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Abstract 21 

Island faunas can be characterized by gigantism in small animals and dwarfism in large animals, 22 

but the extent to which this so-called ‘island rule’ provides a general explanation for 23 

evolutionary trajectories on islands remains contentious. Here we use a phylogenetic meta-24 

analysis to assess patterns and drivers of body size evolution across a global sample of paired 25 

island-mainland populations of terrestrial vertebrates. We show that ‘island rule’ effects are 26 

widespread in mammals, birds and reptiles, but less evident in amphibians, which mostly tend 27 

towards gigantism. We also found that the magnitude of insular dwarfism and gigantism is 28 

mediated by climate as well as island size and isolation, with more pronounced effects in 29 

smaller, more remote islands for mammals and reptiles. We conclude that the island rule is 30 

pervasive across vertebrates, but that the implications for body size evolution are nuanced and 31 

depend on an array of context-dependent ecological pressures and environmental conditions. 32 
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Introduction 37 

From giant pigeons to dwarf elephants, islands have long been known to generate evolutionary 38 

oddities1. Understanding the processes by which island lineages evolve remains a prominent 39 

theme in evolutionary biology, not least because they include many of the world’s most bizarre 40 

and highly threatened organisms2. The classic insular pattern of both small-animal gigantism and 41 

large-animal dwarfism in relation to mainland relatives has been described as a macro-42 

evolutionary or biogeographical rule – the ‘island rule’3-5 (Fig. 1). However, previous research 43 

has cast doubt on the generality of this pattern6, suggesting that body size shifts are 44 

asymmetrical, with reduced size in some clades (e.g. carnivores, heteromyid rodents, and 45 

artiodactyls) or increased size in others (e.g. murid rodents)7,8. Even in these cases, the 46 

underlying mechanisms driving patterns of insular gigantism and dwarfism remain unclear. 47 

Several mechanisms have been proposed to explain the island rule, including reduced predation, 48 

relaxed competition and resource limitation in island environments9. In theory, each of these 49 

factors may be accentuated in smaller, more isolated islands, where lower levels of interspecific 50 

competition and predation could lead to ‘ecological release’, allowing small‐bodied species to 51 

increase in body size5,9. Conversely, among large‐bodied species, limited resource availability 52 

could select for smaller body sizes with reduced energy requirements, leading to insular 53 

dwarfism. Climatic conditions may also influence body size evolution on islands since primary 54 

productivity and associated resource availability are strongly influenced by climate9,10. Although 55 

previous studies of body size evolution on islands have tested the effects of these different 56 

mechanisms, many have focused on relatively restricted geographic and taxonomic scales and 57 

did not directly address the island rule in its broad sense across multiple species within a taxon10-58 
13, with notable exceptions9,14-16. 59 

Most work on the island rule has been restricted to mammals (e.g.4,7,14,17), although the 60 

hypothesis has also been tested in amphibians18, reptiles19-21, birds15,22,  fish23, insects24, 61 

molluscs25, and plants26. The highly inconsistent results of these studies (e.g.5,6,27) are perhaps 62 

unsurprising because they typically deal with single species or pool together data on different 63 

traits from numerous sources without controlling for variation in study design or accounting for 64 

sampling variance. Accordingly, a recent systematic review based on a simplified scoring 65 

system27 concluded that empirical support for the island rule is not only potentially biased but 66 
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also generally low, particularly for non-mammalian taxa. However, scoring approaches provide 67 

only limited information as they do not account for heterogeneity between studies, taxonomic 68 

representativeness, sample size, or precision in the estimates.  69 

These limitations are best addressed with formal meta-analyses28,29, hence we tested the island 70 

rule hypothesis by applying phylogenetic meta-regressions to a global dataset of 2,479 island-71 

mainland comparisons for 1,166 insular and 886 mainland species of terrestrial vertebrates 72 

(Supplementary Dataset 1, Fig. 2). Our analytical framework allows us to control for multiple 73 

types of variation, including data source, sample size imbalance, intraspecific and intra-74 

population variability, and phylogenetic relatedness (see Methods). For each island-mainland 75 

comparison, we calculated the log response ratio (lnRR) as the natural logarithm of the ratio 76 

between the mean body size of individuals from an insular population Mi and that of mainland 77 

relatives Mm (lnRR = log[Mi/Mm])30. Then, we regressed lnRR against the body mass of the 78 

mainland population (Mm)(Fig.1). 79 

This framework provides a clear set of predictions in the context of evolutionary trajectories on 80 

islands4,6,14. Specifically, since negative values of lnRR indicate dwarfism and positive values 81 

indicate gigantism, a positive intercept and negative slope of the lnRR-mainland mass 82 

relationship supports the island rule (Fig. 1). Given the contentiousness of the generality in the 83 

island rule, we assessed the robustness of our results against potential biases derived of 84 

regressing ratios31,32, using small samples, imputing missing data, or the influence of using data 85 

from the island rule literature or derived from other studies focused on unrelated questions (i.e. 86 

publication bias; see Methods). Finally, we use our framework to assess how body size shifts are 87 

related to island size, island isolation, island productivity and climate, as well as species diet. 88 

The extent to which these different factors explain insular body size shifts allows us to re-89 

evaluate a range of hypotheses for the mechanisms underlying “island rule” effects on body size, 90 

including ecological release9, immigrant selection9, resource limitation9,33,34, 91 

thermoregulation9,15,35, water availability36,37 and starvation resistance9,33 (Supplementary Table 92 

1, Extended Data Fig. 1).  93 
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Results 94 

The generality of the island rule  95 

We found that lnRR and mainland body mass were negatively related for mammals, birds and 96 

reptiles, with small species tending to gigantism and large species to dwarfism (Fig. 3). The 97 

relationship was weakly negative but statistically non-significant for amphibians, with a 98 

tendency towards gigantism across all body sizes (Fig. 3, Table 1). We obtained similar results 99 

using size ratios corrected for small sample size (lnRRΔ), or by regressing island mass against 100 

mainland mass, with support for the island rule across all groups except for amphibians 101 

(Supplementary Table 3-4). This indicates that our analyses are robust to small sample size bias38 102 

or any potential spurious correlation associated to ratio regression models31,32 (Extended Data 103 

Fig. 2). Further, neither imputation nor publication bias influenced our results (Supplementary 104 

Table 5-6), with no apparent differences between island-mainland comparisons sampled from 105 

studies formally testing the island rule or compiled from unrelated data sets. 106 

Mainland body mass explained 11.4, 7.0 and 17.6% of the variance in mammals, birds and 107 

reptiles, respectively. The amount of further variance accounted for by phylogeny (0.0–29.8%), 108 

data source (1.8–25.1%), and species (25.9–53.2%) fluctuated widely among taxa (Extended 109 

Data Fig. 3). Phylogeny accounted for a relatively large amount of variance in mammals (20.1%) 110 

and reptiles (29.8%), but even in these cases the overall patterns were not driven by large effects 111 

in particular clades. Some groups tended towards gigantism and others towards dwarfism, while 112 

others contained both dwarfs or giants depending on body size (e.g., Primata, Rodentia, and 113 

Carnivora in mammals, and Viperidae, Scincidae and Iguanidae in reptiles; Extended Data Fig. 114 

4).  115 

Ecological mechanisms underlying body size evolution on islands  116 

The pattern of body size evolution in our island-mainland comparisons provides some insight 117 

into the likely mechanisms driving “island rule” effects (Extended Data Fig. 5-8, Supplementary 118 

Table 7, Supplementary Dataset 2). Overall, insular size shifts arise through some combination 119 

of ecological release from predation and competition, resource limitation, biased colonization 120 

(i.e. immigrant selection), and starvation resistance. The fact that no single factor explained 121 

island effects on body size is not surprising because some hypotheses shared overlapping 122 

predictions, making them difficult to disentangle. 123 
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Shifts in body mass of mammals were mostly explained by island size and spatial isolation (Qm = 124 

12.20, P = 0.002, Fig. 4a), resulting in more pronounced gigantism or dwarfism in small and 125 

remote islands. Birds showed similar size shifts in relation to spatial isolation and island area, but 126 

these were not statistically significant (Supplementary Table 7). In both mammals and birds, 127 

temperature had similar effects across the size range, with body size consistently larger in cool 128 

islands and smaller in warm islands (Extended Data Figs. 5e, 6e). Hence, in these groups, even 129 

large species that had undergone dwarfism were significantly larger in cool insular environments 130 

than in warm ones. Contrary to the starvation resistance hypothesis, small-sized birds did not 131 

become larger in highly seasonal islands, but large-sized birds had reduced dwarfism on islands 132 

with high seasonality in temperatures (Qm = 12.33, P < 0.001, Extended Data Fig. 6).  133 

In reptiles, the combination of island area and spatial isolation were the most important factors 134 

explaining variation in body size (Fig. 4c), with productivity and seasonality also supported but 135 

with weaker effects (Extended Data Fig. 7). Similar to mammals, the tendency towards dwarfism 136 

or gigantism in large-bodied or small-bodied reptiles was more apparent in isolated small-sized 137 

islands, with stronger effects of area than isolation (Supplementary Table 7). The effects of 138 

productivity and seasonality were only partially in line with predictions, as small-sized species 139 

were larger on islands with high seasonality, but smaller on islands with high productivity 140 

(Extended Data Fig. 7). In turn, large-bodied reptiles were smaller on islands with low 141 

productivity and high seasonality. 142 

Finally, the relationship between size ratio and mainland mass in amphibians was slightly steeper 143 

in small and remote islands (Fig. 4d), with island area being marginally more important than 144 

spatial isolation (Extended Data Fig. 8). The effect of seasonality was clearer, with amphibian 145 

species inhabiting islands with high seasonality (unpredictable environments) tending toward 146 

gigantism, whereas those from islands with low seasonality (predictable environments) being 147 

similar in size to mainland counterparts (Extended Data Fig. 8). We found no effects of diet for 148 

any of the four taxa, or precipitation for amphibians, contrary to the water availability 149 

hypothesis.  150 
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Discussion 151 

Based on comprehensive morphometric data from a worldwide sample of island fauna, we show 152 

consistent patterns of body size evolution across terrestrial vertebrates in accordance with 153 

predictions of the island rule. This finding was robust to alternative modelling approaches (island 154 

mass vs mainland mass regressions), small sample bias, data imputation, and publication bias. 155 

Moreover, we have demonstrated that insular size shifts are contextual and depend not only on 156 

the body size of mainland relatives (island rule sensu stricto) but also on the physiographic and 157 

climatic characteristics of particular island environments9.  158 

Repeated evolutionary trajectories on islands 159 

We found a clear negative relationship between insular body size variation and the body mass of 160 

mainland individuals in mammals, birds, and reptiles. Mainland body mass explains between 7.0 161 

and 17.6% of the variation in insular size divergence in these three taxonomic groups, which is 162 

similar to that reported in smaller-scale studies of bats (15%), birds (13%), snakes (42%), non-163 

volant and terrestrial mammals (11–21%), and turtles (8%)5,14,15,39,40. Contrary to these earlier 164 

studies, our analyses are corrected not only for phylogenetic relatedness, but also for variability 165 

between species and intrapopulation variability, thereby strengthening the evidence for 166 

predictable evolutionary trajectories on islands. Nevertheless, the island rule provides only a 167 

partial explanation for these trajectories because substantial variation around the trend line 168 

remains unexplained. We also conducted the first multispecies test of island rule effects in 169 

amphibians, showing that the relationship goes in the expected direction but with a weak effect 170 

(1.4 %), possibly because the body mass range in amphibians is narrower and limited to small 171 

sizes (~ 0.5-50 g) and thus most amphibians tend to gigantism on islands with reduced predation 172 

risk.  173 

Our findings are in contrast with a number of studies rejecting the island rule, including a recent 174 

review of evidence from across mammals, birds and reptiles27, as well as other taxon-specific 175 

studies focused on lizards20,41 and turtles21. On the other hand, the patterns we detect are 176 

consistent with analyses supporting the island rule in snakes19, mammals4,9 and birds5,15 We 177 

conclude that the contradictory results of previous studies may have been related to sampling 178 

bias, heterogeneity between sources and species, and phylogenetic relatedness (i.e. statistical 179 

non-independence). By accounting for these effects in our global models we are able to 180 
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demonstrate that vertebrate animals evolve in largely consistent ways on islands. Further, we 181 

have shown that the island rule is not clade-specific and instead applies to numerous clades 182 

within major taxonomic groups, particularly in mammals and birds. 183 

A corollary that emerges from the island rule is that body size converges on islands. Specifically, 184 

if insular environments select for intermediate body sizes, closer to the optimal size of the focal 185 

clade, then the size spectrum of organisms found on islands should be narrower compared to the 186 

mainland42,43. Theoretically, the optimal body size towards which small and large species may 187 

converge in low-diversity systems such as islands should correspond to the point where the trend 188 

intersects the horizontal dashed line in the relationship between size ratio and mainland mass, at 189 

which point fitness is maximized42 (but see44). Interestingly, the shift between dwarfism and 190 

gigantism in our models occurred at approximately 100-250 g in endotherms, slightly larger than 191 

the 100 g adult body mass proposed for mammals42 (but see43), and the mode of the global body 192 

size distribution of birds that separate between small- and large-bodied species (60 g)22,45,46. 193 

Additionally, our analyses suggest that the optimal body size for island reptiles should be ca. 20 194 

g, which is marginally higher than the modal body size of Lepidosaurs (14.1 g)47. Whether there 195 

is an optimal body size in island biotas has been the subject of much debate44, but overall we 196 

expect that phenotypic variability in morphometric traits will be substantially narrowed if 197 

directional selection is operating in island assemblages, a feature that warrants further 198 

investigation. Additionally, optimal phenotypes should vary with the environmental 199 

characteristics of islands, in particular their area and isolation, climate, productivity and 200 

seasonality. For example, in mammals, our results suggest that the optimal body size would be 201 

ca. 100 g and ca. 900 g in warm and cold islands, respectively. 202 

Ecological mechanisms influencing body size variation 203 

Because body size is intimately linked to many physiological and ecological characteristics of 204 

vertebrates, it may be associated with a variety of environmental factors. As a consequence, the 205 

body size of colonizing species may predictably evolve as the result of selective pressures 206 

associated with insular environments (e.g., low food resources, few competitors, no predators) 207 

and others that act across larger geographic scales (e.g., climate). For mammals and reptiles, our 208 

results suggest that insular body size shifts are indeed governed by spatial isolation and island 209 

size, with individuals becoming dwarfs or giants in remote islands of limited size. Furthermore, 210 
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the slope of the relationship between size ratio and mainland mass was slightly steeper for birds 211 

and amphibians in small remote islands than in large islands near continental land masses (Fig. 212 

4). This points to a combination of resource limitation (with small islands having fewer resources 213 

to maintain large-sized organisms48,49) along with release from interspecific competition and 214 

predation pressure in small, species-poor islands. The pattern is also consistent with biased 215 

colonization favoring larger individuals with higher dispersal abilities (immigration selection50).  216 

Conversely, our results showed that body size divergence on islands close to the mainland was 217 

minimal, reflecting two non-mutually exclusive processes. First, many of these islands were 218 

connected to the continent by land bridges so recently that phenotypic differences have not had 219 

time to accumulate. Second, regular dispersal between mainland and island populations promotes 220 

gene flow, with introgression counteracting divergent selection51,52. 221 

Besides island physiography (area and isolation), other relevant factors were temperature 222 

conditions in endotherms and resource availability and seasonality in ectothermic organisms. 223 

Mammals and birds both responded to island temperature in line with the heat conservation 224 

hypothesis, with small- and large-sized species exhibiting exacerbated gigantism and diminished 225 

dwarfism, presumably to conserve heat in colder, harsher insular environments. Additionally, 226 

temperature seasonality was an important determinant of the size of large-bodied birds, with 227 

populations on highly seasonal islands being similar in size to mainland populations. One 228 

possibility is that larger size in these cases may help maintain energy reserves during periods of 229 

low food availability, allowing them to thrive in otherwise hostile environments. Another 230 

possibility is that bird populations on highly seasonal islands – which tend to be situated at 231 

relatively high latitudes – are more often seasonally mobile or even migratory, potentially 232 

increasing gene flow with mainland populations or weakening adaptation to the local 233 

environment53. These findings add new insights to previous results regarding the role of thermal 234 

and feeding ecology on morphological divergence in island birds54,55. Traditionally, changes in 235 

feeding ecology were thought to be the prime force in driving morphological divergence in 236 

island birds54,55. Yet, our results imply that physiological mechanisms related to heat 237 

conservation (‘thermoregulation hypothesis’) and energy constraints (‘starvation resistance 238 

hypothesis’) may also shape body size evolution in island birds.  239 
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In reptiles, we find some evidence that resource availability and seasonality are important factors 240 

explaining body size evolution, with some deviations from the patterns predicted. As 241 

hypothesized, large species are much smaller on islands with low resource availability, and small 242 

species are larger on islands with high seasonality. Yet, unexpectedly, small species are larger on 243 

islands with low productivity, perhaps because increased intraspecific competition favors large 244 

individuals under the high population densities that reptiles often attain on islands56,57. 245 

Overall, most amphibians tended to gigantism, presumably as a result of increased growth rate or 246 

lower mortality due to reduced predation pressure on islands58. Additionally, we found that body 247 

size of amphibians consistently increased on islands where resources were highly seasonal and 248 

unpredictable, perhaps to maximize energy reserves and withstand long periods without food, for 249 

example during aestivation or hibernation59. We did not find a clear relationship between 250 

precipitation and body size, suggesting that water availability is not a key factor. It appears that 251 

gigantism in island amphibians is mostly driven by physiological mechanisms that maximize 252 

growth rate, particularly in smaller, more isolated islands. These findings should be further 253 

explored when more data on island-mainland pairwise populations of amphibians become 254 

available.   255 

Body size evolution in extinct species 256 

Our analyses focused on extant species for which we could gather information on the variation 257 

around the morphometric estimates, along with sample size (essential for meta-analyses). The 258 

widespread extinction of large species on islands, including dwarf morphotypes of large species 259 

such as insular elephants in Sicily and the Aegean islands60,61, may have masked the historical 260 

pattern of phenotypic variation on islands62. Giant insular birds54,63, primates64,65, and lizards66, 261 

along with large insular turtle species, went extinct during the Holocene and late Pleistocene67, 262 

most likely because of overhunting and the introduction of invasive species68,69. Overall, it is 263 

estimated that human colonization of oceanic islands was followed by the extinction of 27% of 264 

insular endemic mammals70, as well as over 2000 bird species in the Pacific region alone71, with 265 

these losses biased towards large-bodied, flightless, ground�nesting species68. Extinct species 266 

may shed new light on size evolution in insular vertebrates because species extinctions have 267 

substantially altered the biogeography of body size in island faunas, potentially leading to 268 

downsized insular communities72,73. For example, the predominance in our dataset of smaller-269 
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bodied organisms could reflect the extinction of large species on islands68, or simply the fact that 270 

few islands support large species. Either way, further studies should include data from extinct 271 

species as this may alter or strengthen the signal that we report for extant species39. 272 

We foresee that, under global change, the extinction of insular species and the introduction of 273 

novel (invasive) species may trigger new equilibria, with concomitant shifts in the composition 274 

of insular communities and the opening of novel niches to which species may respond via 275 

genetic adaptations and phenotypic plasticity. Recent evidence indicates that even introduced 276 

species on islands, which were not included in our analysis, predictably evolve towards dwarfism 277 

or gigantism74-76. In theory, as the Anthropocene gathers pace, further extinctions will drive a 278 

decline in mean body size of the overall island community, pushing optimal body sizes towards 279 

the lower end of body size ranges in the different vertebrate groups. 280 

Conclusions 281 

Of the many evolutionary implications of living on islands – together known as the ‘island 282 

syndrome’2 – the effects on body size are the most widely known and controversial. We have 283 

shown that these ‘island rule’ effects are widespread in vertebrate animals, although the evidence 284 

for amphibians is inconclusive. Morphological changes were directional for species at the 285 

extremes of the body size range in mammals, birds and reptiles, following the predicted pattern 286 

of convergence towards intermediate “optimum” body sizes, in line with optimal body size 287 

theory42,43,45. Although this convergence towards morphological optima may result from natural 288 

selection or phenotypic plasticity, the exact mechanism producing these changes on islands is 289 

still not well understood. Nonetheless, we found that consistent transitions towards intermediate 290 

body sizes were associated with a combination of factors, indicating a range of different 291 

ecological mechanisms. Our results highlight the contextual nature of insular size shifts, where 292 

island physiographic, climatic and ecological characteristics play a fundamental role in shaping 293 

body size evolution, reinforcing the idea that large-scale macroevolutionary patterns do not arise 294 

from single mechanisms but are often the result of multiple processes acting together77,78. 295 
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Methods 296 

Data collection 297 

We collected baseline morphometric data from articles included in a recent assessment of the 298 

island rule27, as well as other compilations assembled to test the hypothesis in reptiles20, 299 

mammals6, and birds15. To expand this sample, we then performed a literature search (February 300 

2020) in Web Of Science Core Collection (WOS) using the following search string: (“island 301 

rule” OR “island effect” OR “island syndrome” OR island*) AND (gigantism OR dwarfism OR 302 

“body size” OR weight OR SVL OR snout-vent length OR length OR size) AND (mammal* OR 303 

bird* OR avian OR amphibia* OR reptile*) (Appendix 1). Because this search was 304 

complementary to the data we have gathered from previous compilations6,15,20,27, we only 305 

downloaded the first 500 hits out of a total of 33,431 hits ordered by relevance, and removed 306 

duplicates already included in our dataset. We reviewed every island-mainland comparison 307 

reported in published studies and traced primary source data when possible to extract original 308 

measurements. We also extracted data from all studies containing morphometric measurements 309 

for insular populations when these could be matched with equivalent data published elsewhere 310 

for relevant mainland taxa. We excluded problematic data, such as comparisons that were not 311 

supported by taxonomic or phylogenetic evidence, or which reported morphometric data 312 

restricted to single specimens or without sample size. In addition, we excluded comparisons 313 

based on extinct taxa since they are often known from very few or incomplete specimens 314 

(Supplementary Dataset 3).  315 

It has been argued that research on the island rule might be prone to ascertainment bias, where 316 

researchers are more likely to notice and measure animals of extreme body size when conducting 317 

research on islands41. To help overcome this problem, we collected body size data not only from 318 

studies testing the island rule, or reporting dwarfism and gigantism in island fauna, but also from 319 

studies that did not specifically test hypotheses related to the island rule. We matched unpaired 320 

insular populations with independent data from mainland populations by performing species-321 

specific searches in WOS and Google Scholar. We also compiled morphometric data for 442 322 

insular and 407 mainland bird species from an independent global dataset of avian functional 323 

traits79. 324 
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Large islands may be more ‘mainland like’ in relation to factors that are thought to affect body 325 

size (i.e. competition, resource availability and predation5). Thus, when major islands were at 326 

least 10 times larger than a nearby island, we treated the large island as the mainland 327 

comparison, following previous studies testing the island rule4,5,20. Consequently, a single mid-328 

sized island can simultaneously be treated as the continent in comparisons with smaller islands, 329 

and the island in comparisons with larger continents. When authors reported data referring to an 330 

entire archipelago instead of a specific island (3.2% of cases), we used the size of the largest 331 

island as island area. Removing these cases from our analyses did not qualitatively affect our 332 

results (Supplementary Table 8).  333 

Our final dataset contained 529 data sources and 2,479 island-mainland comparisons7,10,36,58,79-334 
602. In total, we collated morphometric measurements for 63,561 insular and 154,875 mainland 335 

specimens representing mammals (1,058 island-mainland comparisons), birds (695 336 

comparisons), reptiles (547 comparisons) and amphibians (179 comparisons) from across the 337 

globe (Fig. 2). 2,068 island-mainland comparisons (83.4%) were within species (e.g. subspecies) 338 

comparisons, and 411 (16.6%) were between-species comparisons. Insular populations were 339 

sampled from an array of islands varying widely in size (0.0009–785,753 km2), climate, and 340 

level of spatial isolation (0.03–3,835 km from mainland). To explore the drivers of body-size 341 

shifts in insular populations, we also sampled species with a wide range of average body masses 342 

(0.18–234,335 g). We collated data on body size indices (body mass, body length, cranial and 343 

dental measurements) of different taxa in island and mainland populations following strict 344 

morphological, phylogenetic and biogeographic criteria. Specifically, we always compared the 345 

same body size index for island and mainland populations. For within-species comparisons, we 346 

compared island and mainland populations based on the information given by the authors of the 347 

relevant study (e.g. taking note of which mainland source populations are likely to inhabit a 348 

particular island because of colonization history or isolation via rising sea levels89,101,240,386,548). 349 

When we matched comparisons independently, we used information published in the study 350 

reporting the insular form, selecting the geographically closest mainland population whenever 351 

possible. In addition, we prioritized latitudinal alignment of mainland and island populations to 352 

avoid confounding effects of latitudinal variation in body size. In the case of island endemics, we 353 

compared island populations to their closest mainland relative whenever these were identifiable 354 

by phylogenetic data or other information reported in each particular study. This usually meant 355 
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selecting their sister species or the geographically closest representative of a sister clade or 356 

polytomy (Supplementary Dataset 1). If we could not reliably establish the closest mainland 357 

relative, we discarded the data (see Supplementary Dataset 3).  358 

When more than one body size index was reported in published studies, we prioritized those 359 

indices related most closely to body mass (Supplementary Table 2). For mammals, we selected 360 

indices in this order of preference: body mass, body length, cranial length (greatest skull length 361 

or condylobasal length), and dentition (e.g. canine length)5. For birds, preferred indices were 362 

body mass, wing length, tarsus length and bill length. Finally, for amphibians and reptiles, size 363 

was reported as body mass, snout-vent-length (SVL), carapace length (CL, for turtles) and total 364 

length (TL, including SVL and tail length). In all cases, we included measurements for adults 365 

only. To avoid size biases attributable to sexual size dimorphism, we calculated the pooled mean 366 

for both sexes and the combined SD using standard formulae for combining groups603. When 367 

information was only available for one sex (male or female), we restricted our size comparisons 368 

to the sex for which we had morphometric data in both mainland and island populations. Data 369 

from zoos or studies that could not be georeferenced were discarded.  370 

To overcome the problem that different authors report size using different indices, we used 371 

allometric relationships to convert island and mainland size to body mass equivalents, thereby 372 

enabling cross-taxa and cross-study comparisons. Although this conversion is imprecise, 373 

morphological indices and body mass are nonetheless highly correlated across the global scale 374 

and wide range of body sizes within our samples (providing more accurate predictions than 375 

simply assuming an exponent ~3, as in previous studies testing the island rule5,9). We used 376 

published allometric relationships where available (see Supplementary Table 2), or derived them 377 

based on published datasets47,179,604-609 and other data sources (Supplementary Dataset 4). To 378 

calculate allometric relationships, we used OLS (Ordinary Least Square) models of the log10 379 

transformed body mass against the log10 transformed body size index (e.g. condylobasal length, 380 

Supplementary Table 2, Supplementary Dataset 4).  381 

For birds, we complemented published data with standardized morphometric measurements from 382 

3,618 museum specimens and live individuals of 436 insular and 404 mainland bird species 383 

(see79). We used wing length in the main analyses instead of tarsus length because the former is a 384 

better predictor of body mass in our dataset (R2
wing = 0.89 vs R2

tarsus = 0.69, Supplementary Table 385 
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2) (see also610). Although wing length may change during moult or thereafter because of wear, 386 

these effects are negligible in relation to interspecific differences79 and minimized by calculating 387 

averages across multiple individuals. Further, interobserver differences between measurements 388 

may explain some variation in wing length estimates, but again this bias was shown to have 389 

negligible effects in our dataset by comparing repeated measures from different observers 390 

(see79). To assess the consistency in our results, we repeated analyses using tarsus length, another 391 

popular proxy of overall body size in birds611. Our results were unchanged (Fig. S2).  392 

To select suitable comparisons for museum specimens, we first classified species as either 393 

insular or continental by overlapping IUCN range polygons with a GIS land layer including 394 

continental land masses. For each insular species we then identified continental sister species 395 

from avian phylogenies612, using the method described above. We excluded bird species that are 396 

highly pelagic or aerial (e.g. swifts) and fully migratory species because in these groups it is 397 

unclear whether insular and mainland forms experience different environments15. Further, we 398 

also excluded flightless bird species, because morphological changes may be due to 399 

flightlessness rather than island dwelling per se15. 400 

We calculated the response ratio (lnRR, eq. 1) as effect size in our meta-regressions, where we 401 

divided the mean body mass of individuals from an insular population ���  by that of the nearest 402 

mainland relative, ���, and then applied the natural logarithm. Unlike unlogged ratios, the 403 

sampling distribution of lnRR is normal, particularly for small samples30, and thus less prone to 404 

statistical artefacts associated with ratio-based regressions.  405 

���� � ln 	���
���


         (Eq. 1)  406 

 407 

Response ratios greater than zero indicate a shift towards larger sizes (gigantism) whereas ratios 408 

less than zero indicate shifts towards smaller sizes (dwarfism). Besides mean measurements, we 409 

recorded measures of variation, i.e. standard deviation (SD), standard error (SE) or coefficient of 410 

variation (CV), and sample sizes of the body size indices in island and mainland organisms. SD 411 

and sample sizes were used to calculate sampling variances (Eq. 2), which were then used to 412 

weight each response ratio (coupled with the amount of heterogeneity, i.e. the variance in the 413 

underlying effects)30.   414 
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 416 

SDs were extracted from raw data when possible. If ranges were provided instead of SD (or SE 417 

or CV), we calculated SD following613. If neither ranges nor measures of variation were reported, 418 

but the reported sample size was > 1, we imputed SD based on the coefficient of variation from 419 

all complete cases (“Bracken approach”614). Imputation was done for 22% of all cases in 420 

mammals, 1.1% in birds, 11% in reptiles and 7.3% in amphibians, all within the upper limit of 421 

imputations (<30% of all cases per group) advised in previous studies90.  422 

For each study and island-mainland comparison, we compiled the mainland and island names, 423 

the study reference, the body size index used, the geographic coordinates, the distance to the 424 

closest mainland (spatial isolation, km) and the island area (km2). We completed missing data on 425 

island characteristics using the UNEP island database (http://islands.unep.ch/) and the 426 

Threatened Island Biodiversity Database (TIB, http://tib.islandconservation.org/). Missing 427 

information was calculated using Google Earth. Additionally, we extracted the Normalized 428 

Difference Vegetation Index (NDVI) as a proxy for resource availability on islands615. We also 429 

calculated the standard deviation of NDVI to assess seasonality in leaf or vegetation cover, as an 430 

index of seasonality in available resources. NDVI was downloaded from NASA Ames 431 

Ecological Forecasting Lab (https://lpdaacsvc.cr.usgs.gov/appeears/task/area).  432 

Because climate influences both resource requirements and primary productivity, body size 433 

evolution should also be influenced by climatic conditions on islands. We thus extracted island 434 

climatic conditions from WorldClim v. 2.0 (http://worldclim.org616). Specifically, we used 435 

variables that are more closely associated with the proposed underlying mechanisms of 436 

Bergmann’s rule (i.e. thermoregulation and starvation resistance): mean annual temperature, 437 

annual precipitation, and seasonality of temperature and precipitation617. We assumed that the 438 

time period for these bioclimatic variables (1970–2000), although not necessarily matching the 439 

actual time period of body size evolution in the insular populations, roughly represents the 440 

climatic conditions in the Holocene, a period relatively climatically stable where most of our 441 

populations became isolated (i.e., after the last glacial maximum; see also9). Because climatic 442 

variability across cells substantially exceeds variation within cells in the Holocene, current layers 443 

are considered adequate for geographic comparisons. All spatial variables were downloaded at 444 
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0.1-degree resolution, and we averaged all cells per island to obtain a mean value of each 445 

environmental variable (e.g., temperature, NDVI, precipitation, etc.). Finally, for each species 446 

included in our dataset, we collated diet information from EltonTraits for birds and mammals618, 447 

and from other sources for reptiles608,619, and classified species as carnivores (> 50% diet 448 

consisting of vertebrates) or non-carnivores (< 50% diet consisting of vertebrates), following 449 

previous studies79,620. As all amphibians in our dataset are carnivores621, we did not record their 450 

diet.  451 

Data analyses 452 

To test the island rule hypothesis, we used phylogenetic meta-regressions between lnRR and 453 

body mass of mainland relatives, following most previous studies of the island rule (e.g. 4,5,7 454 
6,622,623). A negative slope for this relationship would support the island rule (Fig. 1).  455 

The use of multiple populations of the same species can overestimate the actual number of 456 

degrees of freedom, generating type-1 errors. We controlled for this by adding ‘Species’ as a 457 

random effect intercept in our analyses. Additionally, body size evolution in insular vertebrates 458 

is heavily influenced by phylogenetic effects, with species within entire clades seemingly 459 

showing either dwarfism or gigantism6. Thus, we accounted for phylogeny by including the 460 

phylogenetic relatedness correlation matrix as a random effect. The species term captures the 461 

similarities of effect sizes within the same species, while the phylogenetic term represents the 462 

similarity due to relatedness624. We also added ‘Source’ as a random effect intercept to account 463 

for between-source variability and the fact that we had multiple response ratios per study. In 464 

some cases, ‘Source’ represented the combination of two sources of data, one for the island size 465 

and one for the mainland size. Finally, we included an observation level random effect, which 466 

represents the residual variance that needs to be explicitly modelled in a meta-analysis29. Total 467 

heterogeneity, and heterogeneity due to phylogeny, source and species identity were computed 468 

following Nakagawa & Santos (2012)29.  469 

We tested the robustness of our results against several potential limitations. Because multiple 470 

island populations were often compared with a single mainland population, we accounted for 471 

these repeated measures in a variance-covariance matrix where the diagonal includes the 472 

sampling variances, and the off-diagonals of the matrix represent the shared variance 473 

(covariance) among the response ratios due to the common mainland population625. Further, we 474 
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compared our main results to models fitted with lnRR and sampling variances corrected for small 475 

sample size38.  Another potential problem is that regressions using ratios may lead to spurious 476 

correlations31,32. Thus, we conducted an additional analysis testing the statistical significance of 477 

body size trends by regressing island mass against mainland mass, following previous 478 

studies4,5,20,41. Phylogenetic meta-regressions were run using island mass as the response 479 

variable, and mainland mass as the predictor (both transformed with natural-log), with random 480 

effects as specified above, and sampling variance sdi
2/massi

2*Ni. This approach has some 481 

limitations in being harder to visualize and less effective in considering the sampling variance of 482 

measurements (representing intrapopulation variability), yet nonetheless provides an alternative 483 

approach for assessing the robustness of our results, in line with previous studies4,5,20,41. Finally, 484 

we assessed publication bias by testing the influence of data source on the relationship between 485 

size ratio and mainland mass. This involved comparing whether patterns differed in island-486 

mainland pairs extracted from studies testing the island rule (38.6% of cases) versus pairs 487 

extracted from studies not testing the island rule (61.4% of cases). 488 

Testing ecological hypotheses explaining insular size shifts 489 

To evaluate the relative role of key mechanisms proposed to influence body size evolution in 490 

island fauna, we compiled a further range of variables (Supplementary Table 1, Extended Data 491 

Fig. 1). These included island area (linked to both resource limitation and to ecological release 492 

from both predation and competition) and spatial isolation (linked to reduced colonization from 493 

mainland populations for smaller taxa, i.e. immigration selection50). In addition, we included 494 

climatic and resource seasonality, which are linked to the starvation resistance hypothesis, and 495 

productivity and species diet, each of which are linked to resource limitation. Because body size 496 

evolution may be influenced by climate (e.g. Bergmann’s rule)9,626, we also included mean 497 

temperature, which is linked to body size adaptations for enhancing heat conservation or 498 

dissipation (thermoregulation hypothesis). For amphibians, we included precipitation as a proxy 499 

for water supply linked to aquatic habitats, moisture and humidity (water availability 500 

hypothesis).  501 

We modelled interactions between body size and each of the explanatory variables because we 502 

expected these factors to differentially affect species of different sizes, thus producing different 503 

effects in small, medium-sized and large species. In line with the ecological release and resource 504 
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limitation hypotheses, we expected the slope of the lnRR-mainland mass relationship to be 505 

steeper in smaller islands, isolated from the mainland and with fewer or no predators (Fig. 1). 506 

Further, if resource availability is a key factor, we also expected large species to undergo 507 

dwarfism on islands with low productivity48,49, and for dwarfism to be accentuated in dietary 508 

niches with high energy requirements, including carnivory9. In addition, high seasonality in 509 

resources and in temperature was expected to result in increased gigantism in small-sized 510 

species, because energy reserves increase faster than energy depletion as body size increases 511 

(starvation resistance hypothesis)9,627. We hypothesized that smaller species would benefit 512 

comparatively more by increasing in size than larger species. Because amphibians are generally 513 

small-sized, we also fitted a model for this group with only additive terms (mainland mass + 514 

sdNDVI) where seasonality in resources would result in larger body sizes for all species. Finally, 515 

mechanisms driven by thermoregulation and water availability predict that body size shifts are 516 

associated with temperature and rainfall, respectively. Mean temperature was expected to 517 

predominantly affect endotherms and small ectotherms with good thermoregulating abilities 518 

(reptiles and anurans) living on cold islands which, compared to similar-sized species on islands 519 

with a mild climate, would exhibit more pronounced gigantism to enhance heat conservation. We 520 

fitted the effect of temperature as an interactive (mainland mass × Tmean) or additive term 521 

(mainland mass + Tmean) to assess whether only small species or all species would increase in 522 

size in low temperature islands (see details in Supplementary Table 1, Extended Data Fig 1, 523 

Supplementary Table 7).  524 

Prior to modeling, all the moderators (explanatory variables) were inspected and log10-525 

transformed if necessary to meet normality assumptions in model errors. We considered a result 526 

to be significant when the 95% confidence interval (CI) did not cross zero. We assessed the 527 

explained heterogeneity using Omnibus test for moderators (Qm) and the percentage of variance 528 

explained by the moderators using R2 marginal628. All figures show the relationship between size 529 

response ratio and body mass, and how this might be altered by the mechanisms explained 530 

above. 531 

All analyses were performed in R 3.5.3629 using the packages metafor v2.0630 and metagear 532 

v0.4631 for the meta-regression models and data imputation, metaDigitise v1.0632 for data 533 

extraction from plots, ape v5.2633 for estimating branch lengths and resolving polytomies, rotl 534 
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v3.0.4634 for building the phylogenies for our species by searching the Open Tree Taxonomy635 535 

and retrieving the phylogenetic relationships from the Open Tree of Life636, sf v0.7-3 637 and 536 

raster v2.7-15638 for spatial analyses, dplyr v0.8.0.1639 and reshape2 v1.4.3640 for data 537 

manipulation and ggplot2 v 3.3.0.9000641 and ggpubr v0.1.8 642 for data visualization. ArcMap 538 

10.5 was used for Figure 2. Silhouettes in figures were extracted from ‘phylopic’ 539 

(https.phylopic.org). The PRISMA Checklist for systematic reviews is available in Appendix 3. 540 

Data availability 541 

All data are available at https://github.com/anabenlop/Island_Rule and 542 

https://figshare.com/projects/Body_size_evolution_in_insular_vertebrates/89102. 543 

Code availability  544 

The code to conduct the analyses is available at https://github.com/anabenlop/Island_Rule. 545 
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Figures and Tables 2135 

Figure 1. Conceptual figure showing body size evolution in island populations. According to the 2136 
island rule, changes in body size of island populations are dependent on the body mass of 2137 
mainland relatives, with small species tending to increase in size on islands (gigantism) and large 2138 
species tending to decrease in size (dwarfism). By plotting the log response ratio (lnRR) between 2139 
insular mass and mainland mass, against mainland mass, we can test if insular populations 2140 
adhere to the rule (intercept > 0 and slope < 0) (blue line). Mechanisms proposed to drive ‘island 2141 
rule’ effects are mainly based on reduced predation, inter- and intra-specific competition, and 2142 
food availability, suggesting that the relationship will steepen in small, remote islands (red line).  2143 

Figure 2. Location of island populations included in our analyses for mammals (N = 1058, blue), 2144 
birds (N = 695, orange), reptiles (N = 547, yellow), and amphibians (N = 179, green). The size of 2145 
each point indicates the number of species sampled on each island; some points overlap. See Fig. 2146 
S1 for a 4-panel figure with the location of insular populations separated for each taxonomic 2147 
group.  2148 

Figure 3. Relationship between lnRR (log response ratio between island mass and mainland 2149 
body mass) and body mass in the mainland for (a) mammals (N = 1058), (b) birds (N = 695), (c) 2150 
reptiles (N = 547) and (d) amphibians (N = 179). Models were fitted using phylogenetic 2151 
multi�level meta-regression models with mainland body mass as moderator, and observation-2152 
level ID, source ID, species ID and phylogeny as random effects. lnRR > 0 indicates gigantism; 2153 
lnRR < 0 indicates dwarfism; and lnRR = 0 indicates stasis (no shift in body size from mainland 2154 
to island populations). The size of points represents the inverse of the sampling variance for each 2155 
paired island-mainland response ratio in the model. Shaded areas represent 95% confidence 2156 
intervals. Note that y-axes have different scales.  2157 

Figure 4. The effect of island area and spatial isolation on insular size shifts in terrestrial 2158 
vertebrates for (a) mammals (N = 1058), (b) birds (N = 695), (c) reptiles (N = 547) and (d) 2159 
amphibians (N = 179). Continuous variables are represented at the 10% and 90% quantile for 2160 
each extreme (close vs remote islands; small vs large islands). lnRR > 0 indicates gigantism; 2161 
lnRR < 0 indicates dwarfism; and lnRR = 0 indicates stasis (no shift in body size from mainland 2162 
to island populations). Shaded areas represent 95% confidence intervals.  2163 
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Table 1. Parameter estimates for the phylogenetic meta-regression models testing the generality 2165 
of the island rule in terrestrial vertebrates. k: number of island-mainland comparisons (lnRR), 2166 
Qm: test of moderators (log10(mainland mass). R2

m: marginal R2, estimated percentage of 2167 
heterogeneity explained by the moderator (fixed effects). R2

c: conditional R2, percentage of 2168 
heterogeneity attributable to fixed and random effects. 2169 

 2170 

Class k Intercept  

(CI) 

Slope  

(CI) 

Qm 

(p-value) 

R2
m R2

c 

Mammals 1058 0.208   
(0.052 – 0.365) 

-0.088  
(-0.122 – -0.055) 

27.30 
(p < 0.001) 

11.4 56.4 

Birds 695 0.216 
(0.117 – 0.315)  

-0.104  
(-0.145 – -0.064)  

25.40 
(p < 0.001) 

7.0 43.4 

Reptiles 547 0.410  
(0.006 – 0.814)  

-0.305 
(-0.419 – -0.190) 

27.21 
(p < 0.001) 

17.6 66.6 

Amphibians 179 0.195  
(0.012 – 0.377) 

-0.107 
(-0.320 – 0.107) 

0.96  
(p = 0.328) 

1.4 67.1 
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