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The isotropic harmonic oscillator in an angular momentum basis: An 
algebraic formulation 

A. J. Bracken and H.1. Leemon 
Department of Mathematics, University of Queensland, St. Lucia, Queensland 4067 Australia 

(Received 18 July 1979; accepted for publication 30 August 1979) 

A completely algebraic and representation-independent solution is presented of the si

multaneous eigenvalue problem for H, L2, and L3, where H is the Hamiltonian operator 

for the three-dimensional, isotropic hamomic oscillator, and L is its angular momentum 

vector. It is shown that H can be written in the form w(2yty + ),.t·A + 3/2), where yt 

and yare raising and lowering (boson) operators for yty, which has nonnegative integer 

eigenvalues k; and At and A are raising and lowering operators for At'A, which has 

nonnegative integer eigenvalues I, the total angular momentum quantum number. Thus 

the eigenvalues of H appear in the familiar form w(2k + I + 3/2), previously obtained 

only by working in the coordinate or momentum representation. The common eigenvec

tors are constructed by applying the operators v t and At to a "vacuum" vector on which v 

and A vanish. The Lie algebra so(2,1) Ell so(3,2) is shown to be a spectrum-generating 

algebra for this problem. It is suggested that coherent angular momentum states can be 

defined for the oscillator, as the eigenvectors of the lowering operators v and A. A brief 

discussion is given of the classical counterparts of v, yt, A, and At, in order to clarify their 

physical interpretation. 

1. INTRODUCTION 

The eigenvalue problem for the three-dimensional, iso

tropic harmonic oscillator Hamiltonian operator, 

2 

H = :M + !Mlih2 , (1) 

is often solved algebraically (see for example Stehle,! Sec. 8). 

One introduces the boson creation and annihilation 

operators 

at = (2Mw) - 1!2( - ip + Mmx), 

a = (2Mw) - 1/2(ip + Mmx) , 

which are Hermitian conjugate to each other, and which 

satisfy the commutation relations 

[ai,aj ] =0= [ai, a]] , 

[ai' aJ] = 0ij' i,} = 1,2,3. 

Then one has 

H = w(N + 3/2) , 

where 

(2) 

(3) 

(4) 

N=at.a=N1 +N2 +N3 , (5) 

with, for example, NI = aTa l • The usual boson calculus 

leads to the conclusion that the commuting operators NI , 
N 2 , and N], have simultaneous eigenvalues n l , n2 , and n 3 , 

running over all nonnegative integers independently, so that 

the eigenvalues of N appear in the form n l + n 2 + n3 • The 

corresponding normalized eigenvector may be denoted 

In l , n2 , n]), and is nondegenerate. It may be obtained from 

a normalized "vacuum vector" 10) as 

Inp n
2

, n3 ) = (nl !n 2 !n 3 !)-I!2(aTt'(aD"'(an
n
'IO), (6) 

where 

aiIO)=O, i=I,2,3, (7) 

so that 

N 10) = ° = Ni 10), i = 1,2,3 . (8) 

The eigenvalue problem for H (equivalently, for N) may 

be solved also in an "angular momentum basis." (See for 

example Oavydov,2 Sec. 37.) One works in either the coordi

nate or the momentum representation and looks for the com

mon eigenfunctions of N, L2, and L 3 , where 

Li = !~ijk Ijk , 

Ijk = (XjPk - xkPj)/fl 

= i(ajak - aka]) , 

so that 

[Lit L j ] = iflEijkL k , 

i[lij' Ikm ] = Ojk(m + Oimljk - Oik1jm - Ojmlik . 

The simultaneous eigenvalues are found to be 

(9) 

(10) 

N: 2k + I, L2: I (l + l)fl2, L3: mfl , (11) 

where k and I run over the nonnegative integers indepen

dently, and for a given I, m runs over 1,1- 1,,,,, - I. The 

corresponding normalized eigenfunction may be denoted 

tPklm and is nondegenerate. 
In this paper we show how the simultaneous eigenvalue 

problem for N, V, andL 3 can be solved in a purely algebraic 

way, with the introduction of operators which raise and low

er the values of k, I, and m, rather than n I' n2 , and n}. More 

precisely we find that N can be written in the form [contrast 

with Eq. (5)] 

(12) 

where v t and v are raising and lowering operators for vtv, 

which has eigenvalues k; and At and A are raising and lower

ing operators for 'At .'A, which has eigenvalues I, the total an

gular momentum quantum number. The normalized com

mon eigenvectors, denoted Iklm), are obtained by applying 
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suitable combinations of the raising operators to a normal

ized "vacuum vector" 10), which satisfies 

(13) 

[It is readily seen that this vector can be identified with the 

vector defined by Eqs. (7) or (8), hence the common nota

tion.] In this approach, the fundamental dynamical variables 

in the problem are vt, v, }}, and A rather than at and a. 

Of all the many investigations of the harmonic oscilla

tor and related problems (for reviews and many references, 

see Kramer and Moshinsky3 and McIntosh4
), the closest in 

spirit to ours is that by Rose,s who examined the algebraic 

structure of operators x~ satisfying 

Iklm) =x~IO). 

However, Rose did not identify the elementary operators v, 

v t, A, and A t in terms of which the Hamiltonian operator and 

all such xZ; can be expressed [see our Eqs. (12) and (53)], and 

in terms of which the eigenvalue problem can be formulated 

and solved completely. 

The algebraic solution of this problein is of some intrin

sic interest, being independent of the choice of a particular 

representation space. Although one knows that any problem 

in quantum mechanics can be formulated in a variety of 

equivalent representations, and that the eigenvalues of any 

particular operator are determined by the structure of the 

relevant algebra of operators, rather than by the choice of 

representation space, few problems have been analyzed com

pletely in a representation-independent way. (For examples, 

see the book of Green. 6 Of course, our constructions neces

sarily also define in the coordinate representation, for exam

ple, shift-operators associated with the differential operators 

N, L2, and L 3 • There is a point of contact here with the so

called "factorization method."7 We note however that the 

operator L which we introduce in the next section and which 

plays a central role in our analysis, is an integral operator, 

not a differential operator, in both the coordinate and the 

momentum representation.) 

Having an algebraic formulation, we readily identify a 

hitherto unrecognized spectrum-generating algebra for this 

problem, namely the Lie algebra so (2, 1) $ so (3,2). Howev

er, our motivation for this work is primarily to set up an 

algebraic framework within which we can construct "coher

ent angular momentum states" for the oscillator. The inves

tigation of such states will be the subject of a subsequent 

pUblication. They will be defined as common eigenvectors of 

the lowering operators v and A, just as the usual coherent 

states can be defined as common eigenvectors of the lower

ing operators a. They have many interesting properties in 

common with the usual coherent states, leading us to hope 

that they also will prove useful. Further motivation for the 

study of such states may be found in the work of Atkins and 

Dobson,' and of Delbourgo,9 where the idea of superposing 

eigenvectors corresponding to all the possible values of the 

total angular momentum quantum number of a system, to 

form "coherent angular momentum states," has been pro

posed in a more general context. 

In Sec. 2 we denve expressions for the operators vt, v, At 
and A, and investigate some of their properties. Some proofs 
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are relegated to Appendix A. The method used to determine 

At and A, in particular, depends heavily on techniques devel

oped by Bracken and GreenlO for the analysis of vector oper

ators. Indeed, the idea of constructing from the vector opera

tors at and a other vector operators which form "creation 

and annihilation operators for angular momentum" was 

partly developed some years ago by them. 11 

In Sec. 3, we present with the help of these operators the 

solution of the common eigenvalue problem for N, L2, and 

L
3

, relegating some proofs to Appendix B. Then in Sec. 4, we 

discuss the time-dependence of these operators (in the Hei

senberg picture) and the meaning of their classical 

counterparts. 

It is known 12 that the Lie algebra sp(6, R) is a relevant 

spectrum-generating algebra for the oscillator Hamiltonian 

when N 1 , N2 , and N3 are to be diagonalized. In Sec. 5, we 

show that the Lie algebra so(2, I) $ so (3,2) [::::sp(2, R) 

$ sp( 4, R ») is a more appropriate spectrum-generating alge

bra when N, V, and L3 are to be diagonalized. 

2. THE APPROPRIATE DYNAMICAL VARIABLES 

In order to introduce the operators vt, v, At, and A with 

the desirable properties described above, it is necessary in the 

first place to define the operator L +!, as the positive, sca

lar, Hermitian square-root of the positive operator 

!I;Jj + H = II - 2L2 + i), so that 

L2 = L (L + 1)112. (14) 

It follows from the nonnegativity ofL2 that any of its eigen

values can be written in the form I (I + 1)/f, with I nonnega

tive. On the same eigenvector, the eigenvalue of L will then 

be I. Of course, it will tum out that I runs over all the nonneg

ative integers-but we deduce this, not assume it. 

We define also the Hermitian operator 

K= !(N -L), (15) 

so that N = 2K + L. Like all scalar operators, N (and hence 

K) commutes with all/ij , and therefore with L. 

However, the vector operator a (and likewise at) can be 

resolved into the sum of a vector operator which shifts the 

eigenvalue of L up by one unit, and a vector operator which 

shifts it down by one unit. This may be seen with the help of 

the techniques developed by Bracl,<.en and GreenlO as follows: 

From Eqs. (3) and the definition (9) of lij we have 

Eijka,.ljk = 0, 

or, equivalently, 

(16) 

a,.ljk + ak(j + aJki = O. (17) 

Contracting on the right with !Iij' and using the commuta

tion relations (10) and the definition of L, we find 

aJijljk + iaJik + akL (L + 1) = 0, (18) 

that is 

o = a i [Ii) + i(L + lft5ij] [Ijk - iL~jk] (19) 

= ai [Ii) - iL~ij Hljk + i(L + I)~jk] . 

We define the operators a( ± 1 by 

aj±l = ai [(L + !)~ij ± !~ij =FiJi) ][2L + I] -I (20) 

A.J. Bracken and H.I. Leemon 2171 
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(noting that [2L + 1] has a well-defined inverse, since Lis 

nonnegative). Then a( ± 1 is evidently a vector-operator so 

that 

.[ (±) I ] -" (± 1 s:: (±) 
I a, 'jk - 0ijOk - O'kaj , 

and hence 

[ al ± ), gk Ijk ] = 2ia~ ± )1 ki - 2al ± ) . 

But, according to Eqs. (19) and (20), 

ia~ t )1 kl = al ± ) [ l =F (L + !)] . 

(21) 

(22) 

(23) 

Combining Eqs. (22) and (23), and using again the definition 

of L, we have 

[aj t ), L (L + 1)] = - a) ± ) [ 1 ± (2L + 1)] , 

or, equivalently, 

L (L + l)a( ±) = a( ± )(L ± I)(L ± 1 + 1) . 

From the nonnegativty of L, it then follows that 

La( t ) = a( ± )(L ± 1) , 

(24) 

(25) 

(26) 

so that a( ±) is a vector shift-operator for L. We have from 

Eq. (20) that 

a = a( + ) + a( -) , 

which is the required resolution of a. 

with 

and 

In the same way we find 

at = at( + ) + a t(-, ) , 

aJ< ±) = ai[(L + !)Dij ± lD'j =Filij ][2L + 1] - 1, 

Lat(±)=at(±)(L± 1). 

In Appendix A we prove that 

[a( ±)P = aWF ) . 

Now 

Na = a(N - 1), 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

and since N commutes with I,! and L, it follows from the 

definition (20) that 

Na(±) = a(±)(N - 1). (33) 

It then follows from Eq. (26) and the definition (15) of K, 

that 

[K, a( - )] = 0 , 

Eq. (15) we have 

K (a·a) = (a·a) (K - 1) , (37a) 

and, by a similar argument 

K (at·at) = (at·at) (K + 1) . (37b) 

It now follows that a( +) and at( + )(a.a) have the same shift

ing properties for N, K, and L, so it is not surprising to find 

that (see Appendix A for proofs) 

a( +) = at ( + )(a.a) (2K + 2L + 1) - 1 , (38a) 

and similarly 

at( - 1 = a( -- l(at.at ) (2K + 2L + 3) - I . (38b) 

We therefore isolate as fundamental the operator at< + ) 

and its conjugate a( - \ which are raising and lowering opera

tors for L, but which commute with K; and the operators 

(at.a t
) and (a·a), which are raising and lowering operators 

for K but which commute with L. 

[The operators a( + ) and at( - ) are relegated to a secondary 

position, and they may be regarded as defined by Eqs, (38).] 

However, the operators A, v, and their conjugates At, vt, 

defined by 

A = a(-Y(K,L) = J(K,L + l)a( -) , 

At = J(K,L )at( + 1 = ate +) J(K,L + 1), 

(39) 

v = (a.a)g(K,L) = g(K + I,L) (a.a) , 

vt = g(K,L) (at.at ) = (at.at)g(K + I,L), 

may equally well be regarded as fundamental, for any rea

sonable Hermitian operator functionsJ and g. They evident

ly have the same shifting properties for K and L as have a( -), 

a t ( + \ (a·a), and (at·at), respectively, viz 

LA=A(L-l), LAt =At(L+l), 

[L,v] = 0 = [L,vt] , 

Kv = v(K - 1), Kvt = vt(K + 1), 

[K,A] = 0 = [K,At] . 

Furthermore, for any Jwe have (see Appendix A) 

[A"Aj] =0= [Ai,A!] , 

A·A = 0 = At'A t 
, 

iAk Ik, = Ai(L + 1) , 

(40) 

(41) 

(42) 

(34) and also 
Ka(') =a(+)(K - 1). 

In a similar way [or by conjugation ofEqs. (34)] we deduce 

that 

Kat<-)=at(-)(K+ 1). 

It is easily seen from Eqs. (3) that 

N (a·a) = (a.a) (N - 2) , 

(35) 

(36) 

and that (a·a), being a scalar, commutes with L. Hence, using 

2172 J, Math, Phys., Vol. 21, No.8, August 1980 

(43) 

i[A;, Ijk ] = DijA! - D'k A J . 
We choose the functions J and g so that, in addition to 

Eqs. (40), (41), (42), and (43), the operators A, At, v, and v
t 

have other simple algebraic properties, which make them 

most useful for the solution of the problem at hand (and for 

the construction of coherent states-see the comments at the 

end of Sec. 5). Noting that 2K + 2L + 1( = 2N + L + l)is 

positive definite, and so has well-defined negative powers, 

A.J. Bracken and H.I. Leemon 2172 
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we take 

/= [(2L + 1)1(2K + 2L + 1)]112, 

g = (4K + 4L + 2) - 112 , 

and find (see Appendix A) 

[v, vt] = 1, 

[Ai' v] = 0 = [A;, vt] , 

[Ai' vt] = 0 = [A i, v], 

(lAt'A + IHAi' An = (2At 'A + l)oij - U iAj , 

and also 

K = vtv, L = At.A, 

iii) = A iAj - A JA i . 

(44) 

(45) 

(46) 

The definition of the operators A, At, v, and vt in terms 

ofa and at, as presented above, is rather complicated. How

ever one may choose to regard them, rather than a and at, as 

the basic variables. Then Eqs. (15) and (46) become defini

tions of N, K, L, and I ij' and it can be shown that all relations 

in the algebra, such as those in Eqs. (40), (42), and (43), 

follow from Eqs. (41) and (45). In particular, a and at, which 

from this point of view have the complicated definitions 

a = A[(2K + 2L + 1)/(2L + 1)] 112 + At v[2/(2L + 3)] 112, 

(47) 

at = At[(2K + 2L + 3)/(2L + 3)]1/2 

+ Avt[2/(2L + 1)] 112, 

can be shown to satisfy the boson commutation relations (3). 

The commutation relations satisfied by A and At as giv

en in Eqs. (41) and (45) make these operators more difficult 

to manipulate than the boson operators v and vt. However, 

the last ofEqs. (45), although complicated in appearance, 

has an important property in common with boson commuta

tion relations: It does permit an annihilation operator Ai to 

be shuffled through a product of creation operators A J act

ing on a "vacuum" vector, with the accumulation of terms 

which are free of annihilation operators. Using these opera

tors we are able to solve the common eigenvalue problem for 

K, L,an L3 in a manner quite similar to that usually adopted 

for NI , N2 , and N3 . 

The algebraic relations satisfied by the operators A and 

A t as listed above, are the same as those satisfied by the 

"modified boson operators" introduced in a quite different 

context by Lohe and Hurst. l3 Accordingly the algebraic 

structure of the eigenvectors Ik I m) defined in the next sec

tion, in so far as it involves the variables At, is essentially the 

same as the structure of the vectors I~) of Ref. 13. 

However, there is an important difference between the 

two sets of operators (apart from the fact that nO analogs of v 

and vt appear in the work of Lohe and Hurst). The operators 

A and At have been defined in terms of boson operators a and 

a t and act in the same space as those operators. While this 

space can be taken to be that of the usual coordinate repre

sentation of quantum mechanics, A and A t have been defined 

in a representation-independent way, and are perhaps best 

2173 J. Math. Phys., Vol. 21, No.8, August 1980 

thought of as acting in an abstract Hilbert space, not tied to 

any particular representation. In contrast, the operators of 

Lohe and Hurst are defined by modifying not only a set of 

boson operators a and at, but also the particular space in 

which they are taken to act. As a result, their modified boson 

operators are only defined in a space of harmonic functions 

of three variables. The reason that they satisfy the same alge

braic relations as A and At may be traced to the fact that 

equivalent representations of the Lie algebra so(3,2) underly 

the two structures. In our case this so(3,2) is a subalgebra ofa 

spectrum-generating algebra for the oscillator (Sec. 5), 

whereas in the case of Lohe and Hurst, though not metioned 

by them, it arises as a well-known in variance algebra of La

place's equation in three dimensions. 

3. SOLUTION OF THE EIGENVALUE PROBLEM 

Since K and L cannot have negative eigenvalues, we see 

at once that there must be a vector on which the lowering 

operators A and v vanish. Thus we assert the existence of a 

normalized vector 10) such that 

vlO) = 0 = A, 10), i = 1,2,3. (48) 

Since K = vtv, L = At.A, and iii) = A iA) - A JA i , we have 

K 10) = L 10) = N 10) = 0, 

(49) 

lij 10) = 0 = Li 10), i,} = 1,2,3. 

The other common eigenvectors of K, L, and L3 can 

now be built up by applying the raising operators vt and A t to 

this "vacuum" vector. We define 

A ± = (AI ± jA2 ), A t± = (A r ± iA~), (50) 

so that 

L3A ± = A ± (L3 ± Ii) , 
(51) 

L3 A t± = A t± (L3 ± Ii) . 

Now let k, r, and s run over the nonnegative integers inde

pendently and let E denote either + or - . Then it is evident 

that on the vector 

(52) 

K, L, and L3 have the eigenvalues k, r + s, and Ern, respec

tively. Setting I equal to r + s, and m equal to Er, we write 

Ik I m) = Ck1m (vt)k(A !)lml(A D1-,m'10) (53) 

as the normalized common eigenvector of these operators, 

corresponding to the eigenvalues k, 1, and mli. (We postpone 

for the moment discussion of the values of the normalization 

constants Cklm ') Here k and I run over the nonnegative inte

gers independently, while for a given value of I, m runs over 1, 
1-1, ... , - I, and E is the sign of m. It is easily shown that for 

fixed k and /, the 21 + 1 vectors Ik 1m> form the basis for an 

irreducible representation of the Lie algebra so(3) spanned 

by the operators Ii) of Eqs. (46) (cfRef. 13). [Alternatively 

one can consider for any fixed k, the vectors 

(54) 

where the subscripts a, {3, ... , 7 are I in number, and run over 

1, 2, 3 independently. These vectors form a rank-l tensor ba-
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sis forthis representation of so(3). Note that in view of Eqs. 

(41), this tensor is automatically symmetric and traceless.} 

For completeness, it is necessary to show that the vec

tors Ik / m) are, up to multiplication by constants, the only 

common eigenvectors of K, L, L3 which one can construct 

by applying to 10) any operator in the algebra generated by 

v, vt, A, and At. To do that, it suffices to show that the sub

space of all finite linear combinations of the vectors I k / m) is 

invariantundertheactionofv,vt,A 3 ,A LA± ,andA t+ ; and 

this is true, for we see in Eqs. (59) below that when any of 

these operators is applied to any I k / m), a constant multiple 

of another such eigenvector is produced. 

Turning to the calculation of the normalization con

stant Ck1m in Eqs. (53), we see at once that 

( < k / m Ik / m) = k !ICklm IZ(OI(Aj -Iml 

X(A _ .)lml(A Zrl(A O/-lmIIO) . (55) 

Using the last of the relations (45), it is straightforward to 

show by induction that 

AjA ~A ~A t···A ~A ~ 10) 

= {(DjoA 1A t···A : A ; + DjfJA ~A t···A:A ~ + ... 

+ DjTA ~A 1A ~ ... A:) - (21 ~ 1) A ;(DafJA t···A : A ~ 

+ D A fJt . "A tAt + ... + D A fJt At ... A t 
ay a T aT y a 

+ DfJ At. "A tAt + ... + DfJ A tAt ... A t 
ya aT raya 

+ ... + DaTA ~A 1A ~"')}IO) , (56) 

where / is the number of creation operators A ~ , A 1, "', A ~. 

With the help of this result, we are able to show (see Appen

dix B) that 

( ) 
k !lCklm I 221l!(1 - m)!(1 + m)! 

klm\klm = , (57) 
(2/)! 

so that I kim) as defined in Eq. (53) is normalized if we take 

(with a convenient choice of phases) 

m ( (21 )! )1/2 
C

k1m = ( - E) k!1 !(/_ m)!(/ + m)!21 . 
(58) 

It is then found that (see Appendix B) 

v\k I m) = (k)ll2\k - II m), 

vtlk 1m) = (k + l)'12lk + 11 m) , 

At Ik 1m) = ((l + 1 - m)(1 + 1 + m) )1/21k I + 1 m) 
3 (21 + 1) , 

At Ik 1m) = 'F ((l ± m + 2)(1 ± m + 1) )112 
± (21 + 1) 

X Ik / + 1 m ± 1) , 

A Ik 1m) = (/- m) (/ + m»)1/2Ik 1- 1 m) , 
3 (2/- 1) 

A Iklm)= + (I'F m)(/'F m -l»)1/2 
± - (2/- 1) 

Xlkl-lm±I). (59) 

We close this section by remarking that we have chosen 

phases in Eq. (58) in such a way that the vector \k / m) ap-
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pears in the coordinate representation as 

r/J = (-1)" ( 2a
3

k! )112Sle -(I!2)S2 

kim r(k + 1+3/2) 

XL ~ + 1/2)( S 2)Ylm (O,r/J) , 

where a = (Mw/fl) 1/
2, S = ar(r,O andt/J are the usual spheri

cal polar coordinates), L ~ + 1/2) is the generalized Laguerre 

polynomial, defined as in Ref. 14, and the spherical harmon

ic Y1m is defined as in Ref. 15. 

4. TIME·DEPENDENCE AND INTERPRETATION 

In the Heisenberg picture, the time-dependence of an 

observable A (or of any complex linear combination A of 

observables) is determined by 

ifl dA = [A, H) . 
dt 

Now the operators v, vt, A, and At are shift-operators for H, 

allowing us to deduce at once that 

dv 2' - = - IWV, 

dt 

dA 

dt 

Thus 

- iwA , d At = iWAt 
dt 

A = Aa e - "vI, At = A6 e jwI 
, 

(60) 

(61) 

where the (constant) operators Va, V6, Aa, and A6 satisfy the 

same algebraic relations as V, vt, A, and At. 

We gain some insight into the physical interpretation of 

these variables by considering their classical counterparts. 

Denoting the classical coordinate and momentum vectors by 

x and p respectively and the classical Hamiltonian by B, we 

define 

a = (2Mw) -I/z(ip + Mwx) , (62) 

and its complex conjugate a·. [Note the extra factor of (fl)1I2 

in comparison with Eq. (2).] Then 

B = wa··a . (63) 

Introducing the classical angular momentum vector 

L=xXp, 

with length i, we define 

A 1 A A 

K = - (H - wL) . 
2w 

(64) 

(65) 

In the definitions of V, vt , A and At above, we let fl-o, with 

H-.Band 

(fl) l12a-.a, (fl) I12at-.a·, 

flljj-+Ejjkik , 

flL-.i, flK -.K , 

(66) 

in order to obtain the classical variables corresponding to V 

and A, 

v = ~(a·a) (K + i) -112 
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A A 1/2 

(K + L) - [(M2 2A2 A2) + '(2" 1 A A)] = W X - P I lY.lWX·P , 
4Mw 

(67) 

i = H£ (K + £)] -112(£i + lLXi) 

= [8Mwi (K + i)] -1/2 [(Mwii - Lxii) 
+ i(Lp + MwLXi)] , 

and their complex conjugates v· and i·, which correspond 

to v t and}" t. Apart from the overall factors involving the 

constants of the motion K and £, these expressions are rea

sonably simple. It is straightforward to verify in particular 

that 

v·v=K, i·.i=£, 
i·i = 0 = i ·.i· , 
iI = w(2v·v + i ·.i) , 
iXL = iii, i·xL = - iii·, 

i·xi=IL, 

(68) 

and also that the time-dependence of the classical variables is 

the same as that of their counterparts, as in Eqs. (61). 

From the relations (68), it can be seen that if a and il 
denote the real and imaginary parts of (v'2)i, then a and il 
are orthogonal, and of the same length (i )112. From the last 

three of the relations (68), we see then that e = a(i ) - 112, 

f = p(i) - 112, and g = L(i) - I form a right-handed system 

of orthogonal unit vectors, of which the first two are time

dependent. 

Classically, the motion is elliptical, in the plane perpen

dicular to L, i.e., in the plane determined by a and (i For any 

particular motion we can choose time-origin and space-axes 

such that the motion is anticlockwise in the XY-plane, with 

i = (A coswt, B sinwt, 0), A >B>O . 

Then 

Ii = Mw( - A sinwt, B cOS(J)t, 0) , 

L = Mw(O, 0, AB), £ = MwAB , 

iI = !Mw2(A 2 + B 2), K = aMw(A _ B )2 , 

V = rVM;" (A - B)e - 2jQ)t = V K e - 2jwt , (69) 

i = V!MwAB e - jQ)I(I, i, 0) = V if. e-,(ul(1, i ,0), 

e = (coS(J)t, sinwt, 0), f = ( - sinwt, cos wt, 0) , 

g = (0, 0,1). 

The periodic variables i and i· have angular frequency w, 

the natural frequency of the oscillator, but v and v· have 

angular frequency 2w. This is at first glance rather puzzling, 

but we can understand it as follows, and perhaps at the same 

time appreciate the geometrical significance of all these 

variables. 

The elliptical motion can be regarded as arising from 

the superposition of two uniform circular motions, with an

gular frequencies 2w and w, respectively. In the particular 

coordinate system adopted above, 

i = (A cOS(J)t, B sinwt, 0) 

= l(A + B)e + l(A - B) (cos2wte - sin2wt f) . (70) 

Thus the particle can be regarded as moving uniformly 
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clockwise, with angular frequency 2w, in a circle which is 

fixed relative to the vectors e and f and has radius !(A - B). 

This circle (epicycle) itself rotates anticlockwise (along with 

e and f) about an exterior point 0, so that its center moves 

uniformly, with angular frequency w, around the circumfer

ence of a larger circle (deferent) of radius !(A + B), centered 

at O. The point 0 is the center of the resultant anticlockwise 

elliptical motion. (See Fig. 1.) 

The relevance of the variables V, v·, i, and i· to this 

decomposition of the motion can be appreciated when one 

notes that Eq. (70) is [in the particular coordinate system of 

Eqs. (69)] just the real part of the formula 

i = [(K + £)1£] 1/2i + [i] - Il2vi·, (71) 

which is the classical equivalent of the first of Eqs. (47). 

The resolution of the harmonic motion into two circu

lar motions can also be seen and understood in the following 

way. The equation of motion for the oscillator is 

(72) 

Since the force on the particle is central, the motion is in a 

fixed plane perpendicular to the angular momentum i. We 

make a change of reference frame, to the frame rotating anti

clockwise, with angular frequency w, about a unit vector 0 

which passes through the origin and which is parallel to i. In 

the rotating frame, the equation of motion for the particle at 
r is 

d 2
r 2 dr 

m- = -mwr-2mrox--mrox(roXr), (73) 
dt 2 dt 

with ro = wo' Here the second term is the Coriolis "force," 

and the third is the centrifugal "force" on the particle 

Now roX(roxr) = - w2
r, 

since ro is orthogonal to i, and hence to r. Thus in this frame 

the centrifugal force exactly cancels the true force, and the 

particle moves under the Coriolis force alone, with 

dr 
-2roX -. 

dt 

Integrating once we have 

d
2

R = _ 4w2R 
dt 2 

where R = r - ro, with ro an arbitrary constant vector, 
which must be orthogonal to ro in view of Eq. (74). 

(74) 

(75) 

(76) 

We see that in this rotating frame the motion is harmon

ic with angular frequency 2w, about an arbitrary fixed point 

ro in the plane of the motion. That this motion must actually 

be circular (it is the motion around the smaller circle in Fig. 

1.) follows from the fact that we also have, from Eq. (74) 
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/' 
/' 

\ 
\ , , 

"
"-

" 

dR 
-2roX -

dt ' 

( 3) 

(77) 

- 4w2R = - 2 ro X dd~ , (78) 

implying that R·(d R/ dt ) = O. and hence that R2 is constant. 

We also note from Eq. (78) that 

RX dR = _1_ (rox dR)X dR (79) 
dt 2lu2 dt dt 

= __ 1 (dR)\Il' 
2lu2 dt 

so that the circular motion is in the opposite sense to ro, i.e., it 

is clockwise about an axis which passes through R = 0 and 

which is parallel to n. 

5. A NEW SPECTRUM-GENERATING ALGEBRA FOR 

THE OSCILLATOR 

For the treatment of the common eigenvalue problem 

for the operators N, , N z , and N 3 , a spectrum-generating 

(Lie) algebra is the 2 I-dimensional Lie algebra sp( 6,R ), with 

Hermitian basis 

(a,aj + aia]) , i(a,aj - aia]) , 

(80) 

( t t) .(t t) a,aj + a,aj , I a,aj - aja, . 

The vectors In" n2, n3 > with odd (n, + n2 + n3) span one 
irreducible representation of this algebra, and those with 

even (n, + n2 + n3) span another.12 

For the common eigenvalue problem for N, L2, and L3 

another Lie algebra is more relevant. Define the Hermitian 

2176 J. Math. Phys., Vol. 21, No.8, August 1980 

FIG. 1. Resolution of elliptical motion 

into two circular motions. The particle, 

whose position is marked X, rotates 
clockwise with angular frequency 2w 

around the smaller circle, whose center 

moves anticlockwise with angular fre
quency fJ) around the larger circle. Posi

tions are shown at (I) fJ)t = 0; (2) 

fJ)t = IT/4; (3) fJ)t = IT/2; (4) fJ)/ = 3lT/4. 

/ 

/ 

/ 
/ 

/ 

operators 

i 
I 

/ 

(1) 

At = J...t(2L + 1)112 = (2L _1)'/2J...t, 

(81) 

and note that, as well as commuting with yand yt, and hav

ing the same shifting properties for L as J... and J... t, they satisfy 

[A" Aj] = 0 = [A;' A J] , 

[A" A J] = (2L + l)O;j - 2il;j , 

A·A = 0 = At·At, 

At·A = L (2L - 1), 

A iAj - A ]A; = il'j(2L - 1) , 

(82) 

The proof of the results (82) is elementary, with the use of 

Eqs. (41), (45), and (46). 

Now define 

A, =!(vv + ytyt) , A2 = ai(vv - ytyt), 

A3 = !(yty + !) , 

B4 , = !(A; + AD = - B;4 , (83) 

Bs, = V(A; - A i) = - B;s , 

B;j = l,j' BS4 = (L + !) = - B45 . 

It is easily checked that these operators span an Hermitian 

representation of the Lie algebra so(2,1) Ell so(3,2) 

[=sp(2,R ) Ell sp(4,R »), with theonly nontrivial commutation 

relations being 

[A, , A 2 ] = - iA 3' [A 2 , A 3 ] = iA" [A 3 , A, ] = iA 2 , 

(84) 
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i[B,,,., Bpa] = g"pB11a + g/LaB,.p - g/LpBva - gvaB/Lp , 

where fl, v, p, and (J run over 1,2,3,4,5, and the metric tensor 

g/LV is diagonal, with gIl = g22 = g33 = - g44 = - g55 

=1. 
The quadratic invariant of the so(2, 1) algebra has the 

value 

(85) 

There are two irreducible Hermitian representations of 

so(2, 1), labelled 9( +)( - 114) and 9( +)( - 3/4) by Barut 

and Fronsdal, 16 for which the invariant has this value, and in 

which the spectrum of A 3 is bounded below (as it evidently is 

in the present situation). In the representation 

9( +)( - 114), A3 has eigenvalues 114, 5/4,9/4, ... ; and in 

therepresentation9(+)( - 3/4) it has eigenvalues 3/4, 7/4, 

1114, .... It can be seen that representations of both types are 

involved in the problem under discussion-the former asso

ciated with even-integral eigenvalues of K ( = vtv), the latter 

with odd-integral eigenvalues. 

A simple calculation shows that the quadratic invariant 

of the so(3,2) algebra has the value 

Moreover, the two invariants of the so(3,1) subalgebra 

spanned by the Bij and B4i , have the values 

1B;jB;j - B4;B4i = - i ' 

1EijkBijB4k = 0 , 

(86) 

(87) 

indicating that any irreducible representation of so(3,2) 

which appears here, remains irreducible when restricted to 

the so(3,1) subalgebra. In the commonly used1
? [ko, c) label

ling of the irreducible representation ofso(3,1), these two 

invariants have values (k 6 + c2 
- 1) and ikoc, respectively. 

Thus the irreducible representations of so(3, 1) appearing 

here can only be [!, 0] or [0, U and since the eigenvalues of 

BI2 are integral, only the representation [0, !] can be in

volved. It is known (see for example Bohm, 18) that this repre

sentation of so(3, 1) extends to either of two irreducible Her

mitian representations (two of the four Majorana rep

resentations) ofso(3,2), each consistent with Eq. (86). But in 

only one of these-let us call it Y -is the spectrum of BS4 

bounded below, as it evidently is in the present situation. In 

this representation Y, BS4 has eigenvalues 1/2, 3/2, 5/2 .... 

The representation of so(2, 1) EEl so(3,2) associated with 

the harmonic oscillator in an angular momentum basis can 

now be identified, in view of the nondegeneracy of the eigen

vectors I kim>, as simply 

(9( +)( - 114), Y) EEl (9( +)( - 3/4),Y) . (88) 

The Hamiltonian operator appears in the form 

(89) 

and its eigenvalues are immediately deducible from the 

known spectra of A 3 in the representations 9 ( +)( - 1/4), 

9( +)( - 3/4), and of BS4 in Y. 

The reader may wonder why we did not, in Sec. 2, 

choose to work with the operators A and At rather than A 

and At. A simple change of the function! in Eqs. (44) ! to 
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!(K,L) = [(4 .. [;2 - 1)/(2K + 2L + 1)] 112 J would have ac

complished such a substitution. The commutation relations 

satisfied by A and At are simpler than those satisfied by A 

and At, and the connection with the spectrum-generating 

algebra is more immediate. For these reasons it may be ar

gued that the operators A and At are more suitable for the 

algebraic treatment of the eigenvalue problem. 

Our preference for the operators A and At is mainly 

determined by our intention to define in a subsequent publi

cation, "coherent angular momentum states" for the oscilla

tor as eigenvectors of the lowering operators. The expecta

tion values of the important operators H, K, L, and I;j will be 

very simple in such states, if we diagonalize the operators A 
and v, because 

K = vtv, L = At. A , ilij = A ;Aj - A JA; . (90) 

On the other hand, if we diagonalize the operators A, we 

shall need to work with the expressions 

L = ! + HI + 81. t'1.)1/2 , 

il;j = (2L - 1) - I(A ;Aj - A JAr> , 

whose expectation values will not be simple. 
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APPENDIX A 

Here and in Appendix B we present the derivations of 

some of the results stated above. The ends of proofs are indi

cated thus: 0 

From the definition of at( + ) in the first of Eqs. (29), it 

follows that 

(aJ< + »t = (2L + 1) - I [(L + l)oij + il;j ]ai . (AI) 

Using Eqs. (21) and then Eqs. (23) we see that 

ila(±) = ia(±)l - 2a(±) 
'J I I I} ) 

= -a;±)[3/2±(L+1)]. (A2) 

Now using Eq. (27) in Eq. (AI), we have 

(aJ<+»t = (2L + 1)-I(L + l)(a5+) + a5-» 

+ (2L + 1) - I(il;ja~ +) + ilija~ - l) 

= (2L + 1) - I [aj + )(L + 2) + aj -)L 

- aj + )(L + 2) + a; - )(L - 1)] 

[using Eq. (A2)] 

= (2L + 1) - la; - )(2L - 1) 

= aj - ) [using Eq. (26)]. 

In a similar way we show that (a t( - »t = a( +), so completing 

the verification ofEqs. (31). 0 

From the definition in Eqs. (20) we have that 

aj - )(2L + 1) = ajL + ia;/;j 

= ajL -arCata] - ajaj) [using Eq. (9)] , 
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= - a](a·a) + a/N + L + 1) 

[using Eqs. (3)]. (A3) 

Similarly, we find 

aj + )(2L + 1) = aJ(a·a) - aj(N - L), 

af( - )(2L + 1) = aj(at'a t
) - aJ(N - L + 2), (A4) 

a]( + )(2L + 1) = - aj(at·at) + aJ(N + L + 3). 

It is easily deduced from the definitions (9) and the rela

tions (3) that 

FiJi) = N 2 + N - (at·at) (a·a) 

= N 2 + 5N + 6 - (a'a) (at·at) . 

Since FiJij = L (L + 1), it follows that 

(a'a) (at·at) = (N - L +2) (N + L + 3), 

(AS) 

(at·at) (a·a) = (N - L) (N + L + 1). 

Multiplying on the right by (at·at) in Eq. (A3), we get 

aj - )(at·at) (2L + 1) 

Thus 

= - aJ(a·a) (at·at) + aj(N + L + 1) (at·at) 

= - aJ(N -L +2) (N + L +3) + aj(at·at) 

X(N + L +3) [using Eqs. (AS) and (3)] 

= aJ< - )(2L + 1) (N + L + 3) [using Eqs. (A4)]. 

a( - )(at'at) = at( - )(N + L + 3) , 

and in a similar way we show that 

a t( + )(a·a) = a( + )(N + L + 1) , 

establishing Eqs. (38). 0 

Consider the product A)'j' with A having the general 

form given in Eqs. (39): 

AiAj = a~ -) f(K,L )aj -) f(K,L ) 

= f(K,L + l)f(K,L +2)a~-)aj-). (A6) 

From Eq. (A3) we have (recalling that N = 2K + L ) 

a~ - )(2L + l)aj - )(2L + 1) 

= [ - ai{a·a) + ai(2K + 2L + 1) ]aj - )(2L + 1) 

= - a;(a·a)aj - )(2L + 1) + aiaj - )(2L + 1) 

X (2K + 2L - 1) [using Eqs. (26) and (34)] 

= - a;(a'a)[ - aJ(a·a) + a/2K +2L + 1)] 

+ ai [ - aJ(a·a) + aj (2K + 2L + 1) ] 

X(2K + 2L -1) [using Eq. (A3) again] 

= a;aJ(a·a)2 + aiaj(2K + 2L + 1) (2K + 2L - 1) 

- (aiaj + aiaJ) (a'a) (2K + 2L - 1) 

[using Eqs. (3)]. (A7) 

The right-hand side of this equation is symmetric in i andj. 

Thus 

aj - )(2L + l)aj - )(2L + 1) = aj - )(2L + l)aj - )(2L + 1) , 

that is, 

(2L + 3) (2L + 5) [aj - ), aj - )] = 0 , 

which implies that [a~ - >, aj - )] = O. It follows at once from 
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Eq. (A6) that [Ai' Aj 1 = 0; and in a similar way we deduce 

that [A t, A J] = o. 
We see also from Eq. (A7) that 

(2L + 3) (2L + 5) a( - )'a( - ) 

= (at·at
) (a'a)2 + (a'a) (N + L + 1) (N + L - 1) 

- (2N +3) (a·a) (N +L -1) 

= [(N-L)(N+L+l)+(N+L+3) 

X(N +L + 1) - (2N +3)(N +L + 1) ](a'a) 

=0. 

Thus a( - )'a( - ) = 0, and it follows from Eq. (A6) that 

A'A = O. In a similar way, we deduce that At'At = O. 

Equations (41) have now been confirmed. Their valid

ity can be seen also from more general arguments. Since A 

shifts the value of L down by one unit, the vector operator 

(Ji = Eijk [Aj' Ak 1 
shifts the value of L down by two units. But a vector operator 

can only have components which commute with L, or shift 

its value up or down by one unit. Thus 9, and hence [Ai' Aj ] 

must vanish. Similarly, the scalar A'A shifts the value of L 
down by two units. But a scalar operator commutes with L; 

and therefore A'A = O. 0 

Equations (42) follow trivially from Eqs. (23) and (29), 

since f (K,L ) is a scalar operator, comm uting wi th the I ki ; and 

Eqs. (43) follow at once from the fact that A and At are vector 

operators by the manner of their construction. 0 

Consider now 

vvt = (a·a)g2(K, L) (at·at) 

= (a'a) (at·at)g2(K + 1, L) 

= 2(K + 1) (2K +2L +3) g2(K + 1, L) 

[using Eqs. (15) and (AS)]. 

Similarly we find 

vtv = (at·at) (a·a)g2(K, L) 

= 2K (2K + 2L + 1) g2(K, L ) . 

With g as in Eqs. (44), these two equations reduce to 

establishing the first ofEqs. (45) and the first ofEqs. (46). 0 

Next consider the products 

Aiv = aj -) f(K, L ) (a·a)g(K, L ) 

= aj - )(a'a) f(K - 1, L )g(K, L ) , 

vAi = (a·a)g(K, L )a~ -) f(K, L ) 

= (a·a)aj - )g(K, L -1)f(K, L) 

= aj - )(a'a)g(K, L - l)f(K, L) 

[using Eqs. (3) and (20)] . 

Withfandg as in Eqs. (44) we have 

g(K, L -1 )f(K, L) = f(K -1, L )g(K, L) 

and it then follows that [Au v] = O. Taking the Hermitian 

conjugate of this equation, we deduce that [A t, vt] = 0, and 

the second set of Eqs. (45) is verified. 0 
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Consider next the products 

A;yt = aj ~) f(K, L) (at·at)g(K + 1, L) 

= a\ ~ )(at·at)f(K + 1, L )g(K + 1, L), 

ytA; = (at·at)a~ ~ )g(K + 1, L -1)f(K, L) 

Thus 

= [a; ~ )(at·at) - 2a;< ~ )]g(K + 1, L - 1) 

X f(K, L ) [using Eqs. (3) and (20)], 

= [a\ ~ )(at·at) - 2a) ~ )(at·at) (2K + 2£ + 3) -I] 

Xg(K + 1, L -1)f(K, L) [using Eq. (3Sb)] . 

[A;, yt] =a;~)(at·at)(2K +2L +3) ~I 

X [(2K +2£ + 3)g(K + 1, L )f(K + 1, L) 

- (2K +2£ + l)g(K + 1, L -1)f(K, L) ] 

=0 ~~ 

because of the form off andg in Eqs. (44). Taking the Hermi

tian conjugate ofEq. (AS) we deduce also that [A i, Y] = 0, 

so that the third set of Eqs. (4S) is confirmed. 0 

Now consider the product 

A ;Aj = f(K, L )a;< + )a5 ~ ) f(K, L ) 

= a;< + )(2£ + l)a) ~) f2(K, L) (2L - 1) -I 

= [ - a; (at·at) + a;(N + L + 3) ]a5 ~) 

X f2(K, L )(2L - 1) ~ I [using Eqs. (A4)] 

= [ - a; (at·at)a) - )(2£ + 1) + aia) - )(2£ + 1) 

X (N + L + 1) ] f2(K, L ) (4L 2 - 1) ~ I 

= ! - a;(at·at)[ - aJ(a·a) + aj(N + L + 1)] 

+ a;[ - aJ(a·a) + aj(N + L + 1) ](N + L + I») 

X f2(K, L )( 4L 2 - 1) - I [using Eq. (A3)] 

= ! a;aJ(at·af) (a·a) - a;a/at·af) (N + L + 1) 

+ 2a;aJ(N + L + 1) - a;aJ(a·a) (N + L + 1) 

+ aiaj(N + L + 1)2) f2(K, L) (4L 2 - 1) ~ I 

= !2a;aJ(K + 1) + aiaj(2K +2L + 1) 

- a;aj(at·at) - a;aJ(a·a») 

X f2(K, L)(2K + 2£ + 1) (4L 2 -1) ~ I (A9) 

[using Eqs. (AS) and (IS)]. 

In a similar way, we show that 

A;A J = !2a;ajK + a;aJ(2K +2L +3) - a;aJat·af) 

- a;aJ(a.a) lf2(K, L + 1) (2K + 2£ + 3) 

X(2L + 1) ~'(2£ +3) -I. (AW) 

It follows from Eqs. (A9) and (AS) that 

At'A = !2(2K +L +3)(K + I) + (2K +L) 

X(2K +2L + 1) -2(K + 1)(2K +2L +3) 

-2K(2K +2L + I») 

Xf2(K,L) (2K +2L + 1) (4L 2 _1)-1 

= L j2(K, L )(2K + 2L + 1) (2£ + 1) ~ I . 

Thus At'A = L for the choice of/in Eqs. (44), verifying the 

second ofEqs. (46). 0 

It can also be seen from Eqs. (A9) that 

A ;Aj - A JA; =! 2(a;aJ - ajai> (K + 1) 

+ (a;aj - aJa;) (2K +2L + I») 

2179 J. Math. Phys., Vol. 21, No.8, August 1980 

X f2(K, L ) (2K + 2£ + 1) 

X(4L 2 -1) ~I 

=ilijf2(K,L)(2K+2L+l) (2£+1)~', 

SO that, again withfas in Eqs. (44), we confirm the last of 

Eqs. (46). 0 

From Eqs. (A9) and (AI0), we see that with this choice 

off, 

(2L + I) [A;, A J] + U ;Aj 

= (2L + I)A;A J - (2L - I)A JA; +2(A iAj -A JA;) 

= 2aiaj K + a;aJ(2K + 2L + 3) - a;aj(at'at ) 

- a;aJ(a·a) - 2aj ai(K + 1) - aJa;(2K +2£ + 1) 

+ aja;(at'at ) + aJai(a.a) + 2ilij 

= -2a j ar -2Koij +2a;aJ 

+ oij(2K +2L + I) +2i lij 

= (2£ + l)oij' 

thus confirming the last ofEqs. (4S). 

APPENDIXB 

o 

In order to derive Eq. (S7) from Eq. (SS), it is necessary 

to calculate the effect of A _ E on the vector 

(A !)lml(A Dl~ 'm'IO) . 

We note that 

A~EA! = (AI -iEA2)(AT +iEAi) 

=A'At -A3A! +iE{A,AI -A2AO· 

It follows from Eqs. (4S) and (46) that 

A'At =(2L+3)(L+l) (2L+l)~', 

AlAI -A2 AT = -i(2£+3) (2L+l)~'/J2' 

so that 

A_EA! = (L + 1 + E/ ,2 )(2£ +3) (2£ + 1) ~I -A3A! . 

(Bl) 

We now see that if Iml > 1 (which requires I> 1), 

A _ AA !)lml(A 1>/- 'm'IO) 

=(/+ Iml-l)(2/+1) (2/-1)-1 

X(A !)Iml-I(A Dl~ 'm'IO) _ A3(A D,m,-J 

X(A !Y-Iml +110) . (B2) 

Working from Eq. (S6), we deduce that if r, s, and tare 

nonnegative integers, then 

A3 (A D'(A i}S(A D' 10) 

Now 

= [2(r+s+t)-I]-'{t(t+2r+2s) (An'(A~Y 

X (A !)' - I - r(r - 1) (A T Y - 2(A nS(./q)' + I 

- s(s -1) (A.)'(A 2 )'-2(A 1)'+ 1)10) . (B3) 

(A !)lml(A D/-lmIIO) = L Iml Iml! 
,~O r!(lml- r)! 

X (A D'(iEA D,m
, 
- '(A D /- 'm'IO) , 

(B4) 
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'and so 

Ii&t !)lml(1i 1)1 ~ ImIIO) 

= (2/-1) ~I L Iml Iml! W2 _ m 2)(1i ty 
r~O r!(lml - r)! 

X (id Dlml ~ r(,q), ~ Iml ~ I - r(r - 1) (Ii ry~2 

X (i€1i Dlml ~ r(li D/~ Iml + I + (Iml - r) 

x(lml - r -1) (Ii Dr(i€1i Dim I ~r~2 

X (Ii D/~ Iml + IlIO) 

= I W - m 2)(2/-l) ~ I (Ii !)lml(1i !)'~ Iml ~ I 

_ (2/-1) ~ I L Iml 1m I! (Ii ty~2 
r~2 (r-2)!(lml-r)! 

X (i€1i Dim I ~r(1i ;)'~ Iml +1 

+(2/-1)~1 Llml~2 Imil 

r~O r!(lml- r-2)! 

X (Ii Dr(id Dlml ~r~2(1i D'~ Iml +llIO) 

= (/2 _ m 2) (2/-1) ~ I (Ii J)lml(1i n/~ Iml ~IIO), (B5) 

since the two sums cancel. 

Combining this result with Eq. (B:~" we see that if 

Iml>l, 

Ii ~ ,(Ii Dlml(1i D' ~ ImIIO) 

= [(/+ Iml-l)(2/+I) (2/-I)~1 -(/-Iml +1) 

x(I+ Iml +1) (2/-I)~I](liDlml~l(liD/~lmII0) 

= (I + Iml)(1 + Iml-l) (2/-1) ~I 

x(liDlml~l(lin/~lmIIO). (B6) 

It follows that, if 1m I > 1, 

(01(li3)'~ Iml(1i ~ .)lml(1i Dlml(1i n/~ ImIIO) 

= (I + Iml)(1 + Iml-l) (2/-1) ~I (01(li3)/~ Iml 

X (Ii ~.)Iml ~1(1i Dlml ~1(1i !)'~ ImIIO) 

= [Imif (/-2i + Iml) (/-2i + Iml-l) )] 
i ~ 0 (21 - 2i - 1) 

X (01(,13)' ~ Iml(A D' ~ ImIIO) . (B7) 

We see from Eq. (B3) that 

,13(,1 D/~ ImIIO) = [2(/-lml) -1] ~1(/_lml)2 

X(A D/~ Iml ~ 110) , 

so that 

(01(A3)/~ Iml(1i n/~ ImIIO) 

= [2(1- Iml -1)] ~ 1(/_ Iml)2 

X (01(A3)/~ Iml ~ 1(,1 1)1 ~ Iml ~ 110) 

It is seen from Eq. (BS) that this result is valid also if m = O. 

Combining Eqs. (B9) and (55), we obtain Eq. (57). 0 

The first two of Eqs. (59) are well known in the boson 

calculus, and require no derivation here. Consider 

,11 Ik 1m) = A !cklm (yt)k(A Dlml(A !)' ~ ImIIO) 

Ck1m 
= --Ikl+ 1m) 

Ckl + 1m 

_ ((I + 1 - m)(1 + 1 + m) )112 
- (2/ + 1) I k 1 + 1 m) , 

verifying the third of Eqs. (59). 0 

Next consider, for m*O, 

A! Ik 1m) = A !ck'm(yt)k(A Dlml(A D/~ ImIIO) 

Ck1m 
---Ik 1+ 1 m +€) 
Ckl + lm +, 

= (_ €)' (I + Iml + 2)(1 + Iml + 1))1/2 
(21 + 1) 

X Ik 1+ 1 m + €) . 

From this equation we have 

At Iklm)= _((I+m+2)(/+m+I) )1/2 
+ (21 + 1) 

X Ik 1+1 m + 1) , for m > 0, 

A t~ Ik I m) = + [(1- m +2)(/- m + 1) ]112 
(21 + 1) 

X I k 1 + 1 m - 1 ) , for m < 0 . 

Now consider, also for m#O, 

= A t~ ,Cklm(yt)k (A !)lml(A D' - ImIIO) 

(BlO) 

= (A t~ <A !)ck,m(yt)k(A Dlml ~ 1(,1 ;)'~ ImIIO) 

= - (A !fck,m(yt)k(A Dlml ~I(A n/~ ImIIO) 

[using the last of Eqs. (41)] 

Ck1m 
-~-Ik 1+ 1 m-€) 
Ckl+lm~< 

= __ €«(/-lm l +2)(/-lm l +I))1/2 
() (21 + 1) 

X Ik 1 + 1 m - €) . 

From this equation we have 

At Iklm)= _(/+m+2)(/+m+I) )112 
+ (21 + 1) 

X I k 1 + 1 m + 1) , for m < 0 , 

A t~ Ik 1 m) = ((1- m + 2)(/- m + 1) )112 
(21 + 1) 

X I k 1 + 1 m - 1) , for m > 0 . 

Next consider (with € = ± 1) 

(Bll) 

[ /~i#~I( (/-lml-1Y )] 
= 11 (010) . 

j ~ 0 (21 - 21 m I - 2j - 1) 
(BS) A!lkIO) =A!ck,o(yt)k(AD/IO) 

We now combine Eqs. (B7) and (BS) to obtain (for I m I > 1) 

(01(,13)1 ~ Iml(A ~ ,)lml(A J)lml(A n/~ ImIIO) 

2180 

= 2
/
l!(1 + Iml)!(/- Iml)! 

(2/)! 
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(B9) 

= ~Ik 1+1 €) (B12) 
Ckl + 1< 

= ( _ €),(I + 2)(1 + 1) )1I21k 1 + 1 €) . 
(21 + 1) 

Combining Eqs. (BlO), (BIl) and (BI2), we arrive at the 

fourth set of Eqs. (59). 0 
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From Eq. (B5) we have 

A.31k 1m) = C (/2 - m
2
) (Vhk(A. t)lml(A. t)I-lml-110) 

kim (21 _ 1) J E 3 

= (12 - m
2
) ~ Ik 1- 1 m) 

(2/-1) Ckl-Im 

= ((I - m)(/ + m ») 1121 k I _ 1 m), 
(2/-1) 

as in the fifth of Eqs. (59). 0 

Using Eq. (B6), we see that, for I m I ;;;'1, 

A. _ E Ik 1m) = A. _ ECkim (vtt(A. D'm'(A. DI-,m'IO) 

(/ + Iml)(1 + Iml -1) Cklm 

(2/-1) Ckl-Im-E 

X Ik I-I m - €) 

= (_ €Y( (I + Iml)(1 + Iml -1) )1/2 

(2/-1) 

X Ik 1-1 m - €) . 

From this equation we have 

A. Iklm)= _(/+m)(/+m-l»)1I2 
- (21- 1) 

X I k I - 1 m - 1) , for m > ° , 
A. Ik 1m) = (/- m) (1- m - 1) )112 

+ (2/-1) 

X I k I - 1 m + 1) , for m < ° . 
Now consider the vector 

A.Elklm) =A.ECklm (vtt0!)lml(A.!)I-lmIIO) , 

(B13) 

on which L has the value I -1, and L3 the value fz(m + E). 

Since IfL (L + 1) = (L 1)2 + (L2)2 + (L3)2, the value of L3 

cannot be greater in modulus than that of fzL. Therefore, this 

vector vanishes unless l-l;;;.lm + €I = Iml +1; i.e., unless 

1;;;.1 m I +2. Supposing this inequality is satisfied, we write 

A.< Ik 1m) = cklmA..(A. D2(vt)k(A. ;)lml(A. j)1- lml - 210} 

= - CklmA.<A. t_. (vt)k (A. D'm
' 
+ 1 (A.1Y - Iml -210) 

[using the last of Eqs. (41)] . 

Now using Eq. (B1) (with € replaced by - E), we have 

A.< Ik 1m) = - Cklm {(L + 1 - €112)(2L + 3) 

2181 

X(2L + 1) -1(vt)k(A. D,m, 
+ 1 (A. DI - lml -2 

-A.3(vt)k(A. ;)Iml +1(A.1)l- lml -1 J 10) 

= - Cklm !(l-lml-1)(21 + 1) (2/-1)-1 

- [12 - (Iml + 1)2] (2/-1) -I J 

X (vt)k(A. !)Iml + 1 (A. i)I-lml - 2 10) 

[using Eq. (B5)] 

= 
(1- Iml) (1- Iml -1) Cklm 

(2/-1) ckl-lmH 

Xlk I-I m + €) 
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= _. _€E(/-lmi)(/-lm l -l»)1I2 
() (2/- 1) 

X Ik 1- 1 m + €) . 

From this equation we see that 

(
/- m)(/- m - 1»)112 

A.+ Iklm) = 
(2/-1) 

X Ik 1- 1 m + 1) , for m > ° , 
A. Ik I m) = _ (I + m) (I + m -1) )112 

- (2/-1) 

X I k 1 - 1 m - 1) , for m < ° . 
It is easily seen from Eq. (56) that 

A.± (A3t )110) = 1(/-1) A. t± (A t3)1-210), 
(2/- 1) 

so that 

A.± IkIO) =A.±CkIO(V~k(A.DIIO) 

1(/-1) CklO 
= Ik 1- 1 ± 1) . 

(21 - 1) C kl _ 1 ± 1 

From this equation we see that 

A.± IkIO) = ± (/(/-l»)1I2 Ik 1-1 ± 1), 
(21- 1) 

(BI4) 

(BI5) 

and combining Eqs. (BI3), (BI4), and (BI5) we obtain the 

last of Eqs. (59). 0 
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