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A b s t r a c t  

This paper presents the design and rationale of a distributed file 

system for a network of more than 5000 personal computer 

workstations. While scale has been the dominant design influence, 

careful attention has also been paid to the goals of location 

transparency, user mobility and compatibility with existing operating 

system interfaces. Security is an important design consideration, and 

the mechanisms for it do not assume that the workstations or the 

network are secure. Caching of entire files at workstations is a key 

element in this design. A prototype of this system has been built and 

is in use by a user community of about 400 individuals. A refined 

implementation that will scale more gracefully and provide better 

performance is close to completion. 

1. Introduction 

A campus-wide network of personal computer workstations has 

been proposed as an appropriate solution to the long.term 

computing needs of Carnegie-Mellon University (CMU)[8]. An 

overview paper [14] presents the rationale for this decison, along 

with other background information. Most pertinent to this paper 

is the requirement that there be a mechanism to support sharing 
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of information between workstations. We have adopted a 

distributed file system with a single name space spanning all the 

workstations on campus as the sharing mechanism. 

In this paper we present the ITC distributed file system as a 

solution to a system design problem. Sections 1.1 and 

1.2 characterize the usage environment and discuss the 

considerations which led to our design. Given this context, 

Sectio.,s 2 and 3 describe the solution and the reasons for 

specific design decisions. Section 4 is retrospective in nature 

and discusses certain general principles that emerged during the 

course of the design. Section 5 describes our experience with a 

prototype implementation. To place our design in proper 

perspective, Section 6 compares it with a representative sample 

of other distributed file systems. Finally, Section 7 reviews the 

highlights of the paper. 
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1.1. Usage Environment  

CMU is composed of approximately 6,000 individuals, each of 

whom could eventually own a workstation. In addition there will 

be some workstations at public facilities such as libraries. These 

observations bound the scale of the system to be between 5,000 

and 100000 network nodes. 

It is usually ttle case that individuals confine their computational 

activities to a specific physical area. For example, we expect a 

faculty memloer to typically use the workstation~n his office. 

Students, on the other hand, will tend to use workstations in their 

dormituries. However, it is not acceptable to insist that an 

individual restrict his activities to one work.station. The sharing 

mechanism we provide should not inhibit natural and 

spontaneous movement of users. 

Most computing at CMU is related to education or research and 

typically involves text-processing or programming activities. The 

use of computers for electronic mail mid bulletin boards is also 

common. There is some numerical!y-oriented computation 

related to simulation in departments such as physics, chemistry 

and electrical engineering Finally, computers play a small but 

increasing role in the administration of the university. 

While we expect our system usage to be initially consistent with 

this profile, widespread use of a campus-wide personal computer 

network may change established usage patterns. To meet these 

changes, a certain degree of system evolution witl be inevitable. 

1.2. Design Considerat ions 

The most daunting aspect of this system is its scale. The 

projected final size of 5,000 or more nodes is at least an order of 

magnitude larger than any existing distributed file system. 

Concern for scalability has strongly motivated many key aspects 

of our design. 

The physical compactness of the CMU campus makes it possible 

to use local area network (LAN) technology. A larger or more 

physically fragmented institution might have had to resort to 

lower.bandwidth networking technology. 

The size of the system and its distribution across a campus make 

it impossible to make the entire system physically secure. It is 

reasonable to require that a small number of selected 

components of the system be located in physically secure areas. 

However, cross-campus LAN segments will be exposed, and 

user-owned workstations will be outside our administrative 

control. Further, individual ownership of workstations carries 

with it the risk that owners may choose to modify the hardware 

and software on their workstations in arbitrary ways. Hence 

workstations cannot be called upon to play any trusted role in 

preserving the security of the system. 

We believe it important to be able to support many different kinds 

of workstations, and regard heterogeneity as the rule rather than 

the exception. Therefore, although we have focussed on a 

homogeneous environment for initial implementation and 

deployment experience, our design is extensible to an 

environment with diverse workstation hardware and operating 

systems. 

2. High-level Design 

2.1. The Sharing Mechanism 

Why did we choose a distributed file system as our sharing 

mechanism? 

The design alternatives for sharing in a network fall into three 

broad classes, ordered below according to decreasing degrees of 

transparency, complexity and communication requirement: 

• Distributed operating systems such as the V 
kernel[4] and Accent[10] provide total network 
transparency for a substantial fraction of their 
primitives. In particular, they provide transparent 
access to remote files. 

• Distributed file systems such as the Cedar file system 
[15] and IBIS [17] allow application programs to use 
remote files exactly as if they were stored locally. 
Such network transparency does not, however, 
extend to other resources such as processes and 
virtual memory. 

• Loosely-coupled networks, such as the Arpanet, do 
not offer network transparency at all. Sharing in 
such a system involves explicit user actions to 
transfer data. 

Given our desire to make sharing as effortless as possible, we 

rejected a Ioosely-cotipled network approach. On the other 

hand, we found the constraints on our design in more serious 

conflict with a distributed operating system approach than a 

distributed file system approach. A number of considerations led 

us to this conclusion: 

Complexity Since a file system is only one component of 
an operating system, distributing it is likely to 
be easier than distributing the entire 
operating system. 

Scale A distributed operating system is likely to 
require more frequent interactions between 
its components for resource management. 
The anticipated scale of the system makes 
even the design of a distributed file system a 
formidable task. Its implications for a 
distributed operating system are more severe. 
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Security 

Heterogeneity 

Workstations are not trustworthy. The 
building of a distributed operating system 
from untrustworthy components is a much 
harder problem. 

It seems a more difficult proposition to span a 
spectrum of workstations with a distributed 
operating system than with a distributed file 
system. 

Further encouragement for adopting a distributed file system 

approach comes from the fact that the most common and well- 

understood mode of sharing between users on timesharing 

systems is via the file system. 

2.2. File System Goals 

The observations presented earlier motivate the following goals 

of our system: 

Location Transparency 
There should be a single name space for all 
shared files in the system. Given the size of 
the system, we consider it unacceptable to 
require users to remember details such as the 
current location of a file or the site where it 
was created. Consequently, the naming 
scheme should not incorporate any 
information pertaining to the location of files. 

Further, the resolution of file names to 
network storage sites should be performed by 
the file system. 

User Mobility Users should be able to access any file in the 
shared name space from any workstation. 
The performance characteristics of the 
system should not discourage users from 
accessing their files from workstations other 
than the one at which they usually work. 

Security The file system cannot assume a benevolent 
user environment. To encourage sharing of 
files between users, the protection 
mechanism should allow a wide range of 
policies to be specified. Security should not 
be predicated on the integrity of workstations. 

Performance Acceptable performance is hard to quantify, 
except in very specific circumstances. Our 
goal is to provide a level of file system 
performance that is at least as good as that of 
a lightly.loaded timesharing system at CMU. 
Users should never feel the need to make 
explicit file placement decisions to improve 
performance. 

Sca/abi/ity It is inevitable that the system will grow with 
time. Such growth should not cause serious 
disruption of service, nor significant loss of 
performance to users. 

Availability Single point network or machine failures 
should not affect the entire user community. 
We are willing, however, to accept temporary 
loss of service to small groups of users. 

Integrity The probability of loss of stored data should 
be at least as low as on the current 
timesharing systems at CMU. Users should 
not feel compelled to make backup copies of 
their files because of the unreliability of the 
system. 

Heterogeneity A variety of workstations should be able to 
participate in the sharing of files via the 
distributed file system. It should be relatively 
simple to integrate a new type of workstation. 

A system that successfully meets these goals would resemble a 

giant timesharing file system spanning the entire CMU campus. 

Noticeably absent from the above list of goals is the ability to 

support large databases. As mentioned in Section 1.1, there is 

currently little use of such databases at CMU. The design 

described in this paper is suitable for files up to a few megabytes 

in size, given existing LAN transfer rates and workstation disk 

capacities. Experimental evidence indicates that over 99% of the 

files in use on a typical CMU timesharing system fall within this 

class[12]. In the future, we do expect large campus-wide 

databases to become increasingly important. A separate 

distributed database design will have to address this issue. 

2.3. Vice and Virtue 

Figure 2-1 presents a high-level view of the entire system. The 

large amoeba.like structure in the middle, called Vice 1, is a 

collection of communication and computational resources. A 

Virtue is an individual workstation attached to Vice. Software in 

Virtue makes the shared files in Vice appear as a integral part of 

the workstation file system. 

There is a well.defined file system interface between Vice and 

Virtue. This interface is relatively static and enhancements to it 

occur in an upward-compatible manner as the system evolves. A 

stable interface is the key to supporting heterogeneity. To 

integrate a new type of workstation into the distributed file 

system, one need only implement software that maps the file 

system interface of that workstation to the Vice interface. 

Vice is the boundary of trustworthiness. All computing and 

communication elements within Vice are assumed to be secure. 

This guarantee is achieved through physical and administrative 

control of computers and the use of encryption on the network. 

No user programs are executed on any Vice machine. Vice is 

therefore an internally secure environment unless Trojan horses 

are introduced by trusted system programmers. 

lit is rumored that Vice stands for "Vast Integrated Computing Environment'* 
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I VIRTUE I 

i v,o;o  I iv,° o  I 
Each Virtue is an individual workstation. Vice has fine structure that is sho~,'n in detail 
in Figure 2-2. This diagram is certainly not to scale, since Vice will encompas.~ an entire 
campust 

Figure 2-1: Vice and Virtue 

Virtue, however, is under the control of individual users and is 

never trusted by Vice. After mutual authentication Vice and 

Virtue communicate only via encrypted messages. It is 

encr'yption that maintains security in spite of the fact the network 

is not physically secure. 

Viewed at a finer granularity than Figure 2-1, Vice is composed of 

a collection of semi-autonomous Clusters connected together by 

a backbone LAN. Figure 2-2 illustrates such an interconnection 

scheme. Each cluster consists of a collection of Virtue 

workstations and a representative of Vice called a Cluster Server. 

Cluster 
Server 

Cluster 0 

Backbone Ethernet 

I Cluster 
Server 

Cluster I 

F¾ 
Cluster 
Server 

n 

Cluster2 

Each WS is a Virtue workstation. We expect a cluster to contain between 50 and 100 
workstations. The final system that spans the CMU campus will have a total of about 
100 clusters 

Figure 2-2: Vice Topology 
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Each of the workstations in Figure 2-2 logically posseses a local 

disk. Whether this logical disk is physically associated with the 

workstation or is provided by a disk server is an issue that is 

orthogonal to the design presented here. Using a disk server may 

be cheaper, but will entail performance degradation. Scaling to 

5000 workstations is more difficult when these workstations are 

paging over the network in addition to accessing files remotely. 

Further, security is compromised unless all traffic between the 

disk server and its clients is encrypted. We are not confident that 

paging traffic can be encrypted without excessive performance 

degradation. Finally, nontechnical considerations such as the 

need to allow students to take their workstations away from CMU 

during vacations and upon graduation have further motivated our 

requirement that workstations possess physical disks. 

The Bridges which connect individual clusters to the backbone in 

Figure 2-2 serve as routers. It should be emphasised that the 

detailed topology of the network is invisible to workstations. All of 

Vice is logically one network, with the bridges providing a uniform 

network address space for all nodes. 

Vice is decomposed into clusters primarily to addresses the 

problem of scale. For optimal performance, Virtue should use the 

server on its own cluster almost all the time, thereby making 

cross-cluster file references relatively infrequent. Such an 

access pattern balances server load and minimizes delays 

through the bridges. This problem of localizing file references is 

reminiscent of the problem of localizing virtual memory 

references in hierarchically structured multiprocessors such as 

Cm" [6]. 

Physical security considerations may dictate that cluster servers 

be co-located in small groups in machine rooms, even  though 

each cluster server is logically associated with the work= 'ations in 

its cluster. 

3.  De ta i l ed  Design 

In designing a distributed file system one has to answer a number 

of fundamental questions. Chief among these are: 

• How are files named? Is the location of a file in the 
network apparent from its name? If not, how are files 
located in the system? 

• Can multiple copies of a file be stored at different 
sites? How are these copies updated and kept 
consistent? 

e What are the primitives available to application 
programs to operate on remote files? Are they 
identical to the primitives provided for local files? 

• How do network nodes access files? What are the 
inter-machine primitives available? 

• How is security enforced in the system? Can the 
nodes on the network trust each other? Can the 
network be assumed immune from eavesdropping? 

• What is a feasible implementation strategy for the 
design? 

This list is by no means exhaustive, but it does characterize a 

core of design issues that any distributed file system design must 

address either explicitly or by default. No single set of answers to 

these questions can be considered optimal for all situations. The 

choice depends on the goals of the design and the external 

constraints placed upon it. 

In Sections 3.1 to 3.5 we describe our design by examing the 

choices that we have made in answering the questions listed 

above. This organization is exactly mirrored in Section 6, where 

we compare our system to other distributed file systems. 

3.1. Naming and Locat ion  

From the point of view of each workstation, the space of file 

names is p~rtitioned into a Local name space and a Shared name 

space. Figure 3-1 illustrates this partitioning. The shared name 

space is the same for all workstations, and contains the majority 

of files accessed by users. The local name space is small, distinct 

for each workstation, and contains files which typically belong to 

one of the following classes: 

1. System files essential for initializing the workstation 
and for its functioning prior to connection to Vice. 

2. Temporary files, such as those containing 
intermediate output from compiler phases. Placing 
such files in the shared name space serves no useful 
purpose. 

3. Data files that the owner of the workstation considers 
so sensitive that he is unwilling to entrust them to the 
security mechanisms of Vice. In practice we expect 
few such files. Since these files cannot be accessed 
from any other workstation they hinder user mobility. 

4. A small number of frequently used, but rarely 
updated, system programs. Such programs may be 
stored locally to improve performance and to allow at 
least a modicum of usability when Vice is unavailable. 

Shared files are stored in Vice in a hierarchically structured name 

space, similar to Unix [11]. It is the responsibility of Virtue to map 

this hierachical structure to a format consistent with the local 

name space. To simplify exposition, we assume throughout this 

section that Virtue is a Unix workstation. 

In Unix terminology, the local name space is the Root File System 

of a workstation and the shared name space is mounted on a 
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LO AL 

This is a Venn diagram del ,cting local and shared name spaces. Local 1, Local 2, and 
Local  3 correspond to files in the local file systems of three different workstations. 
Shared corresponds to the shared set of files in the system, and is identical for all the 
workstations. 

Figu re 3-1 : Shared and Local Name Spaces 

/ 

tmp bin lib .... vmunix ~ 
Local Files vice 

Shared Files 

The files in the " / v i ce "  subtree are common to all the workstations in the system. 
Certain directories and files in the local name space, such as " / b i n "  and " / l i b " ,  are 
symbolic links into " /v ice" .  All other local files are inaccessible to other workstations. 

Figure 3-2: 

known leaf directory during workstation initialization. Figure 

3-2 depicts this situation, with " / v i ce"  being the directory on 

which Vice is mounted. File names generated on the workstation 

with " /v ice"  as the leading prefix correspond to files in the 

shared space. All other names refer to files in the local space. 

The presence of different types of workstations introduces an 

additional complication in the naming scheme. Consider, for 

example, an environment consisting of Sun and Va. ~ 

workstations, both running Unix. Regardless of the hardware it i~ 

run on, Unix expects to find system binaries in a directory whose 

pathname is " /b in" .  If these system binaries are stored in the 

shared name space, there has to be a mechanism to differentially 

redirect file accesses from different types of workstations. We 

use Symbolic Links in Virtue for this purpose. On a Sun 

A Unix Workstation's View of the File System 

workstation, the local directory " / b i n "  is a symbolic link to the 

remote directory " / v i ce /un ix /sun /b in " ;  on a Vax, " / b i n "  is a 

symbolic link to " / v i ce /un i x / vax /b in " .  The extra level of 

indirection provided by symbolic links is thus of great value in 

supporting a heterogeneous environment. 

Since location transparency is one of our goals, Virtue cannot 

deduce the server on which a shared file is stored by merely 

examining the name of the file. It is Vice that provides the 

necessary file location mechanism. Each cluster server contains 

a complete copy of a location database that maps files to 

Custodians. The custodian of a file is the cluster server that has 

complete responsibility for storage of the file and the servicing of 

requests for it. A workstation has to find the custodian for a file 
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before operating on it. If a server receives a request for a file for 

which it is not the custodian, it will respond with the identity of the 

appropriate custodian. The size of the replicated location 

database is relatively small because custodianship is on a subtree 

basis. If all files in a subtree have the same custodian, the 

location database has only an entry for the root of the subtree. 

File subtrees of individual users are assigned to custodians in a 

manner that balances server load and minimizes cross-cluster 

references. A faculty member's files, for instance, would be 

assigned to the custodian which is in the same cluster as the 

workstation in his office. This assignment does not affect the 

mobility of that individual, because he can still access his files 

from any other part of the campus, albeit with some performance 

penalty. 

An important pro 9rty of the location database is that it changes 

relatively slowly. There are two reasons for this. First, most file 

creations and deletions occur at depths of the naming tree far 

below that at which the assignment of custodians is done. Hence 

normal user activity does not alter the location database. 

Second, the reassignment of subtrees to custodians is infrequent 

and typically involves human interaction. For example, if a 

student moves from one dormitory to another he may request that 

his files in Vice be moved to the cluster server at his new location. 

Alternatively, we may install mechanisms in Vice to monitor long- 

term access file patterns and recommend changes to improve 

performance. Even then, a human operator will initiate the actual 

reassignment of custodians. 

Changing the location database is relatively expensive because it 

involves updating all the cluster servers in the system. The files 

whose custodians are being modified are unavailable during the 

change. As explained in the previous paragraph, our design is 

predicated on the assumption that such changes do not occur 

frequently. This assumption does not compromise our goal of 

allowing user mobility with reasonable performance because a 

different mechanism, described in the next section, addresses 

this issue. 

3.2. Rep l i ca l ion  

Caching is the main form of replication in our design. Virtue 

caches entire files along with their status and custodianship 

information. Caching and whole-file transfer are key mechanisms 

in meeting the design objectives of performance, mobility and 

scalability. 

Part of the disk on each workstation is used to store local files, 

while the rest is used as a cache of files in Vice. When an 

application program on a workstation opens a file in the shared 

name space, Virtue locates the appropriate custodian, fetches 

the file, and stores it in the cache. This fetch is avoided if the file 

is already present in the cache. After the file is opened, individual 

read and write operations are directed to the cached copy. Virtue 

does not communicate with Vice in performing these operations. 

When the file is closed, the cache copy is transmitted to the 

appropriate custodian. Note that all interactions with Vice are 

transparent to application programs. Other than performance, 

there is no difference between accessing a local file and a file in 

the shared name space. 

Cache validation involves communication between the custodian 

of a file and the workstations which have that file cached. This 

may either be initiated by Virtue before each use of the cached 

copy, or by Vice whenever the file is modified. The choice trades 

longer file open latencies and increased server loads in the 

former case, for larger server state and slower updates to files in 

the latter case. Since files~ tend to be read much more frequently 

than written, better performance is likely with the latter. Our 

current design uses check-on-open to simplify implementation 

and #educe server state. However, experience with a prototype 

has convinced us that the cost of frequent cache validation is 

high enough to warrant the additional complexity of an invalidate- 

on-modification approach in our next implementation. 

Changes to a cached file may be transmitted on close to the 

corresponding custodian or deferred until a later time. In our 

design, Virtue stores a file back when it is closed. We have 

adopted this approach in order to simplify recovery from 

workstation crashes. It also results in a better approximation to a 

timesharing file system, where changes by one user are 

immediately visible to all other users. 

The caching mechanism allows complete mobility of users. If a 

user places all his files in the shared name space, he can move to 

any other workstation attached to Vice and use it exactly as he 

would use his own workstation. The only observable differences 

are an initial performance penalty as the cache on the new 

workstation is filled with the user's working set of files and a 

smaller performance penalty as inter-cluster cache validity 

checks and cache write-throughs are made. 

The caching of entire files, rather than individual pages, is 

fundamental to our design. It has a strong positive influence on 

performance for a number of reasons. First, custodians are 

contacted only on file opens and closes, and not on individual 

reads and writes. Second, the total network protocol overhead in 

transmitting a file is lower when it is sent e n  m a s s e  rather than in 
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a series of responses to requests for individual pages. Finally, 

disk access routines on the servers may be better optimized if it is 

known that requests are always for entire files rather than for 

random disk blocks. 

The use of whole-file transfer may also simplify the support of 

heterogeneous workstations. It is likely to be easier for Virtue to 

transform a file from the form in which it is stored in Vice to a form 

compatible with the native file system of the workstation when the 

entire file is available in the cache. For instance, a directory 

stored as a Vice file is easier to interpret when the whole file is 

available. 

In addition to caching, Vice also supports read-only replication of 

subtrees at different cluster servers. Files which are frequently 

read, but rarely modified, may be replicated in this way to 

enhance availability and to improve performance by balancing 

server loads. The binaries of system programs are a typical 

example of this class of files. 

In our prototype, described in Section 5, the updating of a read- 

only subtree is performed asynchronously by its custodian. Our 

revised implementation will make read-only subtrees truly 

immutable. The creation of a read-only subtree is an atomic 

operation, thus providing a convenient mechanism to support the 

orderly release of new system software. Multiple coexisting 

versions of a subsystem are represented by their respective read. 

only subtrees. Caching of files from read-only subtrees is 

simplified since the cached co~ies can never be invalid. 

3.3. Functionality of In ter faces 

There are two distinct programming interfaces in this design: the 

Vice-Virtue interface, which is primarily of concern to 

implementors wishing to attach new types of workstations to Vice, 

and the Virtue file system interface, which is visible to application 

programs. 

Vice provides primitives for locating the custodians of files, and 

for fetching, storing, and deleting entire files. It also has 

primitives for manipulating directories, examining and setting file 

and directory attributes, and validating cached copies of files. 

The interface provided by Virtue is workstation-specific. In the 

prototype discussed in Section 5, the primitives supported are the 

standard Unix file system primitives, supporting directory 

manipulation and byte-at-a-time access to files. 

In an ideal implementation, Virtue will provide identical interfaces 

for shared and local files. The degree to which this ideal is met is 

one measure of quality of workstation attachment software. We 

are highly encouraged by our experience in attaching Unix 

workstations to Vice. Though we have no experience as yet in 

attaching other kinds of workstations, we do not forsee any 

fundamental problems on account of our design. 

Besides the need to bridge the semantic gap between the file 

system interfaces of Vice and Virtue, there is also an assumption 

in our design that workstations possess adequate resources to 

effectively use Vice. For example, workstations need to have 

disks (real or virtual) large enough to cache a typical working set 

of files. They also need a high-performance hardware interface 

to the campus-wide LAN. It would be desirable to allow 

workstations that fail to meet these minimal resource 

requirements to access Vice, perhaps at lower performance or 

convenience. 

An approach we are exploring is to provide a Surrogate Server 

running on a Virtue workstation. This surrogate would behave as 

a single-site network file server for the Virtue file system. Clients 

of this server would then be transparently accessing Vice files on 

account of a Virtue workstation's transparent Vice attachment. 

The software interface to this server would be tailored to meet the 

specific needs of the low-function workstations in question and it 

could run on a machine with hardware interfaces to both the 

campus-wide LAN and a network to which the low-function 

workstations could be cheaply attached. Work is currently in 

progress to build such a surrogate server for IBM PCs. We 

believe that this approach is also applicable to machines such as 

the Apple Macintosh. 

3.4. Security 

Voydock and Kent [18] classify breaches of security in a network 

as the unauthorized release of information, modification ot 

information, or denial of resource usage. In this design we only 

address release and modification of information. Resource 

denial is trivial when a user can modify the hardware and 

software of a workstation. For example, a workstation on an 

Ethernet can be made to generate collisions whenever a packet is 

transmitted by any other workstation. This would effectively deny 

network services to all other workstations. We believe that peer 

pressure and social mores are the only effective practical 

weapons to deal with such situations in our environment. 

Fortunately, most cases of resource denial are relatively easy to 

detect. 

In this section we describe how our design provides 

authentication, access control and secure network transmission. 

These components jointly provide the mechanism needed to 
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prevent the unauthorized release or modification of files stored in 

Vice. 

Vice uses encryption extensively as a fundamental building block 

in its higher level network security mechanisms. To build a truly 

secure distributed environment, we are convinced that encryption 

should be available as a cheap primitive at every network site. 

Fortunately, VLSI technology has made encryption chips 

available at relatively low cost. 

The authentication and secure transmission functions are 

provided as part of a connection-based communication package, 

based on the remote procedure call paradigm. At connection 

establishment time, Vice and Virtue are viewed as mutually 

suspicious parties sharing a common encryption key. This key is 

used in an authentication handshake, at the end of which each 

party is assured of the identity of the other. The final phase of the 

handshake generates a session key which is used for encrypting 

all further communication on the connection. The use of per- 

session encryption keys reduces the risk of exposure of 

authentication keys. 

When a user initiates activity at a workstation, Virtue 

authenticates itself to Vice on behalf of that user. Since the key 

used for this is user-specific it has to be obtained from the user. 

One way to do this is by transformation of a password. Note that 

the password itself is not transmitted, but is only used to derive 

the encryption key. Alternative approaches, such as equipping 

each workstation with a peripheral to read encryption keys from 

magnetically encoded cards carried by users, are also possible. 

In addition to authentication, a mechanism to control access is 

needed within Vice. Sharing in a large user community implies 

that such a mechanism must allow the specification of a wide 

range of protection policies and must provide for easy revocation. 

Our design uses access lists for this purpose. 

Entries on an access list are from a protection domain consisting 

of Users, who are typically human beings, and Groups, which are 

collections of users and other groups. The recursive membership 

of groups is similar to that of the registration database in 

Grapevine [1]. It simplifies administr~'ion and leads to shorter 

access lists at the cost of complicating the implementation of 

group manipulation primitives. 

Information about users and groups is stored in a protection 

database which is replicated at each cluster server. Manipulation 

of this database is via a protection server, which coordinates the 

updating of the database at all sites. 

The rights possesed by a user on a protected object are the union 

of the rights specified for all the groups that he belongs to, either 

directly or indirectly. This subset of groups is referred to as the 

Current Protection Subdomain (CPS) of the user. A user may be 

given access to an object either by making him a member of a 

group that already has appropriate access rights on that object, 

or by explicitly adding that user to the access list. 

Access is revoked by removing a user from all groups which have 

access to the object in question. Because of the distributed 

nature of the system and the recursive membership of groups, 

this operation may be unacceptably slow in emergencies. We 

therefore support the concept of Negative Rights in access lists. 

The union of all the negative rights specified for a user's CPS is 

subtracted from his positive rights. To revoke a user's access to 

an object, he can be given negative rights on that object. 

Negative rights are intended as a rapid revocation mechanism for 

limiting the damage caused by a user who has been discovered 

to be untrustworthy, 

In our prototype the protected entities are directories, and all files 

within a directory have the same protection status. Per-directory 

protection reduces the storage overheads of access lists and also 

reduces the amount of protection state that users have to keep 

track of mentally. The rights associated with a directory control 

the fetching and storing of files, the creation and deletion of new 

directory entries, and modifications to the access list. For 

reasons discussed in Section 5, we will incorporate a hybrid 

scheme with access lists on directories and additional per-file 

protection bits in our reimplementation of the file system. 

3.5. Implementation Strategy 

Since this paper focuses on high-level issues, we only briefly 

touch upon how this design is implemented. The description in 

this section is organized around three basic questions pertaining 

to implementation: 

1. How does Virtue transparently interpose cached 
copies of files to application programs? 

2. What is the structure of a server? 

3. How do servers and clients communicate? 

As we will be making some changes on the basis of experience 

with a prototype, we indicate both our original approach and the 

modifications. 

3.5.1. File Intercept and Cache Management 

Virtue is implemented in two parts: a set of modifications to the 

wotkstation operating system to intercept file requests, and a 

user-level process, called Venus. Venus handles management of 

the cache, communication with Vice and the emulation of native 
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file system primitives for Vice files. The modifications to the 

operating system are minimal since Venus provides much of the 

needed functionality. 

It is possible to implement the interception of file system calls by 

recompiling or relinking application programs with a special 

library of input-output subroutines. Such a mechanism avoids 

modifications to the workstation operating system. We have not 

adopted this approach because of our desire to support 

proprietary software for which only the executable binaries may 

be available. Further, new releases of the file system software do 

not require us to retink any user or system software. This saves 

us from a potential administrative nightmare in a 5000 node 

network. 

In our prototype, Venus uses a simple LRU cache management 

algorithm with a directory in a workstation's local Unix file system 

as cache storage. Since files are cached in their entirety, the 

amount of state needed to represent the cache contents is 

significantly smaller than in a typical virtual memory cache or in a 

file cache where pages of files are individually cached. Venus 

limits the total number of files in the cache rather than the total 

size of the cache, because the latter information is difficult to 

obtain from Unix. In view of our negative experience with this 

approach, we will incorporate a space-limited cache 

management algorithm in our reimplementation. 

3.5.2.  Server Structure 

Our prototype implements a cluster server with a collection of 

Unix processes. On each server there is one Unix process to deal 

with each user on each client workstation communicating with 

that server. Due to the limitations imposed by Unix, these per- 

client processes cannot share data structures in virtual memory. 

File server functions which require such sharing are implemented 

using a single dedicated Unix process for each such function. 

For example, there is a single lock server process which 

serializes requests and maintains lock tables in its virtual memory. 

Experience with the prototype indicates that significant 

performance degradation is caused by context switching 

between the per-client Unix processes. In addition, the inability 

to share data structures between these processes precludes 

many strategies to improve performance. Our reimplementation 

will represent a server as a single Unix process incorporating a 

lightweight process mechanism to provide independent per-client 

threads of control. Global data in that Unix process will be used 

to represent data structures shared by the lightweight processes. 

The prototype file server uses the underlying Unix file system for 

storage of Vice files. Each Vice file is physically represented as 

two Unix files: one containing uninterpreted data and the other, 

the .admin file, containing Vice status information. The location 

database in our prototype is not explicit lout is r(-)resented by 

stub directories in the Vice file storage structure. 

The reimplementation will use a separate data structure for the 

location database. We will still use the Unix file system to store 

Vice files, but will modify Unix on the servers to allow us to access 

files via their low-level identifiers rather than their full Unix 

pathnames. Our observations of the prototype indicate that this 

modification is likely to yield significant performance 

improvement. 

The prototype does not have a protection server, but relies on 

manual updates to the protection database by the operations 

staff. The reimplementation will incorporate a protection server. 

3.5 .3 .  Client-Server Communication 

Virtue and Vice communicate by a remote procedure call 

mechanism (RPC) [2]. The prototype RPC implementation uses a 

reliable byte-stream protocol supported by Unix. Whole-file 

transfer is implemented as a side effect of a remote proced0re 

call. 

To overcome Unix resource limitations and thus allow large 

client/server ratios, the revised RPC implementation uses an an 

unreliable datagram protocol supported by Unix. This 

implementation closely integrates RPC with the lightweight 

process mechanism mentioned in Section 3.5.2. This allows a 

Unix processs to concurrently perform and service multiple 

remote procedure calls, while still maintaining the synchronous 

semantics of RPC with respect to individual lightweight threads of 

control within that Unix process. Generalized side.effects are 

supported, whole-file transfer being a particular kind of side- 

effect. 

Mutual client/server authentication and end-to-end encryption 

facilities are integrated into the RPC package. These functions 

are an integral part of the overall security of Vice and Virtue. 

3.6. Other Design Issues 

Vice provides primitives for single.writer/multi-reader locking. 

Such locking is advisory in nature, and it is the responsibility of 

each application program to ensure that all competing accessors 

for a file will also perform locking. This decision is motivated by 

our positive experience with Unix, which does not require files to 

be locked before use. Action consistency for fetch and store 

operations on a file is guaranteed by Vice even in the absence of 
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locks. A workstation which fetches a file at the same time that 

another workstation is storing it, will either receive the old version 

or the new one, but never a partially modified version. 

An unfortunate side.effect of trying to emulate the timesharing 

paradigm is the need to provide mechanisms to restrict and 

account for the usage of shared resources. The resource we are 

most concerned with is disk storage on the cluster servers. We 

intend to provide both a quota enforcement mechanism and a file 

migration facility in our reimplementation; these facilities are not 

available in our prototype. As use of this system matures, it may 

become necessary to account for other resources, such as server 

CPU cycles or network bandwidth. Until the need for such 

accounting is convincingly demonstrated, however, we intend to 

treat these as free resouces. 

Another area, whose importance we recognize, but which we 

have not had the opportunity to examine in detail yet is the 

development of monitoring tools. These tools will be required to 

ease  day-to.day operations of the system and also to recognize 

long-term changes in user access patterns and help reassign 

users to cluster servers so as to balance server loads and reduce 

cross-cluster traffic. 

4. Design Principles 

A few simple principles underlie the design presented in this 

paper. It should be emphasised these are being presented a 

posteriori, and that the design did not proceed by stepwise 

refinement of these principles. Rather, the principles evolved 

during the course of the design. In the rest of this section we 

discuss each of these principles and point out instances of their 

application in our design. 

• Workstations have the cycles to burn. 

Whenever there is a choice between performing an 
operation on a workstation and performing it on a 
central resource, it is preferable to pick the former. 
This will enhance the scalability of the design, since it 
lessens the need to increase central resources as 
workstations are added. 

Vice requires that each workstation contact the 
appropriate custodian for a file before operating on it. 
There is no forwarding of client requests from one 
cluster server to another. This design decision is 
motivated by the observation that it is preferable to 
place the burden of locating and communicating with 
custodians on workstations rather than servers. 

We will further exploit this principle in the second 
implementation of the system. Currently, 
workstations present servers with entire pathnames 
of files and the servers do the traversing of 
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pathnames prior to retrieving the files. Our revised 
implementation will require workstations to do the 
pathname traversal themselves. 

• Localize if possible 

If feasible, use a nearby resource rather than a 
distant one. This has the obvious advantage of 
improved performance and the additional benefit that 
each part of the distributed system is less susceptible 
to events such as overloading in other parts. 
Potentially in conflict with this principle is the goal of 
user mobility, which requires data to be easily 
Iocatable. A successful design has to balance these 
two considerations. 

The decomposition of Vice into clusters is an 
instance where we have tried to localize resource 
usage. Another example is the replication of read- 
only subtrees, thereby enabling system programs to 
be fetched from the nearest cluster server rather than 
its custodian. Caching obviously exploits locality, but 
we discuss it separately because it is so fundamental 
to our design. 

One may view the decision to transfer entire files 
rather than individual pages as a further application 
of this principle. Read and write operations are much 
more frequent than opens and closes. Contacting 
Vice only on opens and closes reduces our usage of 
remote resources. 

• Exploit class-specific file properties. 

It has been shown [13] that files in a typical file 
system can be grouped into a small number of easily- 
identifiable classes, based on their access and 
modification patterns. For example, files containing 
the binaries of system programs are frequently read 
but rarely written. On the other hand temporary files 
containing intermediate output of compiler phases 
are typically read at most once after they are written. 
These class-specific properties provide an 
opportunity for independent optimization, and hence 
improved performance, in a distributed file system 
design. 

The fact that system binaries are treated as 
repticatable, read-only files is a case where this 
priniciple is being used. We may further exploit this 

principle by allowing a subset of the system binaries 
to be placed in the local file systems of individual 
workstations. Since such files change infrequently, 
explicit installation of new versions of these files by 
users is acceptable. The storage of temporary files in 
the local, rather than shared, name space of a 
workstation is another instance of a file-specific 
design decision. 

• Cache whenever possible. 

Both the scale of the system and the need for user 
mobility motivate this principle. Caching reduces 
contention on centralized resources. In addition, it 
transparently makes data available wherever it is 
being currently used. 



Virtue caches files and status information about 
them. It also caches information about the 
custodianship of files. Though not discussed in this 
paper, our reimplementation will use caching 
exten.~ively in the servers. 

• Avoid frequent, system-wide rapid change. 

The more distributed a system is, the more difficult it 
is to update distributed or replicated data structures 
in a consistent manner. Both performance and 
availability are compromised if such changes are 
frequent. Conversely, the scalability of a design is 
enhanced if it rarely requires global data to be 
consistently updated. 

As discussed earlier, the replicated custodian 
database in Vice changes slowly. Caching by Virtue, 
rather than custodianship changes in Vice, is used to 
deal with rapid movement of users. 

Another instance of the application of this principle is 
the use of negative rights. Vice provides rapid 
revocation by modifications to an access list at a 
single site rather than by changes to a replicated 
protection database. 

5. The Prototype 

Our intent in implementing a prototype was to validate the design 

presented in this paper. The implementation was done by 4 

individuals over a period of about one year. In this section we 

describe the current status of the system, its performance, and 

the changes we are making in the light of our experience. 

5 , 1 .  Status 

The prototype has been in use for about a year, and has grown to 

a size of about 120 workstations and, 6 servers. More than 400 

individuals have access to this system at the present time. The 

prototype meets the goals of location transparency and user 

mobility unequivocally. Our initial' apprehensions about relying 

solely on caching and whole-file transfer have proved baseless. 

Application code compatibility has been met to a very high 

degree, and almost every Unix application program is able to use 

files in Vice. None of these programs has to be recompiled or 

relinked to work in our system. 

The mechanisms for authentication and secure transmission are  

in place, but await full integration. We are awaiting the 

incorporation of the necessary encryption hardware in our 

workstations and servers, since software encryption is too slow to 

be viable. 

The access list mechanism has proved to be a flexible and 

convenient way to specify protection policies. Users seem quite 

comfortable with per-directory access list protection. However, 

we have encountered certain difficulties in mapping the per-file 

protection supported by Unix to the per-directory protection 

semantics of Vice. A few programs use the per.file Unix 

protection bits to encode application-specific information and a r e  

hence unable to function correctly with files in Vice. T h e  

reimplementation will have per-file protection bits in addition to 

access lists on directories. 

The prototype fails to emulate Unix precisely in a few other areas 

too. Two shortcomings that users find particularly irksome are 

the inability to rename directories in Vice, and the fact that Vice 

does not support symbolic links 2. These limitations are subtle 

consequences of the implementation strategy we chose in the 

prototype, and will be rectified in our revised implementation. 

5.2. Per formance 

For a rapid prototyping effort, performance has been surprisingly 

good. The prototype is usable enough to be the system on which 

all further development work is being done within our user 

community. 

Measurements indicate an average cache hit ratio of over 80% 

during actual use. Server CPU utilization tends to be quite high: 

nearly 40% on the most heavily loaded servers in our 

environment. Disk utilization is lower, averaging about 14% on 

the most heavily loaded servers. These figures are averages over 

an 8-hour period in the middle of a weekday. The short-term 

resource utilizations are much higher, sometimes peaking at 98% 

server CPU utilization! It is quite clear from our measurements 

that the server CPU is the performance bottleneck in our 

prototype. 

A histogram of calls received by servers in actual use shows that 

cache validity checking calls are preponderant, accounting for 

65% of the total. Calls to obtain file status contribute about 27%, 

while calls to fetch and store files account for 4% and 2% 

respectively. These four calls thus encompass more than 98% of 

the calls handled by servers. Based on these observations we 

have concluded that major performance improvement is possible 

if cache validity checks are minimized. This has led to the 

alternate cache invalidation scheme mentioned in Section 3.2. 

To assess the performance penalty caused by remote access, we 

ran a series of controlled experiments with a benchmark. This 

benchmark operates on about 70 files corresponding to the 

source code of an actual Unix application. There are five distinct 

2Note that symbolic links from the local name space into Vice are supported. 
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phases in the benchmark: making a target subtree that is identical 

in structure to the source subtree, copying the files from the 

source to the target, examining the status of every file in the 

target, scanning every byte of every file in the target, and finally 

compiling and linking the files in the target. On a Sun workstation 

with a local disk, the benchmark takes about 1000 seconds to 

complete when all files are obtained locally. Our experiments 

show that the same benchmark :take about 80% longer when the 

workstation is obtaining all its files from an unloaded Vice server. 

In actual use, we operate our system with about 20 workstations 

per server. At this client/server ratio, our users perceive the 

overall performance of the workstations to be equal to or better 

than that of the large timesharing systems on campus. However, 

there have been a few occasions when intense file system activity 

by a few users has drastically lowered performance for all other 

active users. 

5.3. C h a n g e s  

Based on our experience, a redesign and reimplementation effort 

is currently under way. While retaining the design at the level of 

abstraction presented in this paper, we will introduce many lower- 

level changes to enhance performance and scalability, and to 

allow a more accurate mapping of Unix file system semantics on 

Vice. 

Some of these changes have been mentioned in Sections 3.5 and 

3.2. These include: 

• a modified cache validation scheme, in which servers 
notify workstations when their caches become 
invalid. 

• a single-process server structure, with a low.level 
interface to Unix files. 

• a revised RPC implementation, integrated with a 
lightweight process mechanism. 

e a space-limited cache management algorithm in 
Venus. 

Another noteworthy change is the use of fixed-length unique file 

identifiers for Vice files. In the prototype, Venus presents entire 

pathnames to Vice. In our revised implementation, Venus will 

translate a Vice pathname into a file identifier by caching the 

intermediate directories from Vice and traversing them. The 

offloading of pathname traversal from servers to clients will 

reduce the utilization of the server CPU and hence improve the 

scalability of our design. In addition, file identifiers will remain 

invariant across renames, thereby allowing us to support 

renaming of arbitrary subtrees in Vice. 

In order to simplify day-to-day operation of the system, we will 

introduce the concept of a Volume in Vice. A volume is a 

complete subtree of files whose root may be arbitrarily relocated 

in the Vice name space. It is thus similar to a mountable disk 

pack in a conventional file system. Each volume may be turned 

offline or online, moved between servers and salvaged after a 

system crash. A volume may also be C/oned, thereby creating a 

frozen, read-only replica of that volume. We will use copy-on- 

write semantics to make cloning a relatively inexpensive 

operation. Note that volumes will not be visible to Virtue 

application programs; they will only be visible at the Vice-Virtue 

interface. 

Finally, the revised implementation will allow closer emulation of 

Unix by providing features such as symbolic links, directory 

rename and per-file protection. 

6. Relationship to Other Systems 

A number of different network file system designs have been 

proposed and implemented over the last few years. We consider 

a representative sample of such systems here and contrast their 

design with ours. Due to constraints of space we provide only 

enough detail to =hake the differences and similarities apparent. 

The survey by Svobodova [16] provides a more comprehensive 

and detailed comparative discussion of network file systems. 

The systems we compare are: 

• Locus[g, 19], designed and implemented at the 
University of California at Los Angeles. 

• The Newcastle Connection [3], from the University of 
Newcastle-upon-Tyne. 

• The ROE file system [5], currently being implemented 
at the University of Rochester. 

• IBIS [17], which has been partially implemented at 
Purdue University. 

• The Apollo system [7], which is a commercial system 
marketed by Apollo Computers, Inc. 

eThe Cedar File System[15], implemented at the 
Xerox Pal• Alto Reseach Center. 

We compare Vice-Virtue to these systems by presenting their 

approach to each of the fundamental design issues mentioned in 

Section 3. Such a comparison brings into focus the position that 

Vice-Virtue occupies in the distributed file system design space. 

We do realize, however, that a comparison along specific 

attributes may omit other interesting features of the systems 

being compared. 
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6.1. Naming and Location 

All the systems in question support a hierarchical name space, 

both for local and remote files. In many cases the naming 

structure is identical to Unix. Roe and the Cedar File System 

provide, in addition, a version number component to names. 

Vice-Virtue and Roe provide a Unix-like name structure at the 

client-server interface and leave open the naming structure on 

the workstations. 

Location transparency is a key issue in this context. In Locus, 

Vice-Virtue, Apollo and Roe it is not possible to deduce the 

location of a file by examing its name. In contrast, the Cedar File 

System and the Newcastle Connection embed storage site 

information in pathnames. IBIS intends to eventually provide 

location transparency, though it currently does not do so. 

Location transparent syst, ms require a mechanism to map 

names to storage sites. In Vice-Virtue, there is clear distinction 

between servers and clients. Every server maintains a copy of a 

location database which is used to answer queries regarding file 

location. Clients use cached location information as hints. Roe 

logically provides a single server which maps names to storage 

sites, but this server may be implemented as a collection of 

processes at different nodes. The Apollo system uses a 

collection of heuristics to locate objects. Looking up a pathname 

in a directory yields a low-level identifier which contains a hint 

regarding the location of the object. Locus does not distinguish 

between servers and clients, and uses a location database that is 

replicated at all sites. 

6.2.  Repl icat ion 

The replication of data at different sites in a distributed system 

offers two potential benefits. First, it offers increased availability, 

by allowing alternate copies to be used when the primary copy is 

unavailable. Second, it may yield better performance by enabling 

data to be accessed from a site to which access time is lower. 

The access time differential may arise either because of network 

topology or because of uneven loading of sites. 

The Cedar File System and Vice-Virtue use transparent caching 

of files at usage sites to improve performance. In Vice-Virtue 

caching is also important in meeting the goat of user mobility. 

ROE and a proposed extension of IBIS support both caching and 

migration of files. Migration differs from caching in that it is 

explicitly initiated by users and involves only data movement, not 

replication. IBIS views cachability as a file property, thereby 

providing the opportunity for users to mark frequently updated 

shared files as being not cachable. Apollo integrates the file 

system with the virtual memory system on workstations, and 

hence caches individual pages of files, rather than entire files. 

Systems which cache data need to ensure the validity of their 

cache entries. In the Cedar File System cached data is always 

valid, because files are immutable. Higher-level actions by a 

workstation user, such as an explicit decision to use a new 

version of a subsystem, are the only way in which a set of cached 

files is rendered obsolete, in the Vice-Virtue prototype, a cache 

entry is validated when a file is opened, by comparing its 

timestamp with that of the copy at the custodian. Apollo uses a 

similar approach, comparing timestamps when a file is first 

mapped into the address space of a process. No validation is 

done on further accesses to pages within the file, even though 

these may involve movement of data from the site where the file is 

stored. For reasons mentioned earlier, Vice-Virtue intends to 

reverse the order of cache validation, requiring servers to 

invalidate caches on updates. 

Replication can take forms other than caching. In Locus, for 

instance, entire subtrees can be replicated at different sites. 

Updates are coordinated by only one of these sites. In case of 

network partition, updates are allowed within each of the 

partitioned subnets. A conflict resolution algorithm is used to 

merge updates after the partition is ended. Vice-Virtue also 

provides read-only replication of subtrees, but (foes not allow 

replicated copies to be updated during partition. 

ROE uses weighted voting to verify the currency of replicated 

data and to determine whether a copy of a file can be updated in 

the presence of network or server failure. IBIS supports 

replication, but the published literature does not provide details 

of the mechanism. 

6.3.  Funct ional i ty  of In ter faces  

All the systems being compared provide application programs 

with the same interface to local and remote files. One may, in 

fact, view this as the defining property of a distributed file system. 

There is considerable latitude, however, in the manner in which 

this interface is mapped into the inter-machine interface. 

In systems such as Locus and the Newcastle Connection, the 

inter-machine interface is very similar to the application program 

interface. Operations on remote files are forwarded to the 

appropriate storage site, where state information on these files is 

maintained. The current implementation of IBIS is similar. 

The Apollo system maps files into virtual memory. Its remote 

interface is essentially a page fault /replace interface, with 

additional primitives for cache validation and concurrency 

control. ROE's intermachine interface support caching and 
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migration, but it is also possible to have a file opened at a remote 

site and have individual bytes from it shipped to the local site. 

Cedar and Vice-Virtue are similar in that their inter.machine 

interfaces are very different from their application program 

interface. Cedar uses a predefined file transfer protocol to fetch 

and store files on network servers. This has the advantage of 

portability, and allows existing file servers to be used as remote 

sites. Vice-Virtue has a customized interface at this level. 

6.4. Secur i t y  

With the exception of Vice-Virtue, all the systems discussed here 

trust the hardware and system software on the machines they run 

on, User processes authenticate themselves at remote sites 

using a password. The acquisition and forwarding of the 

password is done by trusted software on the client sites. The 

remote site is trusted without question by the client. 

The IBIS description mentions a connection setup procedure that 

prevents stealing of connections by malicious processes. 

However, the procedure assumes the presence of a trusted 

process at each end, with an existing secure channel of 

communication between them. 

Since workstations are not trusted in Vice-Virtue, mutual 

authenticity is established by an ~.ncryption-based handshake 

with a key derived from user-sup lied information. Once a 

connection is established, all further communications on it is 

encrypted. 

For access control, Locus, the Newcastle Connection and IBIS 

use the standard Unix protection mechanism. Apollo, Vice- 

Virtue, Cedar and ROE use more general access lists for 

specifying protection policies. 

6.5. Implementation Strategy 

In IBIS and the Newcastle Connection the interception of file 

system calls is done by linking application programs with a 

special library of routines. The intercepted calls are forwarded to 

user-level server processes at remote sites. 

In contrast, Locus is implemented as an extensive modification of 

a standard Unix system. The operating system itself does the 

interception of remote file system calls and handles file requests 

from remote sites. Apollo uses a customized operating system, 

with builtin remote access capability. The available literature on 

ROE does not provide implementation details. 

File system interception in Virtue is done by the kernel, but most 

of the functionality needed to support transparent remote access 

is provided by a user-level cache manager process. Vice is 

implemented with user-level server processes. As mentioned 

earlier, the reimplementation will have a small number of kernel 

modifications, solely for performance reasons. 

7. Conclusion 

The highlights of this paper are as follows: 

• Our primary concern is the design of a sharing 
mechanism for a computing environment that is a 
synthesis of the personal computer and timesharing 
paradigms. 

• We support sharing via a campus-wide location 
transparent distributed file system which allows users 
to move freely between all the workstations in the 
system. 

• Scale, security and performance are the hardest 
problems in this system. The need to retrofit our 
mechanisms into existing operating system 
interfaces and the need to support a heterogeneous 
environment are additional constraints on our design. 

• Whole-file transfer and caching are important design 
features that jointly address the issues of 
performance and scale. Clustering to exploit locality 
of usage and the replication of read-only system files 
are two other design features motivated by the same 
issues. 

• The design incorporates mechanisms for 
authentication and secure transmission that do not 
depend on trusted workstations or a secure network. 
A flexible access control mechanism is also provided. 

• We have implemented a prototype of this design and 
it is in day-to-day use by a small user community. 
Experience with the prototype has been positive, but 
has also revealed certain inadequacies. These 
shortcomings arise on account of certain detailed 
implementation decisions in our prototype rather 
than fundamental design deficiencies. 

• A comparison with other distributed file systems 
reveals that although this desig~l has individual 
features in common with some of the other systems, 
it is unique in the way it combines these features to 
produce a total design. It is further distinguished 
from all the other systems in that it does not rely on 
the trustworthiness of all network nodes. 

The success of our prototype has given us confidence in the 

viability of the design presented in this paper. Our current 

reimplementation effort is essentially a refinement of this design. 

We anticipate our user population to grow by an order of 

magnitude and span the entire CMU campus in the next two 

years. 
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