
J Heuristics (2007) 13: 557–585
DOI 10.1007/s10732-007-9020-8

The island confinement method for reducing search
space in local search methods

H. Fang · Y. Kilani · J.H.M. Lee · P.J. Stuckey

Received: 1 November 2005 / Revised: 18 July 2006 /
Accepted: 29 August 2006 / Published online: 19 April 2007
© Springer Science+Business Media, LLC 2007

Abstract Typically local search methods for solving constraint satisfaction prob-
lems such as GSAT, WalkSAT, DLM, and ESG treat the problem as an optimisation
problem. Each constraint contributes part of a penalty function in assessing trial val-
uations. Local search examines the neighbours of the current valuation, using the
penalty function to determine a “better” neighbour valuation to move to, until finally
a solution which satisfies all the constraints is found. In this paper we investigate us-
ing some of the constraints as “hard” constraints, that are always satisfied by every
trial valuation visited, rather than as part of a penalty function. In this way these
constraints reduce the possible neighbours in each move and also the overall search
space. The treating of some constraints as hard requires that the space of valuations
that are satisfied is “connected” in order to guarantee that a solution can be found
from any starting position within the region; thus the concept of islands and the name

A preliminary version of this paper appeared in AAAI’2002.

H. Fang
Department of Computer Science, Yale University, New Haven, USA
e-mail: hai.fang@yale.edu

Y. Kilani · J.H.M. Lee
Department of Computer Science and Engineering, The Chinese University of Hong Kong,
Shatin, N.T., Hong Kong

Y. Kilani
e-mail: ykilani@cse.cuhk.edu.hk

J.H.M. Lee
e-mail: jlee@cse.cuhk.edu.hk

P.J. Stuckey (�)
NICTA Victoria Laboratory, Department of Computer Science and Software Engineering,
University of Melbourne, Melbourne, Australia
e-mail: pjs@cs.mu.oz.au

P.J. Stuckey (�)
e-mail: peter.stuckey@nicta.com.au

558 H. Fang et al.

“island confinement method” arises. Treating some constraints as hard provides new
difficulties for the search mechanism since the search space becomes more jagged,
and there are more deep local minima. A new escape strategy is needed. To demon-
strate the feasibility and generality of our approach, we show how the island confine-
ment method can be incorporated in, and significantly improve, the search perfor-
mance of two successful local search procedures, DLM and ESG, on SAT problems
arising from binary CSPs.

Keywords Local search · SAT · Constraint satisfaction

1 Introduction

A constraint satisfaction problem (CSP) (Mackworth 1977) is a tuple (Z,D,C),
where Z is a finite set of variables, D defines a finite set Dx , called the domain
of x, for each x ∈ Z, and C is a finite set of constraints restricting the combination
of values that the variables can take. A solution is an assignment to each variable
of a value in its domain so that all constraints are satisfied simultaneously. CSPs are
well-known to be NP-complete in general.

Local search techniques, for example GSAT (Selman et al. 1992), WalkSAT (Sel-
man and Kautz 1993; Selman et al. 1994), Novelty+ (Hoos 1999), the min-conflicts
heuristic (Minton et al. 1992), GENET (Davenport et al. 1994), DLM (Wu and Wah
1999, 2000), and ESG (Schuurmans et al. 2001) have been successful in solving large
and tight CSPs. In the context of constraint satisfaction, local search first generates
an initial variable assignment (or state) before making local adjustments (or repairs)
to the assignment iteratively until a solution is reached. Local search algorithms can
be trapped in a local minimum, a non-solution state in which no further improvement
can be made. To help escape from the local minimum, GSAT and the min-conflicts
heuristic use random restart, while Davenport et al. (1994), Morris (1993), DLM and
ESG modify the landscape of the search surface. Following Morris, we call these
breakout methods. WalkSAT introduces noise into the search procedure to avoid a
local minima.

Local search algorithms traverse the search surface of a usually enormous search
space to look for solutions using some heuristic function. The time taken to solve
a CSP depends on both the problem and the algorithm employed. Four important
factors are: (1) the size of the search space (the number of variables and the size of
the domain of each variable), (2) the search surface (the structure of each constraint
and the topology of the constraint connection), (3) the definition of neighbourhood,
and (4) the heuristic function (how a “good” neighbour is picked). (1) and (2) are part
of the nature of the problem, while (3) and (4) concern the characteristics of particular
local search algorithms.

In this paper, we are concerned with (1) and demonstrate that some parts of a
search space are guaranteed not to contain any solution, and can be skipped during
search. In doing do we also effectively alter (3), restricting the usable parts of the
neighbourhood. We propose the island confinement method, a general method for
modifying local search algorithms for avoiding non-fruitful search regions during
search, thus effectively reducing the size of the search space. The method is based

The island confinement method for reducing search space 559

on a simple observation: a solution of a CSP P must lie in the intersection of the
solution space of all constraints of P . Solving a CSP thus amounts to locating this
intersection space, which could be either points or regions scattered around in the
entire search space. In addition, the solution space of any subset of constraints in P

must enclose all solutions of P . The idea of our method is thus to identify a suitable
subset of constraints in P so that the solution space of the subset is “connected,” and
then restrict our search for solutions to P to this region. By connectedness, we mean
the ability to move from one point to any other point within the region by a series
of local moves without moving out of the region. Therefore, we are guaranteed that
searching within this confined space would not cause us to miss any solution. We call
such a region an island, and the constraints forming the region island constraints.
The entire search space is trivially an island but we would like to do better.

In this paper we restrict attention to an important special form of CSP, namely
SAT problems resulting from the encodings of binary CSPs. We illustrate a general
method for choosing a subset of the clauses which defines an island of connected
solutions. We then show how, on encodings of binary CSPs into SAT problems, we
can use this method to define an island that incorporates many of the problem clauses.
The restriction to search only on the island complicates the search procedure because
it may defeat the original traversal strategy of the underlying search procedure. We
show how to modify DLM and ESG, both very competitive local search procedures
for SAT problems based on subgradient optimisation for Lagrangian relaxation, so
that they handle island constraints. The modifications include a redefinition of the
neighbourhood function to enforce search remaining on the island. This causes a new
type of more difficult local minima, namely island traps, for the search procedures.
We propose an escape strategy for island traps, and give empirical results showing
where the island confinement method can give substantial improvements in solving
some classes of SAT problems.

While ESG benefits entirely from the island confinement method, the island ver-
sion of DLM exhibits difficulties in traversing a smaller but rougher search surface in
a few problem instances. We propose enhancing the island DLM with random restart
to improve its ability to maneuver in jagged landscapes. An interesting observation
is that random restart, a common technique in local search procedures, is not useful
for the original DLM (as results in Sect. 6 will show) but proves to benefit the island
DLM. Experiments confirm that the island DLM with random restart is substantially
more efficient and robust in terms of success ratios than the original DLM and the
island DLM.

This paper significantly extends the original version of this work published
in (Fang et al. 2002). The rest of the paper is organised as follows. Section 2 de-
fines CSPs, SATs, and local search before describing the DLM and ESG procedures
in detail. In Sect. 3, we give the notion of island constraints formally and illustrate
this with examples. We give a sufficient condition for a set of clauses to form an
island. Section 4 describes the island confinement method, and defines island traps,
followed by an escape strategy for handling island traps in the context of DLM. The
escape strategy is similar for ESG. The results are DLMI and ESGI, which are DLM
and ESG modified with the island confinement method respectively. In Sect. 6, we
first introduce the set of benchmarks adopted for our experiments, and then give and
analyse the results for DLMI and ESGI. In Sect. 7, we motivate and suggest extending

560 H. Fang et al.

DLMI with random restart to make it more efficient and robust. Section 8 summarises
our contributions and sheds light on future directions of research.

2 Background and definitions

In the following, we recall common definitions and notations of CSPs and SAT prob-
lems. We describe the skeleton of generic local search algorithms, followed by an
exposition on two specific local search SAT solvers: DLM (Wu and Wah 1999, 2000)
and ESG (Schuurmans et al. 2001).

A constraint satisfaction problem (CSP) (Z,D,C) comprises a finite set of vari-
ables Z, a domain D assigning a set of possible values Dz to each variable z ∈ Z

and a set of constraints C defined over the variables in Z. We use var(c) to de-
note the set of variables that occur in constraint c ∈ C. If |var(c)| = 2 then c is
a binary constraint. In a binary CSP each constraint c ∈ C is binary. A valuation
for variable set {x1, . . . , xn} ⊆ Z is a mapping from variables to values denoted
{x1 �→ a1, . . . , xn �→ an} where ai ∈ Dxi

. A constraint c can be considered as the
set of valuations over the variable set var(c) which satisfy the constraint.

A state of problem P = (Z,D,C) (or simply C) is a valuation for Z. The search
space of P is the set of all possible states of P . A state s is a solution of a constraint
c if s restricted to var(c) satisfies c. A state s is a solution of a CSP (Z,D,C) if s is
a solution to all constraints in C simultaneously.

2.1 SAT

SAT problems are a special form of CSPs. In SAT problems each variable is propo-
sitional. A (propositional) variable can take the value of either 0 (false) or 1 (true).
Hence DSAT

z = {0,1} for all z ∈ Z.
A literal is either a variable x or its complement x̄ (representing the negation of

x, ¬x). A literal l is true in a valuation s if l = x and {x �→ 1} ⊆ s, or l = x̄ and
{x �→ 0} ⊆ s. Otherwise l is false in s.

A clause is a disjunction of literals, which is true when one of its literals is true.
For simplicity we assume that no literal appears in a clause more than once, and no
literal and its negation appear in a clause (which would then be trivial). For SAT
problems each constraint c ∈ C is assumed to be a clause.

A satisfiability problem (SAT) consists of a finite set of clauses C. It is a CSP of
the form (var(C),DSAT,C).

Let l denote the complement of literal l: l = x̄ if l = x, and l = x if l = x̄. Let
L = {l | l ∈ L} for a literal set L.

Since we are dealing with SAT problems we will often treat states as sets of literals.
A state {x1 �→ a1, . . . , xn �→ an} corresponds to the set of literals {xj | aj = 1} ∪
{x̄j | aj = 0}.

2.2 Local search

A local search solver moves from one state to another. We define the neighbourhood
n(s) of a state s to be all the states that are reachable in a single move from state s.

The island confinement method for reducing search space 561

Fig. 1 A generic local search algorithm

The neighbourhood states are meant to represent all the states reachable in one move,
independent of the actual heuristic function used to choose which state to move to.
A local move from state s is a transition, s ⇒ s′, from s to s′ ∈ n(s).

For the purpose of this paper, we are interested in SAT problems. We assume the
neighbourhood function n(s) returns the states which are at a Hamming distance of
1 from the starting state s. The Hamming distance between states s1 and s2 is defined
as

dh(s1, s2) = |s1 − s1| = |s2 − s1|.
In other words, the Hamming distance measures the number of differences in variable
assignment of s1 and s2.

This neighbourhood reflects the usual kind of local move in SAT solvers: flipping
a variable. In an abuse of terminology we will also refer to flipping a literal l which
simply means flipping the variable occurring in the literal.

A local search procedure consists of at least the following components:

• A neighbourhood function n for all states;
• A heuristic function b that determines the “best” possible local move s ⇒ s′ for

the current state s (note the best possible move may be not necessarily be a “down-
wards” move in terms of some ranking of states, it might be “sideways” or “up-
wards”); and

• Possibly an optional restart or breakout procedure to help escape from local min-
ima.

We note that the notion of noise that has appeared in some solvers, such as Walk-
SAT (Selman and Kautz 1993; Selman et al. 1994), can be incorporated into the
heuristic function b. We also decouple the notion of neighbourhood from the heuris-
tic function since they are orthogonal to each other, although they are mixed together
in the description of a local move in GSAT, WalkSAT, and other local search algo-
rithms.

The LS procedure in Fig. 1 gives the backbone of a generic local search proce-
dure. Search usually starts from a random state, although greedy heuristics can be
employed in generating the initial state. The search goes into a loop until a solution is
found. In each iteration, the current state s and its neighbourhood n(s) are examined
to locate a preferable state s′ using the heuristic function b. It is possible that the
preferred move given the neighbourhood n(s) is to stay in the same state s, in which

562 H. Fang et al.

Fig. 2 The DLM core algorithm

case s′ is the same as s and the search is trapped in a local minimum. Some sort of
restart or breakout procedure can then be invoked to escape from such a state. The
loop might not terminate in theory. In practice, a resource limit is imposed to avoid
infinite looping.

2.2.1 The DLM algorithm

DLM is a discrete Lagrange multiplier based local-search method for solving SAT
problems, which are first transformed into a discrete constrained optimisation prob-
lem. Experiments confirm that the discrete Lagrange multiplier method is highly
competitive with other SAT solving methods.

We will consider a SAT problem as a vector of clauses 	C (which we will often
also treat as a set). Each clause c is treated as a penalty function on states, so c(s) = 0
if state s satisfies constraint c, and c(s) = 1 otherwise. DLM performs a search for a
saddle point of the Lagrangian function

L(s, 	λ) = 	λ · 	C(s) (that is �iλi × ci(s))

where 	λ are Lagrange multipliers, one for each constraint, which give the “penalty”
for violating that constraint. The Lagrange multipliers 	λ are all initialised to 1. The
saddle point search changes the state to decrease the Lagrangian function, or increase
the Lagrange multipliers.

Figure 2 gives the core of the DLM algorithm. In essence, the DLM procedure
applies a greedy search through the valid assignment space for an assignment that
minimises the Lagrangian (a weighted penalty of clause violations) while fixing the

The island confinement method for reducing search space 563

Lagrange multipliers (clause weights), and then penalises the violated clauses by in-
creasing their respective Lagrange multipliers. Although DLM does not appear to
examine all the neighbours at Hamming distance 1 in each move, this is an artifact of
mixing of the description of neighbourhood and the heuristic functions. Since only
literals appearing in unsatisfied clauses (unsat) can decrease the Lagrangian func-
tion, (the heuristic function of) the DLM algorithm chooses to always ignore/discard
neighbours resulting from flipping a variable not in one of these literals.

The Lagrangian L(s, 	λ) is a non-negative quantity. The main loop terminates when
L(s, 	λ) becomes zero, in which case all constraints are satisfied simultaneously and
the current state s is a solution. The full DLM algorithm includes also a tabu list and
methods for updating Lagrange multipliers; see Wu and Wah (1999, 2000) for details.

2.2.2 The ESG algorithm

The exponentiated subgradient algorithm (ESG) is a general technique for tackling
Boolean linear programs (BLPs). A BLP is a constrained optimisation problem where
one must choose a set of binary assignments to variables 	x = (x1, . . . , xn) to satisfy
a given set of m linear inequalities 	c1 · 	x ≤ b1, . . . , 	cm · 	x ≤ bm while simultane-
ously optimising a linear objective 	a · 	x (Schuurmans et al. 2001), where 	a and 	b are
constant integer vectors. The following is the canonical form of a BLP problem:

min
	x∈{−1,1}n

	a · 	x subject to C 	x ≤ 	b.

Given a SAT problem with m clauses. Suppose each clause ci is a disjunction of
ki literals for 1 ≤ i ≤ m. Such a SAT problem can be equivalently represented as a
BLP as follows:

min
	x∈{−1,1}n

	0 · 	x subject to C 	x ≤ 	k − 	2

where 	0 and 	2 are vectors of zeros and twos respectively, and

Cij =
{

1 if xj in ci ,
−1 if x̄j in ci ,
0 otherwise.

An assignment of +1 to xj denotes “true,” while that of −1 denotes “false.” The idea
is to represent clause ci by a row vector1 	ci in C so that 	ci has ki non-zero entries
corresponding to the literals in ci . A constraint is violated only when the {−1,+1}
assignment to 	x agrees with the coefficients in 	ci on every non-zero entry, yielding
a row sum of exactly ki . Each disagreement in sign would cause the row sum to
drop by 2, thereby making the constraint satisfied. Note the constant zero objective
trivialising the problem to a satisfaction problem.

In subsequent presentation of the ESG algorithm, we refer to the standard BLP
form. The ESG algorithm is similar to the DLM algorithm in that both are based on
subgradient optimisation for Lagrangian relaxation, but with two distinct and subtle

1We use ci to denote a clause in the SAT problem, and 	ci to denote a row in the matrix C.

564 H. Fang et al.

modifications. First, ESG uses an augmented Lagrangian by introducing a penalty
function θ on constraint violations:

Lθ(x, 	λ) = 	a · 	x +
m∑

i=1

λiθ(ci · 	x − 	bi)

where λi is the real-valued Lagrange multiplier associated with constraint ci .
A penalty function of the form θ(v) = v gives a DLM-style Lagrangian, while ESG
adopts the “hinge” penalty function of the form:

θ(v) =
{− 1

2 if v ≤ 0,
v − 1

2 if v > 0.

Note that v is an integer, and the penalty value can be positive or negative according
to the sign of the θ result in the calculation of the augmented Lagrangian.

Second, instead of updating 	λ additively as in DLM (described in the last para-
graph), ESG updates multiplicatively, which can be understood as following an ex-
ponentiated version of the subgradient. Thus, the Lagrange multipliers are actually
updated by

λj := λjα
θ(cj ·	x−bj).

In addition, like DLM (Wu and Wah 2000), the ESG algorithm also employs a
weight smoothing technique (Schuurmans and Southey 2000) to prevent Lagrange
multipliers from moving away from the population average too quickly. This is espe-
cially important for multiplicative updates. ESG also adopts the noise strategy from
WalkSAT, which controls how often a random move is used in the primal search
phase. Interested readers are referred to Schuurmans et al. (2001) for details of the
ESG algorithm.

3 Island constraints

We introduce the notion of island constraints. Central to a local search algorithm
is the definition of the neighbourhood of a state since each local move can only be
made to a state in the neighbourhood of the current state. We say that a conjunction
of constraints is an island if we can move between any two states in the conjunc-
tion’s solution space using a finite sequence of local moves without moving out of
the solution space. The constraints comprising the island are island constraints.

More formally, let sol(C) denote the set of all solutions to a set of constraints C,
in other words the solution space of C. A set of constraints C is an island if, for any
two states s0, sn ∈ sol(C), there exist states s1, . . . , sn−1 ∈ sol(C) such that si ⇒ si+1

for all i ∈ {0, . . . , n − 1}. That is we can move from any solution of C to any other
solution using local moves that stay within the solution space of C. Each constraint
c ∈ C is an island constraint. We illustrate islands and non-islands in the following
examples.

The island confinement method for reducing search space 565

Fig. 3 An example of an island.
Each state that satisfies all the
constraints has a double border,
and neigbouring solution states
are surrounded by a dashed
circumference. All the solution
states are joined thus forming a
single “island”

Example 1 Consider the SAT problem P1 with the following three clauses:

x ∨ y ∨ z, x ∨ y ∨ z̄, x ∨ ȳ ∨ z.

Figure 3 gives the search space P1 and its topology. Each box in the diagram denotes
a state, labelled by the set of literals corresponding to the state. Solutions are marked
with a double border; the rest are non-solution states. Two states are connected by an
arc if they are of Hamming distance 1. In other words, the two states can reach each
other in one local move. We can verify easily that all solutions of P1 (enclosed by the
dashed circumference) are reachable from one another. Therefore, P1 is an island.

Example 2 Consider another SAT problem P2 with the following clauses:

x̄ ∨ y ∨ z, x ∨ ȳ ∨ z̄, x̄ ∨ y ∨ z̄, x ∨ ȳ ∨ z.

Figure 4 gives the search space of P2 and its topology using the same convention as
in Fig. 3.

The solutions of P2 are clustered into two separate regions. There is no path
(sequence of local moves) from, say, state {x, y, z̄} to state {x̄, ȳ, z} without going
through a non-solution state. This is true for any two states, one from each of the two
separate regions. Thus P2 does not form an island.

We give a simple sufficient condition for when a set C of clauses results in an
island. Let lit(c) denote the set of all literals of a clause c. Let lit(C) = ∪c∈C lit(c).
A set C of clauses is non-conflicting if there does not exist a variable x such that
x, x̄ ∈ lit(C); otherwise the set is conflicting.

Theorem 1 Assuming the neighbourhood for a SAT local search procedure is defined
as the states arising from flipping a single variable, a non-conflicting set C of clauses
forms an island.

566 H. Fang et al.

Fig. 4 An example of a
non-island. Each state satisfying
the constraints has a double
border, and neighbouring
solution states are surrounded by
a dashed circumference. There
are two separated “islands” of
solutions

Proof Since C is non-conflicting lit(C) can be extended to a state (it does not have
both a literal and its complement). Any state s ⊇ lit(C) clearly satisfies C. We show
that, for any state s0 satisfying C, there is a path s0 ⇒ s1 ⇒ ·· · ⇒ si ⇒ ·· · ⇒ sn = s

where each si satisfies C. Since a path is reversible, there is a path between any two
solutions s0 and s′

0 of C via s and hence C is an island.
Let l be an arbitrary literal where si and s differ, that is l ∈ si and l ∈ s. Then

l ∈ lit(C) and clearly si+1 = si − {l} ∪ {l} satisfies C since l does not occur in C and
hence cannot be the only literal satisfying one of the clauses of C. �

Note that Theorem 1 gives only a sufficient but not a necessary condition. For
instance, the set of clauses in P1 in Example 1 is conflicting, but yet they form an
island.

In the rest of the paper, we focus on a specific class of SAT problems, namely those
encoding a CSP. We can map any CSP (Z,D,C) to a SAT problem, SAT(Z,D,C).
We illustrate the method for binary CSPs, which we will restrict our attention to, as
follows.

• Every CSP variable x ∈ Z is mapped to a set of propositional variables
{xa1, . . . , xan} where Dx = {a1, . . . , an}.

• For every x ∈ Z, SAT(Z,D,C) contains the clause xa1 ∨ · · · ∨ xan , which ensures
that any solution to the SAT problem gives a value to x. We call these clauses
at-least-one-on clauses.

• Each binary constraint c ∈ C with var(c) = {x, y} is mapped to a series of
clauses. If {x �→ a ∧ y �→ a′} is not a solution of c we add the clause x̄a ∨ ȳa′
to SAT(Z,D,C). This ensures that the constraint c holds in any solution to the
SAT problem. We call these clauses island clauses, for reasons that will become
clear shortly.

The island confinement method for reducing search space 567

The above formulation allows the possibility that in a solution, some CSP variable
x is assigned two values. Choosing either value is guaranteed to solve the original
CSP. This method is used in the encoding of CSPs into SAT in the DIMACS archive.

When a binary CSP (Z,D,C) is translated to a SAT problem SAT(Z,D,C), each
clause has the form x̄ ∨ ȳ except for a single clause for each variable in Z. The set of
all binary island clauses trivially forms a non-conflicting set, and hence is an island.

Many other forms of islands clauses are also possible. For example the at-least-
one-on clauses also form a non-conflicting set. We can create non-conflicting sets for
arbitrary CNF problems by greedy algorithms, and we can create other island clauses
which are not based on non-conflicting sets. These islands are not relevant to the rest
of the paper, but the interested reader can see (Fang et al. 2006).

4 The island confinement method

Given a CSP P = (Z,D,C). It is easy to see that if s ∈ sol(C), then s ∈ sol(C′)
for all C′ ⊆ C. By identifying a subproblem of a CSP P as an island, we know that
this connected region must contain all solutions of P . Therefore, we can confidently
restrict our search to be within only the island and be guaranteed that no solution be
missed. Given a CSP, the island confinement method consists of collecting as many
island constraints as possible, making the island search space as small as possible. We
have just shown how to do this easily for the case of SAT(Z,D,C) in the last section.
The next step is to locate a random solution on the island, so as to initialise our search.
This is also straightforward since the literals in the island clauses of a SAT(Z,D,C)

problem are all negative. All we have to do is to first generate a random value for each
variable. Then we go through each island clause in turn picking a literal randomly to
set to 1 (i.e. setting the variable to 0), if the clause is not already satisfied. This way,
the resultant state ensures that all island clauses are satisfied since at least one literal
in each clause is true.

What remains is to modify the neighbourhood definition of the local search al-
gorithm so as to enforce search within the solution space of the island constraints.
Handling island constraints is simple at first glance. Given a problem defined by a set
of clauses 	Ci ∧ 	Cr partitioned into island constraints 	Ci and remaining clauses 	Cr , we
simply modify the algorithm to treat the remaining clauses as penalty functions and
give an initial valuation s which is a solution of 	Ci . For SAT(Z,D,C), 	Ci consists of
clauses of the form x̄ ∨ ȳ. An arbitrary extension of lit(Ci) to all variables can always
be such an initial valuation. We exclude literals l from flipping when s′ = s −{l}∪ {l}
does not satisfy 	Ci . Hence we only examine states that are adjacent to s and satisfy
	Ci . A new neighbourhood function can be defined in terms of the original function
n(s) as follows:

n(s, 	Ci) = {s′ ∈ n(s) | s′ ∈ sol(Ci)}
which takes into account, besides the current state s, also the island constraints 	Ci .
The rest of the algorithm remains unchanged. A new problem arises.

568 H. Fang et al.

Example 3 Suppose we have the following clauses, where 	Ci = (c1, c2) and 	Cr =
(c3, c4).

c1 : w̄ ∨ ȳ, c3 : w ∨ x,

c2 : x̄ ∨ z̄, c4 : y ∨ z

and the current state s is {w,x, ȳ, z̄}, which satisfies c1, c2, and c3. The search space
of the problem is depicted in Fig. 5. Again, the island states (that satisfy 	Ci) are dou-
bly boxed and enclosed by a dashed circumference. Considering states of Hamming
distance 1 from s, state s has a total of four neighbours:⎧⎪⎨

⎪⎩
s1 = {w̄, x, ȳ, z̄} which satisfies {c1, c2, c3},
s2 = {w, x̄, ȳ, z̄} which satisfies {c1, c2, c3},
s3 = {w,x, y, z̄} which satisfies {c2, c3, c4},
s4 = {w,x, ȳ, z} which satisfies {c1, c3, c4}

but only s1 and s2 are on the island, i.e. satisfying c1, c2. Thus, states s3 and s4 are
out of the neighbourhood of s according to the new neighbourhood definition. We can
check that none of s1 and s2 can bring improvement to the search, since they satisfy
exactly the same set of clauses as s. The search is trapped in a local minimum.

Usually in this circumstance a Lagrange multiplier (or equivalently clause weight-
ing) method, would try to update the Lagrange multipliers so as to modify the search
landscape, but, in this situation, this is to no avail. This is a new type of local min-
ima for Lagrangian-based local search algorithms. Since s1, s2, and s satisfy the same
clauses, all three states would have the same Lagrangian value whatever the Lagrange
multipliers for c3 and c4 are. Hence, no matter how the Lagrange multipliers are up-
dated, none of s’s neighbours will be better than s. We call this an island trap.

Island traps are manifestation of the island concept. In the following, we give a
slightly larger and more complex example to illustrate the difference between ordi-
nary local minima in local search algorithms and island traps.

Example 4 Suppose we have the following clauses, where 	Ci = (c1, c2, c3) and 	Cr =
(c4, c5, c6).

c1 : x̄1 ∨ x̄5, c4 : x1 ∨ x2,

c2 : x̄2 ∨ x̄3, c5 : x3 ∨ x4,

c3 : x̄3 ∨ x̄6, c6 : x5 ∨ x6

and the current state s is {x1, x̄2, x3, x̄4, x̄5, x̄6}, which satisfies c1 to c5 inclusively.
Without considering island constraints, s has six neighbours:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s1 = {x̄1, x̄2, x3, x̄4, x̄5, x̄6} which satisfies {c1, c2, c3, c5},
s2 = {x1, x2, x3, x̄4, x̄5, x̄6} which satisfies {c1, c3, c4, c5},
s3 = {x1, x̄2, x̄3, x̄4, x̄5, x̄6} which satisfies {c1, c2, c3, c4},
s4 = {x1, x̄2, x3, x4, x̄5, x̄6} which satisfies {c1, c2, c3, c4, c5},
s5 = {x1, x̄2, x3, x̄4, x5, x̄6} which satisfies {c2, c3, c4, c5, c6}, and
s6 = {x1, x̄2, x3, x̄4, x̄5, x6} which satisfies {c1, c2, c4, c5, c6}.

The island confinement method for reducing search space 569

F
ig

.
5

Il
lu

st
ra

tio
n

of
an

is
la

nd
tr

ap
.

T
he

st
at

es
sa

tis
fy

in
g

th
e

is
la

nd
co

ns
tr

ai
nt

s
ar

e
do

ub
ly

bo
xe

d
an

d
en

cl
os

ed
by

a
da

sh
ed

ci
rc

um
fe

re
nc

e.
T

he
st

at
e

s
ha

s
fo

ur
ne

ig
hb

ou
rs

s 1
,
s 2

,
s 3

,a
nd

s 4
bu

to
nl

y
s 1

an
d

s 2
ar

e
on

th
e

is
la

nd
.E

ac
h

st
at

e
s
,s

1
an

d
s 2

sa
tis

fie
s

th
e

sa
m

e
se

to
f

re
m

ai
ni

ng
cl

au
se

s
{c 3

}

570 H. Fang et al.

If a local search algorithm uses only the number of constraint violation (or satisfac-
tion) as the basis of hill-climbing, state s would be a local minimum. States s1 to s3
satisfy fewer clauses than s. States s4 to s6 are incomparable to s, since they satisfy
the same number of clauses although possibly differing in some of the clauses that
they satisfy. Even with Lagrange multipliers, state s could be a local minimum if
the state is encountered at an initial stage of the search (before any of the Lagrange
multipliers are changed). However, such a local minimum can be escaped from using
either random restart, random walk, or Lagrange multipliers update.

If we take island constraints into account in determining the neighbourhood, how-
ever, states s2 (for violating c2), s5 (for violating c1), and s6 (for violating c3) are out
of consideration. Among the remaining states, the clauses satisfied by s1 and s3 are
strict subsets of those satisfied by s, while s and s4 satisfy the same clauses. State s

is an island trap.

DLM and ESG are not pure Lagrange multiplier methods, although the Lagrange
multiplier is their principle tool for escaping local minima. In that sense they can
possibly escape from an island trap. But while Lagrange multiplier updates com-
pletely fail in dealing with island traps, island traps also cause difficulties to other
local minima escaping mechanisms. Random walk simply picks a state from the cur-
rent neighbourhood, but the more stringent definition of neighbourhood in the island
confinement method reduces the choices of the move. With random walk it will be
very difficult to move from one region of the search space to another region if the
connecting part of the island is very restricted.

Formally, an island trap for a problem 	Ci ∧ 	Cr is a state s such that

{c ∈ 	Cr | s ∈ sol({c})} ⊇ {c ∈ 	Cr | s′ ∈ sol({c})}
for all s′ ∈ n(s, 	Ci). That no (island) neighbour state s′ satisfies a constraint not sat-
isfied by s. In the context of Lagrangian-based search algorithms, the condition can
be equivalently stated as follows: for all states s′ ∈ n(s, 	Ci) whatever the value of the
Lagrange multipliers 	λr no neighbour would be better than s, i.e.

∀s′ ∈ n(s, 	Ci)∀(λr > 0) · L(s′, 	λr) ≥ L(s, 	λr).

The main difference between an ordinary local minimum and an island trap is that an
ordinary local minimum requires L(s′, 	λr) ≥ L(s, 	λr) only for the current Lagrange
multiplier values.

5 Escaping from island traps in DLM

To incorporate the island confinement method into DLM, we modify DLM’s neigh-
bourhood definition to n(s, 	Ci). In the following, we detail an effective escape strat-
egy for island traps. The idea is to flip some variable(s) to make an uphill or flat
move(s). We aim to stay as close to the current valuation as possible, but change to
a state s′ where at least one variable x, which cannot be flipped in the current state s

since it would go outside of the island, can now be flipped in s′.

The island confinement method for reducing search space 571

Let

makes(l, s, 	Ci) = {c ∈ 	Ci | (s − {l} ∪ {l}) ∈ sol({c})}
be the island constraints that are satisfied in the current valuation s only by the lit-
eral l. If makes(l, s, 	Ci) is non-empty then we cannot flip the literal l in the current
state without going outside the island.

We now investigate what we need to do in order to make it possible to flip the
literal l. The freeme set of literal l in state s is a set of literals, that if all flipped will
allow l to be flipped while remaining in the island. More formally, the freeme set of
literal l in state s, freeme(l, s, 	Ci), be a set of literals (a subset of lit(Ci)) such that
changing state s by flipping to these literals, arriving at state

s′ = s − freeme(l, s, 	Ci) ∪ freeme(l, s, 	Ci),

allows l to be flipped while staying within the island, i.e. makes(l, s′, 	Ci) = ∅. For the
problems we are interested in, it is easy to compute the minimal set since each clause
in 	Ci is binary. Hence we must flip to each literal for an island clause currently only
satisfied by l.

freeme(l, s, 	Ci) = {l′ | l ∨ l′ ∈ makes(l, s, 	Ci)}.
The base island trap escaping strategy we propose is thus: choose the literal l in

an unsatisfied clause in 	Cr according to state s such that |freeme(l, s, 	Ci)| > 0 and
minimal in size, and flip all literals in freeme(l, s, 	Ci) and then continue. Note that
we do not actually flip the literal l. We only move to a state where l can be flipped.
In this state, however, we may find it preferable to flip another literal.

Example 5 Continuing Example 4, we find in state s = {x1, x̄2, x3, x̄4, x̄5, x̄6} that the
unsatisfied clause is x5 ∨ x6. Now, we have

makes(x̄5, s, 	Ci) = {c1} and makes(x̄6, s, 	Ci) = {c3},
and hence neither x5 or x6 can be flipped without leaving the island. Now

freeme(x̄5, s, 	Ci) = {x̄1} and freeme(x̄6, s, 	Ci) = {x̄3}.
Suppose we choose randomly to free x̄6, then we can make true all the literals in its
freeme set ({x̄3}) obtaining the new state

s′ = {x1, x̄2, x̄3, x̄4, x̄5, x̄6}.
We can now flip x̄6 while staying in the island in state

s′′ = {x1, x̄2, x̄3, x̄4, x̄5, x6}.
Flipping x4 in state s′′ leads immediately to a solution

{x1, x̄2, x̄3, x4, x̄5, x6}.

572 H. Fang et al.

Unfortunately the simple strategy of simply flipping the minimal number of literals
to make a currently unflippable literal (since it would go outside the island) flippable
is not enough. It is easy for the local search to end up back in the same state, by
choosing to reverse all the flips made to escape the trap. In order to prevent this
we add an additional tabu list, tabulit, of length 1, to cope with the most common
case that freeme is of size 1. Unlike the regular tabu list, the literal in tabulit is not
allowed to be flipped under any circumstances (variables in DLM’s own tabu list can
be flipped if the move is downhill). Occasionally we find difficult traps where the tabu
literal is not enough to prevent falling back into the same trap. To avoid this we add
a parameter P which gives the probability of picking a literal to free which requires
more than the minimal number of flips to free.

The DLM algorithm modified for islands (DLMI) is shown in Fig. 6. Lines begin-
ning in “|” are either different from their counterparts in the original DLM algorithm
or new additions. For DLMI there are only Lagrange multipliers 	λr for the non-island
clauses 	Cr . A random valuation that satisfies the island clauses 	Ci is chosen (since 	Ci

is non-conflicting this is straightforward). The candidate literals for flipping are re-
stricted to those that maintain satisfiability of the island clauses and are not the literal
in tabulit. If there are candidates then we proceed as in DLM; otherwise we are in an
island trap. Note that tabulit introduces another kind of island trap where no flip will
satisfy more clauses except flipping the literal in tabulit, which is disallowed. This
trap is handled identically to the original island trap.

In an island trap we consider the literals (free) in the unsatisfied clauses which
could not be flipped without breaking an island constraint. Note that free = ∅ other-
wise we have a solution. We separate these into those requiring 1 other literal to be
flipped to free them (free1), and those requiring two or more (free2+). If the random
number is less than parameter P we choose a literal in free2+ to free, and flip all
the variables required to free it. Otherwise we choose, if possible, a variable in free1
whose freeme is not the literal in tabulit and flip the literal in that set.

Note that in both cases, the selection of l, the literal to free, may fail. In the first
case when free2+ is empty, in which case we perform nothing relying on randomness
to eventually choose the other case.

In the second case it may be that every literal in free1 has its freeme set equal to
tabulit. If free2+ is non-empty, then we perform nothing relying again on randomness
to eventually choose to work on free2+. Otherwise, free2+ is empty, and we have
detected that tabulit must hold in any solution of 	Ci ∧ 	Cr , as stated in the following
lemma.

Theorem 2 Given a SAT(Z,D,C) = 	Ci ∧ 	Cr where all clauses in 	Ci are binary and
all literals in 	Ci are negative. If free2+ = ∅ and freeme(l̄, s, 	Ci) = tabulit = {lt } for
all l ∈ free1 in an island trap state s in the DLMI algorithm (Fig. 6), then lt must hold
true in any solution of 	Ci ∧ 	Cr .

Proof Recall that clauses and literals in 	Ci are all binary and negative respectively,
and literals in 	Cr are all positive. Note that lt must be a negative literal since (1) l is
in 	Cr and (2) lt is in the freeme set of a negative literal l̄.

There are two possibilities to be in an island trap in DLMI. First, candidate =
tabulit, in which case lt is positive and this is a contradiction. Second, candidate = ∅,

The island confinement method for reducing search space 573

Fig. 6 The DLMI core algorithm

574 H. Fang et al.

in which case both free = free1 contains all literals in the unsatisfied clauses. Suppose
one of the unsatisfied clauses is:

x1 ∨ · · · ∨ xn

where {x1, . . . , xn} ⊆ free1. In this case, 	Ci must include the following clauses:

x̄1 ∨ lt · · · x̄n ∨ lt .

By resolution, we can conclude that lt must be true in any solution of 	Cr ∧ 	Ci . �

We are then justified to eliminate the variable in tabulit by unit resolution. In our
code this unit resolution is performed dynamically at runtime. We could avoid this by
simplifying the original SAT formulation so that all such occurrences are removed,
using SAT simplification methods such as (Brafman 2001).

Example 6 Modifying clause c3 in Example 4 slightly.

c1 : x̄1 ∨ x̄5, c4 : x1 ∨ x2,

c2 : x̄2 ∨ x̄3, c5 : x3 ∨ x4,

c3 : x̄1 ∨ x̄6, c6 : x5 ∨ x6.

We are in an island trap state s = {x1, x̄2, x3, x̄4, x̄5, x̄6} and assume that tabulit is
{x̄1}. The literals in unsatisfied clauses are unsat = {x5, x6}, and candidate = ∅ since
neither literal can be flipped. Hence free = {x5, x6}. Both of these literals are placed
in free1, since freeme(x̄5, s, 	Ci) = freeme(x̄6, s, 	Ci) = {x̄1}. The selection of a literal
l in free1 will fail. Since free2+ = ∅, {x̄1} must hold in any solution of 	Ci ∧ 	Cr by
Theorem 2. Applying resolution on the clauses

x5 ∨ x6, x̄1 ∨ x̄5, x̄1 ∨ x̄6,

we obtain x̄1.
In the context of CSP, x1 corresponds to a value in the domain of a CSP variable

(say u) which is incompatible with all (two in this case) values in the domain of the
other CSP variable (say v). That means that the domain value of u corresponding to
x1 is arc inconsistent with respect to the constraint involving u and v. Fixing x1 to 0
means removing the value from the domain of u.

The feature just described in Example 6 is closely related to the lazy arc consis-
tency technique (Stuckey and Tam 1998) developed for GENET (Davenport et al.
1994) and later adapted to LSDL (Choi et al. 2000), both of which are CSP local
search solvers. An advantage of this technique is that it can detect unsatisfiability of
the problem occasionally when the propositional variables, say {x1, . . . , xn}, corre-
sponding to all values in the domain of a CSP variable, say u, are fixed to 0, thereby
making the non-island clause x1 ∨ · · · ∨ xn false.

Since ESG is also Lagrangian-based, the island confinement method can also be
incorporated into ESG using the same neighbourhood function n(s, 	Ci) and a similar
island trap escape strategy.

The island confinement method for reducing search space 575

Table 1 Benchmark size

Instance Vars Cls Instance Vars Cls

10-queens 100 1,480 20-queens 400 12,560

50-queens 2,500 203,400 100-queens 10,000 1,646,800

pp-50 2,475 159,138 pp-60 3,568 279,305

pp-70 4,869 456,129 pp-80 6,356 660,659

pp-90 8,059 938,837 pp-100 9,953 1,265,776

ap10 121 671 ap20 441 4,641

ap30 961 14,911 ap40 1,681 34,481

magic-10 1,000 9,100 magic-15 3,375 47,475

magic-20 8,000 152,400 magic-25 15,625 375,625

magic-30 27,000 783,900 magic-35 42,875 1,458,975

g125n-18c 2,250 70,163 g250n-15c 3,750 233,965

g125n-17c 2,125 66,272 g250n-29c 7,250 454,622

rcsp-120-10-60-75 1,200 331,445 rcsp-130-10-60-75 1,300 389,258

rcsp-140-10-60-75 1,400 451,702 rcsp-150-10-60-75 1,500 518,762

rcsp-160-10-60-75 1,600 590,419 rcsp-170-10-60-75 1,700 666,795

rcsp-120-10-60-5.9 1,200 25,276 rcsp-130-10-60-5.5 1,300 27,670

rcsp-140-10-60-5.0 1,400 29,190 rcsp-150-10-60-4.7 1,500 31,514

rcsp-160-10-60-4.4 1,600 33,581 rcsp-170-10-60-4.1 1,700 35,338

rcsp-120-10-60-5.8 1,200 24,848 rcsp-130-10-60-5.4 1,300 27,168

rcsp-140-10-60-4.9 1,400 28,605 rcsp-150-10-60-4.6 1,500 30,843

rcsp-160-10-60-4.3 1,600 32,818 rcsp-170-10-60-4.0 1,700 34,476

6 Experiments

To demonstrate the feasibility and efficiency of our proposal, we implement DLMI
and ESGI by making minimal modifications to the code distributions of SAT-DLM-
20002 and ESG-SAT3 respectively, maintaining all the extra parts such as the tabu
list, and penalty updating methods unchanged.

We adopt the suite of binary CSPs used by Choi et al. (2000) of different nature
and difficulties, in our experiments. The problems include N -queens (n-queens), ran-
dom permutation generation (pp-n), increasing permutation generation (ap-n), Latin
square (magic-n), hard graph coloring (gxn-yc), and random CSPs (rcsp-n-d-p1-
p2). The last class is further divided into three groups, namely tight, phase transition,
and slightly easier phase transition random CSPs. We first transform the problem in-
stances into SAT. Of the clauses in all instances, over 99% are island clauses. Table 1
lists the size of the benchmarks in terms of the number of variables and clauses when

2Downloadable from http://www.manip.crhc.uiuc.edu/Wah/programs/SAT_DLM_2000.tar.gz.
3Downloadable from http://ai.uwaterloo.ca/~dale/software/esgsat.tar.gz.

576 H. Fang et al.

Table 2 Comparative empirical results DLM versus DLMI

Instance DLM DLMI

Succ Time Flips Succ Time D-Flips I-Flips

PS = 2 and P = 0.3 for DLMI

10-queens 20/20 0.01 186 20/20 0.00 39 29

20-queens 20/20 0.02 265 20/20 0.00 69 49

50-queens 20/20 1.20 1417 20/20 0.06 89 39

100-queens 20/20 88.11 5455 20/20 0.69 176 76

PS = 4 and P = 0.3 for DLMI

pp-50 20/20 1.16 1451 20/20 0.08 115 65

pp-60 20/20 3.34 2113 20/20 0.17 145 85

pp-70 20/20 10.28 2868 20/20 0.30 242 172

pp-80 20/20 25.42 3554 20/20 0.41 193 113

pp-90 20/20 52.31 4373 20/20 0.58 202 112

pp-100 20/20 99.41 5333 20/20 0.76 200 100

PS = 3 and P = 0.3 for DLMI

ap-10 20/20 0.25 23921 20/20 0.02 2822 2811

ap-20 20/20 424.75 15953036 20/20 30.81 1872874 1872853

ap-30 0/20 – – 0/20 – – –

ap-40 0/20 – – 0/20 – – –

PS = 4 and P = 0.1 for DLMI

magic-10 20/20 0.03 779 20/20 0.01 174 74

magic-15 20/20 0.60 3462 20/20 0.05 428 203

magic-20 20/20 5.56 12278 20/20 0.21 886 486

magic-25 * * * 20/20 0.68 1443 818

magic-30 * * * 20/20 1.53 1992 1092

magic-35 * * * 20/20 3.21 3258 2033

encoded in the SAT formulation. Experiments on DLM and DLMI are conducted on
a Sun Blade 1000(2 × 900 MHz US-III+) workstation with 2GB of memory running
the Solaris 8 OS, and those for ESG and ESGI are conducted on a PC with a PIII 800
Mhz CPU and 256MB memory running the Linux OS. Timing and flipping results
are average of 20 runs. We abort runs which fail to find solutions after 60,000,000
flips.

6.1 DLM

For each benchmark set, we first tune the best parameter settings for DLM of the
five (Wu and Wah 2000) included in the distribution. These same parameter set-
tings are adopted for DLMI. For the additional parameter P introduced by the island
method, we tune and report the best P value for each type of benchmark instances.
Tables 2 and 3 show a comparison of DLM and DLMI.

The island confinement method for reducing search space 577

Table 3 Comparative empirical results DLM versus DLMI (cont’d)

Instance DLM DLMI

Succ Time Flips Succ Time D-Flips I-Flips

PS = 3 and P = 0.15 for DLMI

g125n-18c 20/20 1.44 7519 20/20 0.23 5218 5093

g250n-15c 20/20 4.57 2287 20/20 2.03 24082 23832

g125n-17c 20/20 54.77 713542 20/20 21.79 585556 585431

g250n-29c 20/20 212.91 425284 20/20 50.07 253478 253228

PS = 4 and P = 0.3 for DLMI

rcsp-120-10-60-75 20/20 3.99 4813 20/20 0.57 1055 935

rcsp-130-10-60-75 20/20 5.86 5736 20/20 0.66 1033 903

rcsp-140-10-60-75 20/20 7.73 6073 20/20 1.33 2139 1999

rcsp-150-10-60-75 20/20 9.06 6434 20/20 1.16 1568 1418

rcsp-160-10-60-75 20/20 12.98 7391 20/20 0.89 913 753

rcsp-170-10-60-75 20/20 15.46 7031 20/20 1.73 1995 1825

PS = 3 and P = 0.3 for DLMI

rcsp-120-10-60-5.9 20/20 66.22 1066997 15/20 18.22 931333 931213

rcsp-130-10-60-5.5 20/20 562.77 7324350 15/20 82.56 4059895 4059765

rcsp-140-10-60-5.0 20/20 71.81 924185 19/20 8.16 412126 411986

rcsp-150-10-60-4.7 20/20 448.84 6010714 19/20 70.38 3388199 3388049

rcsp-160-10-60-4.4 20/20 376.73 3974725 20/20 23.08 1108738 1108578

rcsp-170-10-60-4.1 20/20 131.87 1339107 20/20 11.85 556487 556317

PS = 3 and P = 0.3 for DLMI

rcsp-120-10-60-5.8 20/20 25.72 423898 20/20 5.37 280520 280400

rcsp-130-10-60-5.4 20/20 64.41 912136 20/20 12.71 634863 634733

rcsp-140-10-60-4.9 20/20 17.03 233552 20/20 3.04 152091 151951

rcsp-150-10-60-4.6 20/20 25.99 329755 19/20 5.46 270458 270308

rcsp-160-10-60-4.3 20/20 55.83 590711 20/20 8.03 390389 390229

rcsp-170-10-60-4.0 20/20 14.50 163382 20/20 2.30 110351 110181

For each set of benchmark instances, we give the parameter settings (PS) from
SAT-DLM-2000 used for DLM and also DLMI. The tables give the success ratio,
average solution time (in seconds) and average flips on solved instances for DLM
and DLMI. There are two types of DLMI flips: D-Flips and I-Flips. D-Flips are nor-
mal DLM flips, and I-Flips are flips used for escaping from island traps. I-Flips are
considerably cheaper since they do not require any computation of the Lagrangian
function values. Entries marked “–” and “*” indicate no applicable data available
and segmentation fault during execution respectively. Bold entries show when DLM
betters DLMI.

DLMI shows substantial improvement over DLM using the same parameter sets
on the test suite, and is able to solve all magic-* instances. Generally DLMI traverses
a smaller search space and needs to do less maintenance for island clauses. This re-
sults in significant saving. In many cases DLMI is one to two orders of magnitude

578 H. Fang et al.

Table 4 Tuned parameter sets for ESG and ESGI

PS -rho -alpha -noise -cp -mr -mf

1 0.99 0.995 0.02 50 10 500

2 0.99 0.999 0.09 300 10 10000

3 0.999 1.0 0.03 1000 10 10000000

4 0.999 0.999 0.09 500 10 100000

5 0.9995 0.9995 0.02 400 10 7000000

6 0.999 0.2401 0.24 400 10 2000000

7 0.999 1.3∗ 0.008 500 10 100000000

8 0.999 0.9995 0.09 300 10 100000000

better than DLM. DLMI is slightly less robust in success rate with the two classes of
phase transition random CSPs. This occurs because the search surface is now consid-
erably more jagged. In the next section, we give a simple modification to DLMI to
smooth the search behavior.

6.2 ESG

The ESG implementation has the following parameters for tuning the solver behavior.

• -mf: max flips before restarting
• -mr: max restarts before aborting
• -cp: number of reweights between corrections
• -alpha: scaled reweight step size (1+alpha*n/m)
• -rho: rate of weight shrinkage to mean for sat clauses
• -noise: probability of random walk when stuck
• -rawalpha: raw reweight step size (never used with -alpha together)

We have chosen to set the -alpha parameter instead of -rawalpha, except for
the phase transition random CSPs class of benchmarks which responds better to the
-rawalpha parameter. In all ESG experiments reported (Schuurmans et al. 2001),
the -nr flag is used to fix the random number generator seed to 0. We adopt the same
practice.

The ESG distribution does not come with any recommended parameters sets.
We tuned, with the help of the original authors, the parameter settings for each of
the benchmark sets. Table 4 give the parameter sets adopted for ESG and ESGI
accordingly. In parameter set PS = 7, the parameter for -alpha is actually for
-rawalpha for the phase transition random CSPs. For the additional island con-
finement method parameter P , we use P = 0.2 for ESGI in the first part (easier
instances) of the benchmark sets and P = 0.3 for the second part (harder instances).

Tables 5 and 6 give a comparison of ESG and ESGI. For each set of benchmark
instances, we give the P value for ESGI. The tables give the success ratio, average
solution time (in seconds) and average flips on solved instances for ESG and ESGI.
Again, we differentiate between E-Flips and I-Flips in ESGI, where E-Flips are nor-
mal ESG flips and I-Flips are ones for escaping from island traps. I-Flips are much

The island confinement method for reducing search space 579

Table 5 Comparative empirical results ESG versus ESGI

Instance ESG ESGI

Succ Time Flips Succ Time E-Flips I-Flips

PS = 1 and P = 0.2 for ESGI

10-queens 20/20 0.02 235 20/20 0.00 46 35

20-queens 20/20 0.04 317 20/20 0.03 68 45

50-queens 20/20 1.03 1424 20/20 0.90 116 63

100-queens 20/20 15.23 7523 20/20 4.80 183 81

PS = 2 and P = 0.2 for ESGI

pp-50 20/20 0.83 2198 20/20 0.08 144 84

pp-60 20/20 1.39 2580 20/20 1.04 252 170

pp-70 20/20 5.22 6099 20/20 1.23 266 174

pp-80 20/20 5.10 4956 20/20 1.67 283 178

pp-90 20/20 4.23 5632 20/20 2.55 273 161

pp-100 20/20 9.25 7283 20/20 2.88 303 179

PS = 3 and P = 0.2 for ESGI

ap-10 20/20 1.00 104173 20/20 0.14 4249 4432

ap-20 3/20 5623.22 40057253 20/20 320.27 3111245 1102427

ap-30 0/20 – – 0/20 – – –

ap-40 0/20 – – 0/20 – – –

PS = 4 and P = 0.2 for ESGI

magic-10 20/20 0.90 699 20/20 0.02 231 111

magic-15 20/20 0.31 2426 20/20 0.22 627 346

magic-20 20/20 1.29 5711 20/20 0.51 1398 855

magic-25 20/20 14.08 10655 20/20 6.87 2926 1982

magic-30 20/20 16.74 18564 20/20 5.20 5185 3689

magic-35 20/20 54.20 38428 20/20 20.35 14654 11550

cheaper than E-Flips. Entries marked “–” and “*” indicate no applicable data avail-
able and segmentation fault during execution respectively.

The advantages of the island confinement method are more evident in improving
ESG. Unlike the case of DLMI over DLM in which DLMI exhibits difficulties with a
few hard instances, ESGI gives substantial and consistent improvement over ESG in
terms of both time and number of flips (even when both regular and island flips are
taken into account) in all benchmark instances. Again the time improvement can be
up to two orders of magnitude.

The island confinement method reduces the size of the search space by limiting
the choices that a search can make at every move. In order not to get out of the island,
the search might have to choose a different route from one that would normally be
recommended by the search heuristic, possibly causing detours and/or cycling. We
can observe that the advantages of smaller search space are sometimes offset by the
need to traverse a more rugged landscape in DLMI, but this is not the case for ESGI.

580 H. Fang et al.

Table 6 Comparative empirical results ESG versus ESGI (cont’d)

Instance ESG ESGI

Succ Time Flips Succ Time E-Flips I-Flips

PS = 5 and P = 0.3 for ESGI

g125n-18c 20/20 3.27 19147 20/20 1.98 7860 7525

g250n-15c 20/20 2.30 2420 20/20 0.51 514 682

g125n-17c 20/20 2494.20 1134850 20/20 95.28 785856 763589

g250n-29c 20/20 20650.33 22785693 20/20 310.65 549986 534168

PS = 6 and P = 0.3 for ESGI

rcsp-120-10-60-75 20/20 21.70 14965 20/20 2.17 2154 1545

rcsp-130-10-60-75 20/20 24.55 16012 20/20 1.61 1299 897

rcsp-140-10-60-75 20/20 44.20 17699 20/20 2.50 1859 1301

rcsp-150-10-60-75 20/20 68.04 23576 20/20 2.16 1371 930

rcsp-160-10-60-75 20/20 83.21 26497 20/20 2.60 1526 1046

rcsp-170-10-60-75 20/20 679.27 165708 20/20 6.60 4059 2966

PS = 7 and P = 0.3 for ESGI

rcsp-120-10-60-5.9 * * * 20/20 117.20 1047043 1035642

rcsp-130-10-60-5.5 * * * 20/20 346.28 5633445 4958738

rcsp-140-10-60-5.0 * * * 20/20 89.09 668743 661374

rcsp-150-10-60-4.7 * * * 20/20 252.01 997737 986633

rcsp-160-10-60-4.4 * * * 20/20 108.90 552472 520743

rcsp-170-10-60-4.1 * * * 20/20 140.60 803731 794799

PS = 8 and P = 0.3 for ESGI

rcsp-120-10-60-5.8 20/20 1205.20 12844605 20/20 32.70 469061 413068

rcsp-130-10-60-5.4 17/20 24890.22 239966515 20/20 143.50 2704314 2380014

rcsp-140-10-60-4.9 20/20 196.90 3425882 20/20 13.55 146103 128562

rcsp-150-10-60-4.6 20/20 537.60 7843960 20/20 33.89 358203 315272

rcsp-160-10-60-4.3 20/20 965.30 11813274 20/20 18.60 393059 334222

rcsp-170-10-60-4.0 20/20 221.70 1863285 20/20 7.50 153860 135350

Random restart is a simple and efficient technique in escaping from convoluted
search space. In the next section, we study the effect of random restart in DLM and
DLMI.

7 Random restart in DLM and DLMI

DLMI is behind DLM in robustness with the difficult random CSP instances. We
investigate extending DLMI with random restart. As a control, we also examine the
effect of random restart in DLM. The results are two fold. First, random restart has
little effect on DLM. Second, the enhanced DLMI is comparable to the original DLMI
on easy problems, and more efficient and robust on difficult problems.

The island confinement method for reducing search space 581

Table 7 Benchmarking results of DLMr

Instance Succ Time Flips Restarts

PS = 2

10-queen 20/20 0.01 317 0

20-queen 20/20 0.02 271 0

50-queen 20/20 1.18 1392 0

100-queen 20/20 91.41 5441 0

PS = 4

pp-50 20/20 1.15 1433 0

pp-60 20/20 3.80 2144 0

pp-70 20/20 11.85 2963 0

pp-80 20/20 25.66 3616 0

pp-90 20/20 52.85 4453 0

pp-100 20/20 105.89 5421 0

PS = 3

ap-10 20/20 0.43 39918 0

ap-20 0/20 – – –

ap-30 0/20 – – –

ap-40 0/20 – – –

PS = 4

magic-10 20/20 0.04 879 0

magic-15 20/20 0.64 3559 0

magic-20 20/20 6.11 12462 0

magic-25 0/20 * * *

magic-30 0/20 * * *

magic-35 0/20 * * *

Random restart is a common technique to avoid search getting stuck in potentially
non-fruitful regions by introducing randomness into the search process. It can be
applied either at local minima or after a certain number of local moves. In the context
of DLM and DLMI, we perform a random restart after cutoff number of flips with all
the Lagrange multiplier values retained. For DLMI, we also have to ensure that the
restart point is within the island (i.e. satisfying the island constraints), which can be
achieved using the random initialisation strategy given in Sect. 4. After some tuning,
we set the cutoff value to be 1,000,000 for all the following experiments.

As a control, we implement DLMr , a version of DLM with random restart. Results
are reported in Tables 7 and 8 reporting the success ratio, time, number of flips,
and also average number of restarts invoked. We use also the same parameter sets,
PS, as in DLM for each class of problems respectively. By comparing to Tables 2
and 3, we can see that random restart gives little improvement over DLM, if not
making it worse. We observe that, with the large cutoff value of 1,000,000, restart
is invoked only for the very difficult instances, such as g125n-17c and the phase-
transition random CSPs.

582 H. Fang et al.

Table 8 Benchmarking results of DLMr (cont’d)

Instance Succ Time Flips Restarts

PS = 3

g125n-18c 20/20 1.88 9210 0

g250n-15c 20/20 4.53 2224 0

g125n-17c 20/20 66.07 905295 0.45

g250n-29c 20/20 175.98 317992 0

PS = 4

rcsp-120-10-60-75 20/20 4.33 4783 0

rcsp-130-10-60-75 20/20 5.70 4428 0

rcsp-140-10-60-75 20/20 9.27 7083 0

rcsp-150-10-60-75 20/20 9.06 6462 0

rcsp-160-10-60-75 20/20 12.44 7029 0

rcsp-170-10-60-75 20/20 14.54 6238 0

PS = 3

rcsp-120-10-60-5.9 20/20 81.26 1232808 0.85

rcsp-130-10-60-5.5 20/20 725.95 10304493 9.80

rcsp-140-10-60-5.0 20/20 73.18 969920 0.55

rcsp-150-10-60-4.7 20/20 461.27 6267942 5.75

rcsp-160-10-60-4.4 20/20 135.13 1509024 1.05

rcsp-170-10-60-4.1 20/20 214.29 2034786 1.40

PS = 3

rcsp-120-10-60-5.8 20/20 43.12 558389 0.15

rcsp-130-10-60-5.4 20/20 64.46 832706 0.40

rcsp-140-10-60-4.9 20/20 16.32 201521 0

rcsp-150-10-60-4.6 20/20 27.05 323166 0

rcsp-160-10-60-4.3 20/20 57.21 595700 0.30

rcsp-170-10-60-4.0 20/20 12.49 128033 0

Next, we examine the results of DLMIr , which is DLMI incorporated with ran-
dom restart, in Tables 9 and 10. We use the same P values for each benchmark type
as in the DLMI experiments. Again, the same parameter sets, PS, as in the DLM
experiments are adopted. By bolding numbers where DLMIr is bettered by DLMI,
we have the following observations when comparing DLMIr with DLMI in Tables 2
and 3. First, in most of the cases where DLMIr is bettered by DLMI (except ap-20),
the differences are slight. DLMIr is basically on par with DLMI on these instances.
Second, in the case of ap-20, DLMIr is twice as slow as DLMI, but still over six times
more efficient than DLM. Third, DLMIr solves the robustness problem in the diffi-
cult random CSPs with 100% success rate in all instances. Fourth, restart is needed
only in the difficult instances. Fifth, DLMIr dominates over DLM completely both in
terms of time and robustness.

The island confinement method for reducing search space 583

Table 9 Benchmarking results of DLMIr

Instance Succ Time D-Flips I-Flips Restarts

PS = 2, and P = 0.3

10-queen 20/20 0.002 21 16 0

20-queen 20/20 0.01 67 56 0

50-queen 20/20 0.09 186 161 0

100-queen 20/20 1.04 464 414 0

PS = 4, and P = 0.3

pp-50 20/20 0.09 253 226 0

pp-60 20/20 0.23 347 316 0

pp-70 20/20 0.40 396 361 0

pp-80 20/20 0.62 465 424 0

pp-90 20/20 0.90 497 453 0

pp-100 20/20 1.21 467 416 0

PS = 3, and P = 0.3

ap-10 20/20 0.02 2509 2503 0

ap-20 20/20 66.47 3604335 3604332 6.6

ap-30 0/20 – – – –

ap-40 0/20 – – – –

PS = 4, and P = 0.1

magic-10 20/20 0.02 268 172 0

magic-15 20/20 0.05 939 721 0

magic-20 20/20 0.22 1575 1185 0

magic-25 20/20 0.63 2459 1846 0

magic-30 20/20 1.37 3506 2621 0

magic-35 20/20 2.78 5620 4413 0

8 Conclusion

The most successful local search methods for CSPs, in particular SAT problems,
treat the satisfaction problem as an unconstrained optimisation problem, and attempt
to minimise the number of unsatisfied constraints. In this work we show we can
tackle CSPs as constrained optimisation problems by carefully defining which con-
straints are “hard,” that will never be violated in the search, and which are “soft” and
contribute to the objective function. The key requirement is that the solutions of the
“hard” constraints form an island, that is a connected neighbourhood. We define the
island confinement method, a generic modification of a local search procedure to in-
clude “hard” constraints. The main benefit of the island confinement method is that
the search space can be dramatically reduced.

We have demonstrated on an important class of SAT problems, SAT formulations
of binary CSPs, that we can choose an island that encompasses a large part of the
constraints of the problem. The purpose of our work is not to compete with other CSP
solvers, but to demonstrate that the incorporation of the island confinement method

584 H. Fang et al.

Table 10 Benchmarking results of DLMIr (cont’d)

Instance Succ Time D-Flips I-Flips Restarts

PS = 3, and P = 0.15

g125n-18c 20/20 0.25 5059 4952 0

g250n-15c 20/20 0.23 1066 823 0

g125n-17c 20/20 22.75 582132 581967 0.65

g250n-29c 20/20 50.84 242425 242195 0.05

PS = 4, and P = 0.3

rcsp-120-10-60-75 20/20 0.27 399 284 0

rcsp-130-10-60-75 20/20 0.37 482 360 0

rcsp-140-10-60-75 20/20 0.53 650 515 0

rcsp-150-10-60-75 20/20 0.76 920 779 0

rcsp-160-10-60-75 20/20 0.73 695 544 0

rcsp-170-10-60-75 20/20 1.15 1396 1231 0

PS = 3, and P = 0.3

rcsp-120-10-60-5.9 20/20 19.21 926724 926501 1.40

rcsp-130-10-60-5.5 20/20 159.00 7395450 7394214 14.20

rcsp-140-10-60-5.0 20/20 13.25 603533 603357 0.70

rcsp-150-10-60-4.7 20/20 91.06 3894558 3893714 7.15

rcsp-160-10-60-4.4 20/20 31.43 1375332 1374927 2.30

rcsp-170-10-60-4.1 20/20 14.46 639366 639133 0.65

PS = 3, and P = 0.3

rcsp-120-10-60-5.8 20/20 9.28 469356 469219 0.45

rcsp-130-10-60-5.4 20/20 17.59 821111 820893 1.10

rcsp-140-10-60-4.9 20/20 3.53 162309 162179 0.05

rcsp-150-10-60-4.6 20/20 3.94 177047 176911 0.05

rcsp-160-10-60-4.3 20/20 9.21 415100 414930 0.35

rcsp-170-10-60-4.0 20/20 1.59 69183 69039 0

into state-of-the-art local search SAT solvers, DLM and ESG, leads to significant
improvements. We also show that the use of the island confinement method is not
without difficulty, since we must develop new island trap escaping strategies.

We believe that there is plenty of scope for using the island confinement method
to improve local search for other classes of CSPs, for example arbitrary SAT prob-
lems. It will be interesting to study if the method can be integrated effectively to other
local search algorithms, which include (1) those based on clause weighting such as
SAPS (Hutter et al. 2002) and PAWS (Thornton et al. 2004) and (2) those without
clause weighting such as WalkSAT. The principal challenge lies in building an ade-
quate island trap escaping strategy. It will also be worthwhile to investigate the tuning
of the P parameter and the cutoff value.

Acknowledgements We thank the anonymous reviewers of AAAI’02 for their constructive and insight-
ful comments. We are also grateful to Gordon Lam who helped to run some of the experiments. The work

The island confinement method for reducing search space 585

described in this paper was substantially supported by a grant from the Research Grants Council of the
Hong Kong Special Administrative Region (Project no. CUHK4204/01E).

References

Brafman, R.: A simplifier for propositional formulas with many binary clauses. In: Proceedings of IJ-
CAI’01, pp. 515–522 (2001)

Choi, K., Lee, J., Stuckey, P.: A Lagrangian reconstruction of GENET. Artif. Intell. 123(1–2), 1–39 (2000)
Davenport, A., Tsang, E., Wang, C., Zhu, K.: GENET: a connectionist architecture for solving constraint

satisfaction problems by iterative improvement. In: Proceedings of AAAI’94, pp. 325–330 (1994)
Fang, H., Kilani, Y., Lee, J., Stuckey, P.: Reducing search space in local search for constraint satisfaction.

In: Dechter, R., Sutton, R., Kearns, M. (eds.) Proceedings of the 18th National Conference on Artificial
Intelligence, pp. 28–33 (2002)

Fang, H., Kilani, Y., Lee, J., Stuckey, P.: Islands for SAT. Technical report, Computing Research Repository
(CORR) (2006). http://arxiv.org/abs/cs.AI/0607071

Hoos, H.: On the run-time behavior of stochastic local search algorithms for SAT. In: Proceedings of
AAAI’99, pp. 661–666 (1999)

Hutter, F., Tompkins, D., Hoos, H.: Scaling and probabilistic smoothing: efficient dynamic local search for
SAT. In: Proceedings of CP’02, pp. 233–248 (2002)

Mackworth, A.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)
Minton, S., Johnston, M., Philips, A., Laird, P.: Minimizing conflicts: a heuristic repair method for con-

straint satisfaction and scheduling. Artif. Intell. 58, 161–205 (1992)
Morris, P.: The breakout method for escaping from local minima. In: Proceeding of AAAI’93, pp. 40–45

(1993)
Schuurmans, D., Southey, F.: Local search characteristics of incomplete SAT procedures. In: Proceedings

of AAAI’00, pp. 297–302 (2000)
Schuurmans, D., Southey, F., Holte, R.: The exponentiated subgradient algorithm for heuristic boolean

programming. In: Proceedings of IJCAI’01, pp. 334–341 (2001)
Selman, B., Kautz, H.: Domain-independent extensions to GSAT: solving large structured satisfiability

problems. In: Proceedings of IJCAI’93, pp. 290–295 (1993)
Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: Pro-

ceedings of AAAI’92, pp. 440–446 (1992)
Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In: Proceedings of

AAAI’94, pp. 337–343 (1994)
Stuckey, P.J., Tam, V.: Extending GENET with lazy arc consistency. IEEE Trans. Syst. Man Cybern. 28(5),

698–703 (1998)
Thornton, J., Pham, D., Bain, S., Ferreira, V. Jr.: Additive versus multiplicative clause weight for SAT. In:

Proceedings of AAAI’04, pp. 191–196 (2004)
Wu, Z., Wah, B.: Trap escaping strategies in discrete Lagrangian methods for solving hard satisfiability

and maximum satisfiability problems. In: Proceedings of AAAI’99, pp. 673–678 (1999)
Wu, Z., Wah, B.: An efficient global-search strategy in discrete Lagrangian methods for solving hard

satisfiability problems. In: Proceedings of AAAI’00, pp. 310–315 (2000)

	The island confinement method for reducing search space in local search methods
	Abstract
	Introduction
	Background and definitions
	SAT
	Local search
	The DLM algorithm
	The ESG algorithm

	Island constraints
	The island confinement method
	Escaping from island traps in DLM
	Experiments
	DLM
	ESG

	Random restart in DLM and DLMI
	Conclusion
	Acknowledgements

	References

