
PAPERS

The ISO/MPEG Unified Speech and Audio Coding
Standard – Consistent High Quality for all Content

Types and at all Bit Rates

MAX NEUENDORF,1 AES Member, MARKUS MULTRUS,1 AES Member, NIKOLAUS RETTELBACH1,

GUILLAUME FUCHS1, JULIEN ROBILLIARD1, JÉRÉMIE LECOMTE1, STEPHAN WILDE1,
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In early 2012 the ISO/IEC JTC1/SC29/WG11 (MPEG) finalized the new MPEG-D Unified
Speech and Audio Coding standard. The new codec brings together the previously separated
worlds of general audio coding and speech coding. It does so by integrating elements from
audio coding and speech coding into a unified system. The present publication outlines all
aspects of this standardization effort, starting with the history and motivation of the MPEG
work item, describing all technical features of the final system, and further discussing listening
test results and performance numbers which show the advantages of the new system over
current state-of-the-art codecs.

0 INTRODUCTION

With the advent of devices that unite a multitude of func-

tionalities, the industry has an increased demand for an

audio codec that can deal equally well with all types of

audio content including both speech and music at low bit

rates. In many use cases, e.g., broadcasting, movies, or au-

dio books, the audio content is not limited to only speech

or only music. Instead, a wide variety of content must be

processed including mixtures of speech and music. Hence,

a unified audio codec that performs equally well on all

types of audio content is highly desired. Even though the

largest potential for improvements is expected at the lower

end of the bit rate scale, a unified codec requires, of course,

to retain or even exceed the quality of presently available

codecs at higher bit rates.

Audio coding schemes, such as MPEG-4 High Efficiency

Advanced Audio Coding (HE-AAC) [1,2], are advanta-

geous in that they show a high subjective quality at low

bit rates for music signals. However, the spectral domain

models used in such audio coding schemes do not perform

equally well on speech signals at low bit rates.

Speech coding schemes, such as Algebraic Code Excited

Linear Prediction (ACELP) [3], are well suited for repre-

senting speech at low bit rates. The time domain source-

filter model of these coders closely follows the human
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Fig. 1. General structure of a modern audio codec with a core
codec accompanied by parametric tools for coding of bandwidth
extension and stereo signals. USAC closely follows this coding
paradigm. Fig. 1 (a) shows the encoder. Fig. 1(b) shows the cor-
responding decoder structure. Bold arrows indicate audio signal
flow. Thin arrows indicate side information and control data.

speech production process. State-of-the-art speech coders,

such as the 3GPP Adaptive Multi-Rate Wideband (AMR-

WB) [4,5], perform very well for speech even at low bit

rates but show a poor quality for music. Therefore, the

source-filter model of AMR-WB was extended by trans-

form coding elements in the 3GPP AMR-WB+ [6,7]. Still,

for music signals AMR-WB+ is not able to provide an audio

quality similar to that of HE-AAC(v2).

The following sections will first introduce the reader

to the above-mentioned state-of-the-art representatives of

modern audio and speech coding, HE-AACv2 and AMR-

WB+. Re-iterating our contribution to the 132nd AES Con-

vention last year [8], the ISO/IEC MPEG work item is

described, followed by a technical description of the stan-

dardized coding system at a much higher level of detail than

in previous publications [9,10]. Concluding, performance

figures from the MPEG Verification Tests are presented and

potential applications of the new technology are discussed.

1 STATE OF THE ART

1.1 General Codec Structure

Modern audio codecs and speech codecs typically ex-

hibit a structure as shown in Fig. 1. This scheme consists

of three main components: (1) a core-coder (i.e., transform

or speech coder) that provides a high quality and largely

wave-form preserving representation of low and interme-

diate frequency signal components; (2) a parametric band-

width extension, such as Spectral Band Replication (SBR)

[2], which reconstructs the high frequency band from repli-

cated low frequency portions through the control of addi-

tional parameters; and (3) a parametric stereo coder, such

as “Parametric Stereo” [1,11], which represents stereo sig-

nals by means of a mono downmix and a corresponding

set of spatial parameters. For low bit rates the parametric

tools are able to reach much higher coding efficiency with

a good quality / bit rate trade-off. At higher bit rates, where

the core coder is able to handle a wider bandwidth and also

discrete coding of multiple channels, the parametric tools

can be selectively disabled. A general introduction to these

concepts can be found in [12].

1.2 HE-AACv2

General transform coding schemes, such as AAC [13,1,

2], rely on a sink model motivated by the human auditory

system. By means of this psychoacoustic model, tempo-

ral and simultaneous masking is exploited for irrelevance

removal. The resulting audio coding scheme is based on

three main steps: (1) a time/frequency conversion; (2) a

subsequent quantization stage, in which the quantization

error is controlled using information from a psychoacoustic

model; and (3) an encoding stage, in which the quantized

spectral coefficients and corresponding side information

are entropy-encoded. The result is a highly flexible coding

scheme, which adapts well to all types of input signals at

various operating points.

To further increase the coding efficiency at low bit rates,

HE-AACv2 combines an AAC core in the low frequency

band with a parametric bandwidth and stereo extension.

Spectral Band Replication (SBR) [2] reconstructs the high

frequency content by replicating the low frequency sig-

nal portions, controlled by parameter sets containing level,

noise, and tonality parameters. “Parametric Stereo” [1,11]

is capable of representing stereo signals by a mono down-

mix and corresponding sets of inter-channel level, phase,

and correlation parameters.

1.3 AMR-WB+

Speech coding schemes, such as AMR-WB [4,5], rely

on a source model motivated by the mechanism of human

speech production. These schemes typically have three ma-

jor components: (1) a short-term linear predictive coding

scheme (LPC), which models the vocal tract; (2) a long-

term predictor (LTP) or “adaptive codebook,” which mod-

els the periodicity in the excitation signal from the vocal

chords; and (3) an “innovation codebook,” which encodes

the non-predictable part of the speech signal. AMR-WB

follows the ACELP approach that uses an algebraic rep-

resentation for the innovative codebook: a short block of

excitation signal is encoded as a sparse set of pulses and

associated gain for the block. The pulse codebook is rep-

resented in algebraic form. The encoded parameters in a

speech coder are thus: the LPC coefficients, the LTP lag

and gain, and the innovative excitation. This coding scheme

can provide high quality for speech signals even at low bit

rates.

To properly encode music signals, in AMR-WB+ the

time domain speech coding modes were extended by a

transform coding mode for the excitation signal (TCX).

The AMR-WB+ standard also features a low rate paramet-

ric high frequency extension as well as parametric stereo

capabilities.
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1.4 Other Audio Coding Schemes

For matters of completeness the reader should be pointed

to other audio coding variants such as MPEG Spatial Audio

Object Coding (SAOC), which addresses highly efficient

audio coding based on separate object input and render-

ing [14]. Other examples focus on discriminating between

speech and music signals and feeding the signal to special-

ized codecs depending on the outcome of the classification

[15,16,17].

2 THE MPEG UNIFIED SPEECH AND AUDIO
CODING WORK ITEM

Addressing the obvious need for an audio codec that can

code speech and music equally well, ISO/IEC MPEG is-

sued a Call for Proposal (CfP) on Unified Speech and Audio

Coding (USAC) within MPEG-D [18] at the 82nd MPEG

Meeting in October 2007. The responses to the Call were

evaluated in an extensive listening test, with the result that

the joint contribution from Fraunhofer IIS and VoiceAge

Corp. was selected as reference model zero (RM0) at the

85th MPEG meeting in summer 2008 [10]. Even at that

point the system fulfilled all requirements for the new tech-

nology, as listed in the CfP [19].

In the subsequent collaborative phase the RM0 based

system was further refined and improved within the MPEG

Audio Subgroup until early 2011, when the technical devel-

opment was essentially finished. The mentioned improve-

ments were introduced by following a well defined core

experiment process. In this manner further enhancements

from Dolby Labs., Philips, Samsung, Panasonic, Sony, and

NTT Docomo were integrated into the system.

After technical completion of the standard, the MPEG

Audio Subgroup conducted another comprehensive subjec-

tive Verification Test in summer 2011. The results of these

tests are summarized in Section 4.

The standard reached International Standard (IS) stage

in early 2012 by achieving a positive balloting vote from

ISO’s National Bodies voting for the standard [20].

3 TECHNICAL DESCRIPTION

3.1 System Overview

USAC preserves the same overall structure of HE-

AACv2 as depicted in Fig. 1. An enhanced SBR (eSBR)

tool serves as a bandwidth extension module, while MPEG

Surround 2-1-2 supplies parametric stereo coding function-

ality. The core coder consists of an AAC based transform

coder enhanced by speech coding technology.

Fig. 2 gives a more detailed insight into the workings of

the USAC core decoder. Since in MPEG the encoder is not

normatively specified, implementers are free to choose their

own encoder architecture as long as it produces valid bit-

streams. As a result, USAC provides complete freedom of

encoder implementation and—just like any MPEG codec—

permits continuous performance improvement even years

after finalization of the standardization process.
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Fig. 2. Overview of USAC core decoder modules. The main
decoding path features a Modified Discrete Cosine Transform
(MDCT) domain coding part with scalefactor based or LPC based
noise shaping. An ACELP path provides speech coder functional-
ity. The Forward Aliasing Cancellation (FAC) enables smooth and
flawless transitions between transform coder and ACELP. Follow-
ing the core decoder, bandwidth extension and stereo processing is
provided. Bold black lines indicate audio signal flow. Thin arrows
indicate side information and control data.

USAC retains all capabilities of AAC. In Fig. 2 the left

signal path resembles the AAC coding scheme. It comprises

the function of entropy decoding (arithmetic decoder), in-

verse quantization, scaling of the spectral coefficients by

means of scalefactors, and an inverse MDCT transform.

With respect to the MDCT, all flexibility inherited from

AAC regarding the choice of the transform window, such

as length, shape, and dynamic switching is maintained. All

AAC tools for discrete stereo or multichannel operation

are included in USAC. As a consequence, USAC can be

operated in a mode equivalent to AAC.

In addition, USAC introduces new technologies that of-

fer increased flexibility and enhanced efficiency. The AAC

Huffman decoder was replaced by a more efficient context-

adaptive arithmetic decoder. The scalefactor mechanism as

known from AAC can control the quantization noise shap-

ing with a fine spectral granularity. If appropriate, it can

be substituted by a Frequency Domain LPC Noise Shaping

(FDNS) mechanism that consumes fewer bits. The USAC

MDCT features a larger set of window lengths. The 512

and 256 MDCT block sizes complement the AAC 1024

and 128 sizes, providing a more suitable time-frequency

decomposition for many signals.

3.2 Core-Coder

In the following subsections each of the technologies

employed in the core coder are described in more detail.
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3.2.1 Arithmetic Coder

In the transform-coder path, a context adaptive arithmetic

coder is used for entropy coding of the spectral coefficients.

The arithmetic coder works on pairs of two adjacent spectral

coefficients (2-tuples). These 2-tuples are split into three

parts: (1) the sign bits; (2) the two most significant bit-

planes; (3) the remaining least significant bit-planes. For

the coding of the two most significant bit-planes, one out of

64 cumulative frequency tables is selected. This selection

is derived from a context, which is modeled by previously

coded 2-tuples (see Fig. 3).

The remaining least significant bits are coded using one

out of three cumulative frequency tables. This cumulative

frequency table is chosen depending on the magnitude of

the most significant bits in the two uppermost bit-planes.

The signs are transmitted separately at the end of the

spectral data. This algorithm allows a saving from 3 to more

than 6% of the overall bitrate over AAC Huffman coding

while showing comparable complexity requirements [21].

3.2.2 Quantization Module

A scalar quantizer is used for the quantization of spec-

tral coefficients. USAC supports two different quantization

schemes, depending on the applied noise shaping: (1) a non-

uniform quantizer is used in combination with scalefactor

based noise shaping. The scalefactor based noise shaping

is performed on the granularity of pre-defined scalefactor

bands. To allow for an additional noise shaping within a

scalefactor band, a power-law quantization scheme is used

[22]. In this non-uniform quantizer the quantization inter-

vals get larger with higher amplitude. Thus, the increase in

signal-to-noise ratio with rising signal energy is lower than

in a uniform quantizer. (2) A uniform quantizer is used

in combination with LPC-based noise shaping. The LPC

based noise shaping is able to model the spectral envelope

continuously and without subdivision in fixed scalefactor
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bands. This alleviates the need for an extra intra-band noise

shaping.

3.2.3 Noise Shaping Using Scalefactors or LPC

USAC relies on two tools to shape the coding noise

when encoding the MDCT coefficients. The first tool is

based on a perceptual model and uses a set of scalefactors

applied to frequency bands. The second tool is based on

linear predictive modeling of the spectral envelope com-

bined with a first-order filtering of the transform coeffi-

cients that achieves both frequency-domain noise shaping

and sample-by-sample time-domain noise shaping. This

second noise shaping tool, called FDNS for Frequency-

Domain Noise Shaping, can be seen as a combination of

perceptual weighting from speech coders and Temporal

Noise Shaping (TNS). Both noise shaping tools are ap-

plied in the MDCT domain. The scalefactor approach is

more adapted to stationary signals because the noise shap-

ing stays constant over the whole MDCT frame whereas

FDNS is more adapted to dynamic signals because the noise

shaping evolves smoothly over time. Since the perceptual

model using scalefactors is already well documented [22],

only FDNS is described below.

When LPC based coding is employed, one LPC filter

is decoded for every window within a frame. Depending

on the decoded mode, there may be one up to four LPC

filters per frame, plus another filter when initiating LPC

based coding. Using these LPC coefficients, FDNS oper-

ates as follows: for every window, the LPC parameters are

converted into a set of M = 64 gains gk[m] in the fre-

quency domain, defining a coarse spectral noise shape at

the overlap point between two consecutive MDCT win-

dows. Then, in each of the M bands, a first-order inverse

filtering is performed on the spectral coefficients Cmf [k],

as shown in Fig. 4, to interpolate the noise level within

the window boundaries noted as instants A and B in Fig.

5. Therefore, instead of the conventional LPC coefficient

interpolation and time-domain filtering as done in speech

codecs, the process of noise shaping is applied only in the
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frequency domain. This provides two main advantages:

first, the MDCT can be applied to the original signal (rather

than the weighted signal as in speech coding), allowing

proper time domain aliasing cancellation (TDAC) on the

transition between scalefactor and LPC based noise shap-

ing; and second, because of the “TNS-like” feature of

FDNS, the noise shape is finely controlled on a sample-

by-sample basis rather than on a frame-by-frame basis.

3.2.4 (Time-Warped) MDCT

The Modified Discrete Cosine Transform (MDCT) is

well suited for harmonic signals with a constant fundamen-

tal frequency F0. In this case only a sparse spectrum with a

limited number of relevant lines has to be coded. But when

F0 is rapidly varying, typically for voiced speech, the fre-

quency modulation of the individual harmonic lines leads

to a smeared spectrum and therefore a loss in coding gain.

The Time Warped MDCT (TW-MDCT) [23] overcomes

this problem by applying a variable resampling within one

block prior to the transform. This resampling reduces or,

ideally, completely removes the variation of F0. The reduc-

tion of this variation causes a better energy compaction of

the spectral representation and consequently an increased

coding gain compared to the classic MDCT. Furthermore,

a careful adaptation of the window functions and of the av-

erage sampling frequency retain the perfect reconstruction

property and the constant framing of the classic MDCT.

The necessary warp information needed for the inverse re-

sampling at the decoder is efficiently coded and part of the

side information in the bitstream.

3.2.5 Windowing

In terms of windows and transform block sizes, USAC

combines the well-known advantages of the 50% overlap

MDCT windows of length 2048 and 256 (transform core of

1024 and 128) from AAC with the higher flexibility of TCX

with additional transform sizes of 512 and 256. The long

transform windows allow optimal coding of distinctly tonal

signals, while the shorter windows with shorter overlaps

allow coding of signals with an intermediate and highly

varying temporal structure. With this set of windows the

codec can adapt its coding mode much more closely to the

128
t

Fig. 6. Schematic overview over the allowed MDCT windows in
USAC. Dotted lines indicate transform core boundaries. Bottom
right shows ACELP window for reference. Transitional windows
are not shown.

Q2 
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Q4 

Q3 + extension of 8 bits 
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Fig. 7. Embedded structure of the AVQ quantizer.

signal than possible before. Fig. 6 shows the window and

transform lengths and general shapes.

Similar to the start and stop windows of AAC, transitional

windows accommodate the variation in transform length

and coding mode [24]. In the special case of transitions to

and from ACELP, the Forward Aliasing Cancellation takes

effect (see Section 3.2.9).

Further flexibility is achieved by allowing a 768 sample

based windowing scheme. In this mode all transform and

window sizes are reduced to 3
4
th of the above-mentioned

numbers. This allows even higher temporal resolution,

which is particularly useful in situations where the codec

runs on a reduced core sampling rate. This mode is com-

bined with an 8:3 QMF filterbank upsampling in eSBR (see

Section 3.3.2) such that a higher audio bandwidth can be

achieved at the same time.

3.2.6 Quantization of LPC coefficients

USAC includes a new variable bit rate quantizer struc-

ture for the LPC filter coefficients. Rather than us-

ing trained codebooks that are memory-consuming, an

extremely memory-efficient 2-stage approach based on
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algebraic vector quantization (AVQ, see Section 3.2.8) is

used. An additional advantage of this approach is that the

spectral distortion can be essentially maintained below a

pre-set threshold by implicit bit allocation, thus making

LPC quantization much less signal dependent. Another as-

pect of this variable bit rate quantizer is the application

of LPC prediction within a frame. Specifically, if more

than one LPC filter is transmitted within a frame, a subset

of these filters are quantized differentially. This decreases

significantly the bit consumption of the LPC quantizer in

particular for speech signals. In this 2-stage quantizer, the

first stage uses a small trained codebook as a first coarse ap-

proximation and the second stage uses a variable-rate AVQ

quantizer in a split configuration (16-dimensional LPC co-

efficients quantized in 2 blocks of 8 dimensions).

3.2.7 ACELP

The time domain encoder in USAC is based on state-

of-the-art ACELP speech compression technology. Several

speech coding standards, in particular in cellular systems,

integrate ACELP. The ACELP module in USAC uses essen-

tially the same components as in AMR-WB+ [6] but with

some improvements. LPC quantization was modified such

that it is variable in bit rate (as described in Section 3.2.6).

And the ACELP technology is more tightly integrated with

other components of the codec. In ACELP mode, every

quarter frame of 256 samples is split into 4 subframes of

64 samples (or for quarter frames of 192 samples it is split

into 3 subframes of 64 samples). Using the LPC filter for

that quarter frame (either a decoded filter or an interpolated

filter depending on the position in a frame) each subframe

is encoded as an excitation signal passed through the LPC

filter. The excitation signal is encoded as the sum of two

components: a pitch (or LTP) component (delayed, scaled

version of the past excitation with properly chosen delay;

also called adaptive codebook (ACB)) and an innovative

component. The latter is encoded as a sparse vector formed

by a series of properly placed non-zero impulses and corre-

sponding signs and global gain. Depending on the available

bit rate, the ACELP innovation codebook (ICB) size can be

either of 12, 16, 20, 28, 36, 44, 52, or 64 bits. The more bits

are spent for the codebook, the more impulses can be de-

scribed and transmitted. Besides the LPC filter coefficients,

the parameters transmitted in an ACELP quarter frame are:

Mean energy 2 bits
LTP pitch 9 or 6 bits
LTP filter 1 bit
ICB 12, 16, 20, 28, 36, 44, 52, or 64 bits
Gains 7 bits

All parameters are transmitted every subframe (every

64 samples), except the Mean energy which is transmitted

once every ACELP quarter frame.

3.2.8 Algebraic Vector Quantization

Algebraic Vector Quantization (AVQ) is a structured

quantization technique requiring very little memory and

is intended to quantize signals with uniform distribution.

The AVQ tool used in USAC is another component taken

from AMR-WB+. It is used to quantize LPC coefficients

and FAC parameters (see Section 3.2.9).

The AVQ quantizer is based on the RE8 lattice [25],

which has a nice densely packed structure in 8 dimen-

sions. An 8-dimensional vector in RE8 can be represented

by a so-called “leader” along with a specific permutation

of the leader components. Using an algebraic process, a

unique index for each possible permutation can be calcu-

lated. Leaders with statistical equivalence can be grouped

together to form base codebooks that will define the layers

of the indexing. Three base codebooks have been defined:

Q2, Q3, and Q4 where indexing all permutations of the

selected leaders consumes 8, 12, and 16 bits respectively.

To extend the quantizer to even greater size, instead of

continuing to add larger base codebooks (Q5 and over), a

Voronoi extension has been added to extend algebraically

the base codebook. With each additional 8 bits (1 bit per

dimension), the Voronoi extension doubles the size of the

codebook. Therefore Q3 and Q4 extended by a factor of 2

will use 20 and 24 bits respectively, and for a factor of 4,

they will use 28 and 32 bits respectively. Hence, although

the first layer (Q2) requires 8 bits, each additional layer

in the AVQ tool adds 4 bits to the indexing (1/2 bit res-

olution). It should be noted that Q2 is a subset of Q3. In

the USAC bitstream, the layer number (Qn) is indexed sep-

arately using an entropy code since small codebooks are

more probable than large codebooks.

3.2.9 Transition Handling

The USAC core combines two domains of quantization,

the frequency domain, which uses MDCT with overlapped

windows, and the time domain, which uses ACELP with

rectangular non-overlapping windows. To compute the syn-

thesis signal, a decoded MDCT frame relies on TDAC of

adjacent windows whereas the decoded ACELP excitation

uses the LPC filtering. To handle transitions in an effective

way between the two modes, a new tool, called “Forward

Aliasing Cancellation” (FAC) has been developed. This tool

“Forwards” to the decoder the “Aliasing Cancellation” data

required to retrieve the signal from the MDCT frame usu-

ally accomplished by TDAC. Hence, at transitions between

the two domains, additional parameters are transmitted, de-

coded, and processed to obtain the FAC synthesis as shown

in Fig. 8. To recover the complete decoded signal, the FAC

synthesis is merely combined with the windowed output of

the MDCT. In the specific case of transitions from ACELP

to MDCT, the ACELP synthesis and following zero-input

response (ZIR) of the LPC filter is windowed, folded, and

used as a predictor to reduce the FAC bit consumption.

3.3 Enhanced SBR Bandwidth Extension

3.3.1 Basic Concept of SBR

The Spectral Band Replication (SBR) technology was

standardized in MPEG-4 in 2003, as an integral part of High

Efficiency AAC (HE-AAC). The tool is a high frequency

reconstruction tool that operates on a core coder signal and
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extends the bandwidth of the output based on the avail-

able lowband signal and control data from the encoder.

The principle of SBR and HE-AAC is elaborated on in

[2,26, 27].

The SBR decoder operating on the AAC as standardized

in MPEG-4 is depicted in Fig. 9. The system shown is a

dual rate system where the SBR algorithm operates in a

QMF domain and produces an output of wider bandwidth

than and twice the sampling rate of the core coded signal

going into the SBR module.

The SBR decoder generates a high frequency signal

by copy-up methods in the QMF domain as indicated in

Fig. 10. An inverse filtering is carried out within each QMF

subband in order to adjust the tonality of the subband in

accordance with parameters sent from the encoder.

The high frequency regenerated signal is subsequently

envelope adjusted based on time/frequency tiles of enve-
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Fig. 10. Basic principle of copy-up based SBR as used in MPEG-4
in combination with AAC.

lope data transmitted from the encoder. During the en-

velope adjustment, additional noise and sinusoids are op-

tionally added according to parametric data sent from the

encoder.

3.3.2 Alternative Sampling Rate Ratios

MPEG-4 SBR was initially designed as a 2:1 system.

Here, typically 1024 core coder samples are fed into a

32 band analysis QMF filterbank. The SBR tool performs

a 2:1 upsampling in the QMF domain. After reconstructing

the high frequency content, the signal is transformed back

to time domain by means of a 64 band synthesis QMF

filterbank. This results in 2048 time domain samples at

twice the core coder sampling rate.

For USAC, the traditional 2:1 system was extended by

two additional operating modes. First, to cope with low core

coder sampling rates, which are usually used at very low

bitrates, a variation of the SBR module similar as standard-

ized in DRM (Digital Radio Mondiale) has been adopted

into the USAC standard. In this mode, the 32 band analysis

QMF filterbank is replaced by a 16 band QMF analysis

filterbank. Hence, the SBR module is also capable of op-

erating as a 4:1 system, where SBR runs at four times the

core coder sampling rate. In this case, the maximum output

audio bandwidth the system can produce at low sampling

rates is increased by a factor of two compared to that of the

traditional 2:1 system. This increase in audio bandwidth

results in a substantial improvement in subjective quality at

very low bit rates.

Second, USAC is also capable of operating in an

8:3 operating mode. In this case, a 24 band analysis QMF

filterbank is used. In combination with a 768 core coder

frame size, this mode allows for the best trade-off between

optimal core-coder sampling rate and high temporal SBR

resolution at medium bitrates, e.g., 24 kbit/s.
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domain harmonic transposer, the PVC decoder, and the Inter-TES
decoder modules.

3.3.3 Harmonic Transposition

In USAC a harmonic transposer of integer order T maps

a sinusoid with frequency ω into a sinusoid with frequency

Tω, while preserving signal duration. This concept was

originally proposed for SBR in [28], and the quality advan-

tage over the frequency shift method, especially for com-

plex stationary music signals, was verified in [29].

Three orders, T = 2, 3, 4, are used in sequence to produce

each part of the desired output frequency range using the

smallest possible transposition order. If output above the

fourth order transposition range is required, it is generated

by frequency shifts. When possible, near critically sampled

baseband time domains are created for the processing to

minimize computational complexity.

The benchmark quality transposer is based on a fine reso-

lution sine windowed DFT. The algorithmic steps for T = 2

consist of complex filterbank analysis, subband phase mul-

tiplication by two, and filterbank synthesis with time stride

twice of that of the analysis. The resulting time stretch is

converted into transposition by a sampling rate change. The

higher orders T = 3, 4 are generated in the same filterbank

framework. For a given target subband, inputs from two

adjacent source subbands are combined by interpolating

phases linearly and magnitudes geometrically. Controlled

by one bit per core coder frame, the DFT transposer adap-

tively invokes a frequency domain oversampling by 50%

based on the transient improvement method of [30].

To allow the use of USAC in low-power applications such

as portable devices, an alternate, low complexity, transposer

that closely follows the bandwidth extension principle of

the DFT transposer can be used as shown in Fig. 11. This

low complexity transposer operates in a QMF domain that

allows for direct interfacing with the subsequent SBR pro-

cessing. The coarse resolution QMF transposer suppresses

intermodulation distortion by using overlapping block pro-

cessing [31]. The finer time resolution of the QMF bank

itself allows for a better transient response than that of

the DFT without oversampling. Moreover, a geometrical

magnitude weighting inside the subband blocks reduces

potential time smearing.

The inherent spectral stretching of harmonic transposi-

tion can lead to a perceptual detachment of single overtones

from periodic waveforms having rich overtone spectra. This

effect can be attributed to the sparse overtone structure in

the stretched spectral portions, since, e.g., a stretching by a

factor of two only preserves every other overtone. This is

mitigated by the addition of cross products. These consist of

contributions from pairs of source subbands separated by a

distance corresponding to the fundamental frequency [30].

The control data for cross products is transmitted once per

core coder frame and consists of an on/off flag and seven

bits indicating the fundamental frequency in the case that

the flag is set.

3.3.4 Predictive Vector Coding

Adding the Predictive Vector Coding (PVC) scheme to

the eSBR tool introduces a new coding scheme for the SBR

spectral envelopes. Whereas in MPEG-4 SBR the spectral

envelope is transmitted by means of absolute energies, PVC

predicts the spectral envelope in high frequency bands from

the spectral envelope in low frequency bands. The coeffi-

cient matrices for the prediction are coded using vector

quantization. This improves the subjective quality of the

eSBR tool, in particular for speech content at low bit rates.

Generally, for speech signals, there is a relatively high cor-

relation between the spectral envelopes of low frequency

bands and high frequency bands, which can be exploited

by PVC. The block diagram of the eSBR decoder including

the PVC decoder is shown in Fig. 11.

The analysis and synthesis QMF banks and HF generator

remain unchanged, but the HF envelope adjuster is modi-

fied to process the high frequency envelopes generated by

the PVC decoder. In the PVC decoder, the high frequency

envelopes are generated by multiplying a prediction coef-

ficient matrix with the low frequency envelopes. A predic-

tion codebook in the PVC decoder holds 128 coefficient

matrices. An index of the prediction coefficient matrix that

provides the lowest difference between predicted and actual

envelopes is transmitted as a 7 bit value in the bitstream.

3.3.5 Inter-Subband-Sample Temporal Envelope
Shaping (Inter-TES)

For transient input signals audible distortion (pre/post-

echoes) can occur in the high frequency components gen-

erated by eSBR due to its limited temporal resolution.

Although splitting a frame into several shorter time seg-

ments can avoid the distortion, this requires more bits for

eSBR information. In contrast, Inter-TES can reduce the

distortion with smaller number of bits by taking advantage
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of the correlation between temporal envelopes in the low

and high frequency bands. Inter-TES requires 1 bit for its

activation and 2 bits for an additional parameter described

below.

Fig. 11 shows the Inter-TES module as part of the eSBR

block diagram. When Inter-TES is activated, the temporal

envelope of the low frequency signal is first calculated, and

the gain values are then computed by adjusting the temporal

envelope of the low frequency signal according to a trans-

mitted parameter. Finally, the gain values are applied to

the transposed high frequency signal including noise com-

ponents. As shown in Fig. 11, the shaped high frequency

signal and the independent sinusoids are added if necessary,

and then fed to the synthesis QMF bank in conjunction with

the low frequency signal.

3.4 Stereo Coding

3.4.1 Discrete vs. Parametric Stereo Coding

There are two established approaches for coding of

stereophonic audio signals. “Discrete stereo coding”

schemes strive to represent the individual waveforms of

each of the two channels of a stereo signal. They uti-

lize joint stereo coding techniques such as mid/side (M/S)

coding [32] to take inter-channel redundancy and binaural

masking effects into account. “Parametric stereo coding”

schemes [33,34, 35], on the other hand, are designed to

represent the perceived spatial sound image of the stereo

signal. They utilize a compact parametric representation

of the spatial sound image that is conveyed as side infor-

mation in addition to a mono downmix signal and used in

the decoder to recreate a stereo output signal. Parametric

stereo coding is typically used at low target bit rates, where

it achieves a higher coding efficiency than discrete stereo

coding. USAC extends, combines, and integrates these two

stereo coding schemes, thus bridging the gap between them.

3.4.2 Parametric Stereo Coding with MPEG
Surround 2-1-2

Parametric stereo coding in USAC is provided by an

MPEG Surround 2-1-2 (MPS 2-1-2) downmix/upmix mod-

ule that was derived from MPEG Surround (MPS) [11,36,

37]. The signal flow of the MPS 2-1-2 processing is de-

picted in Fig. 12.

At the encoder, MPS calculates a downmix signal and

parameters that capture the essential spatial properties of

the input channels. These spatial parameters, namely the

inter-channel level differences (CLDs) and inter-channel

cross-correlations (ICCs), are only updated at a relatively

low time-frequency resolution based on the limits of the

human auditory system to perceive spatial phenomena, thus

requiring a bit rate of only a few kbit/s.

In the decoder, a decorrelated signal D, generated from

the downmixed input signal M, is fed along with M into

the upmixing matrix H, as depicted in the right dashed

box in Fig. 12. The coefficients of H are determined by

the parametric spatial side information generated in the

encoder.

Stereo sound quality is enhanced by utilizing phase pa-

rameters in addition to CLDs and ICCs. It is well-known

that inter-channel phase differences (IPDs) can play an im-

portant role in stereo image quality, especially at low fre-

quencies [33]. In contrast to parametric stereo coding in

MPEG-4 HE-AAC v2 [1], phase coding in USAC only re-

quires the transmission of IPD parameters, since it has been

shown that the overall phase differences parameters (OPDs)

can be analytically derived from the other spatial parameters

on the decoder side [38,39]. The USAC parametric stereo

phase coding can handle anti-phase signals by applying an

unbalanced weighting of the left and right channels during

downmixing and upmixing processes. This improves sta-

bility for stereo signals where out-of-phase signal compo-

nents would otherwise cancel each other in a simple mono

downmix.

3.4.3 Unified Stereo Coding

In a parametric stereo decoder, the stereo signal is re-

constructed by an upmix matrix from the mono downmix

signal and a decorrelated version of the downmix, as shown

in the right part of Fig. 12. MPS enhances this concept by

optionally replacing parts of the decorrelated signal with

a residual waveform signal. This ensures scalability up to

the same transparent audio quality achievable by discrete

stereo coding, whereas the quality of a parametric stereo

coder without residual coding might be limited by the para-

metric nature of the spatial sound image description. Unlike

MPS, where the residual signals are coded independently

from the downmix signals, USAC tightly couples the cod-

ing of the downmix and residual signals.

As described above, in addition to CLD and ICC param-

eters, USAC also employs IPD parameters for coding the

stereo image. The combination of parametric stereo coding

involving IPD parameters and integrated residual coding is

referred to as “unified stereo coding” in USAC. In order

to minimize the residual signal, an encoder as shown in

the left half of Fig. 13 is used. In each frequency band,

the left and right signals L and R are fed into a traditional

mid/side (i.e., sum/difference) transform. The resulting sig-

nals are gain normalized by a factor c. A prediction of the

scaled difference signal is made by multiplication of the

mid (i.e., sum) signal M with a complex-valued parameter

α. Both c and α are a function of the CLD, ICC, and IPD
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Fig. 13. Block diagram of unified stereo encoder (left) and decoder
(right).

parameters. The resulting M and res signals are then fed

into the 2-channel USAC core encoder that includes a cor-

respondingly modified psychoacoustic model and can ei-

ther encode the downmix and residual signal directly or can

encode a mid/side transformed version known as “pseudo

L/R” signal.

The decoder follows the inverse path, as depicted in the

right half of Fig. 13. The optimal order of MPS and SBR

processing in the USAC decoder depends on the bandwidth

of the residual signal. If no or a bandlimited residual signal

is used, it is advantageous to apply mono SBR decoding

followed by MPS 2-1-2 decoding. At higher bit rates, where

the residual signal can be coded with the same bandwidth

as the downmix signal, it is beneficial to apply MPS 2-1-2

decoding prior to stereo SBR decoding.

3.4.4 Transient Steering Decorrelator

Applause signals are known to be a challenge for para-

metric stereo coding. In a simple model, applause signals

can be thought of as being composed of a quasi-stationary

noise-like background sound originating from the dense,

far-off claps, and a collection of single, prominently ex-

posed claps. Both components have very different prop-

erties that need to be addressed in the parametric upmix

[40].

Upmixed applause signals usually lack spatial envelop-

ment due to the insufficiently restored transient distribution

and are impaired by temporally smeared transients. To pre-

serve a natural and convincing spatio-temporal structure, a

decorrelating technique is needed that can handle both of

the extreme signal characteristics as described by the ap-

plause model. The Transient Steering Decorrelator (TSD)

is an implementation of such a decorrelator [41]. TSD ba-

sically denotes a modification of the MPS 2-1-2 processing

within USAC.

The block diagram of the TSD embedded in the upmix

box of the MPS 2-1-2 decoder module is shown in Fig. 14.

The mono downmix is split by a transient separation unit

with fine temporal granularity into a transient signal path

and a non-transient signal path. Decorrelation is achieved

separately within each signal path through specially adapted

decorrelators. The outputs of these are added to obtain the

final decorrelated signal. The non-transient signal path M1

utilizes the MPS 2-1-2 late-reverb-type decorrelator. The

transient signal path M2 comprises a parameter-controlled

transient decorrelator. Two frequency independent param-

eters that entirely guide the TSD process are transmitted in

ICC, CLD and TSD data
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Fig. 14. TSD (highlighted by gray shading) within the MPS 2-1-2
module of the USAC decoder.

the TSD side information: a binary decision that controls

the transient separation in the decoder and phase values

that spatially steer the transients in the transient decorrela-

tor. Spatial reproduction of transient events does not require

fine spectral granularity. Hence, if TSD is active, MPS 2-1-2

may use broadband spatial cues to reduce side information.

3.4.5 Complex Prediction Stereo Coding

MPS 2-1-2 and unified stereo coding employ complex

QMF banks, which are shared with the SBR bandwidth

extension tool. At high bit rates, however, the SBR tool is

typically not operated, while unified stereo coding would

still provide an improved coding efficiency compared to

traditional joint stereo coding techniques such as mid/side

coding. In order to achieve this improved coding efficiency

without the computational complexity caused by the QMF

banks, USAC provides a complex prediction stereo coding

tool [42] that operates directly in the MDCT domain of the

underlying transform coder.

Complex prediction stereo coding applies linear predic-

tive coding principles to minimize inter-channel redun-

dancy in mid signal M and side signal S. The prediction

technique is able to compensate for inter-channel phase

differences as it employs a complex-valued representation

of either M or S in combination with a complex-valued

prediction coefficient α. The redundant coherent portions

between M and S signal are minimized—and the signal

compaction maximized—by subtracting from the smaller

of the two a weighted and phase-adjusted version of the

larger one—the downmix spectrum D—leading to a residual

spectrum E. Downmix and residual are then perceptually

coded and transmitted along with prediction coefficients.

Fig. 15 shows the block diagram of a complex prediction

stereo encoder and decoder, where L and R represent the

MDCT spectra of the left and right channel, respectively.

The key here is to utilize a complex-valued downmix

spectrum D obtained from a modulated complex lapped

transform (MCLT) [43] representation for which the MDCT

is the real part and whose imaginary part is the modified

discrete sine transform (MDST). Given that in USAC, M

and S are obtained via real-valued MDCTs, an additional

real-to-imaginary (R2I) transform is required so that D can

be constructed in both encoder and decoder [42]. In USAC,

an efficient approximation of the R2I transform is utilized
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a)

b)

Fig. 15. Block diagram of complex prediction stereo encoder a)
and decoder b).
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Fig. 16. The AAC family of profiles.

that operates directly in the frequency domain and does not

increase the algorithmic delay of the coder.

3.5 System Aspects

3.5.1 Profiles

MPEG defines profiles as a combination of standardized

tools. While all tools are always retained in the standard, the

profile provides a subset or combination of tools that serve

specific industry needs. Although there are many profiles

defined in MPEG-4 Audio, the most successful and widely

adopted ones are the “AAC family” of profiles, i.e., the

“AAC Profile,” the “HE-AAC v1 Profile,” and the “HE-

AAC v2 Profile.”

The AAC family of profiles, as outlined in Fig. 16, is

hierarchical. The structure of the profiles ensures that (a)

an AAC decoder plays AAC LC (Low Complexity), (b)

an HE-AAC decoder plays AAC LC and SBR, and (c) an

HE-AAC v2 decoder plays AAC LC, SBR, and PS.

In the MPEG USAC standard, two profiles are defined:

1) Extended HE-AAC Profile,

2) Baseline USAC Profile.

Extended High Efficiency AAC Profile

USAC

Mono/Stereo
AAC LC SBR PS

Fig. 17. The Extended HE-AAC Profile.

The Baseline USAC Profile contains the complete USAC

codec except for the DFT transposer, the time-warped fil-

terbank, and the MPS fractional delay decorrelator.

The Extended High Efficiency AAC Profile contains all

of the tools of the High Efficiency AAC v2 Profile and is as

such capable of decoding all AAC family profile streams. In

order to exploit the consistent performance across content

types at low bit rates, the profile additionally incorporates

mono/stereo capability of the Baseline USAC Profile as

outlined in Fig. 17.

As a result the Extended High Efficiency AAC Profile

represents a natural evolution of one of the most successful

families of profiles in MPEG Audio.

On the other hand, the Baseline USAC Profile provides

a clear stand-alone profile for applications where a uni-

versally applicable codec is required but the capability of

supporting the existing MPEG-4 AAC profiles is not rele-

vant.

The worst case decoding complexity of both profiles

is listed in Tables 1 and 2. The complexity numbers are

indicated in terms of Processor Complexity Units (PCU)

and RAM Complexity Units (RCU). PCUs are specified in

MOPS and RCUs are expressed in kWords (1000 words).

Each profile typically consists of several levels. The lev-

els are defined hierarchically and denote the worst case

complexity for a given decoder configuration. A higher

level indicates an increased decoder complexity, which goes

along with support for a higher number of channels or a

higher output sampling rate.

First implementions of an Extended High Efficiency

AAC Profile decoder indicate comparable complexity and

memory requirements as for High Efficiency AAC v2 Pro-

file when operated at the same level.

3.5.2 Transport

The way of signaling and transport of the USAC payload

is very similar to MPEG-4 HE-AACv2. As for HE-AACv2,

the concept of a signaling within MPEG-4 Audio is sup-

ported. For this purpose, a new Audio Object Type (AOT)

for USAC is defined within the MPEG-4 AudioSpecific-

Config. The AudioSpecificConfig can also carry the Usac-

Config data, which is needed to properly set up the decoder.

The mandatory explicit signaling of all USAC decoder

tools, such as SBR and PS, avoids several problems of HE-

AACv2. For the reason of backward compatibility to de-

coders not supporting SBR or Parametric Stereo, an implicit

signaling was introduced in HE-AACv2. As a consequence,

a decoder at start-up was not able to clearly determine

output sampling rate, channel configuration, or number of
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Table 1. Baseline USAC Profile processor and RAM complexity depending on decoder level.

Level Max. channels Max. sampling rate [kHz] Max. PCU Max. RCU

1 1 48 7 6
2 2 48 12 11
3 5.1 48 31 28
4 5.1 96 62 28

samples per frame. In contrast to HE-AACv2, a USAC de-

coder unambiguously determines its configuration by read-

ing the UsacConfig data at start-up.

A set of audioProfileLevelIndication values allows for

the signaling of the required decoder profile and level.

As for HE-AACv2, the frame-wise payload (UsacFrame)

directly corresponds to MPEG-4 access units. In combina-

tion with the MPEG-4 signaling, a multitude of transport

formats natively supports the carriage of USAC. For stream-

ing applications, the use of, e.g., LATM/LOAS [1], IETF

RFC 3016 [44], and RFC 3640 [45] is possible. For broad-

casting applications, MPEG-2 transport stream [46] may

be used. Finally, the MP4 and 3GPP file formats [47,48]

provide support for file-based applications.

MP4 and 3GPP file format-based applications can now

benefit from mandatory edit list support in USAC decoders

to provide an exact time alignment: a decoder can recon-

struct the signal with the exact starting and ending times, as

compared to the original signal. Thus, additional samples at

the beginning or end, introduced by frame-based process-

ing and other buffering within the codec, are removed on

the decoder side, ensuring, e.g., gapless playback.

3.5.3 Random Access

Various tools in USAC may exploit inter-frame corre-

lation to reduce the bit demand. In SBR, MPS 2-1-2 and

complex prediction stereo coding, time differential coding

relative to the previous frame may be used. The arithmetic

coder may refer to a context based on the previous frame.

Though these techniques improve coding efficiency for the

individual frames, they come at the cost of introducing a

source of inter-frame dependencies. This means that a given

frame may not be decoded without the knowledge of the

previous frame.

In case of transmission over an error prone channel or

in case of broadcasting where a continuously transmitted

stream is received and shall be decoded starting with a ran-

domly received first frame, these inter-frame dependencies

can make the tune-in phase challenging.

For the reasons listed above, USAC audio streams

contain random access frames that can be decoded en-

tirely independent from any previous frame (“independent

frames”). The information whether a frame acts as an “in-

dependent frame” is conveyed in the first bit of the USAC

frame and can be easily retrieved.

The frame independence is achieved by resetting the

arithmetic coder context and forcing SBR, MPS 2-1-2, and

complex prediction stereo coding to frequency-differential

coding only. The independent frame serves as safe starting

points for random access decoding, also after a frame loss.

In addition to the indication of independent frames, great

importance was attached to an explicit signaling of po-

tential core-coder frame dependent information. Wherever

window size, window shape, or the need for FAC data is

usually derived from the previous frame, this information

can be unambiguously determined from the payload of any

given independent frame.

4 PERFORMANCE

4.1 Listening Test Description

Three listening tests were performed to verify the quality

of USAC. The objective of these verification tests was to

confirm that the goals set out in the original Call for Propos-

als are met by the final standard [18,49]. ISO/IEC National

Bodies could then take the test results as documented in

the Verification Test report [50] into account when casting

their final vote for USAC. Since the goal of USAC was the

development of an audio codec that performs at least as

good as the better of the best speech codec (AMR-WB+)

and the best audio codec (HE-AACv2) around, the veri-

fication tests compared USAC to these codecs for mono

Table 2. Extended High Efficiency AAC Profile processor and RAM complexity depending on
decoder level.

Level Max. channels Max. sampling rate [kHz] Max. PCU Max. RCU

1 n/a n/a n/a n/a
2 2 48 (Note 1) 12 11
3 2 48 (Note 1) 15 11
4 5.1 (Note 2) 48 25 28
5 5.1 (Note 2) 96 49 28
6 7.1 (Note 2) 48 34 37
7 7.1 (Note 2) 96 67 53

Note 1: Level 2 and Level 3 differ for the decoding of HE-AACv2 bitstreams with respect to the max. AAC
sampling rate in case Parametric Stereo data is present [1]. Note 2: USAC is limited to mono or stereo.
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Table 3. Conditions for Test 1 (mono at low bitrates).

Condition Label

Hidden reference HR
Low pass anchor at 3,5 kHz1 LP3500
Low pass anchor at 7 kHz LP7000
USAC at 8 kbit/s USAC-8
USAC at 12 kbit/s USAC-12
USAC at 16 kbit/s USAC-16
USAC at 24 kbit/s USAC-24
HE-AAC v2 at 12 kbit/s HE-AAC-12
HE-AAC v2 at 24 kbit/s HE-AAC-24
AMR-WB+ at 8 kbit/s AMR-8
AMR-WB+ at 12 kbit/s AMR-12
AMR-WB+ at 24 kbit/s AMR-24

Table 4. Conditions for Test 2 (stereo at low bitrates).

Condition Label

Hidden reference HR
Low pass anchor at 3.5 kHz LP3500
Low pass anchor at 7 kHz LP7000
USAC at 16 kbit/s USAC-16
USAC at 20 kbit/s USAC-20
USAC at 24 kbit/s USAC-24
HE-AAC v2 at 16 kbit/s HE-AAC-16
HE-AAC v2 at 24 kbit/s HE-AAC-24
AMR-WB+ at 16 kbit/s AMR-16
AMR-WB+ at 24 kbit/s AMR-24

and stereo at several bit rates. The results also provide the

possibility to create a quality versus bit rate curve (a.k.a.

rate-distortion curve) showing how the perceived quality

of USAC progresses at different bit rates. The conditions

included in each test are given in Tables 3 to 5.

Two further audio codecs were included as references:

HE-AACv2 and AMR-WB+. In order to assess whether

the new technology exceeds even the combined references

codec performance, the concept of the Virtual Codec (VC)

was introduced. The VC score is derived from the two

reference codecs by choosing the better of the HE-AACv2

or AMR-WB+ score for each item at each operating point.

Consequently the VC as a whole is always at least as good

as the reference codecs and often better. It thus constitutes

an even higher target to beat.

4.2 Test Items

Twenty-four test items were used in the test, consisting of

eight items from each of three content categories: Speech,

Speech mixed with Music, and Music. Test items were

stereo signals sampled at 48 kHz and were approximately

8 seconds in duration. A large number of relatively short

test items were used so that the items could encompass a

greater diversity of content. Mono items were derived from

the stereo items by either averaging left and right channel

signals or taking only the left channel if averaging would

result in significant comb filtering or phase cancellation.

1 Bandlimited but keeping the same stereo width as the original

(hidden reference)

Table 5. Conditions for Test 3 (stereo at high bitrates).

Condition Label

Hidden reference HR
Low pass anchor at 3.5 kHz LP3500
Low pass anchor at 7 kHz LP7000
USAC at 32 kbit/s USAC-32
USAC at 48 kbit/s USAC-48
USAC at 64 kbit/s USAC-64
USAC at 96 kbit/s USAC-96
HE-AAC v2 at 32 kbit/s HE-AAC-32
HE-AAC v2 at 64 kbit/s HE-AAC-64
HE-AAC v2 at 96 kbit/s HE-AAC-96
AMR-WB+ at 32 kbit/s AMR-32

Table 6. MUSHRA Subjective Scale.

Descriptor Range

EXCELLENT 80 to 100
GOOD 60 to 80
FAIR 40 to 60
POOR 20 to 40
BAD 0 to 20

All items were selected to be challenging for all codecs

under test.

4.3 Test Methodology

All tests followed the MUSHRA methodology [51] and

were conducted in an acoustically controlled environment

(such as a commercial sound booth) using reference quality

headphones.

All items were concatenated to form a single file for

processing by the systems under test. USAC processing

was done using the Baseline USAC Profile encoder and

decoder.

Fifteen test sites participated in the three tests. Of these,

13 test sites participated in test 1, 8 test sites in test 2,

and 6 test sites in test 3. Listeners were post-screened and

only those that showed consistent assessments were used

in the statistical analysis. This post-screening consisted of

checking whether, for a given listener in a given test, the

Hidden Reference (HR) was always given a score larger

than or equal to 90 and whether the anchors are scored

monotonic (LP3500 ≤ LP7000 ≤ HR). Only the scores of

listeners having met these two post-screening conditions

were retained for statistical analysis. After post-screening,

tests 1, 2 and 3 had 60, 40 and 25 listeners, respectively.

4.4 Test Results

Figs. 18 to 20 show the average absolute scores for each

codec, including the VC, at the different operating points

tested. Note that the scores between the tested points for

a given codec are linearly interpolated in these Figures to

show the trend of the quality/bit rate curve. The scores from

all test sites, after listener post-screening, are pooled for this

analysis. Vertical bars around each average score indicate

the 95% confidence intervals using a t-distribution. The
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Fig. 18. Average absolute scores in Test 1 (mono at low bitrates) for USAC, HE-AACv2 (HE-AAC in the legend), AMR-WB+ (AMR
in the legend), and the Virtual Codec (VC).

vertical axis in Figs. 18 to 20 uses the MUSHRA subjective

scale, shown in Table 6.

Figs. 18 to 20 show that, when averaging over all content

types, the average score of USAC is significantly above that

of the VC, with 95% confidence intervals not overlapping

by a wide margin. Two exceptions are at 24 kbit/s mono and

96 kbit/s stereo where USAC and the VC have overlapping

confidence intervals but with the average score of USAC

above that of the VC. Furthermore, Figs. 18 to 20 show

that when considering each signal content type individually

(speech, music or speech mixed with music), the absolute

score for USAC is always greater than the absolute score of

the VC and often by a large margin. This is most apparent

in Test 2 (stereo operation between 16 and 24 kbit/s), with

a 6 to 18 point advantage for USAC on the 100-point scale.

A third observation from Figs. 18 to 20 is that the quality

for USAC is much more consistent across signal content

types than the two state-of-the-art codecs considered (HE-

AACv2 and AMR-WB+). This is especially apparent at

medium and low rate operation (Figs. 18 and 19).

16 20 24
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16 20 24

Music

16 20 24

All

16 20 24
0
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60

80

100
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Fair
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Excellent

Bad

Fig. 19. Average absolute scores in Test 2 (stereo at low bit rates) for USAC, HE-AACv2 (HE-AAC in the legend), AMR-WB+ (AMR
in the legend), and the Virtual Codec (VC).
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Fig. 20. Average absolute scores in Test 3 (stereo at high bit rates) for USAC, HE-AACv2 (HE-AAC in the legend), AMR-WB+ (AMR
in the legend), and the Virtual Codec (VC).

The USAC verification test results show that USAC not

only matches the quality of the better of HE-AACv2 and

AMR-WB+ on all signal content types and at all bit rates

tested (from 8 mono to 96 kbit/s stereo), but USAC actually

exceeds that sound quality, and often by a large margin, in

the bit rate range from 8 kbit/s mono to 64 kbit/s stereo. At

higher bit rates, the quality of USAC converges to that of

HE-AACv2 with or without SBR.

5 APPLICATIONS

USAC extends the HE-AACv2 range of use towards

lower bit rates. As it additionally delivers at least the same

quality as HE-AACv2 at higher rates, it also allows for ap-

plications requiring scalability over a large bit rate range.

This makes USAC especially interesting for applications

where bandwidth is limited or varying. Although mobile

bandwidth is increasing with the upcoming 4G mobile stan-

dards, at the same time mobile data bandwidth usage in-

creases dramatically. Moreover, multimedia streaming is

accounting for a major part of today’s growth in mobile

bandwidth traffic.

In applications such as streaming multimedia to mobile

devices, bandwidth scalability is a key requirement to en-

sure a pleasant user experience also under non-optimal con-

ditions. Users want to receive the content without dropouts

not only when being the only user in a cell and not mov-

ing. They also want to listen to their favorite Internet radio

station when sitting in a fast traveling car or train, or while

waiting for the very same train in a crowded station.

In digital radio, saving on transmission bandwidth re-

duces distribution costs and allows for a greater diversity

of programs. Coding efficiency is most relevant for mo-

bile reception, where robust channel coding schemes add

to the needed transmission bandwidth. Even in mobile TV,

where video occupies the largest share of the transmission

bandwidth, adding additional audio tracks like simulcasting

stereo and multichannel audio or adding additional services

like audio descriptive channels will significantly increase

bandwidth demand. This raises the need for a highly effi-

cient compression scheme, delivering good audio quality

for both music and spoken material at low bit rates. The sit-

uation is similar for audio books. Even though these contain

mostly speech content, which may justify using dedicated

speech codecs, background music and effects should be

reproduced in high quality as well.

For all of the above-mentioned applications, the new

USAC standard seems perfectly suited because of its ex-

tended bit rate range, quality consistency, and unprece-

dented efficiency.

6 CONCLUSION

The ISO/IEC 23003-3:2012 MPEG-D Unified speech

and audio coding standard is the first codec that reliably

merges the world of general audio coding and the world

of speech coding into one solid design. At the same time,

USAC can be seen as the true successor of a long line of

successful MPEG general audio codecs that started with

MPEG-1 Audio and its most famous member, mp3. This

was followed by AAC and HE-AAC(v2) that commercially

share the success of mp3, as both codecs are present in vir-

tually every mobile phone and many TV sets and currently

available digital audio players.

USAC now further builds on the technologies in mp3

and AAC and takes these one step further: It includes all

the essential components of its predecessors in a further

evolved form. It can, therefore, do everything mp3, AAC,
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and HE-AAC can do but is more efficient than its prede-

cessors. Through the integration of the ACELP and TCX

elements of AMR-WB+, USAC also represents a new state-

of-the-art in low rate speech and mixed content coding. This

makes USAC today the most efficient codec for all signal

categories, including speech signals. Starting at bit rates of

around 8 kbit/s and up, it will deliver the best speech, mu-

sic, and mixed signal quality possible today for a given bit

rate. Similar to AAC, USAC will scale toward perceptual

transparency for higher bit rates.

During standardization, care was taken to keep the codec

as lean as possible. As a result, the increase in implemen-

tation complexity over its predecessor is moderate and im-

plementations for typical AAC and HE-AAC processing

platforms are already available. All in all, USAC can be

considered the true 4th generation MPEG Audio codec,

again setting a new state-of-the-art like its predecessors.
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Université de Sherbrooke in 1994. Initially, he has been
taking part on the design and implementation of speech
coding algorithms where he developed new ideas, sev-
eral of which are integral parts of standards widely de-
ployed in wireless systems around the world. In 1999, he
became co-founder of VoiceAge Corporation, a company
based in Montreal, in which he is involved full time. In
the past several years he has been actively involved in
wideband speech and audio codecs standardization activ-
ities within ITU-T and 3GPP. His work in audio coding
led him to collaborate with Fraunhofer IIS from 2007 to
2012 in the ISO/MPEG standardization leading to USAC
standard.

�

Jimmy Lapierre received a Master’s Degree (M.Sc.A.)
in electrical engineering from the Université de Sher-
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