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INTRODUCTION 17 

 18 

Copper, a native metal found in ores, is the principal metal in bronze and brass. It 19 

is a reddish metal with a density of 8920 kg m-3. All of copper's compounds tend to be 20 

brightly colored: for example, copper in hemocyanin imparts a blue color to blood of 21 

mollusks and crustaceans. Copper has three oxidation states, with electronic configurations 22 

of Cu0([Ar]3d104s1), Cu+([Ar]3d10), and Cu2+([Ar]3d9). Cu0 does not react with aqueous 23 
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hydrochloric or sulfuric acids, but is soluble in concentrated nitric acid due to its lesser 24 

tendency to be oxidized. Cu(I) exists as the colorless cuprous ion, Cu+. Cu(II) is found as 25 

the sky-blue cupric ion, Cu2+. The Cu+ ion is unstable, and tends to disproportionate to Cu0 26 

and Cu2+. Nevertheless, Cu(I) forms compounds such as Cu2O. Cu(I) bonds more readily 27 

to carbon than Cu(II), hence Cu(I) has an extensive chemistry with organic compounds.  28 

 In aqueous solutions, Cu2+ ion occurs as an aquacomplex. There is no clearly 29 

predominant structure among the four-, five-, and six- fold coordinated Cu(II) species 30 

(Chaboy et al. 2006). Hydrated Cu(II) ion has been  represented as the hexaaqua complex 31 

Cu(H2O)6
2+, which shows the Jahn-Teller distortion effect (Sherman 2001; Bersuker 2006), 32 

whereby the two Cu-O distances of the vertical axial bond (Cu-Oax) are longer than four 33 

Cu-O distances in the equatorial plane (Cu-Oeq). The Jahn-Teller effect lowers the 34 

symmetry of Cu(H2O)6
2+ from octahedral Th to D2h. The sixfold coordination of hydrated 35 

Cu(II) species is questioned by a finding of fivefold coordination (Pasquarello et al. 2001; 36 

Chaboy et al. 2006; Little et al. 2014b; Sherman et al. 2015). The bond distance related to 37 

Cu(H2O)6
2+ is considered to reflect a rapid switch between the square pyramid and trigonal 38 

bipyramid configurations (Pasquarello et al. 2001; de Almeida et al. 2009). The fivefold 39 

coordination is supported by computational (Amira et al. 2005) and spectroscopic 40 

(Benfatto et al. 2002) studies.  41 

 In aqueous media at elevated temperatures, Cu(I) is thermodynamically more stable 42 

than Cu(II). The structures of Cu(I) species are thought to be due to the splitting of 43 

degenerate 4px,y,z orbitals by a ligand field (Kau et al. 1987). Cu(I) complexes possess 44 

simple linear structures (Fulton et al. 2004) due to 4pz and 4px,y orbitals. The splitting of 45 

4px,y orbital and/or the formation of degenerate 4py,z orbitals give the Cu(I) species 46 
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threefold coordination structures (T-shaped or trigonal planar coordination). For the 47 

fourfold tetrahedral coordination (Td) structure, the px,y,z orbitals may be close to 48 

degenerate.  49 

 Zinc is an element of Group 2B, the last column of the d block. Zinc is not a 50 

transition metal by definition because it has a d subshell that is only partially occupied. 51 

Zinc has two oxidation states, with electronic configurations of Zn0([Ar]3d104s2) and 52 

Zn2+([Ar]3d10), where Zn(II) has 3d10 with two electrons per orbital. Zinc is sometimes 53 

included with the transition metals because its properties are more similar to these than to 54 

the post-transition metals, whose properties are determined by partially filled p subshells. 55 

Fresh zinc has a shiny metallic luster, but it tarnishes easily. It is hard and brittle, 56 

becomes malleable with increasing temperature, and melts at 419.53°C. Metallic zinc is 57 

easily oxidized and hence it is used as a reducing agent. Reduction of acids like HCl to 58 

H2 by Zn0 is well known. 59 

 In compounds or complex ions, Zn is present only as Zn(II). Hydrated Zn2+ is 60 

generally thought to be present as the octahedral Zn(H2O)6
2+, this being the most stable 61 

structure (Mhin et al. 1992). Besides the marked preference for sixfold coordination, Zn(II) 62 

can easily be fourfold or fivefold coordinated. The coordination number is attributable to 63 

a balance between bonding energies and repulsions among the ligands. 64 

Zinc and Cu are both moderately volatile elements, with 50% condensation 65 

temperatures (Tc) of 726K and 1037K, respectively (Lodders 2003). It was long thought 66 

that Zn behaved as a lithophile element during planetary (and especially, Earth’s) 67 

differentiation, hence there is negligible Zn in Earth’s core (e.g. McDonough 2003). This 68 
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assumption was used to place broad bounds on the amount of S (which has a similar Tc to 69 

Zn) in Earth’s core (around 1.7wt% Dreibus and Palme 1996). However, more recent work 70 

indicates that Zn behaves as a moderately siderophile element, with potentially ~30% of 71 

terrestrial Zn stored in Earth’s core (Siebert et al. 2011), significantly affecting the 72 

conclusions of Dreibus and Palme (1996). Zinc is the most abundant lithophile element 73 

with a Tc<750K, 100 times more abundant than the second-most abundant (Br, Tc=546K). 74 

Its high abundance relative to other moderately volatile elements (due to the relatively high 75 

binding energies per nucleon of its isotopes) makes Zn a good tracer of volatility in rocks 76 

and a major application of its isotopes has been related to understanding volatility 77 

processes.  78 

Copper is a siderophile and highly chalcophile element (Siebert et al. 2011), with 79 

~2/3 of the terrestrial Cu thought to be stored in Earth’s core (Palme and O'Neill 2003). 80 

Copper is also moderately volatile, but is the most refractory of the chalcophile elements, 81 

meaning that Cu may be a good tracer of the role of sulphides during differentiation and 82 

igneous processes.   83 

 Zn is comprised of five natural stable isotopes, 64Zn (49.2%), 66Zn (27.8%), 67Zn 84 

(4.0%), 68Zn (18.4%) and 70Zn (0.6%) and Cu of two stable isotopes, 63Cu (69.2%), and 85 

65Cu (30.8%) (Shields et al. 1964). Due to their relatively high first ionization potentials 86 

(9.4 eV for Zn and 7.7 eV for Cu), the measurement of Zn and Cu isotope ratios by 87 

Thermal-Ionization Mass-Spectrometry (TIMS) is very difficult. This explains the very 88 

limited amount of Zn and Cu isotopic data produced before the advent of Multiple-89 

Collector Inductively-Coupled-Plasma Mass-Spectrometry (MC-ICP-MS). In addition, 90 

since Cu has only two stable isotopes it is not possible to use a double spike technique to 91 
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correct for instrumental bias on TIMS. Since the first commercialized MC-ICP-MS in the 92 

late 90s and the first ‘high precision’ Zn and Cu isotope ratio measurements (Maréchal et 93 

al. 1999), more than 500 papers have been published (source: ISI Web of Science) on 94 

various geochemical topics associated with Zn and Cu isotopes (e.g. oceanography, 95 

cosmochemistry, environmental sciences, medical sciences). With the exception of 96 

medical sciences, for which there is a dedicated chapter in this volume, here we review 97 

these varied applications and discuss the potential of these isotope systems for future 98 

studies. 99 

 100 

METHODS 101 

 102 

Measurement of Zn and Cu isotope ratio was originally made using TIMS (Shields 103 

et al. 1964; Shields et al. 1965; Rosman 1972). As for any element with only two isotopes, 104 

it was not possible to properly assess the instrumental isotopic fractionation for Cu and the 105 

analytical uncertainty was therefore poor (no better than 2 ‰/amu; Shields et al. 1964; 106 

Shields et al. 1965). With five stable isotopes, for Zn it is possible to correct for 107 

instrumental bias and TIMS was originally used with double spike methods to measure Zn 108 

isotopic compositions. The earliest measurements, on the older generation of TIMS were 109 

associated with analytical precisions of around 1 ‰/amu (Rosman 1972; Loss et al. 1990), 110 

but modern generation TIMS can reach precisions of 0.1-0.2 ‰/amu (Ghidan and Loss 111 

2011).  112 

The vast majority of recent Cu and Zn isotopic data have been acquired by MC-113 

ICP-MS, either by standard-sample bracketing (e.g. Maréchal et al. 1999; Mason et al. 114 
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2004ab; Weiss et al. 2005; Bermin et al. 2006; Viers et al. 2007; Balistrieri et al. 2008; 115 

Peel et al. 2008; Vance et al. 2008; Savage et al. 2015a, b; Sossi et al. 2015) or by the 116 

double spike method (e.g. Bermin et al. 2006; Arnold et al. 2010b; Conway and John 2015) 117 

for Zn. The pioneering work of Maréchal et al. (1999) showed that  instrumental mass bias 118 

could be corrected by a combination of elemental doping (Cu for Zn, and Zn for Cu) and 119 

standard bracketing, so that it was possible to obtain isotope ratios of both Cu and Zn with 120 

precisions better than 0.1 ‰/amu on the VG Elemental Plasma 54 MC-ICP-MS. 121 

Subsequent studies by Zhu et al. (2000; 2002) and Archer and Vance (2002; 2004) have 122 

further tested this approach and together with Maréchal et al. (1999) provided the ground 123 

work for modern Zn and Cu isotopic studies. An alternative method using Ni doping 124 

(instead of Zn) for Cu isotope analyses has also been used (Larner et al. 2011). 125 

More recently, double spike Zn isotopic measurements by MC-ICP-MS have also 126 

been employed, providing consistent results with those obtained by standard bracketing 127 

techniques. An advantage of the double spike technique is that it provides high precision 128 

absolute elemental abundances together with the isotope ratios. The fact that the double 129 

spike approach also accounts for mass discrimination during chemical separation means 130 

that it has been a key methodology for the analysis of Zn in difficult matrixes such as 131 

seawater (e.g. Bermin et al. 2006; Arnold et al. 2010b; Zhao et al. 2014; Conway and John 132 

2015; Vance et al. In review). Using a similar approach, the absolute abundance of Zn 133 

isotopes were determined by analyzing synthetic isotope mixtures (Tanimizu et al. 2002; 134 

Ponzevera et al. 2006). 135 

The precision of Zn and Cu isotopic measurements depends on the quality of the 136 

chemical extraction (purity, low blank compared to the amount of Zn and Cu present in the 137 
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samples, high/quantitative yields) and on the correction of the instrumental bias. The high 138 

purity of the final Zn fraction is needed to remove both isobaric interferences and non-139 

isobaric interference that are the cause of so-called ‘matrix effects’ (see Chaussidon et al. 140 

20XX, this volume). As Zn and Cu isotopes can be fractionated during ion-exchange 141 

chromatography (Maréchal and Albarède, 2002) the chemical procedure requires 142 

quantitative yields, unless a double-spike is added pre-column chemistry.  143 

The chemical purification of Cu and Zn is generally made by ion-exchange 144 

chromatography in 6-10N HCl medium on either macro-porous resin such as AG-MP1 or 145 

on regular bead resin such as AG1-X8 (e.g. Maréchal et al. 1999; Archer and Vance 2004; 146 

Borrok et al. 2007; Conway and John 2015; Sossi et al. 2015). In order to obtain a very 147 

pure elution of Cu, many workers (e.g. Savage et al. 2015b; Vance et al., 2016) repeat the 148 

whole procedure. For Zn purification, an alternative method takes advantage of the strong 149 

complexation of Zn with bromide, which allows for the use of more dilute acids 150 

(HBr/HNO3 media) on micro-columns (0.1 µl) of anion-exchange resin (AG1-X8; Luck et 151 

al. 2005; Moynier et al. 2006; Moynier and Le Borgne 2015).  152 

When analyzing Zn by MC-ICPMS, the potential nickel interference on mass 64 is 153 

normally monitored and corrected for by analyzing the intensity of the 62Ni beam. 154 

Typically, 70Zn is not measured (or at least, not reported) due to the low abundance of this 155 

isotope, and the potential for overwhelming interference from 70Ge. In most instances, it is 156 

not necessary to measure 70Zn (even when using the double-spike method), as terrestrial 157 

isotope variations are all mass-dependent. However, the introduction of higher resistance 158 

amplifiers attached to Faraday detectors should allow the more accurate measurement of 159 

70Zn in, for example, studies involving mass-independent Zn isotope variations. However, 160 
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so far the results have been inconclusive (Moynier et al. 2009a; Savage et al. 2014). For 161 

Cu, neither masses 63 and 65 have direct elemental interferences, although there is 162 

evidence that the formation of 23Na40Ar+ and 25Mg40Ar+ in the plasma can create 163 

anomalous isotope ratios (Archer and Vance 2004; Larner et al. 2011; Savage et al. 2015b), 164 

so that careful monitoring to ensure complete removal of both Na and Mg from each sample 165 

aliquot is necessary to ensure accurate data.  166 

The correction of instrumental mass bias by elemental doping (Cu for Zn and Zn 167 

for Cu, or Ni for Cu) has been extensively discussed in Maréchal et al. (1999) and further 168 

by Larner et al. (2011). The principle is that the instrumental bias can be expressed with an 169 

exponential law, for example for the 66Zn/64Zn and 65Cu/63Cu ratios: 170 

( 𝑍𝑛66𝑍𝑛64 )𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =  ( 𝑍𝑛66𝑍𝑛64 )𝑇𝑟𝑢𝑒 × (𝑀66𝑀64)𝑓𝑍𝑛
   (1) 171 

( 𝐶𝑢65𝐶𝑢63 )𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =  ( 𝐶𝑢65𝐶𝑢63 )𝑇𝑟𝑢𝑒 × (𝑀65𝑀63)𝑓𝐶𝑢    (2) 172 

 173 

where M63, M64, M65, M66 are the atomic masses of 64Zn, 65Cu, 66Zn, 68Zn, 174 

respectively. fZn and fCu are mass-independent fractionation factors that depend on the 175 

element. Taking the example of Zn measurements, the elemental doping method consists 176 

of adding an identical Cu elemental standard to all aliquots to be analysed, which can then 177 

be used to determine the fZn. Because the ionization behavior of Cu and Zn is not the same, 178 

fZn cannot be assumed to be equal to fCu, and thus the relation between fCu and fZn is 179 
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estimated by taking the Napierian logarithm of equations (1) and (2) and ratioing the two 180 

equations: 181 

𝑙𝑛( 𝑍𝑛66𝑍𝑛64 )𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑙𝑛( 𝑍𝑛66𝑍𝑛64 )𝑇𝑟𝑢𝑒𝑙𝑛( 𝐶𝑢65𝐶𝑢63 )𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑙𝑛( 𝐶𝑢65𝐶𝑢63 )𝑇𝑟𝑢𝑒
= 𝑓𝑍𝑛𝑓𝐶𝑢 𝑙𝑛(𝑀66𝑀64)𝑙𝑛(𝑀65𝑀63)                     (3) 182 

 183 

By plotting 𝑙𝑛 ( 𝑍𝑛66𝑍𝑛64 )𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑vs 𝑙𝑛 ( 𝐶𝑢65𝐶𝑢63 )𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑  for the standard solution data 184 

generated during a session of analyses, the 
𝑓𝑍𝑛𝑓𝐶𝑢 ratio can be estimated from the slope of this 185 

diagram (see for example Fig. 9 in Maréchal et al. 1999). The calculated 𝑓𝑍𝑛 can then be 186 

used to calculate ( 𝑍𝑛66𝑍𝑛64 )𝑡𝑟𝑢𝑒(and vice-versa for Cu isotopic measurements), provided that 187 

there is enough drift in the mass bias during an analytical session. This correction is coupled 188 

with a standard bracketing method that consists of measuring a standard before and after 189 

each sample, whereby the same correction is applied to both the standard and sample ratios. 190 

Once all isotope ratios are corrected for mass discrimination, the data are usually reported 191 

using the delta notation: 192 

 193 

𝛿 𝐶𝑢 = [ ( 𝐶𝑢65 𝐶𝑢63⁄ )𝑠𝑎𝑚𝑝𝑙𝑒( 𝐶𝑢65 𝐶𝑢63⁄ )𝑁𝐼𝑆𝑇−𝑆𝑅𝑀−976
− 1]65 × 1000  (4) 194 

 195 

 196 
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 197 

𝛿 𝑍𝑛 = [ ( 𝑍𝑛𝑥 𝑍𝑛64⁄ )𝑠𝑎𝑚𝑝𝑙𝑒( 𝑍𝑛𝑥 𝑍𝑛64⁄ )𝐽𝑀𝐶−𝐿𝑦𝑜𝑛
− 1]𝑥 × 1000  (5) 198 

 199 

With x=66, 67, 68 or 70.  200 

The double spike approach to mass discrimination was first described for Zn by 201 

Bermin et al. (2006), and involves the addition of a mixture of a tracer solution of known 202 

exotic isotopic composition to each sample (e.g. Dodson 1963; Rudge et al. 2009; John 203 

2012). Equations that relate three measured and mass-bias corrected isotope ratios, for 204 

66Zn/64Zn, 67Zn/64Zn and 68Zn/64Zn in terms of mixing, the exponential mass discrimination 205 

law, and natural mass-dependent fractionation relative to a standard, are solved to obtain 206 

the isotopic composition of the sample. The quality of data obtained with any double spike 207 

depends on the spike isotopes used and the sample/spike ratio in the mixture created, which 208 

control the magnification of analytical uncertainties propagated through the double spike 209 

algebra; hence, optimal spike compositions and abundances need to be deduced, although 210 

there is a range for both over which good isotopic data are obtainable. Other considerations 211 

include the potential for isobaric interference. Thus, although the optimal Zn spike is a 212 

mixture of 66Zn and 70Zn, practical applications have used a 64Zn-67Zn spike (e.g. Bermin 213 

et al. 2006; Conway et al. 2013). Bermin et al. (2006) showed that such a spike yields 214 

precise and accurate sample isotopic compositions over about a factor 20 range in 215 

sample/spike ratios in the mixture. Over a 2 year period, on a Neptune at ETH Zürich, the 216 

66Zn of IRMM-3702 standard gave +0.300 ±0.058‰ relative to JMC Lyon (2SD, n = 217 
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163). For comparison, standard-sample bracketing standard precisions are of a similar 218 

magnitude (i.e. long term 2SD quoted by Chen et al., 2013, is 66Zn ± 0.04‰) but this is 219 

on samples with relatively high Zn concentrations (~100ppm) and relies heavily on very 220 

stable instrument running conditions.  221 

   All of the Zn isotopic variations measured in terrestrial samples that have been 222 

analyzed to date follow a mass-dependent law, i.e., 70Zn/3≈68Zn/2≈67Zn/1.5≈66Zn. By 223 

contrast, extra-terrestrial mass-independent isotopic effects on 66Zn of over 1500ppm have 224 

been observed in refractory inclusions (Loss and Lugmair 1990; Völkening and 225 

Papanastassiou 1990) and, more recently, these isotope anomalies have been discovered in 226 

bulk primitive meteorites, albeit of a much smaller magnitude (20-70ppm Savage et al. 227 

2014). The survival of these anomalies is perhaps surprising, given the volatile behavior of 228 

Zn during solar system condensation. These will be discussed further below.  229 

Because it only has two isotopes, mass independence in Cu isotope variations 230 

measured in terrestrial samples cannot be discerned, although there is no reason to assume 231 

that such variations occur in this realm. For extra-terrestrial samples, Luck et al. (2003) 232 

showed that the Cu isotope variations correlate with Δ17O anomalies in bulk primitive 233 

meteorites, which suggests that the variations measured between solar system materials 234 

may not be completely generated by ‘mass-dependent’ fractionation processes.  235 

A number of different reference standards have been used for Cu and Zn isotopic 236 

measurements; NIST SRM 976 for Cu isotopes and the JMC 3-0749C (usually called JMC-237 

Lyon) are the two standards used in the original work of Maréchal et al. (1999). Though 238 

neither standard is still commercially available they are still the most commonly cited as 239 
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references. Following Maréchal et al. (1999) other standards have been developed and used 240 

in a routine manner in different laboratories . Data for those that have been measured by a 241 

number of different laboratories are summarized in Table 1. Other standards relevant to 242 

more specific areas of research have been detailed in Cloquet et al. (2008). We suggest, for 243 

the sake of consistency, that future data should always be normalized with respect to NIST 244 

SRM 976 for Cu and JMC Lyon for Zn. New reference standards for both Cu and Zn will 245 

need to be developed soon, and for Zn a round-robin analysis programme of one such new 246 

standard is under way (C. Archer, ETH Zürich, pers. comm.). When these new reference 247 

standards come on line, we recommend maintaining the isotopic compositions of the 248 

original references at zero, with a reference value for new standards set relative to that, as 249 

recently proposed for Mo isotopes (Nägler et al. 2014), so that old data can be directly 250 

compared with new. 251 

 252 

ZINC AND COPPER ISOTOPE FRACTIONATION FACTORS FROM AB 253 

INITIO METHODS 254 

A considerable amount of progress has been made in calculating isotope 255 

fractionation factors between free metal ions and inorganic complexes in aqueous solution, 256 

laying the basis for an understanding of surface terrestrial fluids. Almost all the Cu and Zn 257 

in the oceans, in rivers and in soils is organically-complexed or sorbed to the surfaces of 258 

oxyhydroxides and clays (see section on low temperature processes later in the chapter), 259 

rather than being found as a free metal ion. There is therefore an urgent need to build on 260 
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the existing theoretical work to extend the calculations to species and processes that 261 

represent those that are most important at the surface of the Earth. 262 

The equilibrium constant of an isotopic exchange reaction can be theoretically 263 

obtained as the Reduced Partition Function Ratio (RPFR or ) of isotopologues (e.g. 264 

Schauble 2004). Here we will summarize the isotopic enrichment factors that have been 265 

calculated for aqueous solutions and molecules relevant to Zn and Cu in biogeochemistry.  266 

We also provide new results for certain molecules that were missing from the published 267 

studies (see Tables 2, 3, 4) using the method described in Fujii et al. (2014). 268 

The isotope enrichment factor is evaluated from the reduced partition function ratio 269 

(s/s’)f  (Bigeleisen and Mayer 1947), also denoted , such that, 270 

      ii ubln'ublnf
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 273 

In the latter expression,  stands for vibrational frequency, s for the symmetry 274 

number of the considered compound, h for Plank’s constant, k for the Boltzmann constant, 275 

and T for the absolute temperature. The subscript i denotes the ith normal mode of 276 
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molecular vibration, and primed variables refer to the light isotopologue. The isotope 277 

enrichment factor due to molecular vibrations can be evaluated from the frequencies i 278 

summed over all normal modes.  279 

 The ln β values of Cu(I) and Cu(II) species (Seo et al. 2007; Fujii et al. 2013; 280 

Sherman 2013; Fujii et al. 2014; Telouk et al. 2015) are shown in Tables 2 and 3. The 281 

inorganic aqueous Cu species are represented in Figure 1. At low pH, positive 65Cu is 282 

found in copper sulfates and carbonates, relative to other inorganic species like hydrated 283 

Cu2+ and chlorides. At pH ~6, 65Cu is enriched in CuSO4 and CuHCO3
+, while 63Cu is 284 

enriched in the other inorganic species like Cu2+ and CuCl+ (Fig. 1). With increasing pH, 285 

Cu(OH)2 and CuCO3 become the prevalent species (Zirino and Yamamoto 1972). At high 286 

pH, 65Cu is positive in Cu hydroxides and negative in carbonates. At a typical pH of 287 

seawater (8.22; Macleod et al. 1994), isotope fractionation among inorganic species favors 288 

63Cu in CuCO3 and 65Cu in Cu(OH)2. However, Cu in soil solutions, rivers and seawater is 289 

overwhelmingly complexed to organics (McBride 1981; Coale and Bruland 1988; Moffett 290 

and Brand 1996; Shank et al. 2004; Grybos et al. 2007; Vance et al. 2008; Ryan et al. 2014), 291 

and the above calculations for inorganic species are relevant only to the tiny inorganic pool 292 

of Cu. Little et al. (2014b) and Sherman et al. (2015) show how heavy Cu in simple organic 293 

complexes controls seawater Cu isotopes.  Note that the interpretation strongly depends on 294 

the speciation diagram applied (Fujii et al. 2013). Powell et al. (2007) uses small hydrolysis 295 

constants, which depress the role of hydroxides in Cu isotope fractionation; isotope 296 

fractionation may therefore not be seen in Cu(II) hydroxide, but Cu in CuCO3 should 297 

nevertheless remain isotopically light with respect to the remaining inorganic pool of Cu 298 

in seawater, and much lighter than the dominant organically-complexed pool. 299 
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 Since sulfide-bearing euxinic seawater systems are reducing, isotope fractionation 300 

of Cu caused by the co-presence of Cu(I) becomes important (Fujii et al. 2013). The ln β 301 

value of sulfides is 1-2‰ lower than Cu(II) carbonates, hydroxides, and hydrated Cu2+. 302 

This suggests that the dominant organically-complexed pool, as well as minor Cu2+, Cu(II) 303 

chlorides, carbonates, and hydroxides will all be isotopically heavier than sulfides. The 304 

speciation of Cu(I) under hydrothermal conditions (Mountain and Seward 1999)  indicates 305 

that the prevailing species are CuCl, CuCl2
-, CuHS, and Cu(HS)2

-. Increasing complexation 306 

of Cu(I) chlorides and sulfides results in decreasing ln . The ln  values of Cu(II) chlorides 307 

and sulfides at 573 K are 0.2-0.5‰ higher than those of corresponding Cu(I) species (Fujii 308 

et al. 2013; Fujii et al. 2014). Under hydrothermal conditions, the 65Cu value of Cu(I) may 309 

be 0.2-0.5‰ lower than that of Cu(II) with a ±0.1‰ range of variation among Cu(I) 310 

species. 311 

 As an application to plant uptake, 65Cu for Cu phosphates, citrates, hydroxides, 312 

and hydrated Cu2+ ions was estimated as a function of pH (Fujii et al., 2014). At neutral 313 

pH, the major Cu(II) species are phosphates and citrates, and a range of ~0.5‰ can be 314 

expected for 65Cu. This range overlaps with observations on higher plants (Weinstein et 315 

al. 2011; Jouvin et al. 2012). A reduction of Cu2+ to Cu+ by a reductase within roots has 316 

also been reported by Jouvin et al. (2012). Since the range of ln β values for Cu(I) species 317 

is ~2‰ smaller than those of Cu(II) species at 298 K, a fractionation of -0.84 to -0.11‰ 318 

between roots and nutrient solutions (Jouvin et al. 2012) may be expected. 319 

 A variety of metabolic processes may induce Cu isotope fractionation. A positive 320 

65Cu of 1.5‰ was found in both sheep kidney (Balter and Zazzo 2011) and mouse kidney 321 
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(Albarède et al. 2011), which may be interpreted in terms of isotope exchange reactions 322 

among Cu(I) and Cu(II) species. Oxalic acid is a ubiquitous toxic organic acid in bodily 323 

fluids. High oxalate contents in urine and plasma may be correlated with kidney damage. 324 

Ascorbate is efficiently converted to oxalate when the coexisting copper concentration is 325 

high (Hayakawa et al. 1973). The 65Cu of the Cu species relative to the bulk solution as a 326 

function of Eh and extent of oxalate formation has been estimated (Fujii et al. 2013); 65Cu 327 

of Cu ascorbate varies from –1.0 to +0.5‰ when Eh increases from –1 V to +1 V, but its 328 

mole fraction remains very small, while the heavy isotope is enriched (+0.6 to +2.5‰) in 329 

the Cu oxalate relative to total Cu. It is expected that degradation of ascorbate and excretion 330 

of oxalate should leave isotopically heavy Cu in the kidney. With respect to food, which 331 

has a 65Cu value of about 0‰, if even trace amounts of oxalate form it should leave behind 332 

copper with a 65Cu of ~1.4‰ (65Cu at 0‰ extent of oxalate formation). This value is 333 

very close to the 65Cu (1.5‰) found in sheep (Balter and Zazzo 2011) and mice (Albarède 334 

et al. 2011) kidneys. 335 

 Variations in Cu isotopes among Cu2+-amino acid complexes have been estimated 336 

(Fujii et al. 2014). The ln  of Cu2+ complexes with O and N-donor amino acids is ~1‰ (at 337 

the body temperature of 310 K typical for mammals) higher than those with S-donor amino 338 

acids. In a same donor amino acid complex, 65Cu of ~1‰ may be created via Cu2+/Cu+ 339 

redox processes in biological activity. This latter study also theoretically estimated the β 340 

of Cu lactates. The extent of 65Cu preference over 63Cu in Cu lactates with respect to Cu 341 

bound to cysteine is more than 1‰. From a study on the 65Cu/63Cu ratios in the serums of 342 

cancer patients, a 65Cu alarm threshold was found to be at -0.35‰. The decrease of 65Cu 343 
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in the serum of cancer patients is assigned to the extensive oxidative chelation of copper 344 

by cytosolic lactate (Telouk et al. 2015). 345 

The ln β values of Zn(II) species (Fujii et al. 2010; Black et al. 2011; Fujii et al. 346 

2011; Fujii and Albarède 2012; Fujii et al. 2014) are shown in Table 4 and some species 347 

are represented in the Figure 2. It is known that Zn sulfate and carbonate create larger ln β. 348 

The fivefold and sixfold coordination of Zn in carbonate complexes, for which carbonates 349 

are treated as monovalent and divalent ligands, results in large ln β (Fujii et al. 2011; Fujii 350 

et al. 2014). At circumneutral pH the dominant inorganic species of free Zn2+ shows small 351 

isotope fractionation relative to the total inorganic pool. Zinc sulfate is enriched in 66Zn, 352 

whereas Zn chlorides are enriched in 64Zn with a 66Zn ~0.5‰ being expected between Zn 353 

sulfate and chloride. With increasing pH, Zn(OH)2 and ZnCO3 become the dominant 354 

species. Small amounts of free Zn2+ and ZnCl+ still exist at pH = 8.2. In seawater, a 355 

fractionation 66Zn of ~1‰ is expected between Zn carbonate and chloride. Zinc 356 

hydroxides and sulfates do not play an important role for Zn isotope fractionation for pH 357 

 8.2. It is again noted, however, that the free and inorganically-complexed pool of both 358 

Cu and Zn in soil solutions, rivers and seawater is very minor (in seawater, on the of order 359 

2%; McBride 1981; Coale and Bruland 1988; Moffett and Brand 1996; Shank et al. 2004; 360 

Grybos et al. 2007; Vance et al. 2008; Ryan et al. 2014) and most is organically complexed. 361 

As such, the above discussion is only relevant to the minor free metal and inorganically-362 

complexed pool. 363 

 The role of sulfides is central to a broad range of geological scenarios. The status 364 

of sulfur in ancient oceans in particular is still an outstanding issue (Canfield 1998). 365 
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Hydrothermal vent solutions discharging either at mid-ocean ridges (Edmond et al. 1979) 366 

or along subduction zones (Mott et al. 2004) comprise additional environments dominated 367 

by sulfides. Fujii et al. (2011) evaluated the isotope fractionation among the different Zn 368 

sulfide species present in geological fluids between 298 and 573 K (Fig. 2). At the high 369 

PCO2 conditions of hydrothermal solutions, Zn precipitated as sulfides is isotopically nearly 370 

unfractionated with respect to a low-pH parent fluid. In contrast, negative 66Zn, down to 371 

at least -0.6‰, can be expected in sulfides precipitated from solutions with pH > 9. Zinc 372 

isotopes in sulfides and rocks therefore represent a potential indicator of mid to high pH in 373 

ancient hydrothermal fluids (Pons et al. 2011). 374 

 Citric acid also plays an important role in the transport of trace metals in the soil-375 

plant system. Citrate is released from the roots of vascular plants and acts as a biological 376 

chelating agent for the uptake of metals from soil. Isotope fractionation induced by higher 377 

plants has been found for Zn (Weiss et al. 2005; Moynier et al. 2009b). In a pioneering 378 

study of isotope fractionation of Zn in the soil-plant system, Weiss et al. (2005) found that 379 

Zn was isotopically lighter in the shoots relative to the roots, with a 66Zn difference of -380 

0.13 to -0.26‰. The origin of this isotope fractionation may be isotopic exchange between 381 

Zn(II) phosphates in roots and citrates (or malates) in plants (Fujii and Albarède 2012).  382 

 The ln  values for optimized structures of Zn2+-amino acid complexes have been 383 

calculated (Fujii et al. 2014). Heavy isotopes tend to bind to O-donor ligands, whereas light 384 

isotopes are positively fractionated by S-donor ligands (Balter et al. 2013; Moynier et al. 385 

2013a). This is clearly seen in complexes with identical coordination number (four and 386 

six). Isotope fractionation correlated with N-donor ligands may be intermediate between 387 
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O-donor and S-donor systems or even stronger than with O-donor ligands. Besides the 388 

donor type, coordination number is important, implying that four-fold complexation gives 389 

larger ln  values relative to complexes with six-fold coordination. The ln  of Zn(His)2+ 390 

complexes is 0.2 to 0.6‰ larger than that of Zn(Cys)2+. This matches the observation that 391 

organs rich in proteins with histidine residues show larger 66Zn than organs in which 392 

proteins rich in cysteine residues dominate (Moynier et al. 2013a). 393 

 394 

ZINC AND COPPER IN EXTRA-TERRESTRIAL SAMPLES AND IGNEOUS 395 

ROCKS 396 

Chondritic Reference Frame and meteorites. Luck et al. (2003; 2005) were the first to 397 

measure Cu and Zn isotopes in a selection of carbonaceous and ordinary chondrites by 398 

MC-ICP-MS. The carbonaceous chondrite data show resolvable isotopic variation for both 399 

Zn and Cu isotopes between the different groups (e.g. CI, CV, CO, CM…) with the latter 400 

system showing the largest variability (0.16<66Zn<0.52 and -1.44<65Cu<-0.09, Fig. 3 401 

and 4). For both systems, each carbonaceous group has a distinct isotope composition (Fig. 402 

3 and 5). There is also a broad positive co-variation between the Cu and Zn isotope 403 

compositions of the carbonaceous chondrites, with the CI chondrites defining the heaviest 404 

compositions in both systems. The most robust average composition for the CI chondrites 405 

has been obtained from the average composition of 6 large chips of the Orgueil meteorite 406 

as well as samples from Ivuna and Alais and is 65Cu = 0.05±0.16‰ and 66Zn = 407 

0.46±0.08‰  (Barrat et al. 2012). 408 
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For the ordinary chondrites, Zn isotopes define the larger range (-1.30<66Zn<0.76, 409 

Fig. 4), compared to Cu (-0.51<65Cu<0.10, Fig. 3), although the difference between 410 

groups (H, L, LL) is much clearer in the Cu system, whereas the variations in Zn isotopes 411 

in ordinary chondrites seem to be controlled by degree of parent body metamorphism, as 412 

well as subsequent secondary alteration on the Earth’s surface (i.e., ‘falls’ are much less 413 

variable than ‘finds’).  414 

Luck et al. (2003) showed that the 65Cu composition of carbonaceous and ordinary 415 

chondrites varies systematically with their mass-independent 17O value (18O-0.52*17O, 416 

Fig. 3) and 58Ni/65Cu ratio, although the two groups fall on distinct trends. They interpreted 417 

this phenomenon as revealing the presence of at least two, and potentially three, distinct 418 

Cu isotope reservoirs in the early solar system, which subsequently mixed via nebular 419 

processing to create the distinct chondritic bodies. They further suggested, based on the 420 

relationship with 58Ni/65Cu ratio, that the range of Cu isotope compositions was potentially 421 

defined early in solar system history by the heterogeneous distribution of a phase enriched 422 

in the short-lived radionuclide 63Ni, which decays to 63Cu. 423 

Luck et al. (2005) discovered a negative correlation between 66Zn and Mg/Zn in 424 

carbonaceous chondrites and un-equilibrated ordinary chondrite falls (Fig. 5). This was 425 

taken as robust evidence against evaporation as the origin of the variability of Zn 426 

abundance between chondrites groups (with the exception of EL6, see later), and rather 427 

suggested that the variation in the volatile element content of chondrite parent bodies was 428 

fixed by nebular processes. This argument was later developed by Albarède (2009) to 429 

suggest that the volatile element abundance in chondrites was inherited from nebular 430 
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conditions during accretion, and that the Earth must have accreted “dry” and acquired its 431 

volatile elements via later impact events.   432 

 Enstatite chondrites are the most reduced type of chondrites and the only group that 433 

shares similar isotopic anomaly patterns with Earth for most elements (e.g. O, Cr, Ni, Ti; 434 

Moynier and Fegley 2015).  For Cu isotopes, the high (EH) and low (EL) iron groups have 435 

identical average compositions (65Cu ≈ -0.25‰; Savage et al. 2015b), falling in the center 436 

of the chondritic range, although the more volatile depleted EL define a larger range (Fig. 437 

3). Enstatite chondrites of types EH and EL3 (low thermal metamorphic grade) have a 438 

similar Zn isotopic composition (0.15‰<δ66Zn<0.31‰, Moynier et al. 2011) to that of 439 

carbonaceous chondrites, unequilibrated ordinary chondrites and current estimates of BSE 440 

(Fig. 4A). On the other hand, those EL chondrites which experienced strong thermal 441 

metamorphic alteration (EL6) are highly enriched in the heavier isotopes (66Zn up to 442 

7.35‰, Fig. 4B) and are highly depleted in Zn and other moderately volatile elements. The 443 

enrichment in the heavier isotopes of Zn is evidence that the origin of the volatile element 444 

depletion between EL3 and EL6 chondrites was due to volatilization during thermal 445 

metamorphism (Moynier et al. 2011). Why such large enrichments in heavy Zn are not 446 

reflected by the Cu isotope composition of EL6 chondrites is puzzling; however, it should 447 

be noted that the amount of Cu loss between EH and EL6 is much less significant than the 448 

amount of Zn loss; also there are no EL3 Cu isotopic measurements – it could be that EL3 449 

chondrites have a lighter Cu isotope composition than EH, and that the similarity between 450 

EH and EL6 is merely coincidence. This question remains unanswered. 451 
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Ureilites are ultramafic achondrites which are widely considered as mantle restites. 452 

Ureilites with different shock degrees and volatile element abundances show a positive 453 

correlation between 66Zn (with values up to 1 ‰) and 1/Zn, whereby samples with the 454 

lowest Zn content have the heaviest Zn isotopic compositions (Moynier et al. 2010b). This 455 

was taken as evidence that, as with EL6 meteorites and terrestrial tektites (see later), the 456 

variations in the abundance of Zn (isotopes) between ureilite samples is controlled by 457 

evaporation processes. In addition, the more depleted samples also exhibited a higher shock 458 

state, suggesting an impact may have been responsible for the heating event. 459 

The HED (howardites, eucrite, diogenites) meteorites, presumably derived from the 460 

asteroid 4-Vesta, have highly variable 66Zn (-2 to +1.7‰, Paniello et al. 2012b). On the 461 

other hand, unbrecciated eucrites (<66Zn< 6.22‰, n=4) and diogenites 462 

(‰<66Zn< 1.6‰, n=3) are all isotopically heavy and are all more depleted in Zn (and 463 

other moderately volatile elements) than brecciated HED suggesting that some volatile loss 464 

by evaporation occurred during the formation of the Vestan crust.  465 

Iron meteorites are mostly composed of Fe and Ni and are enriched in siderophile 466 

elements compared to chondrites. The so-called magmatic groups (or fractionally 467 

crystallized iron groups) are thought to represent the cores of disrupted asteroids while the 468 

silicate-bearing groups have a more complex history, and may have formed as pools of 469 

impact-produced melt near the base of a regolith on a chondritic parent body (Wasson and 470 

Wang 1986). Luck et al. (2005) found that the IIIAB magmatic iron meteorites show very 471 

limited isotopic variations of both Cu and Zn, while silicate-bearing iron meteorites from 472 

group IA and IIICD are enriched in the heavier isotopes of Zn by up to 3.7‰ (although 473 
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their Cu isotopes are mostly unfractionated). Bridgestock et al. (2014) have expanded the 474 

set of Zn isotopic data in the silicate bearing IA irons and in the IIAB and IIIAB groups 475 

with high precision Zn concentration determined by isotope dilution. They found that, in 476 

general, all iron meteorites are isotopically heavy in Zn relative to terrestrial/carbonaceous 477 

chondrites, and that the 66Zn is negatively correlated with 1/Zn for each individual group. 478 

They also showed that chromites are Zn-rich and isotopically light (66Zn~0) and proposed 479 

that the correlation observed between 66Zn and 1/Zn correspond to the segregation of 480 

chromite from metal. Chen et al. (2013a) and Bishop et al. (2012) measured the Cu and Zn 481 

isotope compositions of a large set of irons, including Zn-poor iron meteorite groups such 482 

as IVA and IVB, and did not find any particular enrichments in the heavier isotopes relative 483 

to other iron meteorite groups, suggesting that the low volatile element contents recorded 484 

in these meteorites is not related to evaporation during the parent body history. Bishop et 485 

al. (2012) found that, as observed in chondrites by Luck et al. (2003), 65Cu correlates with 486 

17O for silicate bearing iron meteorites. Such a correlation between mass-dependent and 487 

non-mass dependent isotopic fractionation must reflect mixing between at least two solar 488 

nebula components (see above); hence, the variations in the Cu isotopic composition of the 489 

silicate-bearing iron meteorites originates from nebular processes rather than from 490 

planetary differentiation effects. Bishop et al. (2012) further proposed that the same may 491 

be true for magmatic iron meteorites (which do not contain silicates and so for which it is 492 

not possible to determine the 17O) and that Cu isotopes could be used to determine genetic 493 

connections between meteorite groups.  Chen et al. (2016) measured the Cu isotope 494 

composition of the IVB (magmatic) iron meteorites and found a very large range of 495 

variation (-5.84 ‰ < δ65Cu < -0.24 ‰ ). The IVB irons are the most volatile depleted iron 496 
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meteorites, with Cu concentration depletions several orders of magnitude larger than other 497 

iron meteorites groups and Ni/Cu ratios of ~105. Chen et al. (2016) show that the Cu isotope 498 

variations are controlled by neutron capture due to galactic cosmic ray irradiation by a 499 

reaction on 62Ni to form 63Ni, which decays to 63Cu (t1/2 ≈ 100 yrs).  500 

Williams and Archer (2011) reported the Cu isotopic composition of phase 501 

separates (metal, troilite and silicate) from a variety of iron meteorites and coupled these 502 

with Fe isotope composition of the same phases. They found a large range of Cu isotope 503 

variations among metals and troilites (~ 10‰ variations) and also within the calculated 504 

metal-troilite fractionation factor (≤~5‰ variations) suggesting a kinetic control on the 505 

isotopic fractionation between the different phases. However, the most equilibrated 506 

samples display the smallest metal/troilite fractionation factor of ~0.5‰, with the metal 507 

phase being enriched in the heavier Cu isotope.  508 

Mass-independent Zn anomalies in extra-terrestrial material. In terms of 509 

nucleosynthesis, Zn is classed as an iron peak (IP) element, along with Ca, Ti, Cr, Ni and 510 

of course, Fe. These elements have the highest nuclear binding energies per nucleon, and 511 

the ‘iron-(abundance)-peak’ is defined by the heaviest nuclides for which nuclear fusion 512 

becomes is energetically unfavourable during element synthesis (56Ni, which decays to 513 

56Fe). As such, IP elements are only formed in the cores of massive stars or by explosive 514 

nucleosynthesis, where formation of some of the nuclides is dominated by nuclear 515 

statistical (quasi)equilibrium during explosive nucleosynthesis (NSE/QSE; see Wallerstein 516 

et al., 1997, for a review). The measurement of so-called isotope anomalies (identification 517 

of isotope reservoirs that do not fall on the terrestrial fractionation line) of the iron peak 518 

elements in extra-terrestrial materials have afforded many important insights into the stellar 519 
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sources of material into the solar system, early solar system processes, and the building 520 

blocks of the terrestrial planets (e.g. Birck 2004; Moynier and Fegley 2015).  521 

 Of the IP element isotope systems, Zn isotope anomalies are, arguably, the least 522 

well constrained with (at the time of writing), less than 10 studies available in the literature. 523 

The initial work (using TIMS, Loss and Lugmair 1990; Völkening and Papanastassiou 524 

1990) focused on the analysis of refractory inclusions from primitive meteorites (those 525 

phases thought to be the first to condense from a cooling nebula gas). Previously measured 526 

Ca, Ni and Cr anomalies in these materials (see Birck 2004 and refs therein) were modelled 527 

by Hartmann et al. (1985) in terms of nuclear statistical equilibrium, which also predicted 528 

relatively large 66Zn excesses. Although Loss and Lugmair (1990) and Volkening and 529 

Pappanastassiou (1990) measured resolvable 66Zn anomalies, these were much smaller 530 

than those predicted by the models, and this was explained as a result of the higher volatility 531 

of Zn compared to the other IP elements; i.e. by the time Zn began to condense, mixing in 532 

the solar nebula had diluted most anomalous Zn. Nevertheless, the presence of anomalous 533 

Zn in refractory inclusions is extremely puzzling, because Zn should not condense at all 534 

during their formation, and so all Zn in these inclusions must have been introduced by 535 

secondary processes. This implies that Zn isotope anomalies survived the hot initial stage 536 

of the solar system, potentially as a distinct sulphide phase, but this is a long standing and 537 

poorly understood issue (e.g. Chou et al. 1976).  538 

TIMS measurements could not resolve any Zn anomalies at the bulk meteorite 539 

scale, and this was apparently confirmed by the first MC-ICP-MS measurements, which 540 

showed that bulk chondrites plotted within error of the terrestrial mass fractionation line in 541 

δ66Zn vs. δ68Zn space (Luck et al. 2005) – seemingly confirming that Zn condensed too 542 
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late for resolvable anomalies to be detected at this scale. The requirement of such large 543 

66Zn excesses to accompany other neutron rich IP anomalies, particularly 48Ca, was also 544 

relaxed with the advancement of nucleosynthesis models into so-called quasi-equilibrium 545 

(e.g., Meyer et al. 1998). Nevertheless, the first paper to specifically investigate Zn isotope 546 

anomalies on the bulk meteorite scale was Moynier et al. (2009a), which utilized MC-547 

ICPMS. The advantages of MC-ICPMS over TIMS, regarding the detection of Zn 548 

anomalies, are the much better precision attainable, the ability to accurately measure 67Zn, 549 

which always suffered from an unidentified interference on TIMS and, finally, the ability 550 

to switch individual amplifier resistances to increase the dynamic range of the instrument. 551 

Moynier et al. (2009a) used a smaller resistance amplifier on the 64Zn detector to allow for 552 

higher concentration samples to be analysed, with the specific aim of investigating 553 

potential 70Zn heterogeneity in bulk solar system materials – important as this can constrain 554 

the distribution of 60Fe (a short-lived radionuclide) in the solar nebula. At the precisions 555 

attained in their study (±100 ppm), no resolvable 66Zn, 67Zn or 70Zn anomaly patterns were 556 

measured (when normalized to 68Zn/64Zn), which indicated relatively homogeneous 557 

distribution of Zn isotopes, and also 60Fe; however, there were some hints in their anomaly 558 

patterns that, with further improvements in precision, anomalies in 66Zn or 67Zn may be 559 

present and measureable.  560 

With techniques modified from Moynier et al. (2009a) and with analytical precision 561 

at the ±10ppm level, Savage et al. (2014) showed for the first time that carbonaceous 562 

chondrites do have resolvable 66Zn and 68Zn excesses (when normalized to 67Zn/64Zn), and, 563 

also that enstatite and potentially ordinary chondrites have smaller 66Zn deficits; this is 564 

consistent with the sense of 48Ca, 50Ti, 54Cr and 62Ni anomalies measured in the same 565 
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samples (Trinquier et al. 2009, Steele et al., 2012, Dauphas et al. 2014; Moynier and Fegley 566 

2015; Schiller et al. 2015). The complementary excesses and deficits exhibited by the 567 

carbonaceous and enstatite/ordinary chondrites, the more volatile nature of Zn, and the 568 

correlations between Zn and other iron-peak anomalies adds further credence to the 569 

‘unmixing’ hypothesis of solar nebula evolution, where specific phases were remobilized 570 

via thermal processing in a previous well-mixed nebula cloud (e.g. Trinquier et al. 2009; 571 

Schiller et al. 2015). Sequential leaching experiments show that the Zn anomalies are not 572 

limited to one phase, although this is most likely due to post-formation remobilization of 573 

Zn. One important insight from this dataset is that Earth is not similar to enstatite 574 

chondrites, in terms of Zn isotope budget, adding to a slowly growing group of isotope 575 

systems (O, Ti, Mo) which bring in to question the ‘enstatite chondrite’ Earth model (e.g. 576 

Moynier and Fegley 2015). Now that Zn isotope anomalies have been discovered in bulk 577 

primitive meteorites, there is potential to discover such anomalies in other solar system 578 

materials, and the new insights from this system could be hugely important for our 579 

understanding of our solar system.  580 

Bulk Silicate Earth composition. The estimation of the isotopic composition of the bulk 581 

silicate Earth is not trivial since both Zn and Cu are fractionated during partial melting of 582 

the mantle, hence during differentiation processes their isotopes may be fractionated also. 583 

In addition, as both Zn and Cu are trace elements, metasomatism or low-temperature 584 

alteration could overwhelm any primitive signal that a rock once held. Therefore, in order 585 

to estimate the Cu and Zn isotopic compositions of the bulk silicate Earth (BSE) it is 586 

necessary to 1) choose pristine samples; 2) constrain the extent to which igneous 587 
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differentiation processes fractionate the isotopes, and; 3) analyze as wide a variety of 588 

mantle derived samples as possible. 589 

The first modern Cu and Zn isotope estimates of BSE were based on the average 590 

composition of MORB samples taken from three ocean basins: 65Cu = 0‰ and 66Zn = 591 

0.25‰ (Ben Othman et al. 2006). The reason that no precision is given is that these data 592 

are given in a conference abstract; nevertheless, for the following decade, these estimates 593 

were the accepted values (the abstract was never written up and no further systematic 594 

studies were performed). 595 

It is only recently that further investigations into this area have been made. Since 596 

Cu is highly incompatible and strongly chalcophile, its behavior during mantle melting is 597 

controlled by the fusion of sulfides (Lee et al. 2012); for partial melting degrees <25%, 598 

residual sulfides may be retained in the source and could potentially create isotopic 599 

fractionation. In order to test the possible effect of partial melting on the isotopic 600 

composition of Cu, Savage et al. (2015b) measured komatiites (ultra-mafic lavas formed 601 

by >25% partial melting; 65Cu = 0.06±0.06‰, 2sd, n=14) and compared these to fertile 602 

orogenic lherzolites (mantle samples that have undergone the least melt depletion: 603 

δ65Cu=0.07±0.09‰, 2sd, n=16: Ben Othman et al. 2006; Ikehata and Hirata 2013), as well 604 

as a representative selection of both mid-ocean ridge and ocean island basalts. All groups 605 

have identical Cu isotope compositions (Fig. 6) which suggests that during mantle melting 606 

there is limited Cu isotope fractionation expressed in the melt. Savage et al. (2015a) 607 

therefore used all this data to propose a 65Cu=0.07±0.10‰ (2sd) for the BSE. 608 

Furthermore, these authors measured the Cu isotope compositions of two magmatic 609 
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differentiation sequences, from Kilauea Iki, Hawaii, and Hekla, Iceland, systems. Both 610 

suites define a large range of SiO2 and MgO contents and evolved from a cogenetic source 611 

with limited contaminations by crustal materials. The samples from Kilauea Iki showed no 612 

variation away from BSE with increasing degree of differentiation, as would be expected 613 

given the lack of sulfide fractionation in this system. In comparison, the samples from 614 

Hekla show more variability, which seems to be related to the removal of sulfides in the 615 

magma chamber. However, these variations are limited (range of compositions from Hekla 616 

-0.08‰<65Cu<0.20‰) and, crucially, the basalts from Hekla are identical to BSE. This 617 

indicates that significant igneous differentiation generates only limited Cu isotope 618 

fractionation, further confirmed by the similarity of I-type granite (δ65Cu=0.03±0.15‰, 619 

2sd: Li et al. 2009) to BSE.  620 

Liu et al. (2015) reached similar conclusions to Savage et al. (2015b) by comparing 621 

a large set of both unmetasomatised cratonic and orogenic peridotites with MORB, and 622 

OIB and proposed a 65Cu=0.06±0.20‰ (2sd) for the BSE. Their data for metasomatised 623 

peridotites were much more variable, demonstrating the susceptibility of Cu-depleted rocks 624 

to secondary isotope fractionation; this was also seen in large negative Cu isotope 625 

excursions in Kilbourne Hole peridotites which correlate with LREE enrichment, and with 626 

large positive komatiite Cu isotope enrichments which only occur in those samples whose 627 

Cu contents do not plot on olivine control lines (Savage et al. 2015a). This suggests that 628 

Cu isotopes could be further utilized as a tracer of recycled materials in the mantle and, for 629 

instance, island arc material; indeed, Liu et al. (2015) provide a large set of arc basalt data 630 

whose range is much larger than that defined by both MORB and OIB (Fig. 6).  631 
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  Compared to the Cu isotope system, fewer studies have attempted to address the 632 

behavior of Zn isotopes during igneous processes. Chen et al. (2013a) evaluated the extent 633 

to which Zn isotopes are fractionated during igneous processes by the same set of samples 634 

as Savage et al. (2015a) for Cu isotopes, those of Kilauea Iki, USA, and Hekla Volcano, 635 

Iceland. Both sets of samples show ~0.1 per mille isotopic variation but only the 66Zn of 636 

the Kilauea Iki samples vary systematically, correlating with the degree of differentiation 637 

(MgO contents) with the most evolved samples enriched in the heavier isotopes (see Fig. 638 

7). These isotopic variations are interpreted as the result of crystallization of isotopically 639 

light olivines, and Ti-oxides at the very end of the differentiation sequence  (Chen et al. 640 

2013b). Chen et al. (2013b) combined the data from mafic rocks from Herzog et al. (2009), 641 

and their own data to determine the 66Zn of the BSE to be 0.28 ± 0.08‰. More recently, 642 

Sossi et al. (In review) have shown that ultramafic rocks comprising unmetasomatised 643 

peridotites from the Balmuccia massif and komatiites with ages varying from 3.5 to 2.7Ga 644 

are all isotopically lighter than basalts and complement the 66Zn vs MgO trend defined by 645 

Chen et al. (2013b). Sossi et al. (In review) used the average of these ultramafic samples 646 

to determine the most up to date 66Zn composition of the BSE  to be 0.15 ± 0.05‰. Telus 647 

et al. (2012) showed that most granites are not isotopically fractionated in Zn with regards 648 

to the BSE value, but pegmatites and some granites are isotopically heavy (up to ~0.9‰). 649 

Telus et al. (2012) interpreted these heavy isotopic compositions in terms of fluid 650 

exsolution and suggest that Zn isotopes can be used to trace fluid exsolution in rocks.  651 

Isotopic fractionation during core formation. Given that both Zn and Cu can partition in 652 

measureable quantities into the metal phase during metal-silicate equilibration, there is the 653 

potential that both isotope systems could reveal insights into the physiochemical conditions 654 
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of Earth’s differentiation into a planet with a metallic core and silicate mantle. However, 655 

for both Zn and Cu, their isotope partitioning behavior is only now being investigated via 656 

experimental studies – but there is huge potential for further work.  657 

In the case of Zn, Bridgestock et al. (2014) showed that there appears to be no 658 

isotope effect associated with metal silicate equilibration. This indicates that, even if there 659 

is measureable Zn in Earth’s core, partitioning into this reservoir would not leave its 660 

isotopic fingerprints on Earth’s mantle. This is consistent with the similarity of the BSE 661 

composition with those of carbonaceous, unequilibrated ordinary and EH chondrites (see 662 

above).  663 

The case of Cu is more complicated. A series of metal-silicate experiments 664 

performed by Savage et al. (2015b) indicated that the heavier Cu isotope prefers to enter 665 

the metal phase. This would suggest (given that 2/3 of Earth’s Cu is in the core) that bulk 666 

Earth is isotopically heavier than the value estimated for BSE (see above). The problem is 667 

that there are no primitive meteorites thus far measured which match this isotopically heavy 668 

composition (in fact, the Cu isotope composition of BSE is still heavier than most 669 

chondrites; Fig. 3). Assuming that the bulk Earth is chondritic, i.e., the bulk Earth has a 670 

lighter Cu isotope composition than its mantle, this could imply a number of possibilities:  671 

1) Cu is also a moderately volatile element, depleted in Earth’s mantle relative to 672 

chondrites. It could be that impact-driven volatilization created this depletion, 673 

which would preferentially lead to the loss of light Cu, leaving a heavy residue. 674 

However, as Zn and to a lesser extent Cu isotopes in chondrites have shown, 675 
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Earth’s volatile depletion was more likely caused by nebula processes (see 676 

above).  677 

2) Earth’s mantle Cu isotope composition is not in equilibrium with its core: it 678 

could be that late addition of Cu to the Earth, during the final stages (i.e. the 679 

giant impact) or post-core formation (i.e. the late veneer) may have set the BSE 680 

composition. In the case of the late veneer, there is not enough mass delivered 681 

by this process to account for all the Cu in the mantle today. In the case of the 682 

giant impactor, this is dependent on the composition of the impactor – even if 683 

it was CI-like (e.g. Schonbachler et al. 2010), the disruption created by this 684 

event would still have led to phase equilibration in the following magma ocean.  685 

3) Earth contains a hidden, isotopically light Cu reservoir. Savage et al. (2015b) 686 

performed sulfide-silicate Cu isotope fractionation experiments, and found that, 687 

in this instance, the sulfide phase preferentially takes the lighter isotope of Cu; 688 

hence, rather than 2/3 of Cu being held in the core, this reservoir may be split 689 

into an isotopically heavy metal and isotopically light sulfide (relative to BSE). 690 

One possibile sulfide reservoir is that of a ‘Hadean Matte’ (O'Neill 1991; Lee 691 

et al. 2007), an Fe-O-S phase that remains as the final liquid after the 692 

crystallization of a magma ocean. Modelling this in terms of [Cu] and 65Cu 693 

suggests that, if such a reservoir formed and eventually was admixed into the 694 

core (it would sink through the mantle due to its higher density), it could add 695 

up to ~0.8wt.% S to the core (Savage et al. 2015b).  696 

Although there are caveats associated with each of the above models, Cu isotopes could be 697 

a powerful tool in tracing the fate of sulfides in various igneous and planetary processes, 698 
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but the framework to understand this fractionation is still required, and more experimental 699 

work is required.  700 

Isotopic fractionation by evaporation on Earth. While the Zn and Cu isotopic database 701 

for terrestrial igneous rocks is very limited, tektites are extremely fractionated (Moynier et 702 

al. 2009c). Tektites are terrestrial natural glasses produced during a hypervelocity impact 703 

of an extraterrestrial projectile onto the Earth’s surface, and are extremely depleted in 704 

volatile elements, e.g., they are among the driest terrestrial samples (<0.02% of water). 705 

Moynier et al. (2009c) found that tektites are extremely enriched in the heavier isotopes of 706 

Zn, up to 2.5 ‰ and attributed this enrichment to kinetic isotopic fractionation during 707 

evaporation. Copper can be even more fractionated than Zn, with 65Cu up to 12.5 ‰ found 708 

in some European tektite samples (Rodovka et al. In review). The difference of behavior 709 

between Cu and Zn has been explained by isotopic fractionation in a diffusion-limited 710 

regime, where the magnitude of the isotopic fractionation is regulated by the competition 711 

between the evaporative flux and the diffusive flux at the diffusion boundary layer 712 

(Moynier et al. 2010a). Copper diffuses much faster than Zn (due to the difference in ionic 713 

charge in silicates of Zn2+ vs. Cu+), hence the larger isotopic fractionation in Cu than in Zn 714 

in tektites is due to the significant difference in their respective chemical diffusivity. 715 

The Moon. The isotopically heavy lunar regolith (2.2‰<66Zn < 6.4‰ and 2.6‰<65Cu 716 

<4.5‰) reflects billions of years of evaporation due to solar wind sputtering and 717 

micrometeorite impact gardening (Moynier et al. 2006; Herzog et al. 2009). On the other 718 

hand, the low-Ti (66Zn = 1.31 ± 0.13‰) and high-Ti basalts (66Zn = 1.39 ± 0.39) have a 719 

more limited isotopic variations and are systematically ~1 ‰ heavier than the BSE for Zn 720 
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(Paniello et al. 2012a; Day and Moynier 2014; Kato et al. 2015). The only data available 721 

for Cu isotopes (δ65Cu =0.5±0.1‰, Herzog et al. 2009) suggests that there is a similar 722 

enrichment in the heavy Cu isotope in lunar? rocks, but this will need further investigation 723 

in the future. Since the isotopically heaviest carbonaceous chondrite group (CI) has a 66Zn 724 

= 0.46‰ and δ65Cu = 0.05‰ (Luck et al. 2003, 2005; Barrat et al. 2012), mixing with 725 

chondrites does not explain the Zn or Cu isotopic composition of the lunar basalts. In 726 

addition, lunar plutonic rocks (alkali and magnesian suite samples) are isotopically heavier 727 

than the mare basalts (66Zn up to 6.27‰) suggesting that the volatile loss could have 728 

occurred in two stages: during the proto-lunar disk stage, where a fraction of lunar volatiles 729 

accreted onto Earth, and from degassing of a differentiating lunar magma ocean, implying 730 

the possibility of isolated, volatile-rich regions in the Moon’s interior (Kato et al. 2015). 731 

ZINC AND COPPER IN LOW TEMPERATURE GEOCHEMISTRY  732 

Since the pioneering work of Maréchal et al. (1999; 2000), and Francis Albarède’s 733 

chapter on Cu and Zn isotopes in the first RiMG volume on non-traditional stable isotopes 734 

(Albarède 2004), a considerable amount of effort has gone into understanding and applying 735 

isotope variations of these two elements in samples from Earth’s surface. As with the 736 

development of any relatively new isotope system, documentation of stable isotope 737 

variations in nature has been coupled with experimental and theoretical studies aimed at 738 

characterizing isotopic fractionations associated with key surface Earth processes. Copper-739 

Zn stable isotope geochemistry of the surface Earth environment has been part of reviews 740 

by Cloquet et al. (2008) and Wiederhold (2015). An emerging new interest lies in the 741 

application of Zn and Cu isotopes to the study of biological pathways and changes in 742 
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metabolism associated with diseases. These applications are here treated in chapter X 743 

(Albarède et al. 20XX, this volume).  744 

The data obtained to date for important surface Earth reservoirs are summarized in 745 

Figure 8. One of the first order features of Cu-Zn isotope geochemistry that this 746 

compilation confirms is the contrast between the relative homogeneity of samples whose 747 

isotopic characteristics are determined by high temperature processes, versus the 748 

variability in materials formed and equilibrated at low temperatures. Thus, igneous rocks 749 

(excluding ultramafic rocks) show a very tight distribution, with 66Zn = 0.30±0.07‰ (n = 750 

77, 1SD) and 65Cu = 0.08±0.17‰ (n = 287) which overlaps with the BSE estimate 751 

presented earlier in this chapter (note that these averages were taken using all igneous rock 752 

data available in the literature, without screening for the possibility of secondary 753 

alteration/metasomatism – hence they are slightly different, and have poorer precisions, to 754 

those defined in the section above). Another first-order feature of the data in Figure 8 is 755 

that sediments that have undergone physical, but minimal chemical, processing through the 756 

fluid envelopes of the surface Earth (i.e. clastic sediments from rivers, lakes, oceans, as 757 

well as aerosols/dust), have average Cu and Zn isotope signatures that are identical to high 758 

temperature igneous rocks, and are not much more variable. In contrast, environmental 759 

samples that have seen such biogeochemical processing record a roughly 2.5‰ range in 760 

Cu and Zn isotopes, or about 30-40 times the analytical precision. Ore minerals that formed 761 

at high temperatures exhibit a range of roughly 1‰ that is also more or less centred on the 762 

peak in igneous rocks (Fig. 8, black bars at bottom). In contrast, the isotope compositions 763 

of minerals from the supergene environment, containing Cu that has undergone (possibly 764 

multiple) oxidation and reduction cycles, exhibit huge (~20‰) variability (e.g. Maréchal 765 
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et al. 1999; Larson et al. 2003; Mason et al. 2005; Mathur et al. 2005; Markl et al. 2006; 766 

Asael et al. 2007; Mathur et al. 2009; Mathur et al. 2010). 767 

In the following sections we first review the experimental constraints on the size 768 

and sign of isotope fractionations of Cu and Zn associated with key surface, low 769 

temperature, processes. Secondly, we discuss the origin of, and geochemical constraints 770 

available from, Cu and Zn isotope variability in “natural” samples – i.e. those not 771 

significantly impacted by human activities. This large subject is separated into sub-sections 772 

on (1) the weathering-soil-plant system, and (2) the oceans, their inputs, outputs and 773 

internal cycling. In this section we also briefly outline the very few studies that have sought 774 

to apply Cu-Zn isotopes in Earth history, and outline the prospects for the future of such a 775 

pursuit. Isotopic variations, and their expression in environmental samples, superimposed 776 

by human activity on this natural biogeochemical cycling represent a somewhat distinct 777 

topic, and are treated in a third section. For convenience, and since ore minerals often 778 

represent the starting material from which pollution of the Anthropocene environment 779 

derives, the very large variability seen in ore minerals is also dealt with in this third section.  780 

 781 

Experimental constraints on fractionation mechanisms 782 

 A survey of the literature reveals four general isotope fractionation mechanisms 783 

causing the roughly 2.5‰ variation in both Cu and Zn isotopes in environmental samples, 784 

as well as the much greater degree of variability in supergene Cu ore minerals: 785 

1. Equilibrium isotope distributions between Cu in different oxidations states;  786 
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2. Equilibrium isotope distribution between dissolved aqueous species;  787 

3. Equilibrium and kinetic effects caused by interactions between solids – abiotic as well as 788 

living cells - and aqueous solutions (sorption, precipitation);  789 

4. Kinetic and equilibrium effects related to uptake into the cells of living microbes and higher 790 

plants.  791 

The sign and magnitude of these fractionations are summarized in Figure 9 and are 792 

discussed in turn below. Though the separate processes bulleted above makes discussion 793 

more convenient, distinction between these fractionation mechanisms is not often sharp. 794 

To some extent this lack of clarity represents some confusion in the literature. Thus, for 795 

example, all metals sorb to the external surfaces of microbial cells, and to some extent the 796 

roots of higher plants. This is a somewhat distinct phenomenon from uptake into the cells 797 

for metabolic use in enzymes and proteins. When metal uptake is studied in 798 

microbiological or hydroponic plant growth experiments, the vast majority of the metals in 799 

solution in the media are bound to an added organic complexant, such as EDTA. This 800 

leaves only a small pool of free metal ion, which is often regarded as the pool that is 801 

available for uptake. The isotopic composition of the metal taken up can be lighter than the 802 

bulk experiment, for example where uptake is transport (diffusion)-limited (e.g. John et al. 803 

2007b), or it can be heavier, for example for some plant species that actively bind external 804 

metals using phytosiderophores (e.g. Arnold et al. 2010a).  805 

On the other hand, in experiments where organic complexants have not been added, 806 

the free metal ion pool is often many orders of magnitude more concentrated. In this case 807 

the metals sorb to external surfaces. Though sometimes described as “uptake” in the 808 
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literature, there is almost certainly no metabolic function of the metals in this case. Such 809 

sorption often involves binding to deprotonating functional groups such as carboxyls and 810 

amines, so that the fractionation factors measured in these experiments are more relevant 811 

to categories 2 and 3 above than 4. On the other hand, there is sometimes genuine 812 

uncertainty over whether a pool of metals associated with a cellular experimental product 813 

is intra-cellular or sorbed on external surfaces. Some researchers have been able to 814 

distinguish between these two mechanisms using experiments with living (active metabolic 815 

uptake) versus dead (passive adsorption) cells, or by removing the extra-cellular pool using 816 

a desorptive wash prior to analysis (e.g. John et al. 2007b; Navarette et al. 2011). Finally, 817 

Cu uptake into microbial cells has been interpreted as involving reduction of external 818 

Cu(II) to internal Cu(I) – i.e. a component of 1 above (e.g. Zhu et al. 2002; Navarette et al. 819 

2011; Jouvin et al. 2012; Ryan et al. 2013).  820 

Changes in oxidation state. Zinc does not undergo changes in oxidation state at Earth 821 

surface conditions. Thus, although a substantial isotope fractionation has been 822 

characterized in an electroplating experiment involving reduction of aqueous Zn (II) to Zn 823 

metal (Kavner et al. 2008), this is unlikely to be relevant to natural systems. For copper, 824 

on the other hand, the transition between Cu(I) and Cu(II) happens at redox conditions 825 

relevant to the Earth’s surface, and Cu occurs in both reduced and oxidized forms in Earth 826 

materials. Further, it is clear that the redox transition involves large isotope fractionations. 827 

This fractionation was first characterized by Zhu et al. (2002) in experiments that found 828 

65CuCu(II)-Cu(I) = 4‰ for the reduction of aqueous Cu(II) to a Cu(I) iodide precipitate at 829 

20°C (here and throughout 65Cux-y = 65Cu(phase x)-65Cu(phase y)). Ehrlich et al. (2004) 830 

followed this up with experiments involving the precipitation of Cu(I)S (covellite) from an 831 
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aqueous Cu(II) solution and found 65CuCu(II)aq-Cu(I)S = 3.06±0.14‰ at 20°C. Furthermore, 832 

and importantly, they contrasted this large fractionation with the small one (65CuCu(II)aq-833 

Cu(II)(OH)2 = 0.27±0.02‰) for Cu(II) hydroxide precipitation from a Cu(II)aq solution. This 834 

finding, as well as that by Maréchal and Sheppard (2002) of small (0.2-0.4‰) isotopic 835 

differences between Cu(II) in solution versus malachite, strongly suggests that it is the 836 

change in oxidation state, and not the phase change, that causes the large isotopic shift seen 837 

in these and other redox experiments. These results were further confirmed by Mathur et 838 

al. (2005), who found that Cu (I) in chalcocite (Cu2S) and chalcopyrite (CuFeS2) was 1.3 839 

and 2.74‰ lighter than aqueous Cu(II) in abiotic batch oxidative leach experiments. In 840 

analogous experiments inoculated with Thiobacillus ferrooxidans the heavy oxidized Cu 841 

was located in amorphous Cu-Fe oxide minerals surrounding bacterial cells.  842 

 Zhu et al. (2002) found that Cu incorporated into proteins expressed in bacteria and 843 

yeast cells was 1.0-2.1‰ lighter than in the parent solutions and media, and used these 844 

findings to suggest that the biogenic uptake of light Cu also involved reduction. Likewise, 845 

Navarette et al. (2011) interpret Cu isotope variations in media from which live bacterial 846 

cells remove Cu as due to cellular uptake (as opposed to sorption, which induces a different 847 

fractionation in their experiments, as observed in dead cells). This is associated with 848 

preferential uptake of the light isotope – by up to 4.4‰ - and was also interpreted to 849 

involved reduction of Cu(II). As noted in this study, if this reduction occurs within the cell, 850 

the changes seen in the media require that there is also efflux of heavy Cu from the cells, 851 

allowing equilibration of the two Cu pools. As discussed later in this section, uptake of 852 

isotopically light Cu by bacteria and higher plants probably also involves reduction by a 853 
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reductase protein (e.g. Navarette et al. 2011; Weinstein et al. 2011; Jouvin et al. 2012; Ryan 854 

et al. 2013). 855 

Organic complexation. Copper forms very strong inner sphere complexes 856 

(conditional stability constants up to 1025) with functional groups in organic matter 857 

(McBride 1981; Grybos et al. 2007; Ryan et al. 2014). Virtually all Cu in the operationally-858 

defined dissolved phase (that fraction passing through a 0.45m filter) of rivers and the 859 

oceans is bound in these organic complexes (e.g. McBride 1981; Coale and Bruland 1988; 860 

Moffett and Brand 1996; Shank et al. 2004; Grybos et al. 2007; Vance et al. 2008; Ryan et 861 

al. 2014), such that inorganically-complexed and free Cu2+ ion concentrations are 2-5 862 

orders of magnitude lower than total dissolved Cu. Similarly, up to 98% of the “dissolved” 863 

Zn in many natural waters is also complexed to organic ligands, though with stability 864 

constants that are of order 109-1011 (e.g. Wells et al. 1998; Bruland 1999; John et al. 2007b). 865 

Grybos et al. (2007) suggest that two important processes compete to control transition 866 

element behavior in soils: binding to organic complexes, both in condensed organic matter 867 

and in an aqueous phase, versus sorption to the surfaces of secondary minerals such as 868 

clays and Fe-Mn oxyhydroxides. The last decade of research on Cu-Zn isotopes has 869 

revealed that this competition is almost certainly key for isotope distributions, not only in 870 

soils but also between the dissolved and particulate phases in rivers and the oceans (e.g. 871 

Vance et al. 2008; Bigalke et al. 2010a; b; Bigalke et al. 2011; Little et al. 2014b; Vance et 872 

al. 2016). In quantifying the isotopic fractionations between an (often) aqueous 873 

organically-complexed pool and the sorbed pool, the universal approach has thus far been 874 

to measure the isotopic separation between each of these and a dissolved free metal ion 875 

(Cu2+, Zn2+) pool. Each of these, therefore, are here dealt with separately.  876 
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Ban et al. (2002) were the first to quantify the isotopic impact of this important 877 

process, finding 66ZnEDTAZn-Zn2+ ~ 0.2‰ (here and throughout 66Znx-y = 66Zn(phase x)-878 

66Zn(phase y)). Jouvin et al. (2009) used Donnan membranes to separate free Zn from that 879 

complexed to humic acid. These authors found no fractionation at pH ≤5.4, but 66ZnHumic-880 

Zn2+ = +0.24±0.06‰ at pH 6.1-7.2. The variable fractionation as a function of pH was 881 

interpreted in terms of the partitioning of the bound Zn between high affinity (HA, bound 882 

to phenols) and low affinity (LA, bound to carboxylate groups) sites, and the fact that, at 883 

equilibrium, isotopically heavy Zn is partitioned into the strongly-bound species. Zinc is 884 

increasingly bound to the HA sites at higher pH (50:50 LA and HA at pH around 6.1-6.2). 885 

Based on calculated mass balance between the species, Jouvin et al. (2009) proposed a 886 

fractionation factor, HAS-Zn2+, of 1.0004. Bigalke et al. (2010a) performed the same 887 

experiment for Cu at pH 2-7. In the case of Cu there is no apparent isotopic difference 888 

between LA and HA sites, and only 11-35% of the bound Cu is in HA sites. For both, 889 

65CuHumic-Cu2+ = +0.26±0.11‰. More recently, Ryan et al. (2014) measured the Cu isotope 890 

fractionation between free Cu and a range of soluble organic ligands. They see a “strong” 891 

positive correlation between the isotopic fractionation and the value of the stability 892 

constant for each complex. Thus for natural riverine fulvic acid (log K = 8) 65Cucomplex-free 893 

= +0.14±0.11‰, whereas for desferrioxamine B (DFOB logK = 24.7) 65Cucomplex-free = 894 

+0.84±0.30‰. 895 

Sorption to abiotic substrates. As with the fractionations associated with organic 896 

complexation outlined above, isotopic effects associated with sorption have also been 897 

measured experimentally relative to a dissolved free metal ion pool. Pokrovsky et al. (2005) 898 

measured Zn isotope fractionations upon sorption from simple aqueous solutions of low 899 
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ionic strength (0.01M), where Zn is speciated as a hexaquocomplex, and where the sorption 900 

equilibrium can often be envisaged as (omitting the solvating waters in the aqueous 901 

species): 902 

 >MeOH0 + Zn2+ = MeO-Zn+ + H+ 903 

They found a small preference for the light isotopes of Zn (by about ~0.18-0.23‰) on 904 

goethite and birnessite (-MnO2) surfaces, and for the heavy isotopes (by about ~0.11-905 

0.14‰) on pyrolusite (-MnO2) and aluminium oxides. Zinc sorbed to hematite exhibited 906 

the largest isotopic separation from dissolved free Zn, with 66Znsorbed-free = +0.61‰ when 907 

sorption starts at pH 5.5, but decreasing to zero at higher pH as sorption increases. Not all 908 

the results of this pioneering study have been reproduced. Indeed in all subsequent studies, 909 

sorbed Zn has been found to be universally heavy relative to the aqueous free metal ion 910 

pool. Bryan et al. (2015) discuss possible reasons for these discrepancies, including the 911 

possibility of kinetic effects in short duration experiments. Moreover, theoretical 912 

considerations (e.g. Schauble 2004) suggest that the lower co-ordination of the metal 913 

sorbed on these surfaces (e.g. Peacock and Sherman 2004; Balistrieri et al. 2008; Juillot et 914 

al. 2008) should prefer the heavy isotope.  915 

 Balistrieri et al. (2008) find heavy Cu and Zn sorbed onto ferrihydrite, in a study 916 

incorporating both natural data from streams draining a metal sulphide deposit and 917 

experimental results. The experiments were also done with low ionic strength solutions 918 

(0.008M). The sorption experiments only lasted 2-3 hours, but in this case the sorption of 919 

heavy isotopes as well as a close-to-linear relationship between the fraction of dissolved 920 

metal and isotopic composition rule out a kinetic effect. Again, however, only the aqueous 921 
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phase was measured so that the mass balance was not confirmed. This study also mixed 922 

water draining a mine (acidic and metal-rich) with water from the river (uncontaminated 923 

and alkaline) it drains into. Overall, aqueous Cu and Zn concentrations decrease as pH 924 

increases and as they are sorbed onto ferrihydrite, and the aqueous phase becomes light. 925 

The sorbed-solution values are +0.73±0.08‰ for Cu and +0.52±0.04‰ for Zn. Despite 926 

potential variation in aqueous speciation with pH, these sorption experiments are well 927 

modeled by a single process, which they suggest to be a change in co-ordination and bond 928 

length – octahedral co-ordination in solution with Me-O bond distances of 2.0-2.4Å, versus 929 

tetrahedral-co-ordination on ferrihydrite and other Fe oxides and bond lengths of 1.8-2Å. 930 

Pokrovsky et al. (2008) corroborate the finding of sorption of heavy Cu, finding 65Cusorbed-931 

solution = 0.8±0.2‰ for goethite  and1.0±0.2‰ for gibbsite. 932 

 Juillot et al. (2008) confirmed this result for Zn sorption to ferrihydrite (66Znsorbed-933 

solution = +0.53‰). These authors also obtained 66Znsorbed-solution for goethite = +0.29‰. In 934 

these experiments ionic strength was kept at 0.1M using KNO3 and some solids were 935 

measured to close the mass balance. Moreover, time-dependent experiments found light 936 

Zn taken up onto ferrihydrite in the first hour, before the observations settled down to a 937 

constant heavy value at about 18 hours, possibly explaining the light value found in the 938 

Pokrovsky et al. (2005) study. These authors also interpret their results in terms of changes 939 

in co-ordination and bond-length. The smaller fractionation for goethite is ascribed to the 940 

fact that bond-lengths are shorter on the surface relative to solution, even though Zn is 941 

octahedrally co-ordinated on goethite, versus tetrahedral co-ordination on ferrihydrite.  942 

   943 
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 Recently, Bryan et al. (2015) conducted a much more extensive study of Zn isotopic 944 

fractionation during sorption to poorly crystalline Mn oxyhydroxide, which dominates the 945 

sorption of many metals, including Zn, in the marine environment (e.g. Koschinsky and 946 

Hein 2003; Wasylenki et al. 2011; Little et al. 2014b). Isotopic fractionations were 947 

monitored as a function of equilibration time, ionic strength of the solution, speciation of 948 

inorganic zinc in the aqueous phase, and degree of loading of the Mn oxide surface. The 949 

Zn isotopic composition of both solid and dissolved phase were measured, allowing an 950 

assessment of overall experimental mass balance as well as of the relative importance of 951 

kinetic versus equilibrium fractionation. For low ionic strengths there is a small kinetic 952 

effect (66Znsorbed-dissolved ~ -0.2‰) for experimental durations up to 48 hours, but for 953 

equilibration times greater than 100 hours fractionations are within uncertainty of zero 954 

(66Znsorbed-dissolved = +0.05±0.08‰). For high ionic strength solutions heavy isotopes are 955 

always preferentially adsorbed, but there is a strong dependence on surface loading, with 956 

66Znsorbed-solution = +2.74‰ for low surface loadings (8%), reducing to +0.16‰ for high. 957 

The authors interpret this variation in terms of a change in co-ordination from tetrahedral 958 

to octahedral as surface loading increases from tetrahedral for Mn oxide with Zn/Mn = 959 

0.008 to octahedral at Zn/Mn = 0.128  (Manceau et al. 2002). The difference in behavior 960 

at different ionic strengths is partially attributed to the fact that in the low ionic strength 961 

experiments the surface loadings were also high (Zn/Mn ~ 0.2). There may also be an effect 962 

of speciation. The authors suggest that it is free Zn2+ that is sorbed. The isotopic 963 

composition of free Zn is predicted to change as ionic strength and the proportions of 964 

inorganic carbonate and chloride complexes of Zn, with different equilibrium 965 

fractionations relative to free Zn (Fujii et al. 2010, 2014; Black et al. 2011), change. For 966 
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Zn sorption to kaolinite (Guinoiseau et al., 2016), qualitatively similar variation in sorbed-967 

free aqueous ion (Fig. 9) has been interpreted as a shift from outer sphere complexation of Zn in 968 

basal exchange sites at low pH, when edge sites are protonated, to inner sphere 969 

complexation on edge sites, and larger fractionations, at higher pH and ionic strength. 970 

 971 

Sorption/binding to biological suurfaces. Both elements under consideration here 972 

are essential nutrients for plants and animals, but they are toxic at high concentrations in 973 

both the terrestrial and marine realm (e.g. Anderson and Morel 1978; Flemming and 974 

Trevors 1989; Marschner 1995; Moffett and Brand 1996; Sold and Behra 2000; Peers and 975 

Price 2006; Broadley et al. 2007; Yruela 2009; Sinoir et al. 2012; Bruland et al. 2014). 976 

Thus, there are important interactions with the cells of living matter that induce significant 977 

isotope fractionations. As noted earlier a careful distinction must be made, one that is not 978 

always made in the literature (though see John et al. 2007b; Navarette et al. 2011), between 979 

metals that are sorbed or bound to the surfaces of microbial cells and plant roots, and those 980 

taken up for metabolic utilization. In terms of basic chemical and isotopic mechanisms, the 981 

former process is more akin to the binding to the functional groups of both organic matter 982 

and inorganic surfaces discussed in previous sections, and usually favours the heavy 983 

isotopes. The latter may favour either the light isotope, if governed by a transport-limited, 984 

kinetic, process (e.g. John et al. 2007b) or if it involves reduction as may be the case for 985 

Cu (e.g. Zhu et al. 2002; Navarette et al. 2011), or the heavy, if it occurs through active 986 

uptake by phytosiderophores (e.g. Arnold et al. 2010a).  987 
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 Gélabert et al. (2004; 2006) conducted experiments that characterized the nature of 988 

interactions between marine and freshwater diatoms and aqueous Zn, including isotope 989 

fractionation. The aqueous phase (the medium) in these experiments had inorganic Zn 990 

concentrations of 0.3-20 M. With no organic complexant stabilizing Zn in solution, the 991 

process studied is sorption, not “uptake”. Zinc sorption was strongly controlled by organic 992 

layers covering the silica frustule, specifically by carboxylate and silanol groups, with the 993 

amount of Zn sorbed to an organic-free silica skeleton being factor five less than cell with 994 

organic surface layers. They find 66Zndiatomcell-medium = +0.1‰ to +0.5‰ in the presence or 995 

absence of organic layers. Coutaud et al. (2014) conducted experiments that characterized 996 

fractionation upon uptake and release by and from a “phototrophic biofilm” (an aggregate 997 

of micro-organisms embedded in a exopolysaccharide matrix) and see adsorption of heavy 998 

isotopes to a much greater degree than this – by up to 1.2±0.4‰ relative to solution. Some 999 

of these fractionations for sorption to cells are very similar to those measured for those 1000 

outlined earlier for complexation of Zn to organic functional groups, which may be the 1001 

dominant binding process (Gélabert et al. 2004; Gelabert et al. 2006).  They are also often 1002 

similar to those found for externally-bound Zn in culturing experiments by John et al. 1003 

(2007b) that were primarily targeted at documenting fractionation upon uptake into the 1004 

cells themselves. 1005 

 Three additional studies have been aimed at quantifying and understanding the 1006 

sorption of Cu and Zn onto cells, but differ in their interpretation of the exact driver of the 1007 

fractionations observed, specifically whether it was sorption or biological uptake. 1008 

Pokrovsky et al. (2008), in experiments with Cu sorption onto abiotic metal surfaces and 1009 

onto bacterial and diatom cells at low ionic strength (0.01-0.1M), see virtually no 1010 
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fractionation upon sorption to bacterial cells at circumneutral pH (5.1-6.1, 65Cu = mostly 1011 

0±0.3‰). They see light Cu sorbed onto the cells of soil bacteria at pH 1.8-3.3 (by up to 1012 

1.8‰). The rationale given for the sorption of light Cu in this case relates to an outer-1013 

sphere monodentate complex likely to form between Cu and phosphoryl groups – with 1014 

apparently longer bond distances - on bacterial surfaces at low pH.  1015 

 Navarette et al. (2011), on the other hand, contrast two sets of Cu uptake 1016 

experiments with live versus dead cells of E. coli and B. subtilis. When the cells are alive 1017 

the solution gets much heavier as it loses Cu to the cells, with 65Cucells-solution as low as -1018 

2.6‰ and -4‰ at different pH values. On the other hand, when cells were dead, the solution 1019 

was lighter, and only by about 0.4‰. As with the small fractionations of Zn in the Gélabert 1020 

et al. (2004; 2006) experiments, it is likely that the latter process is analogous to the 1021 

complexation of Cu to organic functional groups outlined earlier (e.g. Bigalke et al. 2010c; 1022 

Ryan et al. 2014). The uptake of light Cu by live cells, on the other hand, is interpreted in 1023 

terms of active intra-cellular complexation. Navarette et al. (2011) confirm this finding in 1024 

experiments where the aqueous Cu is stabilised by organic complexants so that it is not 1025 

sorbed. They again document large separation factors, with 65Cu cells-solution = -1.2 to -1026 

4.4‰, depending on species and the nature of bacterial consortia used in each experiment. 1027 

The authors suggest that the light uptake may be due either to a kinetic fractionation – 1028 

irreversible incorporation – or to an equilibrium reduction to Cu(I) within the cell. If the 1029 

latter is important there has to be communication with the outside of the cell to allow the 1030 

efflux of the oxidized Cu back to the solution. The theme of a paper by Kafantaris and 1031 

Borrok (2014) is similar, in this case applied to Zn, in that their objective was to try to 1032 

understand the relative importance of surface complexation versus intracellular 1033 
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incorporation. For experiments with high Zn/bacterial cells ratios, Zn sorption varies with 1034 

increasing pH in a very similar way to abiotic experiments, presumably due to increased 1035 

deprotonation of cell surface organic functional groups and consequent binding of Zn. Zinc 1036 

isotopic data are best fitted by an equilibrium model with a separation factor 66Zncells-1037 

solution +0.46‰. In contrast, this study found heavy Zn in solutions at low Zn/bacterial cells 1038 

ratios, with 66Zncells-solution = -2.5‰.  This is interpreted in terms of the complexation of 1039 

Zn in the dissolved phase by organic exudates, generating two pools of Zn, a complexed 1040 

(heavy) and a free (light) pool, with the light free Zn pool sorbing onto cell surfaces. This 1041 

would, however, require an isotope separation factor between organically-complexed and 1042 

free Zn of 2-3‰, an order of magnitude greater than that found in experiments to date (Ban 1043 

et al. 2002; Jouvin et al. 2009). On the other hand, these authors also used an electrolyte 1044 

wash to remove extra-cellular Zn in an attempt to quantify intra-cellular inventories and 1045 

isotopic composition, and also found Zn isotopes in cells to be slightly, to very, heavy 1046 

relative to the aqueous phase. It should be noted, however, that these experiments were 1047 

conducted at Zn concentrations 3-4 orders of magnitude greater than found in nature, 1048 

perhaps at levels where Zn is toxic. Moreover, precipitates containing high levels of Zn on 1049 

cell surfaces, probably not removed by their wash, is likely at these high concentrations.  1050 

 1051 

Metabolic uptake by algae and higher plants. Primary production by 1052 

photosynthesis on Earth is roughly equally split between higher plants on land and algae 1053 

in the oceans (Field et al. 1998). As noted earlier, Cu and Zn are both essential 1054 

micronutrients for photosynthesizing organisms and are indeed required for enzymes and 1055 
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proteins in all organisms, but are also both toxic to plants and algae at very high 1056 

concentrations. There have been a relatively small number of studies characterizing 1057 

fractionation of Cu and Zn isotopes during uptake by plants – as opposed to absorption or 1058 

binding to external surfaces as discussed in the previous section.  1059 

John et al. (2007b) report culturing experiments with the diatom Thalassiosira 1060 

oceanica across a range of free Zn ion concentrations, controlled in their media by the 1061 

addition of complexant EDTA, representative of coastal and open ocean waters. In order 1062 

to document fractionation during uptake, such culturing studies must remove externally 1063 

adsorbed Zn by washing prior to analysis, and John et al. (2007b) find that the externally-1064 

sorbed Zn isolated in this way has an isotopic composition that is 0.1-0.5‰ heavier than 1065 

the medium, consistent with other studies where binding of Zn to diatom external surfaces 1066 

has been specifically targeted (Gelabert et al. 2006). In contrast, Zn in washed cells 1067 

(targeting the internalized cellular Zn pool) is isotopically lighter than the medium. John et 1068 

al. (2007b) document a range in fractionations, from 66Zndiatom-medium = -0.2‰ at low 1069 

medium free Zn concentrations to -0.8‰ at high, with a step-like transition at free Zn 1070 

concentrations that are in the range for natural seawater, at around 10-10M. The authors 1071 

ascribe these two different fractionations to two different Zn uptake systems – high and 1072 

low affinity. These two systems are well-documented in previous culturing studies (e.g. 1073 

Sunda and Huntsman 1992), with the high affinity pathway up-regulated when available 1074 

Zn is low but saturated at high seawater/medium Zn concentrations. The low affinity 1075 

pathway likely involves diffusive transport across the cell membrane, thus favouring the 1076 

light isotope. John and Conway (2014) document the same magnitude of fractionation upon 1077 

uptake into a different kind of phytoplankton – the marine flagellate chlorophyte 1078 
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Dunaliella tertiolecta. The 66Zncells-medium = -0.76±0.02‰ obtained is the same as for the 1079 

low affinity uptake system in the diatom experiments, consistent with the high free Zn 1080 

concentrations in their medium.  1081 

There have been more studies focusing on fractionations of Cu and Zn isotopes 1082 

upon uptake into higher plants. Taken as a whole, these studies have documented a number 1083 

of important features of plant uptake systems for Cu and Zn: (1) all plants have a bulk Cu 1084 

isotope composition that is lighter than the external pool (c.f. bacterial uptake of Cu in 1085 

Navarette et al. (2011), discussed earlier), leading to the suggestion that Cu reduction upon 1086 

uptake is an important process; (2) bulk plant Zn isotopic compositions are both lighter and 1087 

heavier than the external bioavailable pool, perhaps depending on whether free Zn or a 1088 

complex is taken up; (3) all plants preferentially transfer the lighter isotopes of Zn upwards 1089 

into stems and leaves, whereas early studies document preferential upward translocation of 1090 

both light and heavy Cu isotopes.  1091 

Before discussing the details of experimental isotopic studies for Cu and Zn in 1092 

higher plants, it is useful to briefly set the context in terms of plant uptake systems and the 1093 

constraints that have come from the better studied Fe isotopic system (see Russel et al. 1094 

2003 for useful summaries; Jouvin et al. 2012). For Fe, two fundamentally different uptake 1095 

strategies lead to different isotope fractionations (e.g. Guelke and Von Blanckenburg 1096 

2007). Iron acquisition by Strategy I (non-graminaceous) plants involves the uptake of a 1097 

free metal ion and requires a reduction step that favours uptake of isotopically light Fe. 1098 

Analogously uptake of free Cu via transporters such as COPT1 has been described (e.g. 1099 

Sancenon et al. 2004; Jouvin et al. 2012), and would also require reduction of soil Cu (II) 1100 

to Cu (I) by a reductase enzyme. For Zn there is no oxidation state change involved. As 1101 
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with the diatom studies outlined above, Strategy I uptake of Zn may involve both a low 1102 

and high affinity uptake system (see Jouvin et al. 2012). Low affinity uptake, active at 1103 

external bioavailable Zn concentrations in excess of perhaps 10-7M (e.g. Wang et al. 2009; 1104 

Jouvin et al. 2012), involves diffusive transport via ion channels and electrogenic pumps, 1105 

favouring the light isotope. High affinity Strategy I uptake involves zinc-iron-permease 1106 

(ZIP) proteins that bind free Zn from the external pool at the cell membrane, probably 1107 

favouring the heavy isotope, and facilitate its uptake and transmembrane transport. In 1108 

contrast, Strategy II uptake (graminaceous plants), under metal-deficient conditions, can 1109 

actively complex soil Fe (III) to a phytosiderophore derived from their root – with no 1110 

reduction step and a small positive isotope fractionation for Fe (e.g. Guelke and Von 1111 

Blanckenburg 2007; Moynier et al. 2013b). Uptake of Zn and Cu in “phytosiderophores”, 1112 

organic complexes that will favour the heavy isotope as discussed in earlier, have been 1113 

discussed in the isotopic literature as outlined below.  1114 

The pioneering study of Weiss et al. (2005) showed that the roots of tomato, rice 1115 

and lettuce were all slightly enriched in the heavy isotopes of Zn relative to the bulk nutrient 1116 

solution in which they were grown – by 0.1-0.2‰. In contrast, the shoots, housing 75-85% 1117 

of the Zn inventory of the plant, were isotopically light relative to the same nutrient solution 1118 

– by 0.25-0.5‰, so that the bulk plants contain light Zn relative to the external pool. The 1119 

simplest explanation of this observation requires the uptake of isotopically light Zn, 1120 

through ion channels or electrogenic pumps, coupled to the preferential upward transfer of 1121 

even lighter Zn, leaving the residual root pool heavy. Fujii and Albarède (2012) re-1122 

interpreted these observations using ab initio calculations and suggested that the 1123 

fractionation is controlled by the difference in Zn speciation between the root system 1124 
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(isotopically heavy Zn-phosphates) and the upper parts, rich in isotopically light citrates 1125 

and malates. It is noteworthy that the predicted isotopic signal of Strategy I behavior is 1126 

found in a Strategy II plant like rice. In a follow up study, however, Arnold et al. (2010a) 1127 

demonstrate that rice grown in soil rather than hydroponically is isotopically heavy relative 1128 

to the soil, particularly under Zn deficiency. They attribute this to uptake of Zn bound to a 1129 

“Zn-phytosiderophore”. On the other hand, Tang et al. (2012) also observe Zn in plants 1130 

that is up to ~0.6‰ heavier than in soils, but reject the phytosiderophore hypothesis 1131 

because the species concerned do not release them. Instead, they favour uptake of heavy 1132 

isotopes by ZIPs. The upwards transfer of light Zn has been confirmed by later studies (e.g. 1133 

Moynier et al. 2009b; Caldelas et al. 2011; Jouvin et al. 2012; Tang et al. 2012).  1134 

This earlier work on Zn uptake by plants has been followed up by a series of more 1135 

targeted studies aimed at more detailed investigation of the mechanisms by which plants 1136 

take up Zn and its isotopes, especially with regard to speciation and including Zn uptake 1137 

by zinc hyperaccumulators from contaminated soils (Aucour et al., 2011, 2015; Houben et 1138 

al., 2014; Couder et al., 2015). 1139 

Weinstein et al. (2011) first measured the isotopes of Cu in plants, documenting 1140 

light isotopes in every part of Strategy II plants – by 0.3-0.8‰ - relative to the soils in 1141 

which they were grown. They also document significant transfer of light Cu upwards from 1142 

the roots, or from the initial stock of Cu in lentils grown from seed without further Cu 1143 

addition. In all cases, the topmost and youngest leaves contain the lightest Cu. These 1144 

findings were confirmed by Jouvin et al. (2012). Though the latter study found a difference 1145 

between Strategy I (65Cuplant-nutrient solution = -0.84 to -0.47‰) and Strategy II  (65Cuplant-1146 

nutrient solution = -0.48 to -0.11‰), all of them took up the light isotope, suggesting that 1147 
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reduction of Cu (II) is an important factor in the uptake of Cu by all plants whether the Cu 1148 

is complexed or not. Like the previous two studies, Ryan et al. (2013) observe much lighter 1149 

Cu in plants than the soils in which they were grown, and a very clear difference between 1150 

Strategy I (65Cuwhole plant-nutrient solution = -1.02±0.37‰) and Strategy II (65Cuwhole plant-nutrient 1151 

solution = -0.15±0.11‰) plants. However, in contrast to the previous two studies, their 1152 

Strategy II plants have a fairly constant isotopic composition in different parts of the plant 1153 

while for Strategy I the heavier isotope preferentially moves upwards (shoots 0.87-1.35‰ 1154 

heavier, leaves 0.53-0.98‰ heavier). These authors rationalize their observations in terms 1155 

of the upward transfer of Cu in organic complexes like nicotinamine, which would indeed 1156 

preferentially transport the heavy isotope (Ryan et al. 2014), if translocation upwards was 1157 

not close to quantitative. 1158 

Cu-Zn isotopes in the weathering-soil-plant system 1159 

 Soils represent the interface between the solid Earth and its fluid envelope, the place 1160 

where chemical weathering of primary minerals and precipitation of secondary minerals 1161 

begin, the substrate for plant growth, and the locus for the initial partitioning of elements 1162 

between solid material and the aqueous phase that drains into groundwater, rivers and, 1163 

eventually, the oceans. In addition, transfer of chemical elements between the atmosphere 1164 

and soils occurs through the ablation, transport and deposition of dust. As such, soils are 1165 

sites of complex processes that involve Cu and Zn transfer and isotopic fractionation via 1166 

all of the mechanisms detailed in the previous section. For ease of discussion here we 1167 

separate these processes as follows: (1) isotopic effects associated with leaching and 1168 

dissolution of primary minerals; (2) the partitioning of Cu and Zn and their isotopes 1169 

between a dissolved pool, often complexed to soluble organics, and a pool sorbed to 1170 
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secondary minerals; (3) overprinting of weathering processes via the addition of 1171 

atmospheric aerosol to soils; (4) uptake into plants and associated isotope fractionations in 1172 

the upper organic-rich levels of soils. Anthropogenic addition of Cu and Zn to soils is a 1173 

fifth important process but is dealt with in the section on the Anthropocene later in this 1174 

chapter. 1175 

Weathering release of Cu and Zn from primary minerals. To our knowledge there 1176 

are only two studies that have characterized Cu-Zn isotope compositions upon release from 1177 

primary minerals to an experimental leachate designed to simulate the weathering process. 1178 

Fernandez and Borrok (2009) measured isotopic compositions of fluids released during 1179 

oxidative leaching experiments on rocks containing sulphides (pyrite, chalcopyrite, galena, 1180 

sphalerite). Copper released is 2‰ heavier than the starting rocks at pH 2 and 5. Zinc 1181 

released is both heavier and lighter than the primary sulphide, depending on the precise 1182 

rock/mineral being leached, but only by order 0.2‰. For Cu the release of heavy isotopes 1183 

is almost certainly related to an oxidation state change, from Cu(I) in the sulphides to Cu(II) 1184 

in the leachates. Weiss et al. (2014) conducted experiments on leaching of biotite granite 1185 

using 0.5M HCl and oxalic acid. Zinc mobilized into the aqueous phase in the first hour 1186 

was as light as -1.2‰ relative to starting material, with 30-40% of the initial rock Zn pool 1187 

released. The Zn in solution then moved back towards the initial rock, but never got beyond 1188 

0.1 -0.3‰ lighter after 168 hours (with 45-75% of the original starting Zn mobilised). The 1189 

early, very negative, fractionations are interpreted as being kinetic.  1190 

Cu-Zn isotopes of soils and the impact of sorption and aqueous complexation. 1191 

Though experimental studies are a useful template for the interpretation of field data, real 1192 

weathering of rocks in soils is more complex for two main reasons. Firstly, Cu and Zn are 1193 
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not necessarily located in sulphide minerals such as in the Fernandez and Borrok (2009) 1194 

experimental leaching study. Where this is the case the results obtained from field studies 1195 

are consistent with the experiments. Thus Mathur et al. (2012) studied Cu isotopes in soils 1196 

and soil waters developed on black shales in Pennsylvania USA, where a very large 1197 

proportion of the Cu is located in pyrite. Loss or gain of an element of interest (i) during 1198 

the soil development process is often expressed in terms of a tau () value (Chadwick et al. 1199 

1990), which normalizes the concentration (C) of the element in a particular soil horizon 1200 

(h) to both that in the parent material (p) and to the concentration of an immobile element 1201 

(j, often Nb, Zr or Ti): 1202 

 1203 

 1204 

 1205 

Tau values greater than zero denote addition of the element of interest relative to the 1206 

immobile element, and values less than zero loss. Unfortunately, not all studies of Cu and 1207 

Zn isotopes in soils report tau values (Viers et al. 2007; Mathur et al. 2012; Liu et al. 2014; 1208 

Vance et al. 2016), but they are essential for identifying net loss or gain of an element given 1209 

changes in mass that occur during soil development. Tau values for the Mathur et al. (2012) 1210 

soils are about -0.5, implying loss of 50% of the original Cu in the rock, while 65Cu is 1211 

about 0.5-1‰ lighter than the original Cu. In contrast, soil pore waters are all enriched in 1212 

the heavy isotope, by 0.7-1.7‰. The authors attribute these findings to the preferential 1213 
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mobilization of heavy isotopes due to the oxidative leaching of pyrite, consistent with an 1214 

abundance of experimental data, including those of Fernandez and Borrok (2009). 1215 

 Secondly soil solutions, and the interactions between this aqueous phase and the 1216 

residual solids in the soil, are more complex than those in the experimental studies 1217 

described above. Mathur et al. (2012) discuss other possible interpretations of their Cu 1218 

isotopic data, such as organic complexation in solution with a preference for the heavy 1219 

isotope, but dismiss their relevance to that particular setting given the dominance of pyrite 1220 

as a reservoir for Cu in the parent rock. However, in many soil settings it is the equilibrium 1221 

partitioning of both Cu and Zn and their isotopes between dissolved organic complexes in 1222 

an aqueous phase versus sorption to residual secondary minerals in the soil that appears to 1223 

dominate trace metal distributions (e.g. Grybos et al. 2007), and the isotopic patterns seen 1224 

for both Cu-Zn (Bigalke et al. 2010b; Bigalke et al. 2011; Vance et al. 2016) and other 1225 

metals (e.g. Wiederhold et al. 2007). 1226 

 No soil has yet been studied where conditions are reducing enough for the large 1227 

isotope fractionations between Cu(I) and Cu(II) to be relevant. However, environmentally-1228 

relevant redox conditions do control the availability of Fe-Mn oxyhydroxides phases as a 1229 

substrate for sorption. Figure 10a,b documents the isotopic impact of this control in soils 1230 

distributed across three sites on the island of Maui, Hawaii, that have seen different annual 1231 

rainfall amounts and in which there is a transition from well-drained conditions that retain 1232 

Fe oxides to waterlogged conditions that do not (Vance et al. 2016). If Fe oxides are 1233 

retained in the soils, depletion of Cu and Zn is accompanied by preferential loss of the 1234 

heavy isotopes of Cu and slight preferential loss of the heavy isotopes of Zn. When Fe 1235 

oxides disappear the remaining Cu and Zn is almost completely stripped from the soil and 1236 
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residual isotopic compositions move towards heavy values. Patterns consistent with those 1237 

seen in Hawaii are also observed by Bigalke et al. (2010c; 2011). The most likely 1238 

interpretation is that heavy Cu is mobilized into aqueous organic complexes, while the 1239 

oxides in the soil preferentially sorb the light isotopes. As noted earlier, both soluble 1240 

organic complexes and sorption show a preference for heavy isotopes relative to free Cu 1241 

ion in aqueous solution, so that this interpretation requires that the preference of the organic 1242 

complexes for heavy Cu is greater than that of sorption. This in turn, would require the 1243 

dissolved complexes to bind Cu at least as strongly as the strongest organic ligands in the 1244 

experiments of Ryan et al. (2014), but there is evidence from the partitioning of Cu isotopes 1245 

between the aqueous and particulate phases in rivers (Vance et al. 2008 , discussed below) 1246 

that this is indeed the case. The data for Zn in Figure 10a,b document a much more subtle 1247 

isotopic effect in free-draining soils, mirroring more subtle differences between the 1248 

dissolved and particulate load of rivers (e.g. Chen et al. 2008; Chen et al. 2009; Little et al. 1249 

2014a, also discussion below), and consistent with the fact that the isotopic effects of 1250 

aqueous complexation versus sorption to mineral surfaces may cancel each other out. 1251 

Figure 10a,b also show such an effect when Cu and Zn are almost completely stripped 1252 

away in water-logged conditions. As the Fe oxyhydroxides are removed, the isotopic 1253 

composition tends towards heavier values, perhaps reflecting the retention of a very small 1254 

residual pool on aluminium hydroxides or on condensed organic matter or the addition of 1255 

dust (see below). 1256 

Addition of atmospheric aerosol to soils. There have been few studies of the impact of 1257 

atmospheric aerosol deposition on soils, and all but one of these concern anthropogenic 1258 

aerosol deposition (discussed in a later section). Deposition of natural aerosol dust from 1259 
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the atmosphere has the potential to confound and overprint weathering signals. Here we 1260 

illustrate the impact of such a process again using data from the relatively un-polluted 1261 

Hawaiian Islands from Vance et al. (2016). The geochemical impact of the deposition of 1262 

Asian desert-derived dust on Hawaiian soils is well-documented for many elements (e.g. 1263 

Kurtz et al. 2001; Vance et al. 2016 and references therein). Its impact on Cu and Zn 1264 

isotopes is illustrated in Figure 10c,d. Tau data for very young (300 years) soils from the 1265 

island of Hawaii further help to define the weathering depletion trend illustrated in Figure 1266 

10a,b (thick solid black arrow). However, soils with ages in the range 20-150 kyr show 1267 

deviations from this tau pattern that fall on arrays that are consistent with the addition of 1268 

Asian dust (thick dashed arrows). The potential impact of this on Cu isotopes is illustrated 1269 

by the dashed arrows in Figure 10d, but the precise trajectory on this plot depends on the 1270 

relative concentrations of Cu in the dust versus those in the soil when the dust was added. 1271 

In general, it might be expected that dust addition would tend to buffer soil Cu and Zn 1272 

isotopes back to about 0‰ and +0.3‰ respectively, the average Cu and Zn isotope 1273 

compositions in natural atmospheric aerosol (c.f. Fig. 8). However, Weiss et al. (2007) 1274 

document a heavier Zn isotopic composition for background (un-contaminated) dust 1275 

deposition in Finland, 66Zn = +0.9‰, while Dong et al. (2013) found variations of up to 1276 

0.5‰ in 65Cu among the different size fractions of Asian dust, with some samples of the 1277 

>63µm fraction giving isotopic values = 0.4-0.5‰. The fact that natural atmospheric 1278 

aerosol may be isotopically heavier than the lithogenic values for Cu and Zn isotopes may 1279 

indicate either a significant contribution from a non-lithogenic source or isotope 1280 

fractionation during atmospheric processing. 1281 



 59 

The impact of plants on soil Cu and Zn isotopes. The surface organic-rich layers of soils 1282 

are often enriched in the light isotopes of both Cu and Zn (e.g. Weiss et al., 2007; Bigalke 1283 

et al., 2010a, 2011; Liu et al., 2014; Vance et al., 2016). Though an interpretation in terms 1284 

of addition from the atmosphere has been discussed (e.g. Bigalke et al. 2010b; Bigalke et 1285 

al. 2011), another likely process relates to the concentration of the light isotopes in these 1286 

surface layers by plant growth and decay. Viers et al. (2007) was the first study to highlight 1287 

the potential importance of plant cycling for Zn, while Bigalke et al. (2010b; 2011) 1288 

conclude that light Cu in the upper organic layers of soils is likely attributable to decaying 1289 

plant material. Likewise, Liu et al. (2014) point to light Cu and high TOC in the upper 1290 

layers of soils from Hainan, China, as evidence for plant activity. However, in these 1291 

particular soils Cu is uniformly depleted in the upper relative to deeper soil horizons, 1292 

whereas the other soils where isotopically light Cu and Zn in the upper organic horizons 1293 

has been attributed to plants are definitely (Vance et al. 2016) or probably (Bigalke et al. 1294 

2010b; Bigalke et al. 2011) enriched relative to those underneath. Thus the Liu et al. (2014) 1295 

data may be more consistent with the loss of heavy Cu by mobilization in aqueous organic 1296 

complexes, as for the Hawaiian soils discussed above. Schulz et al. (2010) observed the 1297 

effect of “biolifting” on the distribution and isotopic composition of Fe in soils from Santa 1298 

Cruz, California.  Biolifting is the process by which plant roots and symbiotic fungi 1299 

(mycorrhizae) transport an element from deep in the regolith to the shallow soil.  Vance et 1300 

al. (2016) observed increasing τCu and τZn coupled to increasing τP with soil age in the 1301 

uppermost horizons of Scottish soils, but decreases at depth, suggesting movement of Cu 1302 

and Zn upwards with increasing soil development (eg. Fig. 10e). As with the experimental 1303 

studies of plants discussed earlier, these authors document significantly lighter Zn in plant 1304 
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material than in soils, suggesting that biolifting and fractionation by vegetation can also 1305 

explain some aspects of soil δ66Zn and δ65Cu (e.g. Fig. 10f) for the surface layers of these 1306 

soils. In contrast, Viers et al. (2015) find little variation in soil Zn isotope compositions 1307 

related to plant activity in Siberian permafrost soils, which they attribute to the 1308 

homogenizing impact of seasonal freezing front migration. Plants developed on these latter 1309 

soils exhibit Zn isotope compositions both lighter and heavier than the bulk soil, possibly 1310 

due to climate-driven changes in speciation of the plant-available pool. 1311 

 1312 

Summary. Figure 11 presents Cu-Zn isotopes in soils in the form of integrated tau 1313 

values and isotopic compositions for whole soil profiles (where tau data are also available: 1314 

Viers et al. 2007; Mathur et al. 2012; Liu et al. 2014; Vance et al. 2016), in order to make 1315 

a summary assessment of the degree of loss and isotopic fractionation that occur in this 1316 

setting. Such an assessment is important for the significance of weathering and other 1317 

pedogenic processs in global biogeochemical budgets, and sets the scene for the discussion 1318 

of one of the main inputs to the oceans, rivers, in the next section. It is already relatively 1319 

clear from this still small dataset that soils lose heavy Cu during the weathering process, 1320 

whether it is because of oxidation of sulphides (e.g. Mathur et al. 2012) or through retention 1321 

of light Cu isotopes on residual Fe-Mn oxides coupled to the mobilization of heavy Cu in 1322 

aqueous organic complexes (Bigalke et al. 2010b; Bigalke et al. 2011; Vance et al. 2016). 1323 

In contrast, the isotopic impact of chemical weathering on Zn is much more subdued, with 1324 

the majority of soils retaining very slightly heavy Zn. It should be noted that the real impact 1325 

of weathering removal on its own would be more pronounced than these data suggest, given 1326 

that nearly all these soils will have seen the addition of some dust, buffering the isotopic 1327 
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composition closer to the parent rock than would otherwise be the case. The main point of 1328 

presenting the summary in Figure 11 is that it predicts that the complementary aqueous 1329 

reservoir to the residual solids in soils, the dissolved phase of rivers, should be significantly 1330 

heavier than the average continental crust for Cu, and not very different from the latter for 1331 

Zn. It will be seen in the next section that this prediction is borne out for estimates of the 1332 

Cu and Zn isotope composition of the dissolved riverine flux to the oceans obtained from 1333 

measurements of the dissolved pool in large and small, relatively unpolluted, rivers (Vance 1334 

et al. 2008; Little et al. 2014a). 1335 

The oceans: inputs, outputs and internal cycling of Cu and Zn isotopes 1336 

 The oceanic dissolved pool and authigenic metals extracted from it to be delivered 1337 

to sediments represent the ultimate fate of Cu and Zn mobilized on the continents via 1338 

weathering and erosion, discussed in the previous section. Measurements of the Cu and Zn 1339 

isotope composition of the dissolved pool of the oceans is extremely challenging due to the 1340 

low abundances of both metals in seawater (concentrations of order 10-10-10-9M). This 1341 

presents difficulties related to clean sampling and analysis, in addition to the problem of 1342 

obtaining large ion currents for the precise measurement of isotope ratios. The challenge is 1343 

to achieve efficient, low blank, chemical extraction and purification of Cu and Zn from 1344 

large volumes (of order 0.1-10 litres) of seawater, containing up to 8 orders of magnitude 1345 

more interfering ions such as Mg and Na. The availability of the double spike approach for 1346 

Zn eliminates concerns over isotope fractionation artefacts during the chemical extraction 1347 

process, but this approach is not available for Cu. The isotope geochemistry of seawater 1348 

started with the pioneering work of Bermin et al. (2006) and Vance et al. (2008), but has 1349 

gained momentum recently and is likely to grow in importance over the next decade for 1350 
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two principal reasons. The first is the inception of the GEOTRACE programme 1351 

(www.geotraces.org), an international collaboration involving many chemical 1352 

oceanographers worldwide that is now providing large, cleanly-collected, seawater 1353 

samples for a huge body of work aimed at reaching a quantitative understanding of trace 1354 

elements and their isotopes in seawater. The second is the development of a key new 1355 

methodology, using Nobias chelate PA-1 resin (e.g. Conway and John 2014; Takano et al. 1356 

2014; Conway and John 2015; Vance et al. In review). This new approach is capable of 1357 

producing a very clean transition metal fraction from seawater, that can then be taken on 1358 

to the usual anion column for the purification of separate Cu and Zn (as well as Fe, Cd, 1359 

Mo) fractions. 1360 

 The data currently available from these endeavours is summarized in Figure 12 and 1361 

13. Two principal scientific themes have emerged both from this early work on the 1362 

dissolved pool of the oceans themselves, as well as from Cu-Zn isotopic characterization 1363 

of the inputs and outputs: (1) the overall mass balance of Cu and Zn cycling through the 1364 

oceans as a whole; (2) the cycling of Cu and Zn within the oceans, by biological uptake 1365 

and regeneration, and through interaction with the surfaces of both biological and abiotic 1366 

particulates, often termed “scavenging”. We discuss each of these in turn below. The work 1367 

done so far on Cu and Zn isotopes in rivers, atmospheric aerosols, hydrothermal systems, 1368 

as well as the chemical sediments that represent the outputs from the dissolved pool, are 1369 

all tied up with the first of these topics and are discussed as part of it. 1370 

The overall oceanic budget of Cu and Zn in the oceans. The dissolved pool of the 1371 

oceans is conventionally regarded as being in steady state with regard to inputs and outputs. 1372 

Though there are both isotopic and elemental records and models for long residence time 1373 

http://www.geotraces.org/
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elements such as Sr and Mg that suggest the contrary (e.g. Vance et al. 2009; Coggon et al. 1374 

2010; Pogge von Strandmann et al. 2014), long-term records of Cu and Zn isotopes in the 1375 

oceans (Little et al. 2014a) demonstrate a temporal constancy that makes this a useful 1376 

starting point here.  1377 

Vance et al. (2008) and Little et al. (2014a) have characterized the isotopic 1378 

composition of the dissolved pool of rivers for Cu and Zn isotopes, including relatively 1379 

unpolluted large and small catchments such as the Amazon and the Kalix (Arctic Circle, 1380 

Sweden). A key finding for Cu is that the dissolved pool of rivers is isotopically heavier 1381 

than the continental crust as sampled in high temperature igneous rocks and clastic 1382 

sediments (Fig. 8), with a discharge- and [Cu]-weighted average 65Cu of about +0.7‰. 1383 

This result is common to a number of transition metals, including Mo (Archer and Vance 1384 

2008) and Ni (Cameron and Vance 2014), which are also all characterized by weak positive 1385 

relationships between isotope composition and reciprocal metal concentration. In the case 1386 

of Cu, at least one small river carries a particulate load with 65Cu = -0.4 to -0.6‰, and the 1387 

two pools balance to suggest an estimated total load that is about the same as the rocks 1388 

being weathered. Vance et al. (2008) attributed this difference between the dissolved and 1389 

particulate load to a roughly 1.2±0.4‰ equilibrium isotopic fractionation between heavy 1390 

Cu in dissolved aqueous organic complexes and light Cu in particulate material. Though 1391 

this suggestion is qualitatively consistent with the fact that the small number of soil systems 1392 

so far analysed seem to lose heavy Cu (Fig. 11), and with the experimental finding that 1393 

organic complexes preferentially sequester the heavy isotope of Cu (Fig. 10: Bigalke et al. 1394 

2010a; Ryan et al. 2014), the fractionation seen between the dissolved and particulate 1395 

phases in rivers is much larger. Little et al. (2014a) found that Zn isotopes in a subset of 1396 
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the same large and small rivers is less variable, and that the discharge- and [Zn]-weighted 1397 

riverine flux to the oceans, at about +0.33‰, is very close to the continental crust (Fig. 8). 1398 

This finding is also completely consistent with the very subtle isotopic variations seen in 1399 

soils (Fig. 11), and with the fact that there is likely to be minimal isotopic difference 1400 

between dissolved aqueous organic complexes of Zn and that sorbed to surfaces (Fig. 9 1401 

and references in the caption). 1402 

 Other work on rivers has concentrated on rather small catchments, often with a 1403 

focus on modification of riverine processes due to human activities such as smelting and 1404 

agriculture (see Anthropocene section). However Ilina et al. (2013), in a study of pristine 1405 

rivers in subarctic watersheds (NW Russia), also found heavy Cu in the dissolved load 1406 

(65Cu = +0.46±0.05‰), and used ultrafiltration to demonstrate that this isotopic 1407 

composition characterizes the riverine load down to <1kDa, even though   40-60% of the 1408 

Cu in the rivers they studied is colloidal. Szynkiewicz and Borrok (2015) document a much 1409 

wider range of Zn isotope compositions (66Zn = -0.57 to +0.41‰) than in the global 1410 

survey of Little et al. (2014a) in streams of the Rio Grande catchment (USA), which they 1411 

attribute to preferential removal of the light isotope from the dissolved load by adsorption 1412 

onto particulates. Though part of a study of a river estuary that is at least partially 1413 

anthropogenically-disturbed, particulate and dissolved Cu isotopes in the Gironde estuary 1414 

show 65Cuparticulates-dissolved around +0.4‰ for Cu (Petit et al. 2013). Finally, Chen et al. 1415 

(2008; 2009), though also in a study primarily aimed at using Zn isotopes to study pollution 1416 

sources in the River Seine, France, observe rather subtle isotopic differences between the 1417 

particulate and dissolved load. 1418 
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 Little et al. (2014a) in an assessment of the overall oceanic mass balance of Cu and 1419 

Zn isotopes, present and summarise further data on the size and isotopic composition of 1420 

the likely inputs. This paper suggests that the dissolved riverine load is dominant for both, 1421 

but uncertainties remain. It is conventionally assumed that the metal load of hydrothermal 1422 

fluids is precipitated and scavenged very close to mid-ocean ridges, and Little et al. (2014a) 1423 

conclude that the flux that gets past this trap is likely to be very small indeed. However, 1424 

the recent finding that substantial amounts of iron are transported 1000s of km from 1425 

hydrothermal systems across the deep Pacific (Resing et al. 2015) may prompt a re-1426 

assessment of that conclusion. We know very little about the isotopic composition of end-1427 

member hydrothermal fluids, though the [Zn]-weighted 66Zn in the only study so far (John 1428 

et al. 2008) is very close to basalts, the continental crust and rivers, at around +0.25‰. 1429 

Similarly the [Zn]-weighted average 66Zn of thermal springs and fumaroles from one 1430 

Caribbean volcano is +0.34‰ (Chen et al. 2014b). Dust, transported through the 1431 

atmosphere from the continents, was estimated to represent only about 10% of the total 1432 

input for both Cu and Zn in Little et al. (2014a), whereas Takano et al. (2014) estimate this 1433 

source to be slightly larger than rivers for Cu. Much of this discussion depends on two 1434 

inter-related uncertainties. Firstly, the Takano et al. (2014) dust estimate is derived from 1435 

the Cu concentration of rainwater over Japan, taken to characterize the wet deposition flux 1436 

of dust Cu to the Earth’s surface. However, this rain is likely to be anthropogenically 1437 

contaminated. Though the residence time of Cu in the oceans is not well-constrained it is 1438 

certainly of order 103-104 years, so that it seems unlikely that 100-200 years of this flux is 1439 

relevant to the whole ocean budget at all. A second uncertainty relates to the size of the 1440 

dust flux to the oceans itself, and in particular solubility of Cu in that dust. Little et al. 1441 
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(2014a) use a solubility of 27%, likely relevant for mineral dust (Desbouefs et al. 2005), 1442 

but anthropogenic aerosol may contain a more soluble pool of metals, possibly explaining 1443 

the high Cu concentrations in Japanese rain. 1444 

 These uncertainties are important, because the available data for sources and sinks 1445 

point to missing budget terms (Little et al. 2014a). The isotopic composition of the input 1446 

to the oceanic dissolved pool for Zn is fairly well-constrained despite large uncertainties 1447 

on the amount of total Zn, simply because the isotopic composition of average rivers, dust 1448 

and hydrothermal systems are all around +0.25 to +0.33 (Fig. 8). This is significantly 1449 

lighter than the deep ocean dissolved pool and requires at least one sink from the oceans 1450 

that is isotopically light. For Cu, the input shown on Figure 13 is that from Little et al. 1451 

(2014a). If dust is much more important than suggested in that paper, and more like 60% 1452 

of the total input as in Takano et al. (2014), and with an average 65Cu in dust of +0.04‰ 1453 

(Fig. 8) then the total input would be substantially lighter than the dissolved pool of the 1454 

oceans, so that at least one isotopically heavy sink is required. 1455 

 The current level of knowledge on the isotopic composition of these sinks is 1456 

summarized in Figure 8 and Figure 12 and 13. For Zn, all the sinks in the open oxic ocean 1457 

are heavy. One that is likely to be quantitatively important, and the one that we know most 1458 

about (Little et al. 2014ab; Bryan et al. 2015), is that which occurs via scavenging of Zn to 1459 

particulate Fe-Mn oxides and delivery with them to sediment. This sink, as recorded in Fe-1460 

Mn crusts, has an isotope composition = +0.94±0.14‰ (Marechal et al. 2000; Little et al. 1461 

2014a, see also metalliferous sediments in Dekov et al. 2010), about 0.5‰ heavier than the 1462 

deep oceans. This is qualitatively consistent with (1) the finding of Little et al. (2014b) that 1463 

Zn and Cu are both very clearly associated with Mn oxide in these samples and (2) that of 1464 
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Bryan et al. (2015) that Zn sorbed to Mn oxide is heavier than a dissolved pool. However, 1465 

Zn/Mn ratios in crusts suggest low surface loading, for which Bryan et al. (2015)  document 1466 

an isotopic fractionation upon sorption from a high ionic strength solution in which Zn is 1467 

inorganically-speciated of as great as +2.7‰. The solution to this quantitative discrepancy 1468 

put forward by Little et al. (2014b) and Sherman et al. (2015) – see schematic in Figure 14 1469 

- is that, in the dissolved pool, the free metal Zn ion that is likely to be sorbed is actually 1470 

much lighter than the total dissolved pool because of the fact that most of the oceanic 1471 

dissolved pool of Zn is organically-complexed, which would be heavier than the free ion 1472 

(Fig. 10 Jouvin et al. 2009).  1473 

 Organic complexation is likely to be even more important, quantitatively and 1474 

isotopically, for Cu. Fe-Mn crusts are isotopically lighter than the oceanic dissolved pool 1475 

by about 0.2‰ (Fig. 13 Little et al. 2014a). No experiments have yet characterized isotope 1476 

fractionation of Cu upon sorption to Mn oxide surfaces, but experiments for other oxides 1477 

have universally documented sorption of the heavy isotopes from an aqueous phase 1478 

containing free Cu(II) (Fig. 10 Balistrieri et al. 2008; Pokrovsky et al. 2008; Navarette et 1479 

al. 2011). As pointed out by Little et al. (2014b) and Sherman et al. (2015), sorption of the 1480 

heavy isotope would be consistent with the change in co-ordination state of Cu (e.g. 1481 

Schauble 2004) from V in solution to dominantly III-IV on birnessite (-MnO2). But this 1482 

is inconsistent in sign, never mind magnitude, with the observation of light Cu in natural 1483 

Fe-Mn crusts. However, Cu again, in all aqueous solutions at the surface of the Earth is 1484 

ubiquitously complexed to organics (e.g. Coale and Bruland 1988), so that this conundrum 1485 

probably has a solution similar to the Zn problem. In other words, the free ion that is sorbed 1486 

is likely to be lighter than the total, as also shown schematically in Figure 14. 1487 
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 Returning to the whole ocean mass balance, at the level of knowledge discussed 1488 

above there is clearly a substantial budgetary problem for Zn isotopes if the oceans are in 1489 

steady state. The open ocean outputs are heavier than the dissolved pool while the inputs 1490 

are light, implying that the oceans should be moving to lighter isotopic compositions 1491 

through time, which is not seen in records (e.g. Little et al. 2014a). The solution to this 1492 

problem is likely to lie in a sink for Zn into organic-rich sediments. Very recently, Little et 1493 

al. (2016) have shown that sediments deposited beneath upwelling continental margins, 1494 

rich in organic carbon due to high photic zone productivity, carry substantial authigenic Zn 1495 

enrichments and that this Zn is isotopically light. Light Zn isotopes in organic-rich 1496 

sediment could either be delivered there via uptake of light Zn into phytoplankton in the 1497 

photic zone, sinking and preservation of the organic matter (e.g. John et al. 2007b; Peel et 1498 

al. 2009). An alternative is suggested by the data of Vance et al. (In review) for the 1499 

sulphidic Black Sea. In this setting Zn behaves very like Mo: sulphidisation leads to 1500 

removal of Zn as particle reactive sulphide species that are isotopically light – by 0.6-0.7‰ 1501 

(consistent with ab initio calculations: Fujii et al. 2011, see earlier in this chapter) – pushing 1502 

the residual dissolved pool very heavy (Fig. 8). Pore waters within organic-rich sediments 1503 

also become sulphidic just beneath the sediment-water interface, due to reduction of pore 1504 

water sulphate when respiration depletes oxygen and other oxidants (e.g. Froelich et al. 1505 

1979). In the Black Sea this process is near-quantitative so that authigenic Zn in sediments 1506 

is the same as the open ocean dissolved pool, but a non-quantitative version of the same 1507 

process within the sediments of upwelling continental margins could close the oceanic Zn 1508 

isotope budget. 1509 
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 As noted earlier, what we currently know about the Cu isotope budget also requires 1510 

an as yet unidentified sink, in this case isotopically heavy. But we know too little about the 1511 

oceanic Cu isotope budget to say much more at this stage. 1512 

Cycling of Cu and Zn isotopes within the oceans. The discussion in the previous 1513 

section emphasized the homogeneity of Cu and Zn isotope compositions in the deep ocean 1514 

(Figs. 12, 13), but there is clearly a great deal of variability within the oceanic dissolved 1515 

pool, in the top 1000m and particularly for Zn, where the roughly 2‰ range is greater than 1516 

any other Earth reservoir (Fig. 8). One of the most impressive features of ocean chemistry 1517 

is the massive drawdown of Zn in the surface ocean, with concentrations there that are 1518 

sometimes as low as 0.03 nM, more than 2 orders of magnitude lower than the highest 1519 

concentrations in the deep ocean (Fig. 12 and references therein). For Cu, the surface-deep 1520 

contrast is smaller, at a maximum of about factor 10 (Fig. 13 and references therein). Thus 1521 

it is no surprise, if this drawdown is associated with even a small isotope fractionation, that 1522 

there is substantial variability in the small residual dissolved pool of the upper ocean. The 1523 

reasons for isotopic variability have focused on two explanations of both the surface ocean 1524 

drawdown and the isotopic variation: (1) a kinetic fractionation leading to preferential 1525 

uptake of the light isotope into phytoplankton cells in the photic zone; (2) reversible and 1526 

non-reversible scavenging of Cu and Zn in both the surface and deep ocean.  1527 

 For Cu, scavenging is the process that is often regarded as dominant. Though Cu is 1528 

an important component of enzymes and proteins in phytoplankton (e.g. Peers and Price 1529 

2006), it is not limiting to phytoplankton growth and at high concentrations it is toxic (e.g. 1530 

Moffett and Brand 1996). Indeed, the organic ligands that bind Cu in the dissolved phase 1531 

of the oceans (and at least to some degree elsewhere on Earth) are probably exuded by 1532 
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phytoplankton to reduce the concentrations of free Cu2+ ion beneath the threshold for 1533 

toxicity at around 10-12M – some 3 orders of magnitude beneath total oceanic Cu 1534 

concentrations (e.g. Moffett and Brand 1996). This dichotomy between the requirement for 1535 

small amounts of Cu by phytoplankton, coupled to toxicity at high concentrations, has led 1536 

to Cu being dubbed the “Goldilocks element” of ocean biogeochemistry (e.g. Thomson 1537 

and Ellwood 2014). The approximately linear increase in Cu concentrations with depth 1538 

(Fig. 13) is reminiscent of that attributed to reversible scavenging for some other oceanic 1539 

metals (e.g. Bacon and Anderson 1982), and Little et al. (2013) demonstrated that depth 1540 

profiles of Cu concentrations are very well modeled by such a process. In support of this, 1541 

Takano et al. (2014) interpret a good positive relationship between Cu isotope composition 1542 

and oxygen availability in the deep ocean in terms of preferential scavenging of the light 1543 

isotope to Fe-Mn oxides, a suggestion that is consistent with what we know of the isotope 1544 

composition of Cu in Fe-Mn crusts (Little et al. 2014a). Thompson and Ellwood (2014) 1545 

concur with Vance et al. (2008) and Little et al. (2014a,b) in highlighting the importance 1546 

of organic ligands in this process: without them, if Cu existed as a free metal ion in 1547 

seawater, it seems almost certain that sorption would remove the heavy isotope (Balistrieri 1548 

et al. 2008; Pokrovsky et al. 2008; Little et al. 2014b; Sherman et al. 2015). 1549 

 Little et al. (2013) showed that, in contrast to Cu, Zn concentrations are not at all 1550 

well modeled by a reversible scavenging process and conclude that biogeochemical 1551 

cycling, uptake into phytoplankton at the surface and regeneration by respiration at depth, 1552 

must be the key process. If this is the case, and if Zn uptake into phytoplankton is associated 1553 

with a kinetic isotope fractionation that favours uptake of the light isotope (Fig. 10 John et 1554 

al. 2007b; John and Conway 2014), then the expectation is that drawdown of Zn in the 1555 
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surface ocean should be associated with residual heavy isotopic compositions in the 1556 

dissolved pool of the upper ocean. An initial examination of Figure 12 seems to imply, if 1557 

anything, the opposite. John and Conway (2014) suggest that scavenging must play at least 1558 

some role. These authors conducted a cell degradation experiment in an attempt to simulate 1559 

regeneration of organic material by respiration, and found that the Zn released was 1560 

0.27±0.11‰ lighter than the cell inventory. They suggest that this is due to the preferential 1561 

re-adsorption of the heavy isotopes onto residual organic particles, implying a 66Znadsorbed-1562 

dissolved = +0.58‰. However, these experiments contained very high aqueous Zn 1563 

concentrations and no ligand to complex it, very different from the real ocean where a large 1564 

portion of the Zn in the dissolved pool is complexed to organic ligands. 1565 

 We suggest that the main control on oceanic Zn distributions remains to be 1566 

unequivocally established but that biological uptake and regeneration, with whatever 1567 

isotope fractionation it is associated with, will turn out to be the key process. In making 1568 

this suggestion, which will require further work to substantiate, we suggest that the 1569 

following observations from the data we currently have are going to be key. First, the main 1570 

oceanic region in which Zn is taken up into cells and exported to the deep is the Southern 1571 

Ocean. Diatoms dominate the ecology in this region and their cells contain an order of 1572 

magnitude more Zn than average oceanic phytoplankton (Twining and Baines 2013). 1573 

Given that diatoms dominate the export of carbon to the deep ocean (e.g. Armbrust 2009), 1574 

they must completely dominate the export of Zn. Second, the Zn isotopic data for the 1575 

Southern Ocean (Fig. 12 Zhao et al. 2014) show no isotopic shift in the surface across a 2 1576 

order of magnitude drop in Zn concentration away from the locus of upwelling and as 1577 

diatoms take it up, suggesting the massive uptake of Zn by diatoms in this region causes 1578 
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no isotope fractionation. Third, when the depth profiles in Figure 12 are examined in more 1579 

detail it is clear that the surface-most point is isotopically heaviest, and the isotopically 1580 

light Zn that is clearly seen in this figure occupies depths beneath the surface, at 50-200m 1581 

(e.g. Zhao et al. 2014). All of these observations are most consistent with very shallow 1582 

upper ocean recycling of Zn by non-diatom phytoplankton and associated with small 1583 

isotope fractionations, superimposed on a quantitatively much more important deep export 1584 

that is controlled by diatoms in the Southern Ocean but that imparts no isotopic variability. 1585 

Applications to Earth history. There have been a small number of applications of 1586 

Zn isotopes in the study of the oceans through Earth history (Pichat et al. 2003; Kunzmann 1587 

et al. 2013; Pons et al. 2013). Though these have been hampered by a limited understanding 1588 

of the modern cycle, there is now great potential for such applications given that this 1589 

understanding has now reached quite an advanced stage through the datasets described in 1590 

this review. A bridge between attempts to understand the modern cycle and the recent and 1591 

deep past is provided by the study of the systematics of Zn isotopes in the biological 1592 

components of core-top sediments, as in Andersen et al. (2011) and Hendry and Andersen 1593 

(2013). Two studies have sought to harness Zn isotopes in marine carbonate as a monitor 1594 

of photic zone primary productivity on both kyr timescales in the Quaternary, targeted at 1595 

understanding upwelling supply of Zn to the photic zone as controlled by climate (Pichat 1596 

et al. 2003), and on the much longer timescales represented by the recovery from Snowball 1597 

Earth glaciations, focused on tracking the recovery of the biosphere through the 1598 

hypothesized burial of isotopically light photosynthesized Zn. Pons et al. (2013), by 1599 

contrast, link secular changes in Zn isotopes in Banded Iron Formations (BIFS) to 1600 

relationships between the geochemical cycle of phosphate and isotopic fractionation of Zn 1601 
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isotopes, a phenomenon for which, in all the studies of the modern cycle summarized 1602 

earlier, evidence has yet to emerge. The burial of light Zn with organic carbon (Little et al., 1603 

2016) and the likely control of this burial by sequestration of the light isotope into sulphide 1604 

in pore waters suggested by the Black Sea data of Vance et al. (In review) together suggest 1605 

that the future of successful applications of paleo-Zn isotopes probably lies in the 1606 

investigation of the links between the biosphere and redox in the ancient oceans. Similarly, 1607 

a very recent study of Cu isotopes in black shales from across the Great Oxidation Event 1608 

at 2.7-2.1 Ga (Chi Fru et al., 2016) presents a viable interpretation in terms of removal of 1609 

the light isotope of Cu into Fe formations before 2.2 Ga and the lack of this removal 1610 

thereafter. It is not clear, however, whether this interpretation is unique, given what we still 1611 

have to learn about the controls on other outputs of Cu from the modern ocean, such as to 1612 

organic-rich sediments and in the sulphidic environments that likely dominated the oceans 1613 

after the demise of BIFS. Finally, Pons et al. (2011) found that Zn isotopes in 3.8 Ga 1614 

serpentinites from Isua are depleted in heavy isotopes compared to the BSE (66Zn down 1615 

to -0.5‰), while serpentinites from modern ophiolites and mid-ocean ridges are 1616 

isotopically similar to the BSE, at around +0.3‰. Theoretical calculations (Fujii et al. 1617 

2011) show that the incorporation of isotopically light Zn in serpentinites requires that the 1618 

serpentinisation reactions occurred at high-pH, with a fluid rich in carbonate at medium 1619 

temperature (100-300 °C). In addition, Pons et al. (2011) point out that these are the 1620 

conditions that are found in modern mud volcano environments such as the Mariana’s 1621 

forearc, where the serpentinites are also isotopically light (66Zn down to -0.3‰). Pons et 1622 

al. (2011) further suggest that Zn isotopes could be used as a pH proxy for ancient 1623 

hydrothermal fluids.  1624 
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Cu and Zn isotopes in the Anthropocene 1625 

A significant effort has gone into the identification and quantification of human disturbance 1626 

of the natural Earth surface cycles of Cu and Zn, including via their stable isotopes (see 1627 

recent review in Fekiacova et al., 2015). Approximately 25% of the Zn and 30% of the Cu 1628 

released annually to the atmosphere derives directly from human activities such as 1629 

agriculture, manufacturing and waste management (Rauch and Pacyna, 2009). Absolute 1630 

anthropogenic emissions of Zn are close to double those of Cu (Rauch and Pacyna, 2009) 1631 

and most of the isotopic work on environmental tracing of these emissions has focused on 1632 

Zn. Virtually all the estimated Cu emitted to the atmosphere annually is thought to derive 1633 

from non-ferrous metal production (70%) and fossil fuel combustion. For Zn about 70% is 1634 

also from non-ferrous metal production, 16% from fossil fuel combustion, with 4-5% each 1635 

via steel and cement production and waste disposal. In terms of riverine transport, Chen et 1636 

al. (2014a) estimate that excess anthropogenic Cu and Zn in the Seine at Paris represent 1637 

15-20% of the total at low water, with little excess over continental crustal concentrations 1638 

at high water stage.  1639 

Zn and Cu isotopes in ore bodies and industrial products. An important starting 1640 

point is the variability in, and processes responsible for, Cu and Zn isotopes in the mineral 1641 

ores processed during the smelting that is responsible for about 70% of the emissions to 1642 

the atmosphere. Though we briefly outline this topic here, it should be emphasized that 1643 

industrial products and emissions – in the end and at least of Zn – do not reflect the massive 1644 

variability seen in mineral ores (Fig. 8), implying homogenization of these isotope 1645 

compositions during processing. 1646 
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 Larson et al. (2003) first documented the large Cu isotope variations in ore minerals 1647 

in the weathering/supergene environment (65Cu = - 3 to +2.5‰), while also noting that 1648 

variability in primary high-temperature minerals was more subdued. These twin results 1649 

have been confirmed by subsequent studies (Graham et al. 2004; Mason et al. 2005; Markl 1650 

et al. 2006; Asael et al. 2007; Asael et al. 2009; Mathur et al. 2009; Mathur et al. 2010): 1651 

primary ore minerals predominantly in the 0±0.5‰ range, while the range of Cu isotope 1652 

compositions for the supergene environment has broadened to -16.5 to +10‰. As first 1653 

noted by Larson et al. (2003) and confirmed subsequently, redox-induced fractionations 1654 

almost certainly control the huge variability seen in the supergene environment, where 1655 

oxidative leaching of high-temperature reduced Cu minerals in the vadose zone is followed 1656 

by precipitation of reduced minerals beneath the water table (Larson et al. 2003; Ehrlich et 1657 

al. 2004; Mathur et al. 2005). As noted by Sherman (2013), however, the variability in the 1658 

natural minerals is much greater than the fractionation factors measured in experiments, so 1659 

that multiple cycles of oxidation and reduction, or Rayleigh fractionation or open system 1660 

behavior, or all three, must be in operation. Though redox processes are certainly dominant, 1661 

Markl et al. (2006) also suggest there may be a component to fractionation controlled by 1662 

phase changes between fluid and solid mineral. Asael et al. (2009) further suggest that the 1663 

nature of the ligand-bonding in solution is also important, confirmed by Sherman et al. 1664 

(2013) and Fujii et al. (2013) using ab-initio calculations to show that aqueous Cu 1665 

complexes have a 65Cu range of 1.3‰ (see earlier in this chapter).  1666 

 There have been fewer studies of Zn isotope variation in ore minerals and, without 1667 

redox chemistry, the variability is more subdued. Mason et al. (2005) document a range in 1668 

66Zn of 0.63‰ in a volcanic-hosted massive sulphide ore deposit, attributed to a Zn 1669 
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isotopic difference between co-existing sphalerite and chalcopyrite as well as Rayleigh 1670 

fractionation during precipitation from a hydrothermal fluid. Wilkinson et al. (2005) and 1671 

Gagnevin et al. (2012) also explain variability in Zn isotopic data for sphalerite from the 1672 

Irish ore fields (-0.17 to +1.33‰) as due to a kinetic fractionation and Rayleigh 1673 

fractionation during progressive precipitation from fluids percolating up from the 1674 

basement. 1675 

 To our knowledge, the isotope composition of the final industrial products of these 1676 

metals has only been measured for Zn. The main result of this study (John et al. 2007a) 1677 

was that the variability seen in a small number of industrial products, which are mostly -1678 

0.4 to +0.2‰, was much less than in the raw ore minerals. In addition, the average 66Zn 1679 

of the products measured is identical – at +0.19±11‰ (2SD, n =14) - to the average for ore 1680 

minerals in the Wilkinson et al. (2005) and Mason et al. (2005) studies – at +0.15‰. Sivry 1681 

et al. (2008) note that the extraction yields for Zn processing are higher than 95%, so that 1682 

a similarity between the final product and average initial ore is perhaps not surprising. 1683 

Dispersal of anthropogenic Cu and Zn via the atmosphere. A number of studies 1684 

have sought to use Zn isotopes (but only one to use Cu: Thapalia et al. 2010) to trace 1685 

emissions of Zn to the atmosphere in the urban environment (e.g. waste combustors) and 1686 

in the vicinity of mining and smelting activities through the analysis of lichens and 1687 

anthropogenic aerosols (Cloquet et al. 2006; Dolgopolova et al. 2006; Gioia et al. 2008; 1688 

Mattielli et al. 2009), ombrotrophic peat cores (Weiss et al. 2007), and in soils or sediments 1689 

from rivers and lakes (Sivry et al. 2008; Sonke et al. 2008; Juillot et al. 2011; Aebischer et 1690 

al. 2015). Though source signatures are not always easily partitioned into natural and 1691 

anthropogenic (e.g. Cloquet et al. 2006), and though post-depositional processes can induce 1692 
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substantial isotope variability that obscures initial source signatures (e.g. Weiss et al. 2007; 1693 

Juillot et al. 2011, though c.f. Sonke et al. 2008), a systematic feature has often emerged 1694 

from studies of smelting activities (see recent review in Yin et al., 2016). Generally, the 1695 

slag residues, or tailings, are typically enriched in the heavy isotopes of Zn, while the fine 1696 

dust and aerosol emitted from smelter chimney stacks tends to be isotopically light 1697 

(Dolgopolova et al. 2006; Sivry et al. 2008; Sonke et al. 2008; Juillot et al. 2011). In 1698 

contrast, Ochoa Gonzalez and Weiss (2015) find that heavy isotopes are emitted to the 1699 

atmosphere during coal combustion while the light isotopes are retained in bottom ashes, 1700 

an observation that may allow the fingerprinting of sources of Zn pollution from different 1701 

activities. 1702 

 Mattielli et al. (2009) provide the most extensive discussion of the causes and 1703 

consequences of isotopic fractionation during the processing of Zn ores. These authors 1704 

document a change in the size and Zn isotopic composition of aerosols away from the main 1705 

chimney, with 66Zn = +0.01 to +0.19‰ at ≤1km, and  -0.52 to -0.02‰ at 2-5 km. They 1706 

attribute the light Zn in aerosols to the high temperatures in the smelter (up to 1300K), 1707 

leading to fractionation during volatilization/condensation (see above section on Isotopic 1708 

fractionation by evaporation on Earth). Their main chimney dust samples have the lightest 1709 

66Zn, at -0.67±0.10‰. In contrast Sivry et al. (2008) document Zn in tailings at a smelter 1710 

with 66Zn  = +0.18 to +1.49‰, a signal also seen in polluted downstream sediments (+0.83 1711 

to +1.38‰). Similarly, Juillot et al. (2011) measure 66Zn = +0.81±0.20‰ for slags at a 1712 

French smelter and see a shift towards this isotope signature in heavily contaminated top 1713 

soils within 500m of the smelter. Consistent with this, Thapalia et al. (2010) document a 1714 

step towards lighter Zn isotopes in lake sediment ~ 100km from a smelter after it became 1715 
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active. This is perhaps the only study of a Cu isotope archive of anthropogenic activity, 1716 

showing a subtle shift to heavier Cu isotopes (65Cu from +0.77±0.05 to +0.94±0.10‰) 1717 

due to human activity. 1718 

Processes affecting Cu and Zn isotopes in polluted rivers. A small number of 1719 

studies have been undertaken of Cu and Zn isotopes in two classes of polluted rivers: (1) 1720 

rivers that are clearly affected by mining, including acid mine drainage and (2) rivers in 1721 

areas that have been intensely developed for agriculture and industrial activities more 1722 

generally. Borrok et al. (2008) studied dissolved Cu and Zn and their isotopes in small 1723 

streams located in 6 historical mining areas in the US and Europe. It should be noted that 1724 

the Cu and Zn concentrations in these mining-impacted streams, not unexpectedly, are up 1725 

to 4 orders of magnitude greater than those in the relatively unpolluted rivers studied in 1726 

Vance et al. (2008) and Little et al. (2014a). The 66Zn data covers the range +0.02 to 1727 

+0.46‰ and exhibits a diel cycle that may be related to uptake by microorganisms. The 1728 

range of 65Cu is -0.7 to +1.4‰, similar to that in non-mining-impacted rivers. Kimball et 1729 

al. (2009) document Cu in acid mine drainage that has 65Cu about 1.5‰ heavier than the 1730 

primary minerals, attributing this fractionation to oxidation of reduced Cu(I) in the 1731 

minerals. More recently, Wanty et al. (2013, 2015) have documented Zn isotope 1732 

fractionations associated with biomediated precipitation of hydrozincite in streams 1733 

draining mining areas. 1734 

 Chen et al. (2008; 2009) present an array of data for the dissolved and particulate 1735 

phase of the River Seine, including time-series data in Paris as well as contaminated waters 1736 

draining roofs and waste water treatment plants. Dissolved Zn concentrations in the Seine 1737 
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increase continuously downstream from 1 to 74 nM, while66Zn decreases from a high in 1738 

the headwaters of Aube tributary (0.58‰) to +0.09‰ at the estuary.The decreasing 66Zn 1739 

values as anthropogenic Zn is added downstream, particularly in Paris, is consistent with 1740 

generally light Zn isotope compositions in roadway and roof runoff, and plant-treated and 1741 

waste water (-0.06±0.05‰).Fertilizers showed heavier Zn isotope values at +0.19 to 1742 

+0.42‰, leading these authors to suggest that fertilizer Zn is strongly retained in soil. Data 1743 

for suspended particulate matter presented a similar picture: 66Zn decreases from +0.3 to 1744 

0.08‰ downstream, associated with a 4-fold increase in concentration. Time-series 1745 

samples in Paris show an inverse relationship between enrichment factor and isotopes. 1746 

Chen et al. (2009) interpret the results as due to more or less conservative mixing of silicate 1747 

and anthropogenic particles, ruling out sorption as an important process generating isotopic 1748 

variability.  1749 
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Figure captions 2481 

Figure 1: Temperature dependence of ln. The ln values of hydrated Cu2+ and Cu(II) 2482 
chlorides, sulphides, phosphates, carbonates and sulfates (see Table 1) are shown as 2483 
linear functions of T2.  2484 

Figure 2: Temperature dependence of ln. The ln values of hydrated Zn2+ and Zn(II) 2485 
sulphides, phosphates, carbonates and sulfates (see Table 1) are shown as linear functions 2486 
of T2. 2487 

Figure 3: 65Cu vs 17O for the bulk silicate Earth and the different major groups of 2488 
chondrites. Meteorite group averages are calculated using data from Luck et al. (2003), 2489 
Barrat et al (2012) and Savage et al. (2015b). The estimate of the Bulk Silicate Earth is 2490 
from Savage et al. (2015b). All error bars are 2SD of the mean. The trend implies the 2491 
presence of at least two, and potentially three, distinct Cu isotope reservoirs which then 2492 
mixed to create the distinct chondritic bodies, as a result of nebula processing. 2493 

Figure 4: A) Box-and-whisker plot of 66Zn of the different chondrites groups 2494 
(UOC=Un-equilibrated ordinary chondrites); whiskers denote the maximum and 2495 
minimum value of the data, box denotes the first and third quartiles and the band denotes 2496 
the median. Data are taken from Luck et al. (2005), Moynier et al. (2011) and Barrat et al. 2497 
(2012). Enstatite chondrites, carbonaceous chondrites, and unequilibrated ordinary 2498 
chondrites have Zn isotopic composition close to the current estimates of BSE. B) 2499 
Identical plot as 4A but with increased x-axis range. The EL enstatite chondrites of high 2500 
thermal metamorphic grades (EL6), which are depleted in volatile elements compared to 2501 
low thermal metamorphic grades (EL3), are highly enriched in the heavier isotopes. This 2502 
suggests that the origin of the volatile element depletion between EL3 and EL6 2503 
chondrites is due to volatilization during the thermal metamorphism. 2504 

Figure 5: 66Zn vs Mg/Zn ratio for different chondrites groups. The negative correlation 2505 

between 66Zn and Mg/Zn (refractory element/moderately volatile element) suggests that 2506 
the origin of the Zn depletion in carbonaceous chondrites is not due to evaporation and is 2507 
of nebular origin. Data from Luck et al. (2005) and Barrat et al. (2012) 2508 

Figure 6: Histogram of the 65Cu of the various ultramafic and mafic samples analyzed 2509 
to date (data from Savage et al. 2015b, Liu et al. 2015, Ben Othman et al. 2006 and 2510 
Ikehata and Hirata 2013). The grey box represents the estimate of the BSE composition 2511 
from Savage et al. 2015b. Komatiites , fertile orogenic lherzolites  as well as a 2512 
representative selection of both mid-ocean ridge and ocean island basalts have identical 2513 
Cu isotope compositions suggesting that mantle melting produces a limited Cu isotope 2514 
fractionation. 2515 

Figure 7: 66Zn and Zn concentration versus degree of differentiation as represented by 2516 
MgO content for basalts and their differentiates, komatiites and ultramafic samples (data 2517 

from Herzog et al., 2011, Chen et al. 2013b and Sossi et al. In review). he most evolved 2518 
samples are enriched in the heavier isotopes. This trend is interpreted as the result of 2519 
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crystallization of isotopically light olivines or Ti-oxides (Chen et al. 2013b) and led Sossi 2520 

et al (in review) to propose a BSE 66Zn composition of 0.15 ± 0.05 ‰. N.B. the abyssal 2521 
peridotites underwent metasomatism, most likely affecting their Zn isotope composition. 2522 

Figure 8: Summary of currently available data for “natural” surface Earth materials. 2523 
Materials significantly impacted by human activity represent a distinct topic and are treated 2524 
separately later in this chapter. The range of isotopic compositions found in ore minerals 2525 
is shown by the black bars at the bottom. Note that Cu isotopes are extremely 2526 
heterogeneous in Cu-bearing ore minerals, extending well beyond the limits of other Earth 2527 

surface samples, from 65Cu -16.5 to +9.98. In the top two panels the thinner lines show 2528 
the total range of values measured in each type of sample. For the oceanic dissolved pool, 2529 
the thicker lines show the average and 1SD for all analyses in the homogeneous deep ocean 2530 
(beneath 600-800m). For the river data the square shows the discharge- and [Cu]- or [Zn]-2531 

weighted average for the dissolved flux to the oceans as calculated from the large rivers 2532 
measured to date. For all the other sample types the thicker line shows the average of all 2533 
the data ±1SD.  In the bottom two panels the red histograms show the range of variability 2534 
in all igneous rocks, as relative frequencies, including basalts, andesites, dacites, rhyolites, 2535 
granites, granodiorites, komatiites and peridotites. Clastic sediments (diagonal pattern), 2536 
including atmospheric aerosols, show close overlap with the igneous samples. In contrast, 2537 
surface Earth samples whose genesis involves the partitioning of Cu and Zn between solid 2538 
and aqueous phases (top two panels) exhibit substantial variability. Note the agreement 2539 
between the values for igneous rocks and clastic sediments with those for the Bulk Silicate 2540 
Earth in earlier diagrams. 2541 
 2542 
Data from:  2543 
Seawater: Bermin et al. (2006), Vance et al. (2008), Boyle et al. (2012), Zhao et al. (2014), 2544 
Conway and John (2014, 2015), Thomson and Ellwood (2014), Takano et al. (2014). 2545 
Rivers: Vance et al. (2008), Ilina et al. (2013), Little et al. (2014a), and including two Zn 2546 
data for the relatively unpolluted Seine system headwaters from Chen et al. (2008). 2547 
Dust/aerosol: Marechal et al. (2000), Li et al. (2009), Bigalke et al. (2010a), Dong et al. 2548 
(2013), Little et al. (2014a), and including data for rain (wet deposition?) in Takano et al. 2549 
(2014). Fe-Mn deposits: Marechal et al. (2000), Little et al. (2014a).  Carbonates: Pichat et 2550 
al. (2003). Siliceous sediments: Andersen et al. (2011), Hendry and Andersen (2013). 2551 
Organic-rich sediments: Little et al. (2016) Deep, sulphidic Black Sea (dissolved 2552 
phase):Vance et al. (2016a). Soils and plants: Viers et al. (2007); Bigalke et al. (2010a, 2553 
2011), Mathur et al. (2012), Liu et al. (2014), Vance et al. (2016b). Ombrotrophic peat: 2554 
Weiss et al. (2007, pre-Anthropocene analyses only). Igneous rocks: Marechal et al. (2000), 2555 
Archer and Vance (2004), Chapman et al. (2006), Cloquet et al. (2006), Bentahila et al. 2556 
(2008), Toutain et al. (2008), Sonke et al. (2008), Li et al. (2009), Herzog et al. (2008), 2557 

Chen et al. (2009), Moynier et al. (2010a,b), Bigalke et al. (2010), Weinstein et al. (2011), 2558 
Moeller et al. (2012), Telus et al. (2012), Chen et al. (2013), Liu et al. (2015), Savage et al. 2559 
(2015, including data tabulated here from Ben Othman et al., 2006 and Ikehata and Hirata, 2560 
2012). Clastic sediments (including dust/aersols in refs above): Marechal et al. (1999, 2561 
2000), Asael et al. (2007), Bentahila et al. (2008), Sonke et al. (2008, pre-Anthropocene 2562 
analyses only), Chen et al. (2009, only relatively unpolluted river sediments from the Seine 2563 
system, with Zn enrichment factors <2), Bigalke et al. (2010a), Mathur et al. (2012), 2564 
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Gagnevin et al. (2012), Vance et al. (2016b). Ore minerals: Marechal et al. (1999), Larson 2565 
et al. (2003), Mason et al. (2005), Wilkinson et al. (2005) Mathur et al. (2005, 2009, 2010), 2566 
Markl et al. (2006), Asael et al. (2007), Sonke et al. (2008), Gagnevin et al. (2012).  2567 

 2568 
Figure 9: Summary of experimental constraints on the isotopic fractionation of Cu and Zn 2569 
during important Earth surface processes.  2570 
 2571 
Data from: 2572 
Redox (Cu only): Zhu et al. (2002), Ehrlich et al. (2004), Mathur et al. (2005). Organic 2573 
complexation: Ban et al. (2002), Jouvin et al. (2009), Bigalke et al. (2010b), Ryan et al. 2574 
(2014). Sorption to oxide, clay and microbial surfaces: Pokrovsky et al. (2005, 2008), 2575 
Gélabert et al. (2006), Ballistrieri et al. (2008), Juillot et al. (2008), Navarette et al. (2011), 2576 
Kafantaris and Borrok (2014), Bryan et al. (2014), Coutaud et al. (2014), Guinoiseau et al. 2577 

(2016). Biological uptake: Zhu et al. (2002), Weiss et al. (2005), John et al. (2007), 2578 
Pokrovsky et al. (2008), Arnold et al. (2009), Moynier et al. (2009), Weinstein et al. (2011), 2579 
Caldelas et al. (2011), Navarette et al. (2011), Jouvin et al. (2012), Tang et al. (2012), Ryan 2580 
et al. (2013), Conway and John (2014). 2581 

 2582 
Figure 10: Cu-Zn isotope and tau data from relatively unpolluted soils in Hawaii (basaltic) 2583 
and Scotland (granitic) to illustrate important soil processes as discussed in the text (from 2584 
Vance et al. 2016b). Panels a,b: data from a sequence of soils, all 400kyr in age but having 2585 
seen different annual rainfall, on the island of Maui (Hawaiian Islands). Grey shading 2586 
represents mean annual precipitation (MAP) from 2500mm (white), through 3350mm 2587 
(grey) to 5050mm (black). Horizontal dashed lines show the isotopic composition of the 2588 
parent basalt. At the 2500mm site Fe is retained in the soil as Fe oxyhydroxides. Cu is 2589 
depleted with preferential loss of the heavy isotope to aqueous organic complexes and 2590 
retention of a sorbed isotopically light pool (solid arrow). At higher rainfall these 2591 
oxyhydroxides are lost by reduction, leading to loss of almost all this residual light Cu and 2592 
the retention of a very small pool of Cu that is close to the parent material in isotopic 2593 
composition (dashed arrow). Panel b shows the Zn data, which has a similar pattern though 2594 
the move towards light isotopic compositions at the low rainfall site is barely analytically 2595 
resolvable and the move back to heavy isotopic compositions overshoots to values 0.3‰ 2596 
heavier than the original rock. Panels c,d: data for soils on the island of Hawaii, all having 2597 
seen 2500mm MAP with colour shading showing different aged soils from 0.3 kyr (white), 2598 
through 20 kyr (grey), to 150 kyr (black). The solid arrow shows the trajectory for retention 2599 
of residual light isotopes during chemical weathering in well-drained conditions as in a,b. 2600 
The dashed arrows in c show the trajectories that would be followed given addition of 2601 
Asian dust to move the soils away from this trend. In d the dashed arrows are illustrative 2602 
only because their exact slope depends on how much Cu and Zn the oils has lost when dust 2603 

is added. Panels e,f: tau data for Zn and phosphate in the upper organic-matter-rich 2604 
horizons of granitic Scottish soils, as well as Zn  isotopic data for parent material (bar at 2605 
left), plants (bar at right) and soils (open circles), to illustrate correlated behaviour between 2606 
Zn and a major plant nutrient. 2607 

 2608 
Figure 11: Summary data for soils studied in Viers et al. (2007), Mathur et al. (2012), Liu 2609 
et al. (2014) and Vance et al. (2016b), in the form of taus and isotopic compositions 2610 



 99 

integrated over the entire soil profile studied, and in order to assess the overall impact of 2611 
depletion by chemical weathering on Cu and Zn isotopes. The numbers in brackets in the 2612 
key, and the intensity of shading, indicate the timescale over which soils have developed, 2613 
where known. All basaltic soils are shown as diamonds, granitic as circles, and soils 2614 
developed on black shales as triangles. Preferential loss of the heavy Cu isotope during 2615 
chemical weathering is clearly significant. The Zn data are plotted on the same scale to 2616 
illustrate the subtlety of isotope fractionation during weathering by comparison with Cu. 2617 
 2618 
Figure 12: All the Zn isotopic data currently available for the dissolved pool in the oceans 2619 
(right) with Zn concentrations measured in the same samples as the isotopes (left), plotted 2620 

versus depth. The middle of the grey bar on the isotope plot marks the average 66Zn for 2621 
the deep ocean (beneath 800m) while its width shows a typical analytical uncertainty 2622 
(±0.06‰). This deep ocean inventory is generally very homogeneous and has an average 2623 

66Zn ~ +0.47‰. In the deep ocean, the data depart from this ratio locally, such as near 2624 
hydrothermal vent systems at 3-4 km in the Atlantic (Conway and John 2014). In the 2625 
surface ocean isotope compositions are also very close to this deep ocean average in the 2626 
Southern Ocean (Zhao et al. 2014), but the upper ocean in the North Atlantic and North 2627 
Pacific depart significantly from it (Boyle et al. 2012; Conway and John 2014, 2015; Zhao 2628 
and Vance, unpublished data). Relative to this average deep ocean value, the estimates 2629 
input is slightly isotopically light, at about +0.33‰ (arrow at top: Little et al. 2014a), while 2630 
the dominant outputs in the oxic open ocean are much heavier (arrow at bottom: +0.90‰ 2631 
in Fe-Mn oxides, carbonates and siliceous sediments; Little et al. 2014a).  2632 

 2633 
Figure 13: All the Cu isotopic data currently available for the dissolved pool in the oceans 2634 
(right) with Cu concentrations measured in the same samples as the isotopes (left), plotted 2635 
versus depth. Open symbols on this plot are for data in the pioneering work of Bermin et 2636 
al. (2006) and Vance et al. (2008). These data were obtained pre-GEOTRACES, on 2637 
samples that had been stored for times on the order of 10 years. Though acidified, they 2638 
stand out as having significantly heavier isotopic compositions than more recent work on 2639 
new, cleanly-collected, GEOTRACES samples, including new (as yet unpublished) data 2640 
from the same group, and in Takano et al. (2014) and Thompson and Ellwood (2014). It 2641 
seems likely that these early measurements are compromised in some way by the long 2642 

storage. The middle of the grey bar on the isotope plot marks the average 65Cu for the 2643 
deep ocean (beneath 800m, and excluding these older data plotted as open symbols) while 2644 
its width shows a typical analytical uncertainty (±0.08‰). As with Zn, this deep ocean 2645 

inventory is generally very homogeneous and has an average 65Cu ~ +0.66‰. The 2646 
estimated input is close to this deep ocean average, at about +0.63‰ (arrow at top: Vance 2647 
et al. 2008; Little et al. 2014a). The only output yet characterised for Cu, though it is 2648 

probably the most important, is scavenging to Fe-Mn oxide particulates and transfer to 2649 
sediment (arrow at bottom, +0.31‰: Little et al. 2014a), is significantly lighter than both 2650 
the input flux and the deep ocean average. 2651 

 2652 
Figure 14: Schematic summary of our current understanding of processes relevant to the 2653 
overall marine budgets of Cu and Zn isotopes. The inputs are shown as arrows on the left, 2654 
with the Cu input shown as thick because of the uncertainty over the size of the dust input 2655 
(Little et al. 2014a; Takano et al. 2014). Within the oceans this input is split into two pools 2656 
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(schematic isotopic compositions shown as horizontal dashed lines): a dominant ligand-2657 
bound pool (ZnL or CuL) and a minor free metal ion pool (Zn2+ or Cu2+). In both cases the 2658 
ligand-bound pool is shown as heavy relative to the free metal ion (Jouvin  et al. 2009; 2659 
Ryan et al. 2014). If the oceans are in steady state the isotopic compositions of the outputs 2660 

(arrows on right) must balance the input. For Zn the outputs to oxic sediments have 66Zn 2661 

~ +0.9‰ (Little et al. 2014a), consistent with a positive sorbed-Zn2+ (Bryan et al 2015). This 2662 
is balanced by a light output to organic-rich sediments (Little et al. 2016) whose isotopic 2663 
composition is probably controlled by partial sequestration of organic-associated Zn to 2664 
sulphide in pore waters (Vance et al. 2016a). For Cu the only characterised output is via 2665 

sorption to Fe-Mn particulates, with 65Cu ~ +0.3‰ (Little et al. 2014a), shown as being 2666 

consistent with a positive sorbed-Cu2+ (e.g. Balistrieri et al. 2008; Pokrovsky et al. 2008). 2667 
This must balanced by an output that is heavy relative to the input (question marks on 2668 
right), possibly quantitative removal of seawater Cu in euxinic settings as speculated by 2669 

Thompson and Ellwood (2014). 2670 
 2671 

 2672 

 2673 

 2674 

 2675 

 2676 

 2677 

 2678 

 2679 

 2680 

 2681 

 2682 

 2683 

 2684 
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Table 1 : 66ZnJMC Lyon and 65CuSRM 976 of commonly used geological standards and isotopically certified 2685 
materials.  2686 

  66ZnJMC Lyon 2se ref 65CuSRM 976 2se ref 

IRMM-3702  0.38 0.10 1    

IRMM-3702 0.25 0.09 1    

IRMM-3702  0.30 0.02 2    

IRMM-3702  0.29 0.05 3    

IRMM-3702        

IRMM-3702 recommended 

value  
0.30 0.01     

       

ERM-AE633    -0.01 0.05 3 

ERM-AE647    0.21 0.05 3 

       

BHVO-2 0.33 0.04 4 0.10 0.08 5 

 0.21 0.09 6 0.10 0.04 3 

 0.27 0.06 2 0.10 0.07 4 

 0.31 0.03 15 0.15 0.05 9 

 0.29 0.09 16 0.13 0.03 8 

BHVO-2 recommended value 0.28 0.04  0.12 0.02  

       

BCR-1/2 0.20 0.04  0.19 0.07 5 

 0.29 0.12 10 0.14 0.05 3 

 0.32 0.13 1 0.07 0.08 11 

 0.23 0.08 12 0.19 0.08 12 

 0.25 0.01 2 0.22 0.04 8 

 0.20 0.09 11 0.21 0.04 8 

 0.26 0.05 13    

 0.26 0.09 17    

BCR-1/2 recommended value 0.25 0.03  0.17 0.05  

       

BIR-1 0.31 0.04 4 0.00 0.03 2 

 0.26 0.09 7 0.08 0.07 3 

 0.20 0.04 2 -0.02 0.10 14 

BIR-1 recommended value 0.26 0.06  0.02 0.06  

       

AGV1/2 0.32 0.04 4 -0.01 0.03 5 

 0.25 0.09 6 -0.01 0.09 5 
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 0.29 0.03 15 0.01 0.11 5 

 0.28 0.05 15 0.11 0.04 3 

    0.1 0.11 3 

    0.05 0.04 8 

AGV1/2 recommended value 0.29 0.03  0.04 0.04  

       

G2 0.34 0.04 15    

 0.30 0.09 18    

 0.32 0.09 17    

G2 recommended value 0.32 0.02     

 2687 

Ref: 1=Cloquet et al. 2006; 2=Sossi et al. 2014, 3=Moeller et al. 2012; 4=Chen et al. 2013; 5=Savage et al. 2015; 6=Moynier et al. 2688 
2010; 7=Herzog et al. 2009; 8=Liu et al. 2015; 9=Liu et al. 2014; 10=Chapman et al. 2006; 11=Archer and Vance 2004; 2689 
12=Bigalke et al. 2010; 13=Viers et al. 2007; 14=Li et al. 2009 ; 15=S. Chen et al. 2016 ; 16=Telus et al. 2012 ; 17=Paniello et al. 2690 
2012a, 18=Paniello et al. 2012b. 2691 
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Table 2 Logarithm of the reduced partition function, ln , for the pair 65Cu-63Cu. Cu(II) species. Method/Basis set used: 2708 
B3LYP/TZP for Sherman (2013) and , B3LYP/6-311+G(d,p)  for Fujii et al. (2013, 2014).  2709 
 2710 

 Species 
Coordi
nation 

number 

 Temperature (K)  
Refb 

273  298  310 323  373  473  573  

Solid CuO (Tenorite) - 6.63 5.62 - 4.81 3.65 2.29 1.57 1 
Aquo-ion Cu(H2O)5

2+ 5 5.355  4.546  - 3.905  2.968  1.876  1.290  2 
   5.36 4.55 - 3.91 2.97 1.88 1.29 1 
 Cu(H2O)6

2+ 6 5.053  4.288  - 3.682  2.798  1.767  1.215  2 
Chloride CuCl(H2O)4

+ 5 4.906  4.161  - 3.572  2.712  1.711  1.176  2 
 CuCl(H2O)5

+ 6 4.67 3.96 - 3.40 2.58 1.63 1.12 1 
 CuCl2(H2O)3 5 4.709  3.988  - 3.420  2.592  1.633  1.120  2 
 CuCl2(H2O)4 6 4.397  3.724  - 3.193  2.421  1.525  1.046  2 
 CuCl3H2O– 4 3.530  2.985  - 2.556  1.933  1.214  0.832  2 
Hydroxide CuOH(H2O)4

+ 5 5.307 4.517 - 3.889 2.967 1.883 1.298 2 
   5.30 4.52 - 3.89 2.97 1.89 1.30 1 
 Cu(OH)2(H2O)3 5 5.814 4.966 - 4.288 3.286 2.098 1.451 2 
Carbonate CuCO3(H2O)2 4 5.091 4.323 - 3.715 2.825 1.787 1.230 2 
 Cu(CO3)2

2– 4 6.176 5.239 - 4.498 3.416 2.158 1.483 2 
   6.38 5.41 - 4.65 3.53 2.23 1.53 1 
 CuHCO3(OH)2

– 4 5.951 5.075 - 4.376 3.346 2.130 1.471 2 
Sulfate CuSO4(H2O)4 5 6.041 5.144 - 4.430 3.381 2.148 1.481 2 
Sulfide CuHS(H2O)4

+ 5 4.002 3.386 - 2.900 2.194 1.377 0.942 2 
 Cu(HS)2(H2O)3 5 3.855 3.264 - 2.797 2.119 1.333 0.914 2 
Phosphate CuH2PO4(H2O)4

+ 5 5.515  4.684  - 4.026  3.063  1.939  1.334  3 
 CuH4(PO4)2(H2O)3 5 5.553  4.714  - 4.050  3.079  1.947  1.339  3 
 CuH3(PO4)2(H2O)3

- 5 5.290  4.492  - 3.861  2.937  1.860  1.280  3 
 CuH2(PO4)2(H2O)2

2- 4 6.360  5.403  - 4.645  3.535  2.238  1.540  3 
Citrate CuH2(cit)(H2O)2

+ 5 5.286 4.486 - 3.852 2.927 1.850 1.272 2 
 CuH(cit)(H2O)2 5 5.622 4.772 - 4.099 3.117 1.972 1.357 2 
 Cu(cit)(H2O)2

- 5 6.092  5.177  - 4.451  3.389  2.147  1.479  2 
 Cu(cit)2

4- 4 4.998  4.231  - 3.626  2.748  1.730  1.188  2 
Oxalate CuC2O4(H2O)2 4 6.236 5.302 - 4.561 3.474 2.202 1.516 2 
Ascorbate CuH(L-ascorbate)(H2O)4

+ 5 3.924 3.324 - 2.850 2.161 1.362 0.935 2 
 CuH(D-ascorbate)(H2O)4

+ 5 3.989 3.380 - 2.899 2.199 1.386 0.951 2 
Malonate Cu(H2C3O4)2(H2O)2

2- 6 7.00 5.94 - 5.10 3.88 2.45 1.68 1 
Amino acid Cu(Glu)(H2O)3

2+ 5 5.230 4.436 4.117 3.808 2.891 - - 3 
complex Cu(Thr)(H2O)4

2+ 5 5.220 4.429 4.110 3.803 2.889 - - 3 
 Cu(His)(H2O)3

2+ 5 5.274 4.470 4.148 3.836 2.911 - - 3 
 Cu(His)(H2O)4

2+ 5 5.299 4.492 4.168 3.855 2.926 - - 3 
 Cu(Cys)(H2O)4

2+ 5 3.981 3.369 3.124 2.888 2.187 - - 3 
 Cu(Met)(H2O)4

2+ 5 4.632 3.932 3.650 3.378 2.568 - - 3 
 Cu(GS)H0 4 4.945 4.194 3.892 3.600 2.734 - - 3 
Lactate Cu(L-lact)(H2O)3

+ 5 5.530 4.695 4.359 4.034 3.068 - - 3 
 Cu(L-lact)2

  4 7.110 6.045 5.616 5.199 3.961 - - 4 
 Cu(L-lact)(D-lact) a 4 7.125 6.057 5.627 5.210 3.969 - - 4 

a Reproduced from Telouk et al. (2015). 2711 
b1=Sherman  (2013), 2=Fujii et al. (2013), 3=Fujii et al. (2014), 4=This study. 2712 
  2713 
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 2714 
Table 3 Logarithm of the reduced partition function, ln , for the pair 65Cu-63Cu. Cu(I) species. Method/Basis set used: 2715 
B3LYP/TZP for Sherman (2013) and , B3LYP/6-311+G(d,p)  for Fujii et al. (2013, 2014), Seo et al. (2007)  and the present 2716 
study. 2717 

 Species 
Coordi
nation 

number 

 Temperature (K)  
Refb 

273  298  310 323  373  473  573  

Solid Cu2O (Cuprite) - 3.99 3.40 - 2.92 2.23 1.41 0.97 1 
 CuFeS2 (Chalcopyrite) - 1.80 1.51 - 1.29 0.97 0.61 0.41 1 
Aquo-ion Cu(H2O)2

+ 2 3.368 2.867 - 2.468 1.882 1.193 0.822 2 
Chloride CuCl(H2O) 2 3.401 2.887 - 2.480 1.885 1.191 0.818 3 
   3.40 2.89 - 2.48 1.89 1.19 0.82 4 
 CuCl2

- 2 2.775 2.350 - 2.014 1.526 0.960 0.659 3 
   2.71 2.29 - 1.97 1.49 0.94 0.64 4 
   2.87 2.42 - 2.08 1.57 0.99 0.68 1 
 CuCl3

2- 3 1.012 0.851 - 0.725 0.545 0.339 0.231 3 
   1.02 0.85 - 0.73 0.55 0.34 0.23 4 
   1.41 1.19 - 1.02 0.76 0.48 0.33 1 
Sulfide CuHS(H2O) 2 3.208 2.722 - 2.337 1.775 1.121 0.770 3 
   2.89 2.45 - 2.10 1.59 1.00 0.69 1 
 Cu(HS)2

- 2 2.940 2.489 - 2.133 1.616 1.017 0.697 3 
   2.90 2.46 - 2.11 1.60 1.00 0.69 4 
   2.69 2.28 - 1.95 1.48 0.93 0.64 1 
 Cu2S(HS)2

2- 2 2.648 2.239 - 1.917 1.450 0.911 0.624 3 
Lactate Cu(L-lact) a 2 2.195 1.859 1.725 1.595 1.209 - - 5 
 Cu(D-lact) b 2 2.202 1.866 1.731 1.600 1.214 - - 5 

a Reproduced from Telouk et al. (2015).  2718 
b1=Sherman (2013), 2=Fujii et al. (2013), 3=Fujii et al. (2014), 4=Seo et al. (2007), 5=This study. 2719 
 2720 
 2721 

 2722 
  2723 
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 2724 
Table 4 Logarithm of the reduced partition function, ln , for the pair 66Zn-64Zn. Zn(II) species. Method/Basis set used:, B3LYP/6-2725 
311+G(d,p)  for Fujii et al. (2013, 2014), Fujii and Albarede (2013), Moynier et al. (2013a), BP86/SVP for Singha Deb et al. (2014), 2726 
and B3LYP/aug-cc-pVDZ for Black et al. (2012). 2727 

 Species 
Coordina

tion 
number 

 Temperature (K)  
Refd 

273  298  310 323  373  473  573  

Aquo-ion Zn(H2O)4
2+ 4 4.539 3.853 3.577 3.310 2.516 - - 1 

   - 5.0 - - - - - 2 
 Zn(H2O)6

2+ 6 3.854 3.263 - 2.797 2.119 1.334 0.915 1 
   3.61 3.05 - 2.61 1.98 1.25 0.85 3 
   - 3.9 - - - - - 2 
 Zn(H2O)18

2+ 6 - 3.576 - - - - 1.004 4 
   3.67 3.11 - 2.66 2.02 1.27 0.87 3 
   - 4.3 - - - - - 2 
Chloride ZnCl(H2O)5

+ 6 3.702 3.136 - 2.689 2.039 1.285 0.882 1 
 ZnCl2(H2O)4 6 3.486 2.950 - 2.528 1.915 1.205 0.826 1 
 ZnCl3(H2O)- 4 3.490 2.952 - 2.528 1.913 1.202 0.824 1 
 ZnCl4

2- 4 2.722 2.293 - 1.957 1.474 0.921 0.629 1 
   2.77 2.33 - 1.99 1.50 0.94 0.64 3 
Hydroxide Zn(OH)2(H2O)4 6 4.185 3.567 - 3.075 2.350 1.495 1.032 1 
Carbonate ZnHCO3(H2O)3

+ 5 4.573 3.877 - 3.326 2.525 1.593 1.095 1 
 ZnHCO3(H2O)4

+ a 5 4.579 3.885 - 3.335 2.534 1.602 1.102 5 
 ZnHCO3(H2O)5

+ a 6 4.109 3.482 - 2.988 2.267 1.431 0.983 5 
 ZnCO3(H2O)3 5 4.940 4.199 - 3.612 2.752 1.745 1.202 1 
 ZnCO3(H2O)4 

a 5 4.789 4.076 - 3.509 2.677 1.700 1.172 1 
 ZnCO3(H2O)5 

a 6 4.356 3.704 - 3.187 2.429 1.541 1.062 5 
Sulfate ZnSO4(H2O)6 5 4.31 3.65  3.13 2.38 1.50 1.03 3 
 ZnSO4(H2O)5 6 4.154 3.527 - 3.031 2.306 1.460 1.006 5 
Sulfide Zn(HS)2(H2O)4 6 3.207b 2.717 - 2.330b 1.766b 1.113b 0.764 4 
 Zn(HS)3(H2O)2  5 3.580b 3.028 - 2.593b 1.962b 1.233b 0.845 4 
 Zn(HS)4  4 2.598b 2.190 - 1.871b 1.411b 0.883b 0.604 4 
 ZnS(HS)H2O  5 3.112b 2.628 - 2.247b 1.697b 1.064b 0.728 4 
Phosphate ZnH2PO4(H2O)5

+ 6 4.092 3.468 - 2.975 2.257 1.424 0.978 6 
 ZnH4(PO4)2(H2O)4 6 4.047 3.428 - 2.940 2.229 1.405 0.965 6 
 ZnH3(PO4)2(H2O)4

− 6 5.027 4.268 - 3.667 2.789 1.764 1.214 6 
 ZnHPO4(H2O)5 6 4.188 3.559 - 3.060 2.330 1.476 1.017 6 
 Zn2H2(PO4)2(H2O)4 6 5.156 4.380 - 3.765 2.865 1.814 1.249 6 
Citrate ZnH(cit)(H2O)4 6 4.033 3.419 - 2.934 2.227 1.406 0.967 6 
 Zn(cit)(H2O)3

− 6 4.154 3.523 - 3.024 2.297 1.452 0.999 6 
   4.39 3.72 - 3.20 2.43 1.54 1.06 3 
 Zn(cit)2

4− 6 2.889 2.437 - 2.083 1.572 0.986 0.675 6 
 Zn2H−2(cit)2(H2O)4

4− 4 5.330 4.523 - 3.884 2.953 1.867 1.284 6 
Malate ZnH2(mal)(H2O)4

2+ 6 3.842 3.250 - 2.784 2.107 1.325 0.909 6 
 ZnH(mal)(H2O)4

+ 6 3.984 3.376 - 2.896 2.197 1.386 0.952 6 
 Zn(mal)(H2O)4 6 4.103 3.479 - 2.987 2.268 1.433 0.986 6 
 Zn(mal)2(H2O)2

2− 6 3.274 2.771 - 2.376 1.801 1.135 0.780 6 
Oxalate ZnC2O4(H2O)2  4 5.500 4.678 - 4.025 3.068 1.946 1.341 5 
 Zn(C2O4)2

2-  4 5.215 4.421 - 3.794 2.880 1.818 1.250 5 
Amino acid Zn(Glu-H-1)+ c 2 1.923 1.633 1.517 1.404 1.070 - - 7 
complex Zn(Glu)(H2O)2

2+ 4 4.473 3.796 3.524 3.260 2.478 - - 1 
 Zn(Glu)(H2O)4

2+ 6 3.888 3.292 3.053 2.822 2.139 - - 1 
 Zn(Thr)(H2O)3

2+ 4 4.774 4.056 3.767 3.487 2.654 - - 1 
 Zn(Thr)(H2O)5

2+ 6 3.916 3.315 3.075 2.842 2.154 - - 1 
 Zn(His-H-1)+ c 2 4.381 3.728 3.465 3.210 2.448 - - 7 
 Zn(His)2+ c 2 4.223 3.591 3.336 3.090 2.355 - - 7 
 Zn(His)(H2O)2

2+ 4 4.670 3.959 3.673 3.397 2.578 - - 1 
 Zn(His)(H2O)4

2+ 6 3.541 2.996 2.777 2.566 1.943 - - 1 
 Zn(His)(H2O)3

2+ 4 4.635 3.930 3.647 3.373 2.561 - - 1 
 Zn(His)(H2O)5

2+ 6 3.724 3.150 2.921 2.699 2.043 - - 1 
 Zn(Cys-H-1)+ c 1 1.417 1.196 1.108 1.023 0.771 - - 7 
 Zn(Cys)2+ c 1 1.545 1.307 1.211 1.119 0.847 - - 7 
 Zn(Cys)(H2O)3

2+ 4 3.912 3.313 3.072 2.840 2.152 - - 1 
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 Zn(Cys)(H2O)5
2+ 6 3.196 2.702 2.504 2.313 1.750 - - 1 

 Zn(Met)(H2O)3
2+ 4 4.397 3.733 3.466 3.207 2.438 - - 1 

 Zn(Met)(H2O)5
2+ 6 3.478 2.947 2.734 2.528 1.918 - - 1 

 Zn(GS)- 4 4.311 3.655 3.392 3.137 2.381 - - 1 
a HCO3

- and CO3
2- were treated as monovalent ligands. 2728 

b Reproduced from Fujii et al. (2011). 2729 
c Hydration water molecules were not arranged (anhydrous). 2730 
d1=Fujii et al. (2014), 2=Singha Deb et al. (2014), 3=Black et al. (2011), 4=Fujii et al. (2011), 5=This Study, 6=Fujii and Albarède 2731 
(2012), 7=Moynier et al. (2013a). 2732 
 2733 

  2734 
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 2735 

Moynier et al. RIMG Cu-Zn Figure 1 2736 
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 2738 
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Moynier et al. RIMG Cu-Zn Figure 2 2741 
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Moynier et al. RIMG Cu-Zn Figure 3 2745 
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Moynier et al. RIMG Cu-Zn Figure 4 2760 
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Moynier et al. RIMG Cu-Zn Figure 5 2777 
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Moynier et al. RIMG Cu-Zn Figure 6 2790 
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Moynier et al. RIMG Cu-Zn Figure 7 2813 
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Moynier et al. RIMG Cu-Zn Figure 8  2841 
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Moynier et al. RIMG Cu-Zn Figure 9  2846 
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Moynier et al. RIMG Cu-Zn Figure 10 2852 
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Moynier et al. RIMG Cu-Zn Figure 11  2856 
 2857 

 2858 
 2859 

  2860 



 118 

Moynier et al. RIMG Cu-Zn Figure 12  2861 
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Moynier et al. RIMG Cu-Zn Figure 13  2866 
 2867 

 2868 
 2869 

  2870 



 120 

Moynier et al. RIMG Cu-Zn Figure 14 2871 
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