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Abstract

We propose an Isometric Self-Organizing Map (ISO-
SOM) method for nonlinear dimensionality reduction,
which integrates a Self-Organizing Map model and an
ISOMAP dimension reduction algorithm, organizing the
high dimension data in a low dimension lattice struc-
ture. We apply the proposed method to the problem of
appearance-based 3D hand posture estimation. As a learn-
ing stage, we use a realistic 3D hand model to generate data
encoding the mapping between the hand pose space and the
image feature space. The intrinsic dimension of such non-
linear mapping is learned by ISOSOM, which clusters the
data into a lattice map. We perform 3D hand posture es-
timation on this map, showing that the ISOSOM algorithm
performs better than traditional image retrieval algorithms
for pose estimation. We also show that a 2.5D feature repre-
sentation based on depth edges is superior to intensity edge
features commonly used in previous methods.

1. Introduction

Non-intrusive hand gesture interpretation plays a crucial
role in a wide range of applications, such as automatic sign
language understanding, entertainment, and human com-
puter interaction (HCI). Because hand gestures are natural,
intuitive, and provide rich information to computers with-
out extra cumbersome devices, they offer a great potential
for next generation user interfaces, being especially suitable
for large scale displays, 3D volumetric displays or wearable
devices such as PDAs or cell phones.

In this paper, we address the particular problem of 3D
hand posture estimation. Given a test hand image, our task
is to estimate the hand pose, which is defined by joint an-
gles and the viewpoint. Although substantial progress has
been made on this topic over the past decades, recognizing
3D pose configurations remains a challenge, due to the fol-
lowing reasons:

(1) High Degrees of Freedoms (DOF). Tracking or esti-

mating hand postures in a high dimensional space is a very
challenging task.

(2) For many applications, the temporal continuity can
not be exploited due to fast hand motions [1].

(3) Reliable Features. Skin color is a very important fea-
ture for extracting the hand boundary, but it is a great chal-
lenge to obtain such features reliably if the hand gesture
is performed in complex backgrounds, which may contain
similar skin color.

(4) Hand appearance changes dramatically with different
viewpoints.

(5) The self-occlusion problem. Many hand configura-
tions involve finger occlusions which can not be detected
with conventional segmentation algorithms due to low in-
tensity variation across skin-color regions.

Previous approaches to 3D hand pose estimation are
generally classified into two categories: model-based and
appearance-based approaches. Model-based methods rely
on estimating the parameters of a 3D hand model to fit a
given hand image [2]. Although they provide more precise
hand pose estimation than appearance-based approaches,
the high degrees of freedom of hand configurations impose
a search in a high dimensional space, which requires good
initialization and often leads to inaccurate local minima so-
lutions. Correlation among joint angles has been exploited
to reduce the complexity of the problem [2], [3], but pro-
ducing good results with complex backgrounds remains an
open problem.

Appearance-based, or exemplar-based approaches esti-
mate pose by matching a hand image with a discrete set of
labeled hand pose images. Depending on the application,
the problem may be simplified by considering a small subset
of convenient hand configurations in a particular viewpoint
[4]. However, for estimating joint angles and viewpoint, a
large number of exemplars need to be considered. In this
case, the pose estimation problem can be formulated as a
database indexing or image retrieval problem [5] [6]. A re-
alistic 3D hand model is typically used to produce such a
large set of exemplars. Due to the database size and high
dimensional image data, current methods are still limited in



recognition accuracy and efficiency.
In this paper, we formulate hand pose estimation as a

non-linear mapping problem between the hand pose space
and the image feature space. Similar to appearance-based
approaches, we use a 3D realistic hand model to generate
synthetic images with associated pose ground truth, encod-
ing a smooth, non-linear mapping in a high dimensional
space. We then learn an organized structure of this map-
ping in a low dimensional manifold, by using a novel non-
linear dimensionality technique which we call Isometric
Self-Organizing Mapping (ISOSOM). Our algorithm com-
bines Kohonen’s self-organizing maps [7] with ISOMAP
dimension reduction algorithm, so that samples are clus-
tered according to their geometric distance on the mani-
fold. Hand pose retrieval is performed on the low dimen-
sional space learned by ISOSOM. In contrast to current
appearance-based approaches, which represent each exem-
plar as an isolated item in the database, ISOSOM reduces
the information redundancy by clustering similar vectors
generated by similar poses together. This avoids the exhaus-
tive search in the whole database, leading to better results.

The choice of features is also extremely important for the
performance of hand pose estimation. Previous methods
tend to rely on intensity edges, which are limited to cap-
ture important shape boundaries (due to low-contrast varia-
tion across skin-color regions). In addition, many unwanted
edges due to background clutter and texture (e.g., wrinkles
and nails) are detected. To handle this problem, we adopt a
2.5D hand representation based on depth edges, which are
captured with a multi-flash camera [8][9].

This paper is organized as follows: in Section 2, we pro-
pose the ISOSOM algorithm for clustering and non-linear
dimensionality reduction. Section 3 shows how our algo-
rithm can be used to learn a low-dimensional mapping be-
tween hand poses and image features, in order to achieve
improved hand pose estimation. Section 4 describes our
2.5D feature representation based on depth edges and a
shape context descriptor. Experimental results are shown
in Section 5. Finally, conclusions are given in Section 6.

2. Learning with ISOSOM

Tenenbaum’s ISOMAP [10] algorithm extracts mean-
ingful dimensions by measuring the distance between data
points in the geometric shapes formed by items in a nonlin-
ear data set. It builds a distance graph, which describes the
approximate geometric distance on the samples’ manifold.
The algorithm estimates and preserves the global geometry
to avoid the feature vectors’ mixed-ups in low dimension
space by classic MDS algorithm.

Kohonen’s [7] Self-Organizing Map (SOM) is an unsu-
pervised clustering algorithm for dimensionality reduction,
which is an effective tool for the visualization of high di-
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Figure 1. The Isometric Self-Organizing Map
mensional data in a low dimensional (normally 2D) display.
It is used to build a mapping from high dimension space to
2D visualization space by preserving the topological order
of the data, while at the same time clustering similar sam-
ples. Although the input dimension of SOM could be very
high, the SOM is more efficient for data samples with low
intrinsic dimension.

Based on the ISOMAP and SOM algorithms, we pro-
posed an ISOmetric Self-Organizing Mapping algorithm
(ISOSOM). Figure 1 illustrates an intuitive depiction of the
ISOSOM; a more detailed description of the algorithm fol-
lows below. Firstly, the data samples in the high dimen-
sional input space X are mapped into to the low dimen-
sional intermediate space Y by the ISOMAP algorithm (see
Alg. 1, Part (I)). Then the data samples in the intermediate
space Y are used as the training samples of the SOM algo-
rithm to learn the organized structure, the ISOSOM neuron
map, in the same or even lower dimension space Z (Alg.
1, Part (II)). Similar to the map structure of SOM, the ISO-
SOM map is formed by a set of processing units, called
neurons, organized in the space Z with a lattice A. The
neurons are connected with their neighbors on the lattice.
Each neuron ai is labeled by an index i ∈ {1 . . . size(A)},
and has reference vectors Yai attached, which is projecting
back into the input space X and associated with another
vector Xai by inverse mapping from Y space to X space
(Alg. 1, Part (III)). In the retrieval stage, the best matching
unit (BMU) is the closest neuron on the ISOSOM map to



the query vector (Alg. 1, Part (IV)). In our hand estimation
case, the input vector Xa = [Vh, Vf ] is formed by the hand
configuration vector Vh and the feature vector Vf .

Algorithm 1 The Isometric Self-Organizing Map
(I) ISOMAP Construct a distance graph G of the manifold over all data
points in input space X by adding an edge between two nodes i and j, if
i is one of the k nearest neighbors of j. The cost of the edge is measured
by the Euclidean distance of i and j. On the graph, the distance of any
two nodes is defined by the cost of shortest path between them. The low
dimensional embedding is constructed by classic MDS algorithm through
the mapping from the high dimension input space X to the low dimension
intermediate space Y [10].
(II) SOM The data samples in the intermediate space Y is used for the
SOM training. The initial vector values associated with neurons on the
ISOSOM map could be linearly interpolated along the subspace spanned
by the principal eigenvectors of the data samples. In each training step,
we randomly choose a sample vector y from the training samples, and the
response of a neuron to the vector y is determined by the comparisons
between y and the reference vector Yai of each neuron with the geometric
distance defined by the distance graph. The Best-Matching Unit (BMU) is
defined as the winner neuron ai which has its reference vector Yai closest
to the given input y. After obtaining the BMU, its prototype vectors Yai of
the ISOSOM and its topological neighbors are updated and moved closer
to the input vector y [7].
(III) Inverse Mapping from Y space to X space
Because the ISOMAP algorithm is a nonlinear mapping algorithm, given a
vector y in the intermediate space Y , it is hard to find its exact inverse map-
ping in input space X. Thus, we find the close points of y in the sample set,
y1, ...yk, and approximate its inverse mapping x with those points’ inverse
mapping x1, ..., xk by the distance preserving method such as the nearest
neighbor or the similar method as Locally Linear Embedding(LLE). Thus,
every neuron aiin the ISOSOM has a vector Xai associated with it.
(IV) ISOSOM Retrieval
Given a query vector with full components or partial components with the
mask w, the similar neurons are found and sorted by the similarity mea-
surement described below:

Top N BMU = arg top N min
∀a∈A

Distance(w(xa), w(x)) (1)

where w(xa) is the mask function defined by W representing the ex-
isting components. For example, for the input xa = (xa1, ∗, xa3)′,
W = (1, 0, 1)′ (where “0” is indicated by the missing components “ ∗ ”
), and w(xa) = W. ∗ xa = (xa1, ∗, xa3)

′ (we don’t care the second
component).

Intrinsically, ISOSOM utilizes the geometric distance to
perform the nonlinear dimension reduction. This geometric
distance is defined by the metric relationship between sam-
ples and preserves the relationship of the samples in high
dimension space. In the SOM learning process, this rela-
tionship is also preserved in the ISOSOM map’s organized
neuron structure, where similar neurons are closer to each
other in the grid than dissimilar ones. Thus ISOSOM fol-
lows better the topology of the underlying data set and pre-
serves the spatial relationships in high dimensional input
space X to the low dimension ISOSOM lattice map.

3. ISOSOM for Hand Pose Estimation

We model the hand as a 3D articulated object with 21
DOF of the joint angles [2] and six DOF of global rota-

tion and translations 1. A hand configuration is defined by
these 21 joint angle parameters. A hand pose is defined by
a hand configuration augmented by the three global rotation
parameters. Given a hand image, our task is to output the
corresponding hand pose, that is, the hand configurations
with the three global rotation parameters. The retrieval is
considered successful if at least one of the candidates in the
top N matches is sufficiently close to the ground truth (sim-
ilar to [11]). If N is small, with additional distinguishable
contextual information, it may be adequate for automatic
initialization and re-initialization problems in hand tracking
systems, where the correct estimation could be found and
the incorrect ones could be eliminated in later tracking.

Due to occlusions, the different hand configurations
could be rendered to the same image. In such cases, many
hand configuration vectors could generate one hand image,
so that the mapping along this direction is many-to-one (see
the top-down arrows in Figure 2). On the other hand, the
same hand configuration can be rendered from different
viewpoints and thus generates many images. The mapping
along this direction is one-to-many (see the bottom-up ar-
rows in Figure 2). Intrinsically, the mapping between the
hand configuration vectors and the image vectors is a many-
to-many mapping. To simplify the problem, we eliminate
the second, one-to-many case by augmenting the hand con-
figuration vector with the three global rotation parameters
to construct the augmented vector as hand pose vector. The
hand pose vector determines the hand image and the feature
vector representing the image. The mapping between the
hand pose space and image space (or feature space) is thus
a many-to-one mapping.

3.1. Pose Estimation as a Non-Linear Mapping

The objective is to learn the many-to-one, nonlinear, con-
tinuous mapping between the feature space (input) and the
hand pose space (output). Such high dimensional mapping
is encoded by training samples generated by a realistic 3D
hand model. Each sample corresponds to a feature vector
with the associated pose, obtained from the model with a
particular hand configuration, and rendered at a particular
viewpoint. It is a typical supervised learning problem.

The challenge is that the feature vector of different poses
is highly mixed up in the feature space. Figure 3 illustrates
two examples in which the different poses look similar in
the second viewpoint. The second row of Figure 3 shows
that two different poses have similar appearances in the par-
ticular viewpoint. It indicates that even though two feature
vectors are similar or two hand images are similar, their
hand configuration might be quite different in hand con-

1The translation parameters could be estimated by hand segmentation
algorithms or neglected if the translation and scale invariant features are
adopted.
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Figure 2. High dimension nonlinear mapping

(a) Open Hand (b) Greetings (c) Pointer (d) Fist

Figure 3. The similar appearances (second
row) of two sets of different hand poses

figuration space. If we just cluster the features in the fea-
ture space with traditional methods, it is difficult to retrieve
the corresponding hand pose vector in the hand pose space.
We thus convert the original supervised learning problem to
an unsupervised learning problem by constructing the large
vector, x = [Vh, Vf ], which consists of both feature vectors
Vf and their corresponding hand pose vectors Vh. The bot-
tom part of Figure 1 gives a description of such operation.
In the ISOSOM input space X , the similar feature vectors
with the different poses are separated by hand pose vector
and not be mixed-up anymore. Then we train the ISOSOM
to encode the nonlinear mapping between feature space and
the hand configuration space.

During the retrieval, the feature vector is calculated for a
given input hand image. Using a mask to handle the missing

hand pose components, the similarities of the feature vector
with all feature vectors associated with the ISOSOM neu-
rons are measured. The top N hand pose candidates associ-
ated with the neurons are retrieved and the confidences are
measured by the error measurement. Because the mapping
from the feature space to the hand pose space is a one-to-
many mapping, one feature vector could have several possi-
ble hand pose candidates, which is desirable since it reflects
the intrinsic nature of the mapping.

4. Depth Edges and Shape Context Descriptor

The performance of a pose estimation system depends
heavily on the choice of features. Hand shape descriptors
(such as shape context or Fourier descriptors) have been
commonly used in current systems, rather than color or tex-
ture features, which are not very distinctive for different
poses and thus have limited discriminability ability power.

A key limitation of current approaches is hand shape ac-
quisition. Most techniques are based on intensity edge de-
tectors (using, for example, the Canny operator), which fail
to capture important shape boundaries along the hand due
to low intensity variation across skin-color regions. In ad-
dition, intensity edges include many unwanted edges due to
background clutter and texture (such as wrinkles and nails).

Rather than using intensity edge detectors for hand shape
acquisition, we adopt a 2.5D hand representation, detecting
edges only at depth discontinuities. A natural way to detect
depth edges is to first reconstruct the scene (using stereo al-
gorithms) and then look for discontinuities. However, 3D
estimation algorithms are limited to produce accurate re-
sults exactly at depth discontinuities, due to occlusions and
violation of smoothness constraints.

We use the recent method of Raskar et al. [8] to bypass
scene reconstruction and detect depth edges directly. We
rely on a multi-flash camera with flashes strategically posi-
tioned to cast shadows along depth discontinuities. This al-
low us to reliably acquire hand shape (including internal fin-
ger edges), while considerably reducing background clutter.

Feris et al. [9] demonstrated the important use of depth
edges on the problem of fingerspelling recognition. They
show that that depth discontinuities may be used as a signa-
ture to reliably discriminate among complex hand configu-
rations in the American Sign Language alphabet. Figure 4
compares hand shape acquisition based on depth edges and
intensity edges. In Figure 5, we show the comparison of
our detected hand depth edges and the rendered 3D model
edges, which are very similar.

Shape context [12], a translation invariant shape descrip-
tor, gives the one-to-one correspondence for the sample
points in two shapes, provides the transformations from
one shape to another, and measures the similarity between
shapes. We adopt the variant version of shape context,



(a) Original image (b) Canny (Thre. =1) (c) Canny (Thre.=0.3) (e) Depth edges

Figure 4. Canny edge and Depth edge

(a) Original image (b) Depth edges (c) Synthesis model (d) Synthesis edge

Figure 5. Real images and their models

which is described in [9]. It is modified for scale invari-
ance, and uses a 256-dimension feature vector to represent
the shape.

5. Experimental Results

Our synthesis database contains 15 commonly used hand
gestures. These 15 gestures are defined at the semantic
level. For each hand gesture, 16 hand configurations, which
are created by adding a small turbulence to the basic hand
configuration, are rended in 81 viewpoints sampled uni-
formly from the surface of the 3D view sphere, which rep-
resents the global rotation of the hand with respect to the
camera. Overall, we generate a database containing 19440
synthetic images. For each hand configuration, 48 joint an-

gle parameters are saved as the joint angle vectors, which
are 3 rotation parameters for the hand, 9 parameters (3 ro-
tation parameters for 3 joints respectively) for each finger
and thumb. In addition to the 3 global rotation parameters
of the camera, the hand pose vector is composed of these 51
parameters.

We collect a real hand image dataset with the similar 15
hand gestures in 10 different viewpoints, which are approx-
imately sampled uniformly from the surface of the 3D view
sphere. We capture 1 ∼ 2 sets of images for each pose. The
real hand image database totally contains 226 cases. We
label the pseudo-ground truth for each hand image by man-
ually identifying the similar images in the synthesis data-
base and assigning its hand pose parameters to the real im-
age. The real hand images are captured with several kinds
of backgrounds, some of them contains similar skin color
and clutter.

Table 1. The correct match rates
Number IR SOM ISOSOM
Top 40 44.25% 62.39% 65.93%
Top 80 55.75% 72.12% 77.43%
Top 120 64.60% 78.76% 85.40%
Top 160 70.80% 80.09% 88.50%
Top 200 76.99% 81.86% 91.59%
Top 240 81.42% 85.84% 92.48%
Top 280 82.30% 87.17% 94.69%

In our experiments, we use depth edges and the variant
of shape context descriptor (see [9] for details) to represent
the given image. Each hand shape is represented by a 256
component vector. We define the correct match if the hand
gesture of the real image is the same as one of the hand
gestures in the top N retrieved images (with small changes
in the hand configuration), and in addition, the three global
hand rotation parameters (roll, pitch, yaw) of the test im-
ages are within the 40◦ range with respect to that retrieved
hand image. Using the same criterion, we compare the per-
formances of the hand pose estimation by the traditional im-
age retrieval algorithm (IR), SOM and ISOSOM in Table 1.
The IR is implemented by simply comparing the query im-
age with each image in the synthesis dataset and retrieve the
top N best match. The result shows that the correct match
rate of the ISOSOM increases around 16.5% compared to
IR, and increases around 5.6% compared to SOM. N is de-
cided by the application requirements. In order to achieve
more than 85% successful rate, IR requires retrieving more
than 280 images which provide more than 280 hand pose
possibilities. ISOSOM just requires less than half of that,
and also has a higher precision rate. The ISOSOM with
1512 neurons needs 0.036 second to retrieve the top 400
images. It is more than 12 times faster than IR, which needs
0.453 seconds. The ISOSOM retrieval results are shown in
Figure 6. The first image in the first row is the query image.
The second image in the first row is the model generated



by its pseudo-ground truth. The remaining 20 images are
the retrieval results from the ISOSOM neurons. Figure 7
shows the comparison of the match rates with respect to the
number of the retrieved images. The results indicate that the
ISOSOM algorithm is overall better than traditional image
retrieval algorithm and SOM 2.

(a) Pointer2 (View 9) (b) Fully Extended (View 3)

Figure 6. The ISOSOM retrieval results

Figure 7. The performance comparisons

6. Conclusion

We have investigated a general nonlinear dimensionality
reduction algorithm ISOSOM and applied it to the problem
of 3D hand pose estimation from a single 2D image. In-
stead of representing each synthetic image by an isolated

2It shows that the SOM is a little bit better than ISOSOM around N =
20, but the retrieval rate of around that point is too low to be considered as
a good choice for N in the most applications.

item in the database, the idea of this paper is to build a
high dimension mapping and learn an organized structure
in a low dimension space. With such generalized structure,
we reduce the information redundancy in the database by
clustering the similar vectors generated by the similar poses
together. The retrieval is done by searching in the low di-
mensional manifold instead of exhaustedly searching in the
whole database.

References

[1] C. Tomasi, S. Petrov, and A. Sastry, “3D tracking = classifi-
cation + interpolation,” in Ninth IEEE International Confer-
ence on Computer Vision (ICCV’03), vol. 2, pp. 1441–1448,
2003.

[2] J. Lee and T. L. Kunii, “Model-Based analysis of hand pos-
ture,” IEEE Computer Graphics and Applications, vol. 15,
no. 5, pp. 77–86, 1995.

[3] J. Lin, Y. Wu, and T. S. Huang, “Modeling the constraints
of human hand motion,” in Proceedings of the 5th Annual
Federated Laboratory Symposium, 2001.

[4] J. Triesch and C. von der Malsburg, “A system for person-
independent hand posture recognition against complex back-
grounds,” IEEE Transactions on Patt. Anal. and Mach. In-
tell., vol. 23, pp. 1449–1453, Dec 2001.

[5] V. Athitsos and S. Sclaroff, “Database indexing methods for
3D hand pose estimation,” in Gesture Workshop, April 2003.

[6] N. Shimada, K. Kimura, and Y. Shirai, “Real-time 3D hand
posture estimation based on 2d appearance retrieval using
monocular camera,” in IEEE ICCV Workshop on Recogni-
tion, Analysis, and Tracking of Faces and Gestures in Real-
Time Systems, pp. 23–30, 2001.

[7] T. Kohonen, Self-Organizing Maps. Springer Series in Infor-
mation Sciences, 2001.

[8] R. Raskar, K. Tan, R. Feris, J. Yu, and M. Turk, “A non-
photorealistic camera: Depth edge detection and stylized
rendering with multi-flash imaging,” in ACM SIGGRAPH,
2004.

[9] R. Feris, M. Turk, R. Raskar, K. Tan, and G. Ohashi,
“Exploiting depth discontinuities for vision-based finger-
spelling recognition,” in IEEE Workshop on Real-time Vi-
sion for Human-Computer Interaction (in conjunction with
CVPR’04), 2004.

[10] J. B. Tenenbaum, V. D. Silva, and J. C. Langford, “A global
geometric framework for nonlinear dimensionality reduc-
tion.,” Science, pp. 2319 –2323, Dec 2000.

[11] V. Athitsos and S. Sclaroff, “An appearance-based frame-
work for 3D hand shape classification and camera viewpoint
estimation,” in Proceedings of the Fifth IEEE International
Conf. on Automatic Face and Gesture Recognition, 2002.

[12] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and
object recognition using shape contexts,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 24, no. 4, pp. 509–522, 2002.


