which follow

some distribution. Such a set-up introduces intertrial variability in the

formulation of Equation 23 (see Ratcliff & Rouder, 1998, for more

explanation of these variabilities).

The Ornstein-Uhlenbeck Diffusion Model

Another model that received some attention in the mathematical
psychology literature is based on the Ornstein-Uhlenbeck (OU)
stochastic process. The OU diffusion model is sometimes referred
to as the leaky accumulator model but was first applied to decision
making by Busemeyer and Townsend under the name of decision
field theory (Busemeyer & Townsend, 1992, 1993). The SDE
reads as

dy � (� � �y)dt � cdW, (25)

with � 	 0 (such that we have a mean-reverting process). The
potential function for the OU model is defined as

UOU(y) �
1

2
�y2 � �y � k. (26)

A graphical representation of this potential function is shown in
Figure 5b. Boundaries are assumed at 0 and a, and the starting
point of the process is 0 � z � a. The process strives to reach the

minimum of a parabolic potential function at ymin �
�

�
. The Wiener

noise keeps the system from freezing in that minimum, making
sure it eventually crosses one of the decision boundaries in case
0 � ymin � a.

The Leaky Competing Accumulator Model

A more advanced version of the OU model is the leaky com-
peting accumulator model or LCA (see Bogacz et al., 2006; Usher
& McClelland, 2001). The LCA or mutual inhibition model is
essentially a two-dimensional OU process with mutual inhibition.
Two accumulators y1 and y2, starting out at the origin, evolve
according to the following set of SDEs:

dy1 � (�1 � �y1 � �y2)dt � cdW1,

dy2 � (�2 � �y2 � �y1)dt � cdW2,
(27)

with �, �1, �2 	 0. At a certain point in time, one of the two
processes exceeds a bound a, and the corresponding decision is
made. For the LCA model, the potential function depends on y1

and y2:

ULCA(y1, y2) � �1

2
�(y1

2 � y2
2) � �1y1 � �2y2 � �y1y2�� k. (28)

Note that there are only boundaries placed at y1 � a and y2 �

a but no lower boundaries, meaning the accumulators y1 and y2

can become negative without consequence. Usher and McClel-
land (2001) used a threshold-linear activation function yp ¡

max(yp, 0), p � 1, 2, to ensure this never happens (for another
account, see van Ravenzwaaij, van der Maas, & Wagenmakers,
2012). If �2 � � 2, the potential function is in fact a simple
two-dimensional well (� 	 0) or hill (� � 0) with its minimum

at ymin � � ��1���2

�2��2 ,
��2���1

�2��2 �. The corresponding contour lines are
elliptic (see Figure 5c). If �2 	 � 2, the potential function has
the shape of a saddle, with its saddle-point at the same coordi-
nates ymin. The contour lines are now hyperbolic. A saddle-shaped
LCA potential function can be seen in Figure 5d.

Figure 5. Potential functions of different diffusion models for speeded

two-choice response time. a: The Ratcliff diffusion model (RDM; Equation

24 with � � 0.66, a � 0.5). b: The Ornstein-Uhlenbeck model (OU;

Equation 26 with � � 0.7, � � 4, a � 0.5). c: The leaky competing

accumulator model (LCA), well-shaped (Equation 28 with �1 � 2.1, �2 �

2.5, � � 2, � � 1, a � 1.5). d: The LCA, saddle-shaped (Equation 28 with

�1 � 2.1, �2 � 2.5, � � 2, � � 4, a � 0.75). e: The Ising Decision Maker

(IDM; Equation 29 with the parameters from Table 1 and external field

changing from (B1, B2) � (0, 0) [left plot] to (B1, B2) � (3,300, 2,700)

[right plot]).
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To examine the relation between the leaky accumulator model
and the diffusion limit of the IDM, consider again the potential
function of the IDM:

UIDM(y1, y2) � ��DW�(y1
2 � y2

2)

��D(B1 � �)y1 � �D(B2 � �)y2 � �DW�y1y2

�D
N

2�
p

(yplog(yp) � (1 � yp)log(1 � yp)). (29)

Ignoring the IDM-specific contribution of the entropy (last line in
Equation 29), the two potential functions are both quadratic. The
linear terms have similar roles in both models: They represent the
sensory input to the decision process (expressed through the term
containing the individual y1 or y2) and the mutual inhibition of
both decision variables during evidence buildup (as expressed in
the term with the cross-product y1y2). In the IDM interpretation,
the internal threshold � provides a permanent contribution to the
linear term, independent of stimulus (presentation). Upon stimulus
presentation, this baseline will be perturbed by the stimulus-
dependent external field B. In the LCA, the quadratic term is
allowed to be positive (leaky) as well as negative (self-amplifying;
see, e.g., Usher & McClelland, 2001). In the IDM, however, the
explicit quadratic term depends on the positive self-excitation
W� and is therefore negative by definition. Note, however, that
the logarithmic function makes an additional, positive contri-
bution to the quadratic term, as becomes clear when performing
a Taylor expansion of the free energy around (0.5, 0.5) (this can
be seen in Appendix D, where this expansion is carried out for
another purpose). The resulting total quadratic coefficient is
required to be negative to allow for multiple stable states.
Despite slight differences in the interpretation of the corre-
sponding parameters, the LCA can be seen as a second-order
approximation of the IDM’s dynamics during stimulus presen-
tation.

The nonlinear part of the IDM free energy gives rise to several
unique properties. In contrast to the LCA potential surface, the full
nonlinear IDM potential surface can have multiple simultaneously
occurring locally differentiable minima, corresponding to stable
states of the underlying neural network. As already mentioned in
the section Equilibrium description, one of these states is identified
as the spontaneous state, a low-activity stable state that exists
when no stimulus is applied. This spontaneous state gives rise
to the concept of starting point in a natural way. Indeed, when
a stimulus is presented, the spontaneous state disappears, forc-
ing the system to evolve toward one of the two newly formed
decision minima. Moreover, the equilibrium probability distri-
bution introduces a variability of the starting point. In diffusion
modeling practice, starting point variability is imposed to ac-
count for phenomena such as fast errors (see below). In the
IDM, both the starting point and the variability around it are
inherent in the model.

Other Models: The Pooled Inhibition Model and

Wong and Wang’s Integrate-and-Fire Network

Another model for speeded decision making is the pooled inhi-
bition model. This model is a three-dimensional dynamical system,

consisting of two decision variables, with similar roles as in the
LCA model, and one extra variable representing an inhibition pool:

dy1 � (�1 � �y1 � �y3)dt � cdW1, (30)

dy2 � (�2 � �y2 � �y3)dt � cdW2, (31)

dy3 � (�y1 � �y2 � �y3)dt, (32)

with �, �, �, �1, �2 	 0. If the pools are leaking, then � 	 0; if they
are self-amplifying, then � � 0. Although commonly reduced to
the LCA (see Bogacz et al., 2006), the pooled inhibition model has
an interesting feature that deserves some attention. Pooled inhibi-
tion makes use of asymmetrical interactions: The inhibition pool y3

is excited by the decision pools y1 and y2 (Equation 32 with terms
�y1 and �y1), while y3 itself inhibits y1 and y2 (Equations 30 and
31 with terms ��y3 and ��y3, respectively). This asymmetry
induces oscillatory effects that prevent writing the drift vector
uniquely as the gradient of a potential function. For a complete
potential description, an extra vector potential has to be added that
describes the rotational part of the vector field (see the Helmholtz
decomposition in Griffiths, 1999).

In their reduction to the LCA, Bogacz et al. (2006) made the
assumption that inhibition pool variable y3 evolves much faster
than decision pool variables y1 and y2, effectively flattening out the
oscillations. This means that for every (y1, y2), the inhibition pool
variable y3 immediately reaches its stable point (it is stable because

� 	 0) or y3min
�

�

�
�y1 � y2�. This reduces the system to

dy1 � ��1 � �� �
��

�
�y1 �

��

�
y2�dt � cdW1,

dy2 � ��2 � �� �
��

�
�y2 �

��

�
y1�dt � cdW2.

If � �
k�

�
, the LCA is self-amplifying. A saddle-shaped potential

surface is only possible if �� �
��

� �2
� ���

� �2 or � � 0. In other
words, a saddle-shaped LCA derived from the pooled inhibition
model will always be self-amplifying.

Like the pooled inhibition model, the integrate-and-fire network
put forward by Wong and Wang (2006) is based on biologically
more realistic asymmetrical interactions and therefore includes a
separate pool of inhibitory neurons (for a detailed mathematical
description of Wong and Wang’s integrate-and-fire network, we
refer the reader to the original paper). Also, while the IDM models
the influence of third-party neurons as thermal noise expressed by
the inverse statistical temperature �, Wong and Wang’s network
explicitly uses an extra pool of excitatory neurons. Nevertheless,
Wong and Wong eventually approximated their integrate-and-fire
network with a system consisting only of two pools of selective
neurons with exclusively symmetric interactions (which no longer
supports oscillatory behavior). This means the Wong and Wang
integrate-and-fire network can be analyzed with the help of poten-
tial surfaces. Although the derivations for the integrate-and-fire
network are analytically more intricate, there is a strong qualitative
resemblance between its final two-dimensional representation and
the IDM’s free energy surfaces. This observed similarity should
not come as a surprise because the resulting neural correlations in
both systems (positive within pools and negative between pools)
are very similar by set-up.
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Modes of Operation of the IDM

For the free energy surfaces shown in Figure 3, we used param-
eter values giving rise to realistic behavior of the model (see Table
1). Other parameter values, however, could result in totally differ-
ent behavior. The most important factor determining the model’s
behavior is the number of local minima present at the different
stages of input. To examine this qualitative feature of the free
energy surface, we systematically vary two crucial parameters and
count the number of local minima of F(y) for each set. The first
parameter of focus is of course the external field strength B � (B1,
B2), which quantifies the different stages of input during a trial.
More specifically, upon stimulus presentation, it changes from
zero to some stimulus-specific two-component value. For this
analysis, the two components of the external field are taken to be
equal, B1 � B2 � B, leading to a diagonal symmetry for all
resulting free energy surfaces. Setting B1 equal to B2, we limit
ourselves to stimuli carrying equal evidence for both choices. As
can be seen from Equation 16, we have chosen C � 0 and B �

Bs � Bns. Considering stimuli with nonzero distinctness would
complicate matters more than necessary for this particular analysis.
In line with Wong and Wang (2006), the other parameter of focus
is the self-excitation W�. All other parameters were fixed to
particular values (see Table 1, equilibrium parameters). Figure 6
consists of two panels. Figure 6a contains a partitioning of the (B,
W�)-coordinate plane in terms of the number of local minima of
the corresponding free energy function.7 The parameter B is varied
from � 2·104 to 2·104 and W� is varied from 4·104 to 6.5·104.
Figure 6b shows plots of the free energy surfaces corresponding to
various positions on the (B, W�)-coordinate plane (the positions
are indicated with lowercase letters).

Looking at Figure 6a, we see regions with one up to four local
minima. Not surprisingly, this partitioning is somewhat similar to
the one obtained by Wong and Wang (2006) for their integrate-
and-fire model. The operation of the IDM is best understood in
terms of horizontal movements over the (B, W�)-coordinate plane,
as the presentation of a stimulus during a trial manifests itself
through a change in parameter B. When a stimulus is presented,
parameter B changes from zero to some finite value. Instantly, the
free energy F(y) changes its shape, depending on the values of the
other parameters of the model. When the stimulus disappears, B

drops to zero again, and F(y) returns to its original input-free form.
Note that the position of zero input is arbitrary in the sense that the
horizontal axis can be shifted by changing the internal activation
threshold �.

To structure our discussion of Figure 6, we have divided the (B,
W�)-coordinate plane into horizontal bands, denoted by I to IV, in
which different modes of operation can be recognized. Band I
(lowest values of W�) is a region of pure monostability: Regard-
less of the external field strength B, only one minimum is found.
At this single minimum, both pools are equally active. This can be
seen in the five subplots on the lowest row of Figure 6b, showing
the free energy surfaces for five parameter combinations in Band
I. For increasing B, the single minimum travels from low to high
activity, following the main diagonal line (which is the axis of
symmetry).

Apart from a large region of monostability, Band II contains a
small region of free energy surfaces with two minima, called the
competition region. By competition, we mean that there is a

concurrent attraction of two opposing minima, each corresponding
to a high activity for one pool and a low activity for the other.
These minima are called decision states. For increasing B, the
system changes from monostability to competition and back to
monostability. This evolution is shown on the second row of
Figure 6b. The low-activity symmetrical state in the first region of
monostability is called the spontaneous state. It corresponds to the
starting area of the decision process (at B � 0). The high-activity
variant in the second region of monostability is called the startled

state. A possible implication of this startled state is studied in
detail below (in the section on the van der Molen-Keuss effect).

Band III is comparable to Band II but has some additional
three-state stability. For increasing B, the system passes following
stages: monostability, three-state stability (a spontaneous state and
two decision states), competition, three-state stability (two deci-
sion states and a startled state), and monostability. This is illus-
trated by the third row of Figure 6b.

Band IV consists of free energy surfaces with two, three, and
four minima (two symmetrical and two opposing minima). For
increasing B, the system consequently shows monostability, three-
state stability (a spontaneous state and two decision states), four-
state stability, three-state stability (two decision states and a star-
tled state), and monostability. We refer the reader to the top row of
Figure 6b for an illustration.

Next, we consider which bands allow for a realistic decision-
making model. The input-free offset � has to be chosen in such a
way that at B1 � B2 � 0, a process can reside in a low-activity,
nonselective state (i.e., a minimum on the main diagonal close to
y � (0, 0)). This setting should account for a stable baseline
activity. If B (or B1 and B2) is increased (because of the stimulus
onset), the free energy function F(y) should show two decision
states. This is possible in all bands but I.

In Band II, decision making can only happen in the compe-
tition region. When a stimulus is presented, the system changes
from a monostable configuration with a spontaneous state to a
configuration with two minima, both of them decision states.
Consequently, the process is forced to evolve to one of the two
decision states, thereby crossing a detection boundary and mak-
ing a decision. When the input disappears again, the system is
thrown back to its original monostable configuration, guiding
the process back to the spontaneous state and thus forgetting the
decision it made.

In Band III, there are two possible regimes of decision making.
If a stimulus carries the system into the first region of three-state
stability, sufficiently close to the neighboring competition region,
low-lying decision states have already formed while the sponta-
neous state (i.e., the low-activity minimum on the main diagonal)
is still present but very shallow. In this case, thermal fluctuations
(i.e., random noise inherent in the IDM) may cause the process to
cross the lowered free energy barrier between the spontaneous
state and one of the decision states (see also Deco, Rolls, & Romo,
2009, for a similar account). For larger input strengths, the spon-
taneous state disappears completely, and decision making again
takes place inside the competition region. The second,

7 These minima are found by running a local minimization algorithm
initiated from a sufficiently fine grid of starting points on the free energy
surface.
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competition-based regime seems to be more plausible because, as
becomes clear below, it is generally faster and leads to slow errors,
a very desirable feature in decision modeling. Nevertheless, there
might be experimental evidence for the first regime (a thermal
escape from a locally stable spontaneous state) if one considers
stimuli that are very hard to detect.

Finally, the situation in Band IV is comparable to that in Band
III, except for the absence of competition regime driven decision
making.

As a final remark, it is interesting to note that if one chooses the
model’s parameters such that B1 � B2 � 0 (i.e., no input is given)
occurs in the first region of three-state stability of Band III, the
IDM can sustain decision states even after the external input field
has been removed. More specifically, when the stimulus disap-
pears, the free energy function returns to an input-free shape with
a spontaneous state and two weaker reminiscent decision states. A
process that already evolved to a decision state before the stimulus
disappeared is consequently trapped in the reminiscent decision
state and can only return to the spontaneous state by accidental
thermal fluctuations.

The IDM as a Model for Speeded Two-Choice RT

In this section, we examine the IDM in further detail as a model
for the speeded two-choice RT task. First, we recapitulate how the
IDM decision-making process works. Second, some prominent
characteristics of simulated IDM RT distributions are examined
(e.g., shape, relation between mean RT and standard deviation).
Third, the probability latency function and the phenomenon of
slow and fast errors are studied for the IDM. Then, two possible
mechanisms for the SAT are proposed.

The IDM Decision-Making Process: A Time Evolution

of Neural Activity

As explained before, in speeded two-choice decision making,

the stimulus starts and further steers the decision-making process.

For the IDM, we make the practical assumption that the stimulus

is sustained long enough for the decision state to be found. At the

onset of the stimulus, the free energy surface F(y) changes shape

such that (for the parameter values given in Table 1 and a certain

range of stimulus-generated external fields) two competing deci-

sion minima arise. As a result, a systematic drift in the mean

activity of the two pools (i.e., y1 and y2) leads the process away

from the baseline level (the spontaneous state) and toward one of

the two possible decision minima of the free energy surface.

All the aforementioned events are illustrated in Figure 7, where

one can see the neural activity of the IDM before, during, and after

the presentation of a stimulus that generates an external field of

size (3,300, 2,700) and lasts for 4 s. Figures 7a and 7b essentially

tell the same story, but from a different perspective: In Figure 7a,

the (y1, y2)-trajectories of the neural activity are plotted on the free

energy surface that is guiding them; in Figure 7b, their explicit

time evolution is shown. The free energy surface (middle plot of

Figure 7a) corresponding to the stimulus-generated external field

as well as the time window during which it is applied (Figure 7b)

is shaded in gray. In both panels, the different states the process

visits are clearly distinguishable. First, there is spontaneous base-

line activity in anticipation of the stimulus. Then, upon stimulus

presentation, the external field is applied, and a coordinated rise

takes place toward the free energy saddle point, shortly after which

mutual inhibition drives both pools to a clearly separated sustained

Figure 6. Number of local minima of the free energy surface for varying self-excitation W� and external field

B1 � B2. The remaining model parameters are fixed as indicated in Table 1. In Panel a, presented from dark to

light are regions with one to four minima. The regions are labeled with their respective number of minima

(circled numbers). The same graph is divided into four bands (I–IV), representing four possible modes of

operation. Panel b shows the actual free energy surface at five subsequent positions for each of the four bands.

The positions are indicated on Panel a and marked with the letters a, b, c, d, and e. In Panel a, the input-free

situation (B � (0, 0)) and a possible input situation (B � (3,000, 3,000)) for W� � 52,500 are marked with a

circle and a cross. These correspond to the free energy surfaces shown in Figure 3 (left and upper middle ones,

respectively). Upon stimulus presentation, the free energy surface is thrown from the input-free situation (circle

marker) to the detectable input situation (cross marker), where it will stay as long as the stimulus is active. The

spontaneous state present for the input-free situation disappears at the detectable input situation, forcing the

system to evolve to one of the two decision states.
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activity (the process is trapped in a decision state). On its way to
this decision state, the process crosses a detection box, giving rise
to a decision and decision time. The part of the trajectory respon-
sible for the decision time is highlighted in black.

For our current purposes, the decision-making trial ends
when a decision is made and the corresponding motor response
is initiated. However, it is interesting to see what happens in the
case of a prolonged stimulus presentation (assuming the free
energy surface does not change with detection and/or response).
As long as the external field is active, the process is likely to
remain in this decision state. When the external field is re-
moved, the process is trapped in a reminiscent decision state,
somewhat less active than the originating decision state. Only
after a while, the process picks up enough thermal noise to cross
the free energy barrier separating the reminiscent and sponta-
neous states, returning to the latter.

The parameter values used for the free energy surfaces in Figure
7 can be associated with Band III in Figure 6 and generate
reminiscent states. Therefore, there is a delayed return to baseline
activity. However, for parameter values in Band II, the return to

the spontaneous state will start the instant the stimulus’s external
field is removed and will typically take up less time than the earlier
decision-making process.

Response Time Distributions Generated by the IDM

Many typical experimental features of choice RT distributions
also arise from the IDM. Detailed information on the simulations
that are used to calculate the IDM probability density functions can
be found in Appendix E. The IDM gives rise to a right-skewed RT
distribution, as seen in Figure 8a (gray line). An alternative way of
looking at the RT distribution is provided by the hazard function,
which is the rate of reaching a decision at time t given no decision
has been made before t:

hp(t) �
�p(t)

	p � �p(t)
.

The hazard function (Figure 8a, black line) highlights certain
properties of the tail of the original RT distribution. For the
parameter values used in Figure 8, the IDM hazard function first
increases and then drops again for high RT (the noise at the end of
the curve is due to the fact that the results are based on simula-
tions). This type of hazard function is commonly encountered in
RT data and can also be obtained with the Ratcliff diffusion model
(see Ratcliff & Dongen, 2011).

Figure 7. Mean activity of both pools during a trial. The parameter values

used are given in Table 1, and the stimulus-generated external field is set

at (3,300, 2,700). Panel a shows the evolution of the free energy surface

F(y) during an Ising Decision Maker decision trial and a possible decision

trajectory. In Panel b, the time evolution of the neural activity of a typical

process is plotted explicitly. The 4-s time interval of stimulus presentation

(or more specifically, external field activation) as well as the corresponding

free energy surface in Panel a are shaded in gray. In Panel b, the left graph

zooms in on the decision-time-relevant part of the right graph. The decision

time is the time between the presentation of the stimulus and the process

crossing a detection box (this moment is indicated with a thick black

vertical line), and the corresponding trajectory is indicated in black. Notice

the horizontal dotted lines at activities 0.4 and 0.6. They are a translation

of the two-dimensional detection boxes: If one pool’s activity is above 0.6

while the other pool’s activity is less than 0.4, the process is located inside

a detection box.

Figure 8. Basic experimental features of choice response time (RT)

reproduced by the Ising Decision Maker. Parameter values are taken from

Table 1, with the stimulus-generated external field defined by Equation 16

and parameters Bns � 1,000, Bs � 2,500. a: The right-skewed correct RT

distribution �1(t) for C � 0.08 (gray line, bordering the filled area) and

the accompanying hazard function h1(t) (black line). b: Accuracy in-

creases with decreasing stimulus difficulty (stimulus distinctness C

varies from 0 to 0.4). c: Mean correct RT �1 (lighter gray) decreases

with decreasing stimulus difficulty; mean error RT �2 (darker gray) first

rises somewhat and then decreases. d: Close to linear relation between

the mean �1 and the standard deviation �1 of the correct RT distribution.
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Another trademark of choice RTs is that for decreasing
stimulus difficulty, accuracy increases and mean correct RT
goes down. In the IDM, stimulus distinctness C is the parameter
that codes for stimulus difficulty: If C � 0, the stimulus is
difficult, and if C is close to 1 or �1, the stimulus is easy (this
is in line with Wong & Wang, 2006, and Deco et al., 2009).
Figures 8b and 8c show how in the IDM the accuracy and the
mean RT (for both correct and error responses) are related to
increasing difficulty. More interestingly, the IDM satisfies the
approximately linear relation between the mean �1 and the

standard deviation �1 � � 1
	1

�0
��t��1�2�1�t�dt of the correct RT

distribution (with C 	 0, option 1 is the correct choice) for
various levels of stimulus distinctness, as reported by Wagen-
makers and Brown (2007). This is shown in Figure 8d.

Probability Latency Functions

In the previous section, we discussed some relatively obvious
characteristics of speeded two-choice RT distributions. In this
section, we look at a more challenging aspect. In the psychological
literature, a typical quantity of interest in speeded two-choice RT
experiments is the probability latency function (see Luce, 1986;
Ratcliff & Rouder, 1998). It deals with the typical set of stimuli
used in speeded choice experiments: stimuli that are comparable in
nature but with different intrinsic levels of difficulty. One can
consider the basic probability latency function as a parametric plot
of mean RT versus accuracy with the stimulus intrinsic level of
difficulty as a parameter. In the Ratcliff diffusion model, for
example, the stimulus intrinsic level of difficulty is modeled by the
drift rate of a one-dimensional diffusion process: It characterizes
the stimulus’s net evidence pointing to one of the two alternatives.
In the IDM, stimulus distinctness C is used to model intrinsic
stimulus difficulty and is therefore the parameter that needs to be
varied to construct the IDM probability latency function.8

For every single value of C, there are two points on the prob-
ability latency curve: one on the right side for the correct responses
and one on the left side for the incorrect responses (the abscissa
points are thus �2 � 1 � �1 and �1, respectively, where �1 is the
proportion correct). Although, experimentally, no two stimulus
presentations are exactly the same, we assume that repeated stimuli
and stimuli that are considered to have the same evidence ambi-
guity are characterized by the same distinctness C.

In short, the probability latency function connects accuracy and
mean RTs through their mutual stimulus dependency. The proba-
bility latency function is a very useful tool in choice RT experi-
ments because the plot can be constructed without specifying an
actual value of C for every condition.

Probability latency functions for speeded two-choice RT exper-
iments have a typical inverted U-shape. Mostly, they show some
mild degree of asymmetry around the �1 � 0.5 line. The asym-
metry is caused by the fact that for a given stimulus, error re-
sponses (at the left of �1 � 0.5) can be slower than correct
responses (at the right of �1 � 0.5) or the other way around. Both
situations can occur in the same experiment and therefore in the
same probability latency function (see, e.g., Ratcliff & Rouder,
1998), but slow errors will always arise at probabilities closer to
the 50% accuracy mark than fast errors. The existence of slow and
fast errors has been the main reason of the introduction of vari-
ability in both drift speed and starting position in the Ratcliff

diffusion model (see Ratcliff & Rouder, 1998; Ratcliff, Van Zandt,
& McKoon, 1999). The IDM can account for both slow and fast
errors without an ad hoc extension of the model (we come back to
the fast–slow error balance in the section about SAT). This is
illustrated in Figure 9: Figure 9a shows a simple probability
latency curve, connecting probabilities to mean RTs, and Figure 9b
shows a more detailed picture, considering multiple quantiles of
the RT distribution instead of a single mean RT. We discuss the
genesis of slow and fast errors in the next two paragraphs.

Slow errors. In the IDM, for C � 0, slow errors can arise as
a consequence of the asymmetric displacement of the free energy
saddle point separating the two decision states. Indeed, nonzero
distinctness pushes the saddle point toward the erroneous solution
(see Figure 3 for a helpful three-dimensional view). The decision
trajectories leading to incorrect answers are generally situated
closer to the saddle point and are thus more subject to its local
influence. This influence has two aspects. First, decision trajecto-
ries are bent toward the saddle point, prohibiting a straight ap-
proach of the (incorrect) minimum. Second, their net evolution
toward the minimum is slowed down because the drift around the
saddle point is close to zero. This mechanism is shown in Figure
10. The figure suggests that larger values of distinctness lead to
error responses that are increasingly slower than their correct
counterparts.

Fast errors. We identify three different mechanisms leading
to fast errors in the IDM. First, there are the thermal fluctuations
of the spontaneous state. After a short period of evolution with
zero input (in anticipation of the stimulus), these random fluctua-
tions automatically lead to a stable distribution of spontaneous
activities, independent of the original starting position. The distri-
bution of spontaneous activities at stimulus onset has a similar
effect on the eventual probability density functions as the intertrial
starting position variability in the Ratcliff diffusion model (e.g.,
Ratcliff & Rouder, 1998). However, in contrast to the starting
position variability in the Ratcliff diffusion model, the IDM spon-
taneous activity distribution is an integral part of the original
model and not an ad hoc extension (although in the Ratcliff
diffusion model, the spread in initial position has been proposed as
a consequence of so-called premature sampling; see, e.g., Laming,
1968; Rouder, 1996). In analogy to Figure 10, Figure 11 shows
how, for the usual parameter values (see Table 1) with Bs � 2,500,
C � 0.55, but with changing values for � and Bns, the IDM
decision process distribution evolves once the stimulus is pre-
sented. For each row, parameters � and Bns are changed with the
same amount. This leads to a different zero-input free energy
surface and therefore different spontaneous distribution but leaves
the stimulus-generated free energy surface unchanged. Analogous
to the effect of starting point variability in the traditional diffusion
model (e.g., Ratcliff & Rouder, 1998), a wider spontaneous dis-
tribution leads to an increased bias of the initial activity of correct
and error decision trajectories. This can be seen in Figure 11,
where the overlap between the error and correct process distribu-
tions at stimulus presentation (t � 0) decreases for wider sponta-

8 A more refined picture, also taking into account stimulus related
parameters Bns and Bs, could be considered, but for the sake of simplicity,
we stick to parameter C. The other parameters mentioned play a more
prominent role in the discussion of the van der Molen-Keuss effect and
Weber’s law.
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neous distributions. For sufficiently wide spontaneous distribu-
tions, the error slowing effect described in the previous paragraph
can be overcome, and error responses can become faster than their
correct counterparts. Also analogous to the diffusion model, the
effect is most prominent for high values of stimulus distinctness
(low difficulty) because only trajectories starting out close to an
improbable incorrect decision state have a chance of ever reaching
it, effectively reducing their length and duration. Another conse-
quence of the thermal fluctuations of the spontaneous state is that
if the period of stimulus anticipation is too long, there is a possi-
bility a decision trajectory will spontaneously cross the decision
boundary. This is clearly the case for the time evolution shown in
the third row of Figure 11, explaining the nonzero value of the
error response probability distribution at t � 0. The same nonzero
value is present for the correct response probability distribution,
but due to the different scales at which error and correct response
results are presented (this applies to the trajectory densities as well
as the final probability distribution plots), this does not show on
the plot. In this article, we choose to leave premature decisions
(caused by boundary crossings before the end of a 1-s anticipation
period) out of the accuracy and RT results since they are not taken
based on a stimulus and typically removed from choice RT data.

A second mechanism that can account for fast errors is related
to the discrete nature of the decision trajectories for nonvanishing
collective step size �. As has been explained before, at a micro-
scopic level, we may think of this discreteness as the simultaneous
updating of larger sets of neurons, instead of just one neuron at a
time. Taking large activity steps while moving across the free
energy surface F(y) (referred to as a coarse-grained dynamics),
can cause fast errors, even without an initial spontaneous spread.
The effect of collective step size � on the time evolution of the
IDM decision process distribution is illustrated in Figure 12.
Larger collective step size (more coarse-grained dynamics) leads
to a decrease in accuracy and to error responses speeding up even
more than correct responses. For sufficiently large collective step
size, this results in error responses that are faster than their correct
counterparts. Fast errors dominate at low difficulty (or high stim-
ulus distinctness) as a consequence of the interaction between the

coarse-graining mechanism and the shape of the free energy sur-

face. Especially for high stimulus distinctness, the incorrect re-

sponse side of the surface close to the starting point of the process

is concave (a bump), while the correct response side is convex (a

valley). The coarse-grained dynamics allows the process to punch

through the flanks of the error response bump, effectively cutting

corners. In the correct response valley, there are no corners to cut,

so this advantage is lost. Because the explained effects are a direct

consequence of the coarse-graining mechanism, they disappear in

the diffusion limit. In this limit, collective step size � is directly

related to the diffusion constant D (see Equation 20). Changing D,

however, is no more than a rescaling of time and does not influ-

ence accuracy or the fast–slow error balance.

A third mechanism leading to fast errors arises for high inputs

only. Looking at position d of Band III (in the second region of

three-state stability) and the corresponding free energy surface in

Figure 6b, we find a configuration with two decision states and a

nondecision state situated at high activity for both pools (a so-

called startled state). Only a sufficiently high external field B can

move a system in anticipation of a stimulus across the competition

region into the second region of three-state stability where this

configuration is found. A comparable situation arises in the

integrate-and-fire context (Wong & Wang, 2006), but the spe-

cific effect of a startled state on choice RT distributions was not

investigated. In Figure 13, the effect of the startled state on the

IDM decision process distribution is illustrated. For sufficiently

distinct (easy) stimuli, the startled state merges with the correct

decision state, creating an attractive funnel toward the correct

decision boundary. This funnel effectively reroutes and slows

down the correct response trajectories. Decision trajectories well

on their way to an error response can still fall into the funnel and

will then take a much longer time to eventually end up as a correct

response. For a startled state to have an impact, it is pivotal to use

detection boundaries that allow decision trajectories to get close to

the startled state before resulting in a choice. This is the case for

the boundary boxes used in this article. Using traditional perpen-

dicular decision boundary lines, however, will not produce this

Figure 9. Probability latency function for an Ising Decision Maker with parameter values taken from Table 1,

except for � � 51,050 and � � 0.012. Additionally, Bns � 600, Bs � 2,500, and C is varied from 0 to 1. Plot

a shows a simple probability latency curve based on mean response times. The gray lines connect error responses

(�2, �2) on the left (in darker gray) with their correct counterparts (�1, �1) on the right (in lighter gray). For this

set of parameters, both slow and fast errors occur. Plot b sketches a more detailed picture of each response time

distribution by using response time quantiles (0.1, 0.3, 0.5, 0.7, 0.9).
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type of fast errors. This third mechanism of fast errors is probably
not the one typically found in common speeded two-choice RT
experiments as it is only available for very high network input and
is more prominent for moderately coherent stimuli than for very
coherent stimuli, contrary to the typical experimental picture.
However, there are experimental accounts of fast errors manifest-
ing themselves only when their physical intensity (not their dis-
tinctness) is strongly amplified. We come back to these results and
the relevance of the startled state when discussing the van der
Molen-Keuss effect.

Speed–Accuracy Tradeoff

In the rich modeling tradition of the (instruction-induced) SAT,
one of two routes is generally taken. SAT can be reached by
fine-tuning some of the parameters of the evidence-integrating
dynamical system (e.g., the boundary separation in the Ratcliff
diffusion model; Ratcliff & Rouder, 1998), or it can be the result
of a strategic mix of an unchanged evidence-integrating dynamical
system on the one hand and a guessing system on the other hand
(Yellott, 1971). Both mechanisms are however not mutually ex-
clusive (Osman et al., 2000). In this article, we take the first route

and investigate two possible mechanisms of decision-process-

related SAT. We first investigate the traditional choice of detection

boundary separation as a parameter for speed–accuracy manipu-

lation. We then propose a novel mechanism of speed–accuracy

manipulation, based on the idea of coarse-grained dynamics,

which has already been introduced as a possible explanation of fast

errors. Although there are other possible approaches to controlling

the SAT in the IDM (e.g., by increasing the nonselective input, as

suggested by Furman & Wang, 2008), we limit ourselves to the

two approaches mentioned above.

In most current models of decision making, speed–accuracy ma-

nipulation is modeled by changes in the conditions that end the

decision process. In the standard diffusion model, common practice is

to change the boundary separation parameter. For the IDM, this can

be easily translated as a change in box size h. In Figure 14, we show

how changing box size impacts the probability latency functions for

an IDM with parameter values from Table 1. To allow for a clean

diffusion interpretation (no coarse graining), we take a diffusion limit

setting with D � 0.05. As expected from the analogy with the

diffusion model, the basic requirements of speed–accuracy are met:

An increase in speed is accompanied by a decrease in accuracy and an

Figure 10. Genesis of slow errors. Time evolution of the y-plane distribution of possible decision processes for

an Ising Decision Maker operating in the middle of the competition regime (parameter values are taken from

Table 1, with Bns � 1,000, Bs � 2,500). The subsequent rows consider different values of stimulus distinctness

C. At the end of each row, the resulting probability distribution �p for both correct (p � 1, in lighter gray) and

incorrect (p � 2, in darker gray) responses are shown as well as their respective mean response times and choice

probabilities. In subsequent time evolution graphs, the lighter gray cloud represents the normalized distribution

of processes eventually leading to a correct decision (lower right corner), the darker gray cloud its incorrect

counterpart (upper left corner). When processes hit the decision boundary, they are removed from their cloud.

The percentages inside the clouds indicate how many of the respective processes are still running and have not

yet reached their decision boundary.
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increase in the proportion of errors that are faster than their correct
counterpart. The figure also shows that all three basic probability
latency patterns observed in experiments can be reproduced: curves
with exclusively slow errors, curves with exclusively fast errors, and
curves with a combination of both slow and fast errors.

Recent neurophysiological findings suggest, however, that the
magnitude of neural activity triggering a response is in fact invariant
under speed–accuracy manipulations (Heitz & Schall, 2012, p. 626).
This would rule out boundary separation as a simple explanation of
SAT. In what follows, we test the ability of coarse-graining parameter
collective step size � to control the SAT in the IDM in a realistic way.
A SAT mechanism based on coarse-grained dynamics does respect
the detection boundary invariance proposed by Heitz and Schall
(2012). Figure 15 illustrates how increasing collective step size �

simultaneously increases processing speed, decreases decision accu-
racy, and decreases the lag of slower error responses, eventually even
leading to fast errors (as has been explained already in the previous
section). As it turns out, this is exactly what is found in typical
speeded two-choice decision experiments (e.g., Ratcliff & Rouder,
1998). Also in this case, the figure shows that all three basic proba-
bility latency patterns observed in experiments can be reproduced:
curves with exclusively slow errors, curves with exclusively fast
errors, and curves with a combination of both slow and fast errors. For
constant time step t, the increase in processing speed produced by
increasing collective step size � is clearly exaggerated. Therefore, the

second dynamical parameter t is considered to be an additional
parameter modeling SAT.

From an algorithmic viewpoint, coarse graining explains SAT in a
very intuitive way. In order to solve the same decision problem (i.e.,
finding the correct decision state or global minimum of the free
energy), one may use different dynamical strategies: an accurate but
slow strategy (with small collective step size, bringing the IDM closer
to local gradient behavior) versus a quick and dirty strategy (larger
collective step size, effectively coarse graining). Another recent study
seems to support our interest in coarse graining: Torres, Marro,
Cortes, and Wemmenhove (2008) discovered that varying the fraction
of simultaneously updated neurons (which also amounts to a form of
coarse graining) is a way to control the efficiency of a neural search-
ing process.

Application of the IDM to Data

In this section, how the IDM can be fitted to data is demonstrated.
In line with the two different mechanisms for SAT that have been
discussed above, two different versions of the IDM are considered.

The first version allows box size h to change between SAT con-
ditions. As discussed above, box size is closely related to the standard
notion of boundary separation in the traditional diffusion model. To
facilitate a clear comparison with the existing class of diffusion
models, we keep to the IDM diffusion limit, meaning it suffices to
estimate a diffusion constant D instead of both dynamical parameters

Figure 11. Fast errors as a consequence of the spontaneous distribution. Time evolution of the y-plane

distribution of Ising Decision Maker decision processes. Parameter values are taken from Table 1 with Bs �

2,500, C � 0.55. Different rows consider different values for the remaining parameters � and Bns resulting in

different spontaneous distributions, as can be seen on the first plot of each row. Wider spontaneous distributions

clearly lead to error responses becoming faster than their correct counterparts (see the subsection on fast errors

for more explanation). For more information on these graphs, we refer the reader to Figure 10.
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t and � (see Equation 20). We call this version IDM BS (from
boundary separation or box size).

The second version of the IDM allows the dynamical parameters of
the IDM, namely, � and t, to change between SAT conditions. We
call it IDM CG, referring to the coarse-graining mechanism that is
used for SAT manipulation. Evidently, the diffusion limit is parted
from in this case. The detection box size, on the other hand, is fixed
to 0.4 in the IDM CG.

In addition, we want to illustrate that (both versions of) the model
can compete with more traditional models, in particular the Ratcliff
diffusion model.

Statistical Inference

Our statistical inferential framework is Bayesian, a choice we
made for two reasons. First, recent research has made a strong case

Figure 12. Fast errors as a consequence of coarse-grained dynamics. Time evolution of the y-plane distribution

of Ising Decision Maker decision processes. Parameter values are taken from Table 1 with Bns � 1,000, Bs �

2,500, C � 0.4, and changing �. Different rows consider different collective step sizes �, arranged from small

to large. Increasing collective step size (using more coarse-grained dynamics) leads to a decrease in accuracy,

faster responses in general, and error responses speeding up even more than their correct counterparts, eventually

leading to error responses that are faster than the corresponding correct responses. For more information on these

graphs, we refer the reader to Figure 10.

Figure 13. Fast errors as a consequence of a startled state. Time evolution of the y-plane distribution of Ising

Decision Maker decision processes under influence of a startled state merged with the correct decision state.

Parameter values are taken from Table 1 with Bns � 2,500, Bs � 2,500, C � 0.4. A substantial part of the correct

decision processes is caught by a funnel, delaying their passage into the detection box. This results in slower

correct responses or, relatively speaking, faster errors. For more information on these graphs, we refer the reader

to Figure 10.
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in favor of Bayesian statistics (see, e.g., Gelman, Carlin, Stern, &
Rubin, 2003; Kruschke, 2011; Lee & Wagenmakers, 2013). Sec-
ond, modern computational methods that can be applied for Bayes-
ian statistical inference facilitate the fitting of complex models
(Gelman et al., 2003), such as the IDM.

Let us collect all parameters from the IDM in a parameter vector
�, and Y are the data. Then, at the heart of Bayesian statistics is
Bayes’s theorem:

p(� | Y) �
p(Y |� )p(�)

p(Y)
, (33)

where p�� � Y� is the posterior distribution, p(�) is the prior dis-
tribution, and p�Y �� � is the likelihood. The denominator p(Y) is
called the marginal likelihood.

Fitting the IDM. The goal of a Bayesian analysis is to explore
and summarize the posterior distribution p�� � Y�. This requires the
clarification of three necessary aspects: the likelihood p�Y �� �, the
prior distribution p(�), and the methods to explore the posterior
distributions (the marginal likelihood p(Y) is not necessary for the
exploration of the posterior distribution). These three aspects are
discussed in turn.

First, with respect to the likelihood of the IDM, we build on the
work of Heathcote, Brown, and Mewhort (2002), who devised a
quantile maximum likelihood method or quantile maximum prod-
uct method (see also Heathcote & Brown, 2004; Speckman &

Rouder, 2004). Instead of the likelihood of the raw data (choices
and RTs), the likelihood of a set of order statistics of the data is
considered because it leads to more robust estimation algorithms.
More specifically and applied to the problem at hand, we start by
calculating the quantiles corresponding to the five cumulative
probabilities .1, .3, .5, .7, and .9 for the correct response data of a
single experimental condition. Denote the calculated quantiles
with the vector q. Let vectors n and m contain the number of,
respectively, correct and error responses observed between each
set of consecutive quantiles. Thus, the data we consider are
Y � (q, n, m). Note that the quantiles used for the binning of the
error RT distribution originate from the accompanying correct RT
distribution. Applying the correction of Speckman and Rouder
(2004) to the original formula proposed in Heathcote et al., the
quantile likelihood is then defined as

p(Y |� ) � �1(q1; �)n1�1 · �1(q1; �)[�1(q2; �) � �1(q1; �)]n2�1

· . . . · �1(q5; �)[1 � �1(q5; �)]n5

· �2(q1; �)m1[�2(q2; �) � �2(q1; �)]m2

· . . . · [1 � �2(q5; �)]m5,

where �1(t; �) and �2(t; �) are the cumulative distribution func-
tions of respectively correct and error RTs for parameter vector �

and �1(t; �) is the probability density function of the correct RTs.
Note that the correction of Speckman and Rouder only applies to

Figure 14. Probability latency curves for increasing box size h (left panel). The other parameter values are

taken from Table 1, except for Ter, which is taken to be 0.3 s. Additionally, to allow for a clean diffusion

interpretation (no coarse graining), we take a diffusion limit setting with D � 0.05. For the input, we take Bns �

1,000, Bs � 2,500, and C is varied from 0 to 0.4 with steps of 0.05 and further to 0.7 with steps of 0.1. Speed

increases and accuracy decreases with increasing box size h. Additionally, errors that are slower than their

correct counterparts are gradually transformed into errors that are faster, while the curve’s maximum (indicated

with an extra circle) moves from left to right. On the right panels, quantile probability latency representations

of two of the curves on the left panel (h � 0.4, h � 0.65) are shown, providing some additional detail.
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the correct RT distribution because, for the error RT distribution,
we reuse the quantiles determined from the correct RT distribution.
Unfortunately, for the IDM, there is no analytical expression for
the density or distribution functions. They can however be ob-
tained through simulations. A more detailed explanation of the
simulations and the construction of the quantile likelihood can be
found in Appendix E. More conditions (stimuli or other) can be
incorporated by simple multiplication.

Second, with respect to the prior, we assume a uniform distri-
bution for the distinctness parameter C on the interval [–1, 1] and,
in line with their interpretation, a strictly positive improper uni-
form distribution for all other parameters. For collective step size
�, the uniform distribution was assumed on the level of its quadra-
ture �2.9 The resulting prior distribution of the diffusion constant

D ~ �2

�t
when explicitly considering the diffusion limit is also uni-

form (strictly positive and improper).
Third, regarding the methods for exploring the posterior distri-

bution, we want to draw L sample parameter vectors from the
posterior distribution p�� � Y�. Using the sampled parameter vec-
tors �

1, �
2, . . . , �

L, we can plot histograms (to get an idea of the
univariate marginal distributions), construct scatterplots (to inves-
tigate the posterior parameter correlations), and calculate sample
statistics such as the mean (i.e., an estimate of the posterior mean)
and the posterior credibility intervals.

However, due to the complexity of the problem (a high-
dimensional posterior distribution with no closed-form analytical
expression), there is no simple and straightforward sampling

method. We have chosen an adaptation of the traditional

Metropolis-Hastings method: the delayed rejection adaptive Me-

tropolis sampling algorithm (Haario, Laine, Mira, & Saksman,

2006). The algorithm differs in two crucial aspects from the

Metropolis-Hastings sampler: The rejection of a proposal is de-

layed while other proposals are tested, and the variance of the

proposal distribution is updated every so many steps. The latter

adaptation makes the algorithm non-Markovian, but it has been

proven by Haario et al. (2006) that a sufficiently large set of

samples still converges to the posterior distribution. As is the case

for all Markov chain Monte Carlo techniques, the samples gener-

ated with the delayed rejection adaptive Metropolis algorithm are

not independent of one another. In comparison to the traditional

Metropolis-Hastings method, however, the delayed rejection adap-

tive Metropolis algorithm has a better mixing rate (i.e., a smaller

autocorrelation in its successive samples), resulting in faster con-

vergence to the posterior.

In order to provide the delayed rejection adaptive Metropolis

sampler with a suitable starting point, it is preceded by a stochastic

mode seeking algorithm, the differential evolution optimizer

(Storn & Price, 1997). The differential evolution optimizer is run

9 In other words, the IDM is actually parameterized with �2 rather than
�. The fact that the correlation between �2 and t in the diffusion limit is
exactly linear (see Equation 20) and not curved as it would be for � and t

makes the resulting posterior parameter distribution a lot easier to sample.

Figure 15. Probability latency curves for increasing collective step size � (left panel). The other parameter

values are taken from Table 1, except for Ter � 0.3 and � � 51,050. For the input, we take Bns � 1,000, Bs �

2,500, and C is varied from 0 to 0.4 with steps of 0.05 and further to 0.7 with steps of 0.1. Speed increases and

accuracy decreases with increasing collective step size �. Additionally, errors that are slower than their correct

counterparts are gradually transformed into errors that are faster, while the curve’s maximum (indicated with an

extra circle) moves from left to right. On the right panels, quantile probability latency representations of two of

the curves on the left panel (� � 0.005, � � 0.03) are shown, providing some additional detail.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

441THE ISING DECISION MAKER



10 times, and the best solution is then used as a starting point for
the sampler. This way, the chain starts in a region of substantial
posterior mass, effectively reducing the start-up overhead (burn-in)
of the sampler. Next, the delayed rejection adaptive Metropolis
algorithm is initiated and run for a burn-in period (the length of
which depends on the problem at hand, but in this case, it seems to
be of the order of 104 to 105). After burn-in, the delayed rejection
adaptive Metropolis is run for another several 104 or 105 iterations.
The chains are then inspected visually to assess convergence. For
the calculations of the posterior quantities, the burn-in iterations
are ignored.

Identification of the IDM parameters. The parameter vector
� contains the free parameters of the model. The final number of
free parameters varies with the experimental design. The real data
discussed below originate from two typical two-choice RT exper-
iments with six different stimulus-difficulty levels (in one of the
two experiments, a broader range of stimulus difficulties was
reduced to six levels to simplify the analysis), accompanied by a
speed or accuracy instruction. This means we estimate six separate
distinctness parameters C and two sets of SAT-sensitive parame-
ters, one set for the speed and one set for the accuracy instruction.

However, for identification reasons, two parameters have to be
fixed. First, as mentioned above, the nonselective stimulus strength
Bns cannot be disentangled from Bs and C in a standard two-choice
RT experiment. Therefore, we fix it to zero without loss of gen-
erality. Second, in a series of pilot studies, a large posterior
correlation between some of the parameters was noticed. More
specifically, there was an almost exact linear relationship between
N, W�, and �. The reason for this near-identification problem is
further investigated in Appendix D. Although not an exact
tradeoff, it results in large posterior correlations and slow conver-
gence. Because the issue of slow convergence should be dealt
with, we fix � to the value used for the simulations (see Table 1),
solving the problem. However, it should be noted that because the
identification problem is not exact, using more data or other
experimental manipulations (selectively targeted at �) may re-
move the need for fixing �.

As a result, the IDM BS has a total of 14 free parameters: N,

W�, W�, Bs, D, h (accuracy), h (speed), Ci (with i ranging from 1
to 6), and a constant nondecision time Ter. The IDM CG has a total
of 15 free parameters: N, W�, W�, Bs, t (accuracy), � (accuracy),
t (speed), � (speed), Ci (with i ranging from 1 to 6), and a
constant nondecision time Ter.

Fitting the Ratcliff diffusion model. The parameter estima-
tion methodology described above is also used for fitting the
Ratcliff diffusion model. Again, the differential evolution algo-
rithm is used to generate a suitable starting point for the delayed
rejection adaptive Metropolis method, which is then used to sam-
ple from the posterior. For the Ratcliff diffusion model, we do not
have to resort to simulations when evaluating the cumulative
distribution functions in the predetermined quantiles as several of
its mathematical properties can be and have already been exploited
for fast numerical implementations: for example, the analytical
expression of Tuerlinckx (2004) and the Kolmogorov backward
approach of Voss and Voss (2008). In our calculations, we use the
code of Voss and Voss. Three different variants of the Ratcliff
diffusion model will be fitted (denoted as RDM 1, RDM 2, and
RDM 3). These three versions differ with respect to which param-
eters are affected by a speed–accuracy manipulation. The first

version (RDM 1) is the standard Ratcliff diffusion model, with
variability in starting position and drift speed but without variabil-
ity in Ter (as is the case for the IDM). Boundary separation is the
only parameter that is affected by the speed–accuracy instruction.
In the second version (RDM 2), variability is added for Ter. In the
third version (RDM 3), variability for Ter is again included, and all
parameters except for the stimulus drift rates may be affected by
the speed–accuracy instruction.

Model selection. Given several competing models, one may
ask which one fits the data best. A model that is too complex may
be overfitting the data, thereby not generalizing very well to future
data. Thus, because goodness of fit in itself is not a sufficient
criterion to decide between competing models, a good balance
between goodness of fit and complexity is desirable (see, e.g., Pitt
& Myung, 2002). In this article, we use the deviance information
criterion (DIC; Spiegelhalter, Best, Carlin, & Van Der Linde,
2002), which is a compromise between (Bayesian) fit on the one
hand and model complexity on the other hand.

Simulated Data

To check the validity of our parameter estimation methodology,
we apply the method to simulated data sets. For both the BS and
CG versions of the IDM, data are simulated based on the parameter
values in Table 1 (nondecision time Ter is taken to be 0.3 s). In
addition, we assume that six different stimulus difficulties are
presented under two speed–accuracy conditions. This leads to six
parameter values for C (ranging from 0 to 0.25 in steps of 0.05).
We take Bns � 0 as discussed in the section about parameter
identification, and Bs � 2,500. The BS version of the IDM is
considered in the diffusion limit, so the dynamical parameters �

and t are replaced by a diffusion constant D (see Equation 20).
We take D � 0.05. The BS approach to SAT requires two different
box sizes: We take h � 0.25 for the accuracy condition and h �

0.45 for the speed condition. For the CG version of the model, the
SAT-sensitive parameters are � and t. For the accuracy condi-
tion, we take �t � 6.25 · 10�6 and � � 5 · 10�4; for the speed
condition, we take �t � 6.25 · 10�3 and � � 5 · 10�2. For both
versions of the IDM, we simulate a realistic number of 300 trials
per stimulus condition.

In Figure 16, we show the evolution of the delayed rejection
adaptive Metropolis chain after burn-in for the parameters Ter (for
IDM BS) and N (for IDM CG). The other parameters show similar
behavior, which makes it reasonable to assume that the chains have
converged. In Figure 17, the upper line of each parameter graph
(labeled as SD, from simulated data) compares the true parameter
value of the simulated data (open circles) with the corresponding
posterior means (crosses) and 95% credibility interval (line seg-
ments). As can be seen, in the vast majority of cases, the 95%
posterior credibility interval encompasses the true value. Recovery
appears to be somewhat better for the IDM CG than for the IDM
BS. Additional analyses (not reported) showed that setting the
detection box as a free parameter significantly increases the
amount of data needed for good recovery. For 3,000 simulated data
points per condition, we do find a perfect recovery for the IDM
BS. Considering the number of trials per stimulus condition for the
real data (often in the range of 300 to 500), it must be said that the
estimated parameter values (and resulting free energy surfaces)
should be interpreted with some caution in the case of the IDM BS.
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Second, we simulate data for the three versions of the Ratcliff
diffusion model (RDM 1, RDM 2, and RDM 3, as defined above).
The top row in the different panels of Figure 18 displays again the
true value (circle), the posterior mean (cross), and the 95% cred-
ibility interval (line segments). For all three versions of the Ratcliff
diffusion model, the recovery is excellent.

Real Data

The two versions of the IDM and the three versions of the

Ratcliff diffusion model described above are fitted to real data

collected from two different experiments. The first experiment is

the brightness discrimination task by Ratcliff and Rouder (1998),

Figure 16. IDM Markov chain after burn-in for parameters Ter (IDM BS) and N (IDM CG) based on simulated

data. The generating parameter values are indicated in Figure 17 as open circles. IDM � Ising Decision Maker;

BS � boundary separation; CG � coarse graining; MCMC � Markov chain Monte Carlo.

Figure 17. Summary of the parameter estimates of IDM BS and IDM CG based on simulated and real data (six

difficulty levels, two speed–accuracy instructions). Every graph displays the estimates of one parameter. Estimates are

shown for the simulated data set SD (based on the values in Table 1), participants JF, KR, MH (Ratcliff & Rouder,

1998), and MM (Mulder et al., 2013). The crosses indicate the posterior means, and the line segments indicate the 95%

posterior credibility intervals. IDM � Ising Decision Maker; BS � boundary separation; CG � coarse graining.
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which has been used as an empirical benchmark before (Brown &
Heathcote, 2008). Three participants (JF, KR, and NH) had to
classify patches of pixels as either bright or dark. The brightness of
the pixel patch was manipulated in 33 levels, from very dark to very
bright. We have binned the 33 levels into six stimuli. The correct
classification of the stimulus entailed some degree of randomness: For
very bright or very dark stimuli, the classification into the bright or
dark category, respectively, was almost sure, while for stimuli half-

way between dark and bright, the classification was fully random. All
stimuli were presented under two speed–accuracy manipulations: In
one manipulation, there was more emphasis on speed, while in the
other, there was more emphasis on accuracy. This manipulation was
implemented through the instructions but also through direct feedback
(e.g., telling the participants that their response was too slow under the
speed manipulation or that an error was made in the accuracy manip-
ulation).

Figure 18. Summary of the parameter estimates of different versions of the Ratcliff diffusion model

(RDM) based on simulated and real data (six difficulty levels, two speed–accuracy instructions). Every

graph displays the estimates of one parameter. Parameter nomenclature is taken from Ratcliff and Rouder

(1998). In all models, starting point z � a/2. Estimates are shown for the simulated data set SD (the

generating values are indicated with open circles), participants JF, KR, NH (Ratcliff & Rouder, 1998), and

MM (Mulder et al., 2013). The crosses indicate the posterior means, and the line segments indicate the 95%

posterior credibility intervals.
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The other experiment is a recently published random-dot motion
task (Mulder et al., 2013). During the experiment, six different
stimulus-difficulty levels were presented (i.e., six different motion-
coherence levels: 0%, 5%, 10%, 20%, 40%, and 80%), and there
was also a speed–accuracy manipulation, which was implemented
again through a combination of instructions and feedback (see
above). For this experiment, each condition (a crossing of a diffi-
culty level and an instruction) contained 300 trials. In total, there
were 1,800 trials. For this experiment, we only analyze the data of
one participant (denoted as MM).

The chains generated by the delayed rejection adaptive Metrop-
olis algorithm were similar to the chains found for the simulated
data, all showing good convergence, except for the IDM BS
parameter estimates of participant MM. The nonconverging esti-
mates correspond to a monostable free energy surface, both before
and during stimulus presentation. When the stimulus is presented,
the minimum moves to slightly higher values of mean activity
for both pools (cf. Band I in Figure 6). The detection box size
for both the speed and accuracy conditions are very close to 0.5.
This type of free energy surface can be sufficiently described by
an ordinary well-shaped LCA and does not require higher order
entropy terms. This creates a parameter redundancy for the IDM
that could be addressed by fixing another parameter, effectively
reducing the IDM to an LCA-type model. As we have no valid
parameter estimates for the BS version of the IDM combined
with participant MM, this particular combination is left out of
the further analysis. An overview of all other parameter esti-
mates can be found in Figure 17. The parameter estimates
belonging to the different versions of the Ratcliff diffusion
model are shown in Figure 18.

A visual comparison of IDM and Ratcliff diffusion model fits of
participant JF (from Ratcliff & Rouder, 1998) is shown in Figure

19. The quantile probability plots show that all models have
relatively good fits but that both versions of the IDM and RDM 3
are performing best (the two other Ratcliff diffusion model vari-
ants show some degree of misfit).

Next, we rank the models according to the DIC model-
selection criterion, taking into account both goodness of fit and
model complexity. The results are given in Table 2. Both
versions of the IDM always outperform RDM 1 (the traditional
version, as proposed in Ratcliff & Rouder, 1998) and RDM 2
(allowing for additional uniform variability of the nondecision
time, which is not included in the IDM). RDM 3 (an extension
of RDM 2, for which every parameter except the drift rates may
change under the speed–accuracy manipulation), however, is
always at least as good as both versions of the IDM. For two out
of three participants, IDM CG outperforms IDM BS.

Piéron’s Law, the van der Molen-Keuss Effect,

and Weber’s Law

In this section, we use the IDM to explain some additional
empirical findings from two-choice RT tasks. First, we link the
IDM to the lesser known Piéron’s law and van der Molen-Keuss
effect. In addition, the IDM is able to reproduce Weber’s law, a
classical psychophysical relation.

Piéron’s Law and the van der Molen-Keuss Effect

Piéron’s law for speeded two-choice RT (Pins & Bonnet, 1996;
see also Smith & Ratcliff, 2009) and the van der Molen-Keuss
effect (Jaśkowski & Włodarczyk, 2006; van der Molen & Keuss,
1979) are two firmly replicated experimental findings. Piéron’s
law was originally formulated in the context of signal identifica-

Figure 19. Quantile probability plots for data and fits of participant JF from Ratcliff and Rouder (1998).

The top row displays the results for the accuracy (acc.) condition, the bottom row for the speed condition.

In each row, from left to right are shown IDM BS, IDM CG, RDM 1, RDM 2, and RDM 3. Each response

time (RT) distribution (two per stimulus, one for corrects and one for errors) is shown as a set of RT

quantiles (at .1, .2, .5, .7, and .9), plotted vertically above the total probability value associated to that

distribution. Data quantiles are indicated with full dots, and model fits are indicated with open circles. Plots

for the other participants from Ratcliff and Rouder and participant MM from Mulder et al. (2013) can be

found in Appendix F. IDM � Ising Decision Maker; BS � boundary separation; CG � coarse graining;

RDM � Ratcliff diffusion model.
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tion and states that RT decreases as stimulus intensity increases
(e.g., brightness or loudness). The observed decrease in mean RT
is assumed to follow a negative power law (Piéron, 1913). As
indicated by van Maanen, Grasman, Forstmann, and Wagenmakers
(2012), two different interpretations of Piéron’s law for speeded
two-choice RT exist. The first interpretation considers a task in
which the varied stimulus intensity is not the relevant dimension of
the two-choice experiment (i.e., a nonselective feature in the
terminology of this article), and the actual choice is made based on
some other, more complex feature of the same stimulus. As an
example, consider a face/artifact discrimination task with pictures
varying in contrast (such that contrast is the irrelevant dimension).
The second version considers a task in which the stimulus intensity
is the actual discriminating factor of the two-choice experiment. In
this article, we stick to the first interpretation of Piéron’s law,
which is in line with the work of Pins and Bonnet (1996). In
addition to the suggested decrease in RT, recent research by
Jaśkowski and Włodarczyk (2006) suggests that there is an ac-
companying decrease in accuracy as well.

The van der Molen-Keuss effect refers to what happens for very
large stimulus intensities: Very intense stimuli lead to increasing
RTs, and in addition, error responses can become faster than
correct responses.

One may consider Piéron’s law for speeded two-choice RT and
the van der Molen-Keuss effect as two sides of the same coin. Both
effects describe a change in RT for a so-called changing stimulus
intensity. While Piéron’s law describes the behavior at lower
stimulus intensities (but still above detection threshold), the van
der Molen-Keuss effect occurs at very high stimulus intensities.
Interestingly, none of the existing theoretical models for decision
making have been linked to these two effects. It is clear that some
of the simpler models (e.g., Ratcliff diffusion model) are not able
to explain these empirical findings without additional ad hoc
assumptions.

It is important to stress that in the experiments we are referring
to, stimulus intensity does not pertain to the actual evidence for the
choice but to the strength of other, nonselective features of the
stimulus. For instance, when categorizing a white contour line on
a black background as a face or an artifact, the brightness of the
line (and therefore the contrast of the picture) does not directly
influence its form, which is the selective or evidence part of the
stimulus. Of course, we assume that all experiments are carried out
well above detection threshold because, when brightness falls to
zero, no form can be distinguished at all.

In this section, we study how the IDM may explain both
Piéron’s law and the van der Molen-Keuss effect. Figures 20a and
20b, respectively, show the accuracy and RT results for varying
nonselective input strength Bns and a high value of stimulus
distinctness (C � 0.4). For the other parameter values of the IDM,
we refer the reader to Table 1. Experimental data for this high
accuracy regime were collected by Jaśkowski and Włodarczyk

Table 2
Model Selection Results

Participant IDM BS IDM CG RDM 1 RDM 2 RDM 3

NH 32,364 (3) 32,348 (2) 32,783 (5) 32,421 (4) 32,202 (1)
KR 33,477 (2) 33,501 (3) 33,970 (5) 33,540 (4) 33,464 (1)
JF 33,847 (3) 33,657 (2) 34,696 (5) 34,072 (4) 33,623 (1)
MM — 16,525 (2) 17,789 (4) 16,911 (3) 16,510 (1)

Note. Deviance information criterion values are presented for all five
models and all four participants. The selection ranks of the models per
participant are shown in parentheses. The dash indicates that there is no
result. IDM � Ising Decision Maker; BS � boundary separation; CG �
coarse graining; RDM � Ratcliff diffusion model.

Figure 20. Piéron’s law and the van der Molen-Keuss effect. Panel a shows

Ising Decision Maker response time (RT) results for varying nonselective

input strength Bns: �1 (lighter gray) represents the correct responses, �2 (darker

gray) represents the incorrect responses. The parameters used are taken from

Table 1 with Bs � 2,500 and a high value of stimulus distinctness, C � 0.4.

Panel b shows the corresponding accuracy results. Panels c and d show the

experimental RTs (mainly correct responses) obtained by Jaśkowski and

Włodarczyk (2006) for a visual cue Simon task for varying brightness. Panel

e shows the experimental RTs for both correct (lighter gray squares) and error

responses (darker gray squares) obtained by van der Molen and Orlebeke

(1980) for a pitch discrimination task for varying loudness. The data shown

here are based on the graphs in Jaśkowski and Włodarczyk and in van der

Molen and Orlebeke. Panels a, c, and e all show a U-shaped relation between

RT and stimulus intensity for correct responses. As can be seen in Panels a and

e, error RT decreases monotonically with increasing stimulus intensity. Error

RTs were not reported separately by Jaśkowski and Włodarczyk and are

therefore not shown in Panel c. Panels b and d both show a decreasing

accuracy for increasing stimulus intensity. In both experiments, stimulus

intensity refers to an aspect of the stimulus (i.e., loudness and brightness,

respectively) that is not immediately connected to the task’s complexity but is

essential in carrying the problem to the decision maker.
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(2006), and the results are shown in Figures 20c and 20d. One of
the first accounts of the van der Molen-Keuss effect was by van
der Molen and Orlebeke (1980) and is shown in Figure 20e.
Although an exact relation between physical stimulus intensity and
nonselective IDM input Bns is not specified, both quantities are
expected to result in comparable RT behavior (in terms of increase
and decrease) under the plausible assumption of a monotonously
increasing relation between the two. When Bns is small but in-
creasing, a drop in RT is indeed discovered, similar to Piéron’s
law. At the same time, this is accompanied by a decrease in
accuracy, in accordance with the results of Jaśkowski and
Włodarczyk. For very large values of Bns, RT rises again. More
specifically, the correct response RT rises, while the error response
RT stays low. This is in agreement with the findings of van der
Molen and Orlebeke.

The increase of RTs at large values of Bns, especially for the
correct responses, is due to the influence of a startled state for very
high input strengths. Such a startled state corresponds to a high
activity in both decision pools (and is therefore indecisive). This is
illustrated in Figure 13, in which the time evolution of decision
trajectories subject to the influence of a startled state merging with
the correct decision state is presented. Once a large nonselective
input is provided, the process is drawn to the startled state before
it evolves generally to the correct decision state.

Two-Stimulus Comparison: Weber’s Law

In all previous sections of the article, we have considered the
standard version of a speeded choice task: A single stimulus is
presented, and a fast decision has to be made. In the IDM, a
stimulus supplies a certain amount of selective strength to each
of the response alternatives (apart from a nonselective compo-
nent Bns). This selective part of the two-component external
input field was conveniently parameterized through a distinct-
ness variable C and a supposedly constant selective input
strength Bs (see Equation 16). The fact that the IDM actually
has two inputs allows us to model another type of speeded
choice task in which a person is asked to compare a pair of
stimuli on a certain scale. Questions of this type are “Which of
two grays is lighter?” or “Which of two lines is longer?” In such
a situation, we may relate the IDM to Weber’s law, as has been
done before by Deco, Scarano, and Soto-Faraco (2007) for an
integrate-and-fire network.

Although Weber’s law relates the physical dimension to the
sensation, it is important to notice that in the case of the IDM,
input strengths Bs1 and Bs2 do not coincide with the actual physical
quantities. They are presented to the IDM only after being pro-
cessed by sensory neurons and possibly a series of other predeci-
sion processes, most likely in a nonlinear fashion (Copelli, Roque,
Oliveira, & Kinouchi, 2002; Yang & Wu, 1997). In what follows,
we do not consider these sensory and preprocessing stages and
focus solely on what happens after the input strengths have been
computed. To ensure the IDM’s decision about which of the two
stimuli is greater corresponds to the original physical ordering,
there should at least be a monotonic relation between the actual
physical stimulus size and IDM input strength.

A key observable for experiments in which stimuli are com-
pared is the just noticeable difference or jnd. The jnd refers to
the minimal stimulus difference required to successfully dis-

criminate between two stimuli (e.g., Luce, Bush, & Eugene,
1963). A jnd can be defined on the input scale of the IDM.
Consider the input strengths of the selective (task-relevant) part
of the external field B1s and B2s, with average input strength

Bs �
B1s�B2s

2 and difference �Bs � B1s � B2s � 2CBs. The
jnd��Bs� for a certain average input strength Bs is equal to the

minimal half-difference
�Bs

2 that surpasses a predefined accu-
racy level �. The jnd�(Bs) is therefore also defined by the
desired accuracy, giving a precise meaning to the term notice-

ably different. Based on the alternative formulation of the
selective part of the external field given in Equation 16, the jnd

can also be defined through the notion of just noticeable dis-
tinctness C�(Bs):

jnd�(Bs) �
��(Bs)

2
� BsC�(Bs). (34)

Weber’s law states that the jnd of some observed physical quantity
is proportional to that quantity (e.g., Luce et al., 1963). In terms of
Equation 34, Weber’s law states that the ratio of the jnd�(Bs) to the
stimulus strength Bs, the so-called Weber fraction, is a constant. In
the current framework, the Weber fraction is identical to C�(Bs).

Although some reservation toward its generality is in place
(Masin, 2009), it is supported by many experiments in the mid-
ranges of a great number of basic perceptive stimuli such as
auditory pitch, luminance, and so on (see, e.g., Woodworth &
Schlosberg, 1954). It is also found in more advanced tasks such as,
for example, line length and number estimation (Cantlon, Platt, &
Brannon, 2009; see also Smith & Ratcliff, 2009). Weber’s law
could emerge at different stages of processing: Automatic data
compression at early sensory stages has been suggested as a
possible explanation (Copelli et al., 2002), but also the discrimi-
nation/decision process itself has been put forward (Deco et al.,
2007). In light of this last possibility, we check if it is possible to
have Weber-like behavior in the IDM.

In Figure 21, we study the Weber fractions C�(Bs) generated by
the IDM as a function of Bs. For the chosen parameter values of the
IDM, it can be seen that Weber’s law approximately holds for a
range of values of Bs situated in the competition regime (see Figure
6a, where the dotted line coincides with the Bs range shown in
Figure 21).10

Conclusion

In this article, we have developed a prototypical neural calcu-
lator, the Ising Decision Maker or IDM, as a model for the speeded
two-choice RT task. The underlying Ising model consists of two
pools of binary stochastic neurons with pairwise interactions.
Inside each pool, neurons excite each other; between pools, neu-
rons inhibit each other. The perceptual input, finally, is represented
by a two-component external field. Each component excites the

10 At first glance, this appears to contradict the claim made by Deco et
al. (2007) that a constant Weber fraction can only be found in the region
of three-state stability of the integrate-and-fire network proposed by Wong
and Wang (2006). There are many possible reasons for this discrepancy:
the dependence of the phenomenon on the specific parameter values of
both models, the introduction of a nonselective part to the external field of
the IDM, or a more intrinsic difference between the IDM and the integrate-
and-fire model.
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neurons of one pool and in doing so provides evidence for the
related choice. From this microscopic description, a discrete two-
dimensional stochastic model is derived, describing the time evo-
lution of the mean neural activity per pool. A decision is triggered
when the system enters the stable state related to a high neural
activity of the corresponding pool. A formal connection was es-
tablished with traditional diffusion models by calculating the con-
tinuous limit of the model’s discrete Markov chain. The IDM
diffusion limit formally reduces to an LCA model with additional
nonlinear terms, directly connected to the system’s entropy.

The IDM produces realistic, right-skewed RT distributions. Un-
der the assumption of constant total input, stimulus distinctness
can be used to parameterize the evidence embedded in the stimu-
lus. Assuming evidence in favor of the first alternative, higher
stimulus distinctness leads to increased accuracy and generally
faster RTs. For varying distinctness, the mean correct response
RTs are approximately linearly proportional to the corresponding
standard deviation, as reported by Wagenmakers and Brown
(2007). The probability latency functions generated by the IDM
have the typically observed inverted U-shape (e.g., Ratcliff &
Rouder, 1998). Also in line with experiments, the left–right sym-
metry of the probability latency functions is slightly broken: Error
responses occur later than their correct counterparts for stimuli of
intermediate to high distinctness. For stimuli with even higher
distinctness, error responses can become faster than their correct
counterparts.

On the level of effective neural correlations, the IDM is very
similar to the integrate-and-fire network proposed by Wong and
Wang (2006). Although the IDM is a lot less intricate, the
essential properties of the aforementioned integrate-and-fire
network are reproduced: a spontaneous state, decision states
(which can be reminiscent), and slow errors. On the micro-
scopic level, the Ising model provides only a minimal descrip-
tion of the decision-making part of the brain, based on elemen-

tary neural correlations rather than the complicated
biophysiology giving rise to these correlations (integrate-and-
fire networks with dedicated excitatory and inhibitory neurons).
Rather than an attempt at an exact biophysiological replica, the
IDM is an abstract mathematical description of how the brain
implements the decision process on a low level of information
processing. The neurons in the IDM should be considered as
functional units, not necessarily corresponding to individual
physical neurons of any specific type, that process information
by means of a dynamical updating rule with an equally abstract
interpretation. Consequently, there is no problem with the dif-
ference in time scale between a single neurophysiological spike
(physiological properties impose severe constraints on the time
scale of neuronal firing) and a single Metropolis neuron update
in the IDM (which happens instantaneously and has no temporal
constraints otherwise). Both the spike and the neuron update
serve as microscopic carriers of correlations across their respec-
tive decision networks, and there is no reason they should have
anything more in common. As a result, both modeling ap-
proaches come with their own advantages. The advantage of
integrate-and-fire networks is their explicit connection to the
detailed mechanics of the brain’s neurons. In particular, the
time scale on which mean activity evolves can be successfully
inferred from realistic firing rates. Because they adopt the
interplay between excitatory and inhibitory neurons, integrate-
and-fire networks can also accommodate oscillatory behavior.
The advantage of the IDM approach, however, is its simplicity
(only the most essential parts of a network are retained) and
analytical elegance. In the IDM’s case, the time scale on which
mean activity evolves is simply a parameter of the model.
Applied to human decision making, both models actually
greatly simplify the biophysiological details of the brain. With
the rise of the neurophysiologically inspired integrate-and-fire
networks, Ising models have become less popular as a modeling
tool in brain science and decision making in particular. How-
ever, it is our conviction that they are still of great value to the
field as they offer a unique combination of the simplicity
typical of the abstract diffusion tradition and the nonlinearity
typical of multiple attractor networks. The results in this article
testify to this fruitful middle ground.

In terms of neural plausibility, the IDM distinguishes itself
from traditional linear diffusion models by demonstrating
global multiple attractor network behavior. Regardless of the
plausibility of the underlying neural rationale (Smith, 2010;
Smith & McKenzie, 2011), traditional linear diffusion models
are limited to a local description of evidence accumulation once
the stimulus is presented. Because of its nonlinearity, the IDM
describes the system during the entire trial: before, during, and
after stimulus presentation. At the same time, this description
includes neurally plausible concepts like the spontaneous state
and decision states.

Viewing decision making as an abstract stochastic minimization
algorithm of a potential energy function inspires an alternative way
of parameterizing SAT than the traditional changing boundary
(box size) assumption, namely, coarse graining. Increasing the
collective step size of the Markov chain dynamics that stochasti-
cally minimizes the IDM’s free energy function during a trial
results in faster but less accurate decisions. At the same time, this
quick and dirty or coarse-grained dynamics diminishes the lag of

Figure 21. Weber fractions C�(Bs) versus selective input strength Bs for

different values of desired accuracy (� � 0.65, 0.70, 0.75, 0.80). The

parameter values are taken from Table 1, with Bns � 1,000. For these

particular parameter values, Weber’s law seems to hold (a constant Weber

fraction) throughout the competition regime (approximately stretching

from Bs � 1,000 to Bs � 3,000). The fractions were calculated by

simulating the full range of stimulus distinctness C for every Bs. This

allowed us to pinpoint the just noticeable distinctness C�(Bs) (which is

identical to the Weber fraction) leading to a performance of, respectively,

65%, 70%, 75%, and 80%.
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error responses, eventually introducing error responses that are
faster than their correct counterparts. This seems to be in agree-
ment with what is observed experimentally. As a matter of con-
venience, the dynamics describing coarse graining was directly
defined on the macroscopic level of mean activities. However, it
would be interesting to investigate which microscopic algorithms
effectively reproduce the SAT effects obtained with this macro-
scopic approach. A possible source of inspiration for this is more
exotic Ising model dynamics like the Wolff algorithm (see, e.g.,
Newman & Barkema, 1999), that allow for the simultaneous
updating of larger sets of neurons to increase equilibrium sampling
efficiency. Another microscopically defined method of coarse
graining that could be considered is the parallel updating algorithm
of Torres et al. (2008). An additional feature of parallel updating
lies in the introduction of oscillating (and even chaotic) behavior
that may address oscillating aspects of brain functioning during
decision making that cannot be modeled within the current IDM
set-up.

Additionally, three major speeded two-choice experiment
related effects described in psychological literature can be
identified through IDM simulations: Piéron’s law, the van der
Molen-Keuss effect, and an account of Weber’s law at the
decision-making level. Breaking up the network input into a
stimulus selective term (containing evidence concerning the
choice) and a common nonselective term (containing decision-
irrelevant information) provides a workable model for the stim-
uli presented in these experiments. Evidently, this input param-
eterization is not restricted to the IDM: It can be applied to any
diffusion model with dual input (drift rate). For low to moderate
nonselective input strengths, mean IDM RTs drop with increas-
ing nonselective input strength. This behavior is referred to as
the speeded two-choice version of Piéron’s law and has been
experimentally verified by, for instance, Pins and Bonnet
(1996). For extremely high nonselective input strengths, correct
RTs increase again, while error RTs keep decreasing monoton-
ically, eventually leading to error RTs shorter than their correct
counterparts. This behavior is called the van der Molen-Keuss
effect (van der Molen & Keuss, 1979). Finally, a decision-level
version of Weber’s law was discovered stretching over most of
the competition region. It should be noted that various other
ways of input parameterization have been proposed and inves-
tigated, sometimes incorporating time-dependent evidence (see,
e.g., Teodorescu & Usher, 2013; Tsetsos, Usher, & McClelland,
2011). In the context of the IDM, time dependency of the input
could offer a unique perspective on the nature of decision states,
more specifically regarding the ability to attract decision tra-
jectories after the evidence has been removed or even reversed.

Two important issues in the study of decision processes were
not directly addressed in the main body of this article and are
discussed here: bias and confidence. First, let us address the issue
of bias (see, e.g., Diederich & Busemeyer, 2006; Leite, 2011;
Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012; Rat-
cliff, 1985; Ratcliff & Starns, 2009). In the derivation of the IDM,
starting from Equation 9, we have assumed that the number of

neurons Np, the excitatory interaction strength Wp
�, and the internal

threshold �p are equal for both pools. Bias can be introduced to the
network by allowing any of these parameters to become pool
specific. Abandoning the parametric symmetry between pools

results in an asymmetric free energy surface both before and after
stimulus presentation. From the traditional Ratcliff diffusion per-
spective, this implies an at least slightly biased starting position,
regardless of which of the three parameters was used. Introducing
bias specifically through the internal thresholds (i.e., �) impacts
the linear part of the IDM and is therefore closely related to
assuming an a priori bias in drift rate in the Ratcliff diffusion
model. A choice regarding the description of bias is required
before considering more advanced problems such as optimal de-
cision making (Bogacz et al., 2006). Second, there is the issue of
decision confidence. To address this, one could consider using
postdecision activity, as proposed by Pleskac and Busemeyer
(2010).

There are many ways the IDM can be further explored and
extended. One way is to generalize the two-pool model discussed
in this article to a k-pool version (k being a strictly positive natural
number) capable of dealing with speeded k-choice RT data. One
can then verify if the model is able to reproduce well-established
experimental phenomena like Hick’s law (Hick, 1952; McMillen
& Holmes, 2006). (Note that with the possibility of this extension
in mind, the proofs in Appendixes B and C are already given for
the more general case of k pools.) Another interesting issue that
can be addressed is the presence of correlations between closely
consecutive trials. Within the IDM framework, reminiscent states
could have a significant impact on the next trial. This may prove
useful in determining which of the two is more likely: decision
making with or without reminiscent states (Band II and Band III,
respectively; see the section entitled Modes of Operation of the
IDM). Also, as a neural-network-based model, the IDM presents
itself as an interesting theoretical framework for studying learning
effects in speeded choice tasks. Concepts such as Hebbian learning
(Hebb, 1949) can be integrated into the model in a natural way (a
stochastic Hopfield network equipped with Hebbian learning is
called a Boltzmann machine; see, e.g., Ackley, Hinton, & Se-
jnowski, 1985).11 As a Hopfield derivate, the IDM provides a link
between decision making on the one hand and the Hopfield net-
work’s original field of application, memory, on the other. From
this perspective, the IDM could also prove useful in memory-
related research. Finally, as the IDM is derived from a theory that
is closely related to the biophysics of neural decision making and
has clearly defined macroscopic neural quantities, it can be con-
sidered a good candidate for simultaneously describing behavioral
data and a number of aspects of macroscopic neural data (e.g.,
event-related potentials, as in Philiastides, Ratcliff, & Sajda, 2006)
measured during speeded choice decision tasks.

Fitting experimental data to the IDM is shown to be a realistic
endeavor. More so for the data under consideration, the statistical
model-selection procedure showed that the IDM can compete with
the traditional Ratcliff diffusion model. This may of course not be
the case for other data sets, and therefore, more systematic com-
parisons are needed. The introduction of selective (evidence-

11 Using Hebbian learning in the context of a decision model has also
been proposed by Anderson, Silverstein, Ritz, and Jones (1977) in the
context of their brain-state-in-a-box (BSB) model. The BSB model itself
has some affinity with the models discussed in this article. It is a system of
linear differential equations, but nonstochastic. Noise only enters the
process at the level of the input. It is therefore neither a stochastic network
nor a diffusion model.
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related) and nonselective (circumstantial) input provides a model-
ing framework for an all-in-one speeded two-choice experiment in
which, for one and the same discrimination task, many different
aspects are studied simultaneously: probability latency functions
for different selective and nonselective input strengths, Piéron’s
law, the van der Molen-Keuss effect, and Weber’s law at the
decision level. Such experiments could also explore experimen-
tally thus far uncharted terrain. For instance, no experimental data
are available on the van der Molen-Keuss effect on stimuli result-
ing in an accuracy closer to chance level. The IDM’s predictions
for this effect challenge experimental psychologists to investigate
this hidden area of speeded choice RTs. More generally, using the
input model described above, the IDM and all other dual input
diffusion models are theoretically equipped to model an overarch-
ing speeded two-choice experiment. Their different ability to fit all
observed phenomena into one set of parameter values, as well as
cope with more extreme experimental conditions (e.g., the van der
Molen-Keuss effect), will dominate any model-selection criterion
and hopefully provide a more fundamental classification of the
currently competing speeded two-choice RT models.
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Appendix A

Derivation of Equation 7

To appreciate Equation 7, we note that �i�j S1iS1j from Equa-
tion 5 counts the number of jointly active neurons in pool 1 (i.e.,
both neurons i and j have an activity of 1). Take as an example a
pool with N � 8 nodes that have the following configuration: (0,
1, 1, 0, 1, 1, 0, 0) (hence, y1 � 0.5). We may construct an 8 � 8
cross table, with the configuration in the margins. The cells of the
table are the multiplication of the corresponding marginal row and
column element as is done in Table A1. In the calculation of

�i�j S1iS1j, we only have to consider the lower triangular part of
the matrix (because we want to count each distinct pair (i, j) only
once). From Table A1, it can be seen that the number of ones in the
lower triangular part is directly related to the number of ones in the
configuration (i.e., Ny1 � 8 · 0.5 � 4). It is easier to start with
considering all elements of the full table, and then, the number of
cells with ones is (Ny1)2 � 16. From this, we have to subtract the
number of ones on the diagonal, that is Ny1 � 4. Next, the result
has to be halved such that only the lower triangular part is con-
sidered (the matrix is symmetric), and this gives the final result:

�i�j S1iS1j �
1
2��Ny1�

2 � Ny1�. The calculation of the other sums
in Equation 5 is comparable.

Appendix B

Diffusion Equations for Single Neuron Updating (Equation 18)

In what follows, we derive the Ising Decision Maker (IDM)
diffusion equations associated with single neuron updating Me-
tropolis dynamics. We immediately consider a more general proof,
involving k pools instead of the currently required two.

Consider k pools p � 1, . . . , k of each Np binary neuron Spi with
i � 1, . . . , Np. Let E(S) be the system’s energy function, with S the

vector containing the values of all N � �p Np neurons of the system.
Assume the energy function is invariant under the switching of neuron
activities within a pool. This means the mean activity vector y �

�y1, . . . , yp, . . . , yk� with yp �
�iSpi

Np
(as in Equation 6) is sufficient

information to know the system’s energy. As a consequence, we can
make use of a k-dimensional scalar function E(y) � E(S), with yp �
�iSpi

Np
. We allow E(y) to have the same name as E(S), as the difference will

always be clear through the notation of their arguments.
Now consider a single neuron updating algorithm with Metrop-

olis transition probability. Let us first discuss the proposal mech-
anism of this algorithm. The proposal mechanism randomly selects
a neuron of the system and proposes a change in its activity (0 to
1 or 1 to 0). Evidently, the probability of this neuron belonging to

pool p is
Np

N
. The activity change of a neuron in pool p can be seen

as a change in yp of Np
�1 if one chooses a neuron that has activity

0 or � Np
�1 if one chooses a neuron that has activity 1. When

selecting from pool p, choosing a neuron with activity 0 has
probability 1 � yp; choosing a neuron with activity 1 has proba-
bility yp.

This leads to a discrete Markov chain in the k-dimensional space of

mean activity y. Each time step, an Np
�1-sized step (the net result of

changing one neuron’s activity) is proposed in one of the two directions
of yp, with p the pool of the neuron that was (randomly) selected. The
proposed change in mean activity y is denoted by a stochastic vector s.
It has 2k possible realizations (two possibilities for each pool), which

are indexed with a superscript: s1 � �N1
�1, 0, 0, . . .�, � s1 �

� � N1
�1, 0, 0, . . .�, s2 � �0, N2

�1, 0, . . .�, � s2 � �0, �

N2
�1, 0, . . .�, . . . , with proposal probabilities

N1

N
�1 � y1�,

N1

N
y1,

N2

N
�1 �

y2�,
N2

N
y2, . . ., respectively. Seeing the chain is implicitly indexed with an

integer time n, we define real time as t � n �t.
After an activity step has been proposed, its acceptance needs

to be decided. Given an energy surface E(y), a particular pro-
posed activity step sp is accompanied by a change in energy
E � E(y � sp) � E(y). In accordance with the microscopic
Metropolis acceptance rule (see Equation 4), a move is made to
the candidate if E � 0 or with a probability e��E if E 	 0.

(Appendices continue)

Table A1
Table With the Example Configuration (0, 1, 1, 0, 1, 1, 0, 0) in

Rows and Columns and the Elementwise Multiplication in the Cells

S1i

S1j

0 1 1 0 1 1 0 0

0
1 1 · 0
1 1 · 0 1 · 1
0 0 · 0 0 · 1 0 · 1
1 1 · 0 1 · 1 1 · 1 1 · 0
1 1 · 0 1 · 1 1 · 1 1 · 0 1 · 1
0 0 · 0 0 · 1 0 · 1 0 · 0 0 · 1 0 · 1
0 0 · 0 0 · 1 0 · 1 0 · 0 0 · 1 0 · 1 0 · 0
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The Fokker–Planck equation for the time evolving probability
density function p(y, t) (indicating the density of y at time t) for a
k-dimensional diffusion can be written as

�p(y, t)

�t
� ��

p�1

k �

�yp

Ap(y, t)p(y, t)

�
1

2�
p�1

k

�
q�1

k �2

�yp � yq

Gpq(y, t)p(y, t) (B1)

(see, e.g., Gardiner, 2004), where Ap(y, t) is the pth component of
the drift rate vector and Gpq is the (p, q)th element of the diffusion
matrix G.

For a small time interval t (see, e.g., Karlin & Taylor, 1981),

Ap�y, t� �
�sp�
�t

(i.e., the drift rate is the expected change in y in a very

small time t), and Gpq�y, t� �
�spsq�

�t
(i.e., the diffusion matrix is the

expected squared change in y in a very small time t). Please note that
the expectation values �sp� and �spsq� refer to the actual change in
activity (i.e., after acceptance or rejection of the proposed activity
step) and not to the expectation value of the proposal distribution.
Before calculating the drift vector and diffusion matrix emerging from
the proposed Metropolis Markov chain, we first compute two useful
intermediate results.

First, we approximate the change in energy E that accompa-
nies a proposed activity step. In the first order of Np

�1, a change of
sp in y results in a change in energy of

�E � E(y � sp) � E(y)

� E(y) � Np
�1

�E

�yp

� E(y)

� Np
�1

�E

�yp

.

(B2)

Evidently, a change of �sp in y brings about a change in energy of

�E � � Np
�1 �E

�yp
.

Second, we can additively decompose the expression for the IDM’s
entropy 	(y) of Equation 13 into 	I(y) and 	II(y) as follows:

�(y) � ��
p

Np(yplog(yp) � (1 � yp)log(1 � yp))

���
p

Npyplog(yp)

Ç

�I(y)

��
p

Np(1 � yp)log(1 � yp)

Ç

�II(y)

.

Taking first derivatives of 	I(y) and 	II(y) and multiplying with
� Np

�1 gives

�Np
�1

��I

�yp

� 1 � log(yp) (B3)

and

�Np
�1

��II

�yp

� �1 � log(1 � yp). (B4)

We now have the necessary ingredients to compute the expec-

tation values �sp� and �spsq�. First, consider the expected change

in activity �sp�. Assuming
�E�y�
�yp

� 0, we get (approximating up

to the first order of Np
�1 and using the results of Equations B2,

B3, B4, and 12)

�sp� �
Np

N
��ypNp

�1 � (1 � yp)e
���ENp

�1�

�
1

N
��elog(yp) � e���E�log(1�yp)�

�
1

Ne
��elog(yp)�1 � e���E�log(1�yp)�1�

�
1

Ne
��e�Np

�1��I

�yp � e��Np
�1 �E

�yp
�Np

�1��II

�yp �

�
1

Ne
��1 � Np

�1
��I

�yp

� 1 � �Np
�1

�E

�yp

� Np
�1

��II

�yp


�
1

Ne
���Np

�1
�(E � ��1(�I � �II))

�yp


� �
�

NNpe

�F

�yp

.

The same result is obtained for
�E�y�

�yp

� 0. This means

Ap �y, t� �
�sp�

�t
� �

�

NNpe�t

�F

�yp

.

For the expected squared change in activity �sp
2�,

(Appendices continue)
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we consider a similar approximation. Assuming
�E�y�
�yp

� 0, we get
(again with an approximation until the first order of Np

�1 and using
the results of Equations B2, B3, and B4)

�sp
2� �

Np

N
�ypNp

�2 � (1 � yp)e
���ENp

�2�

�
1

N
�elog(yp) � e���E�log(1�yp)�Np

�1

�
1

Ne
�elog(yp)�1 � e���E�log(1�yp)�1�Np

�1

�
1

Ne
�eNp

�1��I

�yp � e��Np
�1 �E

�yp
�Np

�1��II

�yp �Np
�1

�
1

Ne
�1 � Np

�1
��I

�yp

� 1 � �Np
�1

�E

�yp

� Np
�1

��II

�yp
Np

�1

�
1

Ne
�1 � 1�Np

�1

�
2

NNpe
.

The same result is obtained for
�E�y�

�yp

� 0.

Evidently, for the off-diagonal elements Gpq(y, t) (with p �

q), it holds that �spsq� � 0 (because a change in one dimension
means no change in any other). As a consequence, we find

Gpp �
2

NNpe�t

and

Gpq � 0,

with p � q.

Let us define a common diffusion constant Dp as follows:

Dp �
Gpp

2
�

1

NNpe�t
.

We can now simplify the drift rate to

Ap(y) � ��Dp

�F(y)

�yp

,

resulting in

dyp � ��Dp

�F(y)

�yp

dt � �2DpdWp,

with all Wp independent Wiener processes.

If all pools have equal size Np �
N

k
, then Dp reduces to

Dp � D �
k

N2e�t
,

and the Fokker–Planck equation for p(y, t) is equivalent to the

following stochastic differential equation:

dy � ��D
�F(y)

�yp

dt � �2DdW,

with W a vector of k independent Wiener processes.

(Appendices continue)

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

455THE ISING DECISION MAKER



Appendix C

Diffusion Equations for Collective Neuron Updating (Equation 19)

In what follows, we derive the diffusion equations that are
associated with macroscopically defined dynamics for the Ising
Decision Maker (IDM), which mimics collective neuron updating
on a microscopic level. We immediately consider a more general
proof, involving k pools instead of the currently required two. For
the proposal distribution of the activity steps, we take an isotropic

k-dimensional normal distribution �k�s; 0, �2Ik� � 
p�1
k

�

�sp; 0, �2�, with Ik the k-dimensional identity matrix.
Consider a discrete Markov chain in a k-dimensional space.

Each time step t, an activity step s is drawn from �k�0, �2Ik� and
accepted or rejected according to the Metropolis algorithm. Seeing
the chain is implicitly indexed with an integer time n, we define
real time as t � nt.

Given a free energy surface F(y), a proposed activity step s is
accompanied by a change in free energy F � F(y � s) � F(y).
Applying a Metropolis acceptance rule (cf. Equation 4, but now on
the level of the free energy), a move is made to the candidate if
F � 0 or with a probability e��F if F 	 0.

The Fokker–Planck equation for the time evolving probability
density function p(y, t) (indicating the density of y at time t) for a
k-dimensional diffusion can be written as in Equation B1 with
Ap(y, t) again the pth component of the drift rate vector and Gpq the
(p, q)th element of the diffusion matrix G.

For a small time interval t (see, e.g., Karlin & Taylor, 1981),

Ap�y, t� �
�sp�
�t

(i.e., the drift rate is the expected change in y in a

very small time t), and Gpq�y, t� �
�spsq�

�t
(i.e., the diffusion matrix

is the expected squared change in y in a very small time t). Please
note that the expectation values �sp� and �spsq� refer to the actual
change in activity (i.e., after acceptance or rejection of the proposed
activity step) and not to the expectation value of the proposal distri-
bution.

Before calculating the drift vector and diffusion matrix emerging
from the proposed Metropolis Markov chain, we first compute a
useful intermediate result. The change in free energy F that accom-
panies a proposed activity step s can be linearly approximated as

�F � F(y � s) � F(y)

� F(y) � s · � F(y) � F(y)

� s · � F(y).

(C1)

Under this approximation, the condition F 	 0 simplifies to
s · �F�y� 
 0.

Averaging the acceptance rule over all possible for s, we get

�s� � �
s·�F(y)
0

�k(s; 0, �2Ik)e
���Fsds � �

s·�F(y)�0
�k(s; 0, �2Ik)sds.

In what follows, we denote condition s·�F�y� 
 0 with index � to

the integral and s·�F�y� � 0 with index �. Applying the linear

approximation in Equation C1, we get

�s� � ��
�k(s; 0, �2Ik)e

��s·�F(y)sds � ��
�k(s; 0, �2Ik)sds. (C2)

Applying a coordinate transformation u �
s

�
, we get

�s� � ����
e���u·�F(y)

�k(u; 0, Ik)udu � ��
�k(u; 0, Ik)udu�.

We now expand the exponential to the first nonzero order in �:

� s� � ����
�k(u; 0, Ik)[1 � ��u · � F(y)]udu

� ��
�k(u; 0, Ik)udu�

� �������
�k(u; 0, Ik)u · � F(y)udu

� ����
�k(u; 0, Ik)udu�

�� ��2��
�k(u; 0, Ik)u · � F(y)udu

�� ��2���
�k(u; 0, Ik)r(u)udu���F(y)�,

(C3)

with r�u� � u·
�F�y�

��F�y�� the length of the projection of u on the unit

vector along pF(y). The component perpendicular to the unit

vector
�F�y�

��F�y�� is canceled out when integrating r(u)u. Therefore,

the integral vector is oriented along unit vector
�F�y�

��F�y�� . The

length of the integrands projection on the unit vector is

r�u�u ·
�F�y�

��F�y�� � r�u�2. This allows us to rewrite the integral as

��
�k(u; 0, Ik)r(u)udu � ��0

�
�(r; 0, 1)r2dr� �F(y)

��F(y)�
, (C4)

(Appendices continue)
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where factor ��r; 0, 1� equals the density of vectors u with pro-
jection r. Combining Equations C3 and C4 results in

�s� � �
��2

2
� F(y).

Connecting back to Equation B1, we get

Ap(y, t) � �
��2

2�t

�F(y)

�yp

.

For the expected squared displacement, we consider a similar
approximation. Up to the first nonzero order of � (the third-order
term is dropped after the fourth line), we get

�sp
2� � ��

�k(s; 0, �2Ik)e
��s·�F(y)sp

2ds

� ��
�k(s; 0, �2Ik)sp

2ds

� �2���
�k(u; 0, Ik)e

���u·�F(y)up
2du

� ��
�k(u; 0, Ik)up

2du�
� �2���

�k(u; 0, Ik)�1 � ��u · � F(y)�up
2du

� ��
�k(u; 0, Ik)up

2du�
� �2������

�k(u; 0, Ik)u · � F(y)up
2du

� ��k(u; 0, Ik)up
2du�

� �2�� �k(u; 0, Ik)up
2du�

� �2����

�
�(r; 0, �)r2dr�

� �2.

For the off-diagonal elements (p � q), it holds that

�spsq�p�q � ��
�k(s; 0, �2Ik)e

��s·�F(y)spsqds

� ��
�k(s; 0, �2Ik)spsqds

� �2���
�k(u; 0, Ik)e

���u·�F(y)upuqdu

� ��
�k(u; 0, Ik)upuqdu�

� �2���
�k(u; 0, Ik)�1 � ��u · � F(y)�upuqdu

� ��
�k(u; 0, Ik)upuqdu�

� �2������
�k(u; 0, Ik)u · � F(y)upuqdu

� � �k(u; 0, Ik)upuqdu�
� �2�� �k(u; 0, Ik)upuqdu�
� 0.

This means that

Gpp �
�2

�t

and

Gpq � 0,

with p � q.

Let us define a common diffusion constant D as follows:

D �
Gpp

2
�

�2

2�t
.

Now, we can simplify the drift rate to

Ap(y, t) � ��D
�F(y)

�yp

.

Because the Fokker–Planck equation for p(y, t) is equivalent to a
stochastic differential equation, we may also write for yp,

dyp � ��D
�F(y)

�yp

dt � �2DdWp,

with all Wp independent Wiener processes, and for y,

dy � ��D
�F(y)

�yp

dt � �2DdW,

with W a vector of k independent Wiener processes.

(Appendices continue)
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Appendix D

Tradeoffs Between Parameters in the IDM

The Ising Decision Maker (IDM) parameter identification issues
can best be studied after a change of variables. We use a polyno-
mial expansion of the free energy F around the midway mean
activities (0.5, 0.5). This is an acceptable approximation because
the decision trajectories tend to spend most of their time in this
region. Define x � y � (0.5, 0.5), and approximate the free energy
F(x1, x2) by a Taylor expansion around (0, 0):

F(x1, x2) � � �
p�1, 2

W�xp
2 � W�x1x2

� �
p�1, 2

�Bp � � � W� �
W�

2 �xp

�
��1N

2 �
p�1, 2

�2xp
2 �

4

3
xp

4 �
32

15
xp

6 � ...
� �

p�1, 2
(��1N � W�)xp

2 � W�x1x2

� �
p�1, 2

�Bp � � � W� �
W�

2 �xp

�
��1N

2 �
p�1, 2

�4

3
xp

4 �
32

15
xp

6 � .... (D1)

As this is a free energy, constant terms are irrelevant and can be
dropped (because only differences or derivatives drive the dynam-
ics). Although there are no obvious exact tradeoffs, there are some
nearly exact tradeoffs that are only broken by higher powers of x.

A first approximate parameter tradeoff occurs up to the fourth
order in x of the free energy surface. Consider another free energy

function, F̃�x1, x2�, which is a rescaled (miniaturized) version of

F(x1, x2) such that F̃�x1, x2� � F��x1, �x2� with � 	 1. Up to the

fourth order, F̃�x1, x2� can be approximated as

F̃(x1, x2) � �
p�1, 2

(��1N � W�)(�xp)
2 � W�(�x1)(�x2)

� �
p�1, 2

�Bp � � � W� �
W�

2 �(�xp)�
2��1N

3 �
p�1, 2

(�xp)
4.

Simultaneously rescaling detection box size h and collective step
size parameter � results in a dynamics that is equivalent to the
original system, but on a smaller scale. Consequently, the resulting

reaction time distributions are the same. Up to the fourth order, the
same rescaling can be achieved by tuning the original system’s
parameters:

F̃(x1, x2) � �2 �
p�1, 2

(��1N � W�)xp
2 � �2W�x1x2

� � �
p�1, 2

�Bp � � � W� �
W�

2 �xp��4
2��1N

3 �
p�1, 2

xp
4

� �
p�1, 2

(��1Ñ � W̃�)xp
2 � W̃�x1x2

� �
p�1, 2

�B̃p � �̃ � W̃� �
W̃�

2
�xp�

2��1Ñ

3 �
p�1, 2

xp
4,

with

Ñ � �4N,

W̃� � �2W�,

W̃� � ��1Ñ � �2[��1N � W�],

�̃ � ���0 � � � W� �
W�

2 �� W̃� �
W̃�

2
� 0,

Bp
˜ � ��Bp � � � W� �

W�

2 �� W̃� �
W̃�

2
� �̃ � �Bp.

These new parameters, together with the rescaled s and �, form a
parameter set that leads to approximately the same reaction time
distributions as the original system. For every value of � 	 1, there
is a parameter set producing the same reaction time distributions as
the original set. This situation can be regarded as a one-
dimensional parameter redundancy or tradeoff, albeit an intricate
one, as all parameters are involved.

A second approximate parameter tradeoff holds up to the second
order. Looking at the second-order terms of the free energy as
given in Equation D1, there is a clear linear tradeoff between N and
W�. A change in W� also has an impact on the first-order coef-
ficient of the free energy that can in turn be compensated by a
change in �.

(Appendices continue)
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Appendix E

Simulation Details

Because a closed form solution is unavailable, we rely on
more intricate numerical methods to evaluate the Ising Decision
Maker’s (IDM’s) choice response time (RT) distribution func-
tions. A straightforward approach is to simulate a large number
of decision trajectories and use the generated choices and RTs
to construct both error and correct RT distributions. The IDM is
supposed to start out from a stable spontaneous state. Hence,
before each decision trajectory, we reset the system to its
spontaneous state and let it relax for 1 s without exposure to a
stimulus. If the system escapes the spontaneous state (crosses a
decision boundary) before the end of this 1-s stimulus antici-
pation period, the trajectory is labeled as a premature decision.
As the number of premature decisions typically observed in
standard two-choice RT experiments is very few, we make sure
that its proportion never exceeds 0.005 when fitting the IDM to
real data. After simulating the IDM trajectories, the RTs per-
taining to each choice are binned into an approximate RT
distribution. For enough trajectories and sufficiently narrow
bins, these RT distributions will converge to the actual IDM RT
distributions. The bin width or time resolution is set to 1 ms,
and the binning is limited to RTs under 3 s.

For vanishing collective step size (we take � � 0.001), we can
reduce the IDM to a local gradient system and profit from the

increased simulation speed of the Euler-Maruyama gradient ap-
proximation method (see, e.g., Kloeden & Platen, 2011). The time
step precision in the Euler-Maruyama method is set to 1 ms,
coinciding with the previously mentioned time resolution. Proba-
bility distributions do not change much for higher precisions,
which is in accordance with the findings of Brown, Ratcliff, and
Smith (2006).

These approximate distribution functions can now be used for
calculating the quantile likelihood of the parameter values used to
simulate the trajectories, given a certain set of choice RT data. The
quantile likelihood method requires these distributions to be inte-
grated into coarser (data-based) bins, reducing the simulation error
on the resulting likelihood function. Through extensive pilot test-
ing, we have found that, depending on the data, 100,000 to 400,000
simulations per stimulus generate sufficiently stable evaluations of
the likelihood for successful Markov chain Monte Carlo sampling.
Because the simulations have to be repeated each time the likeli-
hood function is evaluated in another parameter vector, efficient
computing is pivotal. For this reason, we made use of a state-of-
the-art accelerated video card (NVIDIA Tesla K20Xm). The GPUs
on this kind of high-performance video card are specially designed
for massively parallel computation. This makes them perfect for
the calculation of thousands of independent decision trajectories.

(Appendices continue)
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Appendix F

Model Fits

Model fits for the simulated data SD, participants NH and KR
from Ratcliff and Rouder (1998) and participant MM from

Mulder et al. (2013), are shown in Figures F1, F2, and F3,
respectively.

(Appendices continue)

Figure F1. Quantile probability plots for simulated data and fits of, respectively, IDM BS, IDM CG, RDM 1,

RDM 2, and RDM 3. The top row displays the results for the accuracy (acc.) condition, the bottom row for the

speed condition. Each response time (RT) distribution (two per stimulus, one for corrects and one for errors) is

shown as a set of RT quantiles (at .1, .2, .5, .7, and .9), plotted vertically above the total probability value

associated to that distribution. Data quantiles are indicated with full dots, and model fits are indicated with open

circles. IDM � Ising Decision Maker; BS � boundary separation; CG � coarse graining; RDM � Ratcliff

diffusion model.
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(Appendices continue)

Figure F2. Quantile probability plots for data and fits of participants NH and KR from Ratcliff and Rouder

(1998). Each panel represents a participant. For each panel, the top row displays the results for the accuracy

(acc.) condition, the bottom row for the speed condition. In each row, from left to right are shown IDM BS, IDM

CG, RDM 1, RDM 2, and RDM 3. Each response time (RT) distribution (two per stimulus, one for corrects and

one for errors) is shown as a set of RT quantiles (at .1, .2, .5, .7, and .9), plotted vertically above the total

probability value associated to that distribution. Data quantiles are indicated with full dots, and model fits are

indicated with open circles. IDM � Ising Decision Maker; BS � boundary separation; CG � coarse graining;

RDM � Ratcliff diffusion model.
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Figure F3. Quantile probability plots for data and fits of participant MM from Mulder et al. (2013). The top

row displays the results for the accuracy (acc.) condition, the bottom row for the speed condition. In each row,

from left to right are shown IDM CG, RDM 1, RDM 2, and RDM 3. Each response time (RT) distribution (two

per stimulus, one for corrects and one for errors) is shown as a set of RT quantiles (at .1, .2, .5, .7, and .9), plotted

vertically above the total probability value associated to that distribution. Data quantiles are indicated with full

dots, and model fits are indicated with open circles. IDM � Ising Decision Maker; CG � coarse graining;

RDM � Ratcliff diffusion model.
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Correction to Verdonck and Tuerlinckx (2014)

In the article “The Ising Decision Maker: A Binary Stochastic Network for Choice Response Time” by
Stijn Verdonck and Francis Tuerlinckx (Psychological Review, 2014, Vol. 121, No. 3, pp. 422–462,
http://dx.doi.org/10.1037/a0037012), an inaccurate assumption in Appendix B (see below) led to an
oversimplified result in Equation 18 (the diffusion equations associated with the microscopically defined
dynamics). The authors sincerely thank Rani Moran for making them aware of the problem. Only the
expression of the diffusion coefficient D is incorrect, and should be changed into

D(y) �

�1 � sgn��E(y)

�yp
�(1 � 2yp)�

N2�t
.

It can be seen that the diffusion coefficient is no longer constant with respect to mean activity.
However, the general form of Equation 18 remains unaltered. Moreover, at yp � 0.5 (for all pools
p), the diffusion coefficient of the microscopic dynamics equals the diffusion constant obtained with

the macroscopic dynamics and a collective step size of � �
�2

N
.

Because from that point onward, the alternative route of the macroscopically defined dynamics was
taken, this altered result has no impact on the rest of the article or any of its conclusions.

Cause of the Problem

The derivation leading to Equation 18, given in Appendix B, is based on the assumption that the
individual entropy terms �I(y) and �II(y) (see Equation B3 and above), as well as the energy E(y) vary
only slightly with the change in mean activity y, caused by changing the activity of a single neuron.

However, a change in yp of �Np
�1 (caused by changing a neuron’s activity from 1 to 0 in pool

p) leads to a change in �I of

�Np
�1

��I

�yp

� 1 � log(yp).

This means that the approximation that was used,

e�N1p
�1��I

�yp � 1 � Np
�1

��I

�yp

,

is only valid around yp �
1

e
. For �II the approximation that was used is only valid around yp �

1 �
1

e
.

Solution

A better approach is to assume that the total free energy function F(y) (Equation 14) is slowly
varying, instead of the individual energy and entropy parts. A similar assumption is made in the case
of the macroscopically defined dynamics.

The text in Appendix B, starting from the first paragraph after Equation B2 until the end, should
be replaced with the following:

Second, Equation 13 implies that

Np
�1

��

�yp

� log�1 � yp

yp
�. (B3)
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We now have the necessary ingredients to compute the expectation values �sp� and �spsq�. First, consider

the expected change in activity �sp�. Assuming
�E�y	

�yp

	 0, we get (approximating up to the first

order of Np
�1 and using the results of Equations B2, B3, and 14):


sp � �
Np

N
��ypNp

�1 � (1 � yp)e
�
�ENp

�1 �
yp

N
��1 �

1 � yp

yp

e�
�E�
�

yp

N
��1 � e�
�E�Np

�1 ��
�yp �

yp

N
��1 � e�
Np

�1 �E

�yp
�Np

�1 ��
�yp �

yp

N
��1 � e�


�F

�yp
Np

�1

�
yp

N
��1 � 1 � 


�F

�yp

Np
�1� � �


yp

NNp

�F

�yp

.

Regardless of the value of Np, the free energy surfaces F(y) that are of interest to us, balance out
energy and entropy, resulting in a rich layout of saddle points and minima. For these surfaces, the

gradient components
�F�y	

�yp

are small —around the saddle points as well as the minima—justifying

the use of the exponential approximation in the derivation above. For
�E�y	

�yp

� 0, we obtain


sp� � �

�1�yp	

NNp

�F�y	

�yp

. This means

Ap(y, t) �

sp�

�t
� �




2NNp�t
�1 � sgn��E(y)

�yp
�(1 � 2yp)��F(y)

�yp

.

For the expected squared change in activity �sp
2�, we consider a similar approximation. Assuming

�E�y	

�yp

	 0, we get (again with an approximation until the first order of Np
�1 and using the results

of Equations B2, B3, and 14):


sp
2 � �

Np

N
�ypNp

�2 � (1 � yp)e
�
�ENp

�2 �
yp

NNp
�1 �

1 � yp

yp

e�
�E�
�

yp

NNp

�1 � e�
�E�Np
�1 ��

�yp �
yp

NNp

�1 � e�
Np
�1 �E

�yp
�Np

�1 ��
�yp �

yp

NNp

�1 � e�

�F

�yp
Np

�1

�
yp

NNp
�1 � 1 � 


�F

�yp

Np
�1��

2yp

NNp

.

Regardless of the value of Np, the free energy surfaces F(y) that are of interest to us, balance out
energy and entropy, resulting in a rich layout of saddle points and minima. For these surfaces, the

gradient components
�F�y	

�yp

are small—around the saddle points as well as the minima—justifying

the use of the exponential approximation in the derivation above. For
�E�y	

�yp

� 0, we obtain


sp
2� �

2�1�yp	

NNp

.

Evidently, for the off diagonal elements Gpq(y, t) (with p � q), it holds that �spsq� (because a
change in one dimension means no change in any other). As a consequence, we find:

Gpp(y, t) �

�1 � sgn��E(y)

�yp
�(1 � 2yp)�

NNp�t
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and

Gpq(y, t) � 0,

with p � q.
Let us define a common diffusion constant Dp as follows:

Dp(y) �
Gpp(y)

2
�

�1 � sgn��E(y)

�yp
�(1 � 2yp)�

2NNp�t
.

We can now simplify the drift rate to

Ap(y) � �
Dp(y)
�F(y)

�yp

,

resulting in

dyp � �
Dp(y)
�F(y)

�yp

dt � �2Dp(y)dWp,

with all Wp independent Wiener processes.

If all pools have equal size Np �
N

k
, then Dp(y) reduces to:

Dp(y) � D(y) �

k�1 � sgn��E(y)

�yp
�(1 � 2yp)�

2N2�t

and the Fokker-Planck equation for p(y, t) is equivalent to the following stochastic differential
equation:

dy � �
D(y)
�F(y)

�yp

dt � �2D(y)dW,

with W a vector of k independent Wiener processes.

http://dx.doi.org/10.1037/a0038536
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