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ABSTRACT

We present an o�ine, iterated particle �lter to facilitate statistical inference in general state space hidden
Markovmodels. Given amodel and a sequence of observations, the associatedmarginal likelihood L is cen-
tral to likelihood-based inference for unknown statistical parameters. We de�ne a class of “twisted”models:
each member is speci�ed by a sequence of positive functions ψ and has an associated ψ-auxiliary particle
�lter that provides unbiased estimates of L. We identify a sequence ψ∗ that is optimal in the sense that the
ψ∗-auxiliary particle �lter’s estimate of L has zero variance. In practical applications, ψ∗ is unknown so the
ψ∗-auxiliary particle �lter cannot straightforwardly be implemented. We use an iterative scheme to approx-
imateψ∗ and demonstrate empirically that the resulting iterated auxiliary particle �lter signi�cantly outper-
forms the bootstrap particle �lter in challenging settings. Applications include parameter estimation using
a particle Markov chain Monte Carlo algorithm.

1. Introduction

Particle �ltering, or sequential Monte Carlo (SMC), method-
ology involves the simulation over time of an arti�cial parti-
cle system (ξ i

t ; t ∈ {1, . . . ,T}, i ∈ {1, . . . ,N}). It is particu-
larly suited to numerical approximation of integrals of the form

Z :=
∫

XT
µ1(x1)g1(x1)

T
∏

t=2

ft (xt−1, xt )gt (xt )dx1:T , (1)

where X = R
d for some d ∈ N, T ∈ N, x1:T := (x1, . . . , xT ), µ1

is a probability density function onX, each ft a transition density
on X, and each gt is a bounded, continuous, and nonnegative
function. Algorithm 1 describes a particle �lter, using which an
estimate of (1) can be computed as

ZN :=
T
∏

t=1

[

1

N

N
∑

i=1

gt (ξ
i
t )

]

. (2)

Algorithm 1 A Particle Filter
1. Sample ξ i

1 ∼ µ1 independently for i ∈ {1, . . . ,N}.
2. For t = 2, . . . ,T , sample independently

ξ i
t ∼

∑N
j=1 gt−1(ξ

j
t−1) ft (ξ

j
t−1, ·)

∑N
j=1 gt−1(ξ

j
t−1)

, i ∈ {1, . . . ,N}.

Particle �lters were originally applied to statistical inference
for hidden Markov models (HMMs) by Gordon, Salmond, and
Smith (1993), and this setting remains an important applica-
tion. Letting Y = R

d′
for some d′ ∈ N, an HMM is a Markov

chain evolving on X × Y, (Xt ,Yt )t∈N, where (Xt )t∈N is itself a
Markov chain and for t ∈ {1, . . . ,T}, each Yt is conditionally

CONTACT Anthony Lee anthony.lee@warwick.ac.uk Department of Statistics, University of Warwick, Coventry CV AL, UK.
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JASA.

independent of all other random variables given Xt . In a time-
homogeneous HMM, letting P denote the law of this bivariate
Markov chain, we have

P(X1:T ∈ A,Y1:T ∈ B) :=
∫

A×B

µ(x1)g(x1, y1)

T
∏

t=2

f (xt−1, xt )g(xt , yt )dx1:Tdy1:T , (3)

where µ : X → R+ is a probability density function, f : X ×
X → R+ a transition density, g : X × Y → R+ an observation
density and A and B measurable subsets of XT and YT , respec-
tively. Statistical inference is often conducted upon the basis of
a realization y1:T of Y1:T for some �nite T , which we will con-
sider to be �xed throughout the remainder of the article. Letting
E denote expectations w.r.t. P, our main statistical quantity of

interest is L := E[
∏T

t=1 g(Xt , yt )], the marginal likelihood asso-
ciated with y1:T . In the above, we take R+ to be the nonnegative
real numbers, and assume throughout that L > 0.

Running Algorithm 1 with

µ1 = µ, ft = f , gt (x) = g(x, yt ), (4)

corresponds exactly to running the bootstrap particle �lter
(BPF) of Gordon, Salmond, and Smith (1993), and we observe
thatwhen (4) holds, the quantityZ de�ned in (1) is identical toL,
so thatZN de�ned in (2) is an approximation ofL. In applications
where L is the primary quantity of interest, there is typically an
unknown statistical parameter θ ∈ � that governs µ, f , and g,
and in this setting the map θ �→ L(θ ) is the likelihood function.
We continue to suppress the dependence on θ from the notation
until Section 5.

©  Pieralberto Guarniero, AdamM. Johansen, and Anthony Lee. Published with license by Taylor & Francis.
This is anOpenAccess article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by/./), which permits
non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
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The accuracy of the approximation ZN has been studied
extensively. For example, the expectation of ZN , under the
law of the particle �lter, is exactly Z for any N ∈ N, and ZN

converges almost surely to Z as N → ∞; these can be seen as
consequences of Del Moral (2004, Theorem 7.4.2). For prac-
tical values of N, however, the quality of the approximation
can vary considerably depending on the model and/or obser-
vation sequence. When used to facilitate parameter estima-
tion using, for example, particle Markov chain Monte Carlo
(Andrieu, Doucet, and Holenstein 2010), it is desirable that the
accuracy of ZN be robust to small changes in the model and this
is not typically the case.

In Section 2 we introduce a family of “twisted HMMs,”
parameterized by a sequence of positive functions ψ :=
(ψ1, . . . , ψT ). Running a particle �lter associated with any of
these twisted HMMs provides unbiased and strongly consistent
estimates of L. Some speci�c de�nitions ofψ correspond towell-
known modi�cations of the BPF, and the algorithm itself can be
viewed as a generalization of the auxiliary particle �lter (APF) of
Pitt and Shephard (1999). Of particular interest is a sequenceψ∗

forwhichZN = Lwith probability 1. In general,ψ∗ is not known
and the corresponding APF cannot be implemented, so our
main focus in Section 3 is approximating the sequenceψ∗ itera-
tively, and de�ning �nal estimates through use of a simple stop-
ping rule. In the applications of Section 5, we �nd that the result-
ing estimates signi�cantly outperform the BPF, and exhibit some
robustness to both increases in the dimension of the latent state
space X and changes in the model parameters. There are some
restrictions on the class of transition densities and the functions
ψ1, . . . , ψT that can be used in practice, which we discuss.

This work builds upon a number of methodological
advances, most notably the twisted particle �lter (Whiteley and
Lee 2014), the APF (Pitt and Shephard 1999), block sampling
(Doucet, Briers, and Sénécal 2006), and look-ahead schemes
(Lin et al. 2013). In particular, the sequenceψ∗ is closely related
to the generalized eigenfunctions described inWhiteley and Lee
(2014), but in that work the particle �lter as opposed to the
HMM was twisted to de�ne alternative approximations of L.
For simplicity, we have presented the BPF in which multino-
mial resampling occurs at each timestep. Commonly employed
modi�cations of this algorithm include adaptive resampling
(Kong, Liu, and Wong 1994; Liu and Chen 1995) and alterna-
tive resampling schemes (see, e.g., Douc, Cappé, and Moulines
2005). Generalization to the time-inhomogeneous HMM set-
ting is fairly straightforward, so we restrict ourselves to the time-
homogeneous setting for clarity of exposition.

2. TwistedModels and theψ-Auxiliary Particle Filter

Given an HMM (µ, f , g) and a sequence of observations y1:T ,
we introduce a family of alternative twisted models based on
a sequence of real-valued, bounded, continuous, and positive
functionsψ := (ψ1, ψ2, . . . , ψT ). Letting, for an arbitrary tran-
sition density f and functionψ , f (x, ψ) :=

∫

X
f (x, x′)ψ(x′)dx′,

we de�ne a sequence of normalizing functions(ψ̃1, ψ̃2, . . . , ψ̃T )

on X by ψ̃t (xt ) := f (xt , ψt+1) for t ∈ {1, . . . ,T − 1}, ψ̃T ≡ 1,

and a normalizing constant ψ̃0 :=
∫

X
µ(x1)ψ1(x1)dx1. We then

de�ne the twisted model via the following sequence of twisted

initial and transition densities:

µ
ψ
1 (x1) :=

µ(x1)ψ1(x1)

ψ̃0

,

f
ψ
t (xt−1, xt ) :=

f (xt−1, xt )ψt (xt )

ψ̃t−1(xt−1)
, t ∈ {2, . . . ,T},(5)

and the sequence of positive functions

g
ψ
1 (x1) := g(x1, y1)

ψ̃1(x1)

ψ1(x1)
ψ̃0,

g
ψ
t (xt ) := g(xt , yt )

ψ̃t (xt )

ψt (xt )
, t ∈ {2, . . . ,T}, (6)

which play the role of observation densities in the twistedmodel.
Our interest in this family is motivated by the following invari-
ance result. We denote by 1 the sequence of constant functions
equal to 1 everywhere.

Proposition 1. If ψ is a sequence of bounded, continuous and
positive functions, and

Zψ :=
∫

XT
µ

ψ
1 (x1)g

ψ
1 (x1)

T
∏

t=2

f
ψ
t (xt−1, xt )g

ψ
t (xt )dx1:T ,

then Zψ = L.

Proof. We observe that

µ
ψ
1 (x1)g

ψ
1 (x1)

T
∏

t=2

f
ψ
t (xt−1, xt ) g

ψ
t (xt )

= µ(x1)ψ1(x1)

ψ̃0

g1 (x1)
ψ̃1 (x1)

ψ1 (x1)
ψ̃0 ·

T
∏

t=2

f (xt−1, xt ) ψt (xt )

ψ̃t−1 (xt−1)
g1t (xt )

ψ̃t (xt )

ψt (xt )

= µ (x1) g
1

1 (x1)

T
∏

t=2

f (xt−1, xt ) g
1

t (xt ) ,

and the result follows. �

From a methodological perspective, Proposition 1 makes
clear a particular sense in which the L.H.S. of (1) is common
to an entire family of µ1, ( ft )t∈{2,...,T} and (gt )t∈{1,...,T}. The BPF
associated with the twisted model corresponds to choosing

µ1 = µψ, ft = f
ψ
t , gt = g

ψ
t , (7)

in Algorithm 1; to emphasize the dependence on ψ, we provide
in Algorithm 2 the corresponding algorithm and we will denote
approximations of L by ZN

ψ
. We demonstrate below that the BPF

associated with the twisted model can also be viewed as an APF
associated with the sequenceψ, and so refer to this algorithm as
the ψ-APF. Since the class of ψ-APF’s is very large, it is natural
to consider whether there is an optimal choice of ψ, in terms of
the accuracy of the approximationZN

ψ
: the following proposition

describes such a sequence.

Algorithm 2 ψ-Auxiliary Particle Filter
1. Sample ξ i

1 ∼ µψ independently for i ∈ {1, . . . ,N}.

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
B

ri
st

o
l]

 a
t 

0
3
:1

4
 2

5
 S

ep
te

m
b
er

 2
0
1
7
 



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 3

2. For t = 2, . . . ,T , sample independently

ξ i
t ∼

∑N
j=1 g

ψ
t−1(ξ

j
t−1) f

ψ
t (ξ

j
t−1, ·)

∑N
j=1 g

ψ
t−1(ξ

j
t−1)

, i ∈ {1, . . . ,N}.

Proposition 2. Let ψ∗ := (ψ∗
1 , . . . , ψ∗

T ), where ψ∗
T (xT ) :=

g(xT , yT ), and

ψ∗
t (xt ) := g

(

xt , yt
)

E

⎡

⎣

T
∏

p=t+1

g
(

Xp, yp
)

∣

∣

∣

∣

{Xt = xt}

⎤

⎦ , xt ∈ X,

(8)
for t ∈ {1, . . . ,T − 1}. Then, ZN

ψ∗ = L with probability 1.

Proof. It can be established that

g(xt , yt )ψ̃
∗
t (xt ) = ψ∗

t (xt ), t ∈ {1, . . . ,T}, xt ∈ X,

and so we obtain from (6) that g
ψ∗

1 ≡ ψ̃∗
0 and g

ψ∗

t ≡ 1 for t ∈
{2, . . . ,T}. Hence,

Z
ψ∗

N =
T
∏

t=1

[

1

N

N
∑

i=1

g
ψ∗

t

(

ξ i
t

)

]

= ψ̃∗
0 ,

with probability 1. To conclude, we observe that

ψ̃∗
0 =

∫

X

µ (x1) ψ∗
1 (x1) dx1

=
∫

X

µ (x1)E

[

T
∏

t=1

g
(

Xt , yt
)

∣

∣

∣

∣

{X1 = x1}
]

dx1

= E

[

T
∏

t=1

g
(

Xt , yt
)

]

= L.

�

Implementation of Algorithm 2 requires that one can sample

according to µ
ψ
1 and f

ψ
t (x, ·) and compute g

ψ
t pointwise. This

imposes restrictions on the choice of ψ in practice, since one
must be able to compute both ψt and ψ̃t pointwise. In general
models, the sequence ψ∗ cannot be used for this reason as (8)
cannot be computed explicitly. However, since Algorithm 2 is
valid for any sequence of positive functions ψ, we can interpret
Proposition 2 asmotivating the e�ective design of a particle �lter
by solving a sequence of function approximation problems.

Alternatives to the BPF have been considered before (see, e.g.,
the “locally optimal” proposal in Doucet, Godsill, and Andrieu
2000 and the discussion in Del Moral 2004, Section 2.4.2). The
family of particle �lters we have de�ned using ψ are unusual,

however, in that g
ψ
t is a function only of xt rather than (xt−1, xt );

other approaches in which the particles are sampled according
to a transition density that is not f typically require this extension
of the domain of these functions. This is again a consequence of
the fact that the ψ-APF can be viewed as a BPF for a twisted
model. This feature is shared by the fully adapted APF of Pitt
and Shephard (1999), when recast as a standard particle �lter
for an alternative model as in Johansen and Doucet (2008), and
which is obtained as a special case of Algorithm 2 whenψt (·) ≡
g(·, yt ) for each t ∈ {1, . . . ,T}. We view the approach here as
generalizing that algorithm for this reason.

It is possible to recover other existing methodological
approaches as BPFs for twistedmodels. In particular, when each

element of ψ is a constant function, we recover the standard
BPF of Gordon, Salmond, and Smith (1993). Setting ψt (xt ) =
g(xt , yt ) gives rise to the fully adapted APF. By taking, for some
k ∈ N and each t ∈ {1, . . . ,T},

ψt (xt ) = g
(

xt , yt
)

E

⎡

⎣

(t+k)∧T
∏

p=t+1

g
(

Xp, yp
)

∣

∣

∣

∣

{Xt = xt}

⎤

⎦ ,

xt ∈ X, (9)

ψ corresponds to a sequence of look-ahead functions (see, e.g.,
Lin et al. 2013) and one can recover idealized versions of the
delayed sample method of Chen,Wang, and Liu (2000) (see also
the �xed-lag smoothing approach in Clapp and Godsill 1999),
and the block sampling particle �lter of Doucet, Briers, and
Sénécal (2006). When k ≥ T − 1, we obtain the sequence ψ∗.
Just as ψ∗ cannot typically be used in practice, neither can the
exact look-ahead strategies obtained by using (9) for some �xed
k. In such situations, the proposed look-ahead particle �ltering
strategies are not ψ-APFs, and their relationship to the ψ∗-APF
is consequently less clear.We note that the o�ine settingwe con-
sider here a�ords us the freedom to de�ne twisted models using
the entire data record y1:T . The APF was originally introduced
to incorporate a single additional observation, and could there-
fore be implemented in an online setting, that is, the algorithm
could run while the data record was being produced.

3. Function Approximations and the Iterated APF

3.1. Asymptotic Variance of theψ-APF

Since it is not typically possible to use the sequence ψ∗ in prac-
tice, we propose to use an approximation of eachmember ofψ∗.
To motivate such an approximation, we provide a central limit
theorem, adapted from a general result due to Del Moral (2004,
Chap. 9). It is convenient tomake use of the fact that the estimate
ZN

ψ
is invariant to rescaling of the functionsψt by constants, and

we adopt now a particular scaling that simpli�es the expression
of the asymptotic variance. In particular, we let

ψ̄t (x) : =
ψt (x)

E
[

ψt (Xt ) |
{

Y1:t−1 = y1:t−1

}] ,

ψ̄∗
t (x) : = ψ∗

t (x)

E
[

ψ∗
t (Xt ) |

{

Y1:t−1 = y1:t−1

}] .

Proposition 3. Let ψ be a sequence of bounded, continuous, and
positive functions. Then

√
N

(

ZN
ψ

Z
− 1

)

d−→ N (0, σ 2
ψ),

where

σ 2
ψ :=

T
∑

t=1

{

E

[

ψ̄∗
t (Xt )

ψ̄t (Xt )

∣

∣

∣

∣

{

Y1:T = y1:T

}

]

− 1

}

. (10)

We emphasize that Proposition 3, whose proof can be found
in the Appendix, follows straightforwardly from existing results
for Algorithm 1, since theψ-APF can be viewed as a BPF for the
twisted model de�ned by ψ. For example, in the case ψ consists
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4 P. GUARNIERO ET AL.

only of constant functions, we obtain the standard asymptotic
variance for the BPF

σ 2 =
T
∑

t=1

{

E
[

ψ̄∗
t (Xt ) |

{

Y1:T = y1:T
}]

− 1
}

.

From Proposition 3, we can deduce that σ 2
ψ tends to 0 as ψ

approaches ψ∗ in an appropriate sense. Hence, Propositions 2
and 3 together provide some justi�cation for designing particle
�lters by approximating the sequence ψ∗.

3.2. Classes of f andψ

While the ψ-APF described in Section 2 and the asymptotic
results just described are valid very generally, practical imple-
mentation of the ψ-APF does impose some restrictions jointly
on the transition densities f and functions inψ. Herewe consider
only the case where the HMM’s initial distribution is a mixture
of Gaussians and f is a member ofF , the class of transition den-
sities of the form

f (x, ·) =
M
∑

k=1

ck(x)N ( · ; ak (x) , bk (x)) , (11)

whereM ∈ N, and (ak)k∈{1,...,M} and (bk)k∈{1,...,M} are sequences
ofmean and covariance functions, respectively and (ck)k∈{1,...,M}
a sequence of R+-valued functions with

∑M
k=1 ck(x) = 1 for all

x ∈ X. Let � de�ne the class of functions of the form

ψ(x) = C +
M
∑

k=1

ckN (x; ak, bk) , (12)

where M ∈ N, C ∈ R+, and (ak)k∈{1,...,M}, (bk)k∈{1,...,M} and
(ck)k∈{1,...,M} are a sequence of means, covariances, and posi-
tive real numbers, respectively. When f ∈ F and each ψt ∈ � ,
it is straightforward to implement Algorithm 2 since, for each

t ∈ {1, . . . ,T}, bothψt (x) and ψ̃t−1(x) = f (x, ψt ) can be com-

puted explicitly and f
ψ
t (x, ·) is amixture of normal distributions

whose component means and covariance matrices can also be
computed. Alternatives to this particular setting are discussed
in Section 6.

3.3. Recursive Approximation ofψ∗

The ability to compute f (·, ψt ) pointwise when f ∈ F andψt ∈
� is also instrumental in the recursive function approximation
scheme we now describe. Our approach is based on the follow-
ing observation.

Proposition 4. The sequence ψ∗ satis�es ψ∗
T (xT ) = g(xT , yT ),

xT ∈ X and

ψ∗
t (xt ) = g(xt , yt ) f

(

xt , ψ
∗
t+1

)

, xt ∈ X, t ∈ {1, . . . ,T − 1}.
(13)

Proof. The de�nition of ψ∗ provides that ψ∗
T (xT ) = g(xT , yT ).

For t ∈ {1, . . . ,T − 1},

g
(

xt , yt
)

f
(

xt , ψ
∗
t+1

)

= g
(

xt , yt
)

∫

X

f (xt , xt+1)E

⎡

⎣

T
∏

p=t+1

g
(

Xp, yp
)

| {Xt+1 = xt+1}

⎤

⎦ dxt+1

= g
(

xt , yt
)

E

⎡

⎣

T
∏

p=t+1

g
(

Xp, yp
)

| {Xt = xt}

⎤

⎦

= ψ∗
t (xt ) .

�

Let (ξ 1:N
1 , . . . , ξ 1:N

T ) be random variables obtained by run-
ning a particle �lter. We propose to approximate ψ∗ by
Algorithm 3, for which we de�ne ψT+1 ≡ 1. This algorithm
mirrors the backward sweep of the forward �ltering backward
smoothing recursionwhich, if it could be calculated, would yield
exactly ψ∗.

Algorithm 3 Recursive function approximations
For t = T, . . . , 1:
1. Set ψ i

t ← g(ξ i
t , yt ) f (ξ

i
t , ψt+1) for i ∈ {1, . . . ,N}.

2. Choose ψt as a member of � on the basis of ξ 1:N
t and

ψ1:N
t .

One choice in Step 2 of Algorithm 3 is to de�ne ψt using a
nonparametric approximation such as a Nadaraya–Watson esti-
mate (Nadaraya 1964;Watson 1964). Alternatively, a parametric
approach is to choose ψt as the minimizer in some subset of �

of some function of ψt , ξ
1:N
t and ψ1:N

t . Although a number of
choices are possible, we focus in Section 5 on a simple paramet-
ric approach that is computationally inexpensive.

3.4. The Iterated Auxiliary Particle Filter

The iterated auxiliary particle �lter (iAPF), Algorithm 4, is
obtained by iteratively running aψ-APF and estimatingψ∗ from
its output. Speci�cally, after eachψ-APF is run,ψ∗ is reapproxi-
mated using the particles obtained, and the number of particles
is increased according to a well-de�ned rule. The algorithm ter-
minates when a stopping rule is satis�ed.

Algorithm 4 An iterated auxiliary particle �lter with parameters
(N0, k, τ )

1. Initialize: set ψ0 to be a sequence of constant functions,
l ← 0.

2. Repeat:

(a) Run a ψl-APF with Nl particles, and set Ẑl ← ZNl

ψl .

(b) If l > k and sd(Ẑl−k:l )/mean(Ẑl−k:l ) < τ , go to 3.
(c) Compute ψl+1 using a version of Algorithm 3 with

the particles produced.

(d) If Nl−k = Nl and the sequence Ẑl−k:l is not mono-
tonically increasing, set Nl+1 ← 2Nl . Otherwise, set
Nl+1 ← Nl .

(e) Set l ← l + 1 and go back to 2a.

3. Run a ψl-APF and return Ẑ := ZNl

ψ

The rationale for Step 2(d) of Algorithm 4 is that if the

sequence Ẑl−k:l is monotonically increasing, there is some evi-
dence that the approximations ψl−k:l are improving, and so
increasing the number of particles may unnecessarily increase

computational cost. However, if the approximations Ẑl−k:l have
both high relative standard deviation in comparison to τ and
are oscillating then reducing the variance of the approximation
of Z and/or improving the approximation of ψ∗ may require
an increased number of particles. Some support for this pro-
cedure can be obtained from the log-normal CLT of Bérard,
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Del Moral, and Doucet (2014): under regularity assumptions,
logZN

ψ
is approximately a N (−δ2ψ/2, δ2ψ) random variable and

so P(ZN
ψ′ ≥ ZN

ψ
) ≈ 1 − 
([δ2

ψ′ − δ2ψ]/[2
√

δ2
ψ

+ δ2
ψ′]), which is

close to 1 when δ2
ψ′ ≪ δ2ψ .

4. Approximations of Smoothing Expectations

Thus far, we have focused on approximations of the marginal
likelihood, L, associated with a particularmodel and data record
y1:T . Particle �lters are also used to approximate so-called
smoothing expectations, that is, π(ϕ) := E[ϕ(X1:T ) | {Y1:T =
y1:T }] for some ϕ : XT → R. Such approximations can be moti-
vated by a slight extension of (1),

γ (ϕ) :=
∫

XT

ϕ(x1:T )µ1 (x1) g1 (x1)

T
∏

t=2

ft (xt−1, xt ) gt (xt ) dx1:T ,

where ϕ is a real-valued, bounded, continuous function. We
can write π(ϕ) = γ (ϕ)/γ (1), where 1 denotes the constant
function x �→ 1. We de�ne below a well-known, unbiased, and
strongly consistent estimate γ N (ϕ) of γ (ϕ), which can be
obtained from Algorithm 1. A strongly consistent approxima-
tion of π(ϕ) can then be de�ned as γ N (ϕ)/γ N (1).

The de�nition of γ N (ϕ) is facilitated by a speci�c implemen-
tation of step 2. of Algorithm 1 in which one samples

Ai
t−1 ∼ Categorical

(

gt−1(ξ
1
t−1)

∑N
j=1 gt−1(ξ

j
t−1)

, . . . ,
gt−1(ξ

N
t−1)

∑N
j=1 gt−1(ξ

j
t−1)

)

,

ξ i
t ∼ ft (ξ

Ai
t−1

t−1 , ·),

for each i ∈ {1, . . . ,N} independently. Use of, for example, the
Alias algorithm (Walker 1974, 1977) gives the algorithm O(N)

computational complexity, and the random variables (Ai
t; t ∈

{1, . . . ,T − 1}, i ∈ {1, . . . ,N}) provide ancestral information
associated with each particle. By de�ning recursively for each

i ∈ {1, . . . ,N}, Bi
T := i and Bi

t−1 := A
Bi
t

t−1 for t = T, . . . , 2, the
{1, . . . ,N}T -valued random variable Bi

1:T encodes the ancestral
lineage of ξ i

T (Andrieu, Doucet, and Holenstein 2010). It follows
from Del Moral (2004, Theorem 7.4.2) that the approximation

γ N (ϕ) : =
[

1

N

N
∑

i=1

gT (ξ i
T )ϕ(ξ

Bi
1

1 , ξ
Bi
2

2 , . . . , ξ
Bi
T

T )

]

×
T−1
∏

t=1

(

1

N

N
∑

i=1

gt (ξ
i
t )

)

,

is unbiased and strongly consistent, and a strongly consistent
approximation of π(ϕ) is

πN (ϕ) : = γ N (ϕ)

γ N (1)
= 1
∑N

i=1 gT (ξ i
T )

×
N
∑

i=1

ϕ
(

ξ
Bi
1

1 , ξ
Bi
2

2 , . . . , ξ
Bi
T

T

)

gT (ξ i
T ). (14)

The ψ∗-APF is optimal in terms of approximating γ (1) ≡ Z
and not π(ϕ) for general ϕ. Asymptotic variance expressions
akin to Proposition 3, but for πN

ψ
(ϕ), can be derived using

existing results (see, e.g., Del Moral and Guionnet 1999; Chopin

2004; Künsch 2005; Douc andMoulines 2008) in the sameman-
ner. These could be used to investigate the in�uence of ψ on
the accuracy of πN

ψ
(ϕ) or the interaction between ϕ and the

sequenceψwhichminimizes the asymptotic variance of the esti-
mator of its expectation.

Finally, we observe that when the optimal sequence ψ∗ is
used in an APF in conjunction with an adaptive resampling
strategy (see Algorithm 5), the weights are all equal, no resam-
pling occurs and the ξ i

t are all iid samples from P(Xt ∈ · |
{Y1:T = y1:T }). This at least partially justi�es the use of iter-
ated ψ-APFs to approximate ψ∗: the asymptotic variance σ 2

ψ in

(10) is particularly a�ected by discrepancies between ψ∗ and
ψ in regions of relatively high conditional probability given
the data record y1:T , which is why we have chosen to use
the particles as support points to de�ne approximations of ψ∗

in Algorithm 3.

5. Applications and Examples

The purpose of this section is to demonstrate that the iAPF can
provide substantially better estimates of the marginal likelihood
L than the BPF at the same computational cost. This is exempli-
�ed by its performance when d is large, recalling that X = R

d .
When d is large, the BPF typically requires a large number of
particles to approximate L accurately. In contrast, the ψ∗-APF
computes L exactly, andwe investigate below the extent to which
the iAPF is able to provide accurate approximations in this set-
ting. Similarly, when there are unknown statistical parameters θ ,
we show empirically that the accuracy of iAPF approximations
of the likelihood L(θ ) are more robust to changes in θ than their
BPF counterparts.

Unbiased, nonnegative approximations of likelihoods L(θ )

are central to the particle marginal Metropolis–Hastings algo-
rithm (PMMH) of Andrieu, Doucet, and Holenstein (2010),
a prominent parameter estimation algorithm for general state
space hiddenMarkovmodels. An instance of a pseudo-marginal
Markov chainMonteCarlo algorithm (Beaumont 2003; Andrieu
and Roberts 2009), the computational e�ciency of PMMH
depends, sometimes dramatically, on the quality of the unbi-
ased approximations of L(θ ) (Andrieu and Vihola 2015; Lee
and Łatuszyński 2014; Sherlock et al. 2015; Doucet et al. 2015)
delivered by a particle �lter for a range of θ values. The rela-
tive robustness of iAPF approximations of L(θ ) to changes in θ ,
mentioned above, motivates their use over BPF approximations
in PMMH.

5.1. Implementation Details

In our examples, we use a parametric optimization approach in
Algorithm 3. Speci�cally, for each t ∈ {1, . . . ,T}, we compute
numerically a regularized version of

(

m∗
t , �

∗
t , λ

∗
t

)

= argmin(m,�,λ)

N
∑

i=1

[

N
(

ξ i
t ;m, �

)

− λψ i
t

]2
,

(15)
and then set

ψt (xt ) := N
(

xt;m∗
t , �

∗
t

)

+ c(N,m∗
t , �

∗
t ), (16)
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6 P. GUARNIERO ET AL.

where c is a positive real-valued function, which ensures that

f
ψ
t (x, ·) is a mixture of densities with some nonzero weight
associated with themixture component f (x, ·). This is intended
to guard against terms in the asymptotic variance σ 2

ψ in (10)
being very large or unbounded. We chose (15) for simplicity
and its low computational cost, and it provided good perfor-
mance in our simulations. For the stopping rule, we used k = 5
for the application in Section 5.2, and k = 3 for the applications
in Sections 5.3 and 5.4. We observed empirically that the rela-
tive standard deviation of the likelihood estimate tended to be
close to, and often smaller than, the chosen level for τ . A value
of τ = 1 should therefore be su�cient to keep the relative stan-
dard deviation around 1 as desired (see, e.g., Doucet et al. 2015;
Sherlock et al. 2015).We set τ = 0.5 as a conservative choice for
all our simulations apart from themultivariate stochastic volatil-
ity model of Section 5.4, where we set τ = 1 to improve speed.
We performed the minimization in (15) under the restriction
that� was a diagonal matrix, as this was considerably faster and
preliminary simulations suggested that this was adequate for the
examples considered.

We used an e�ective sample size based resampling scheme
(Kong, Liu, and Wong 1994; Liu and Chen 1995), described
in Algorithm 5 with a user-speci�ed parameter κ ∈ [0, 1].
The e�ective sample size is de�ned as ESS(W 1, . . . ,WN ) :=
(
∑N

i=1W
i)2/

∑N
i=1(W

i)2, and the estimate of Z is

ZN : =
∏

t∈R∪{T}

[

1

N

N
∑

i=1

W i
t

]

,

R : =
{

t ∈ {1, . . . ,T − 1} : ESS(W 1
t , . . . ,WN

t ) ≤ κN
}

,

where R is the set of “resampling times.” This reduces to
Algorithm 2 when κ = 1 and to a simple importance sampling
algorithm when κ = 0; we use κ = 0.5 in our simulations. The
use of adaptive resampling is motivated by the fact that when
the e�ective sample size is large, resampling can be detrimental
in terms of the quality of the approximation ZN .

Algorithm 5 ψ-Auxiliary Particle Filter with κ-adaptive resam-
pling

1. Sample ξ i
1 ∼ µ

ψ
1 independently, and set W i

1 ← g
ψ
1 (ξ i

1)

for i ∈ {1, . . . ,N}.
2. For t = 2, . . . ,T :

(a) If ESS(W 1
t−1, . . . ,W

N
t−1) ≤ κN, sample indepen-

dently

ξ i
t ∼

∑N
j=1W

j
t−1 f

ψ
t (ξ

j
t−1, ·)

∑N
j=1W

j
t−1

, i ∈ {1, . . . ,N},

and setW i
t ← g

ψ
t (ξ i

t ), i ∈ {1, . . . ,N}.
(b) Otherwise, sample ξ i

t ∼ f
ψ
t (ξ i

t−1, ·) independently,

and setW i
t ← W i

t−1g
ψ
t (ξ i

t ) for i ∈ {1, . . . ,N}.

5.2. Linear GaussianModel

A linear Gaussian HMM is de�ned by the following initial, tran-
sition, and observation Gaussian densities: µ(·) = N (·;m, �),
f (x, ·) = N (·;Ax,B), and g(x, ·) = N (·;Cx,D), where m ∈
R

d , �,A,B ∈ R
d×d ,C ∈ R

d×d′
and D ∈ R

d′×d′
. For this model,

it is possible to implement the fully adapted APF (FA-APF)
and to compute explicitly the marginal likelihood, �ltering and
smoothing distributions using the Kalman �lter, facilitating
comparisons.We emphasize that implementation of the FA-APF
is possible only for a restricted class of analytically tractable
models, while the iAPF methodology is applicable more gener-
ally. Nevertheless, the iAPF exhibited better performance than
the FA-APF in our examples.

Relative Variance of Approximations of ZWhen d is Large

We consider a family of linear Gaussian models where m = 0,
� = B = C = D = Id and Ai j = α|i− j|+1, i, j ∈ {1, . . . , d} for
some α ∈ (0, 1). Our �rst comparison is between the relative

errors of the approximations Ẑ of L = Z using the iAPF, the
BPF, and the FA-APF. We consider con�gurations with d ∈
{5, 10, 20, 40, 80} and α = 0.42 and we simulated a sequence
of T = 100 observations y1:T for each con�guration. We ran
1000 replicates of the three algorithms for each con�guration

and report box plots of the ratio Ẑ/Z in Figure 1.
For all the simulations, we ran an iAPF with N0 = 1000

starting particles, a BPF with N = 10,000 particles and an
FA-APF with N = 5000 particles. The BPF and FA-APF both
had slightly larger average computational times than the iAPF
with these con�gurations. The average number of particles
for the �nal iteration of the iAPF was greater than N0 only in
dimensions d = 40 (1033) and d = 80 (1142). For d > 10, it
was not possible to obtain reasonable estimates with the BPF
in a feasible computational time (similarly for the FA-APF
for d > 20). The standard deviation of the samples and the
average resampling count across the chosen set of dimensions
are reported in Tables 1 and 2.

0.0

0.5

1.0
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2.0

Dimension
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5 10 20 40 80

iAPF
FA−APF

BPF

Figure . Boxplots of Ẑ/Z for different dimensions using  replicates. The crosses
indicate the mean of each sample.

Table . Empirical standard deviation of the quantity Ẑ/Z using  replicates.

Dimension     

iAPF . . . . .
BPF . . — — —
FA-APF . . . — —

Table . Average resampling count for the  replicates.

Dimension     

iAPF . . . . .
BPF   — — —
FA-APF . . . — —
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Fixing the dimension d = 10 and the simulated sequence of
observations y1:T with α = 0.42, we now consider the variability
of the relative error of the estimates of themarginal likelihood of
the observations using the iAPF and the BPF for di�erent values
of the parameter α ∈ {0.3, 0.32, . . . , 0.48, 0.5}. In Figure 2, we

report box plots of Ẑ/Z in 1000 replications. For the iAPF, the
length of the boxes are signi�cantly less variable across the range
of values of α. In this case, we usedN = 50,000 particles for the
BPF, giving a computational time at least �ve times larger than
that of the iAPF. This demonstrates that the approximations of
themarginal likelihood L(α) provided by the iAPF are relatively
insensitive to small changes in α, in contrast to the BPF. Similar
simulations, which we do not report, show that the FA-APF for
this problem performs slightly worse than the iAPF at double
the computational time.

Particle Marginal Metropolis–Hastings.

We consider a Linear Gaussian model with m = 0, � =
B = C = Id , and D = δId with δ = 0.25. We used the lower-
triangular matrix

A =

⎛

⎜

⎜

⎜

⎜

⎝

0.9 0 0 0 0
0.3 0.7 0 0 0
0.1 0.2 0.6 0 0
0.4 0.1 0.1 0.3 0
0.1 0.2 0.5 0.2 0

⎞

⎟

⎟

⎟

⎟

⎠

,

and simulated a sequence of T = 100 observations. Assuming
only that A is lower triangular, for identi�ability, we performed
Bayesian inference for the 15 unknown parameters {Ai, j : i, j ∈
{1, . . . , 5}, j ≤ i}, assigning each parameter an independent
uniform prior on [−5, 5]. From the initial point A1 = I5, we

ran three Markov chains ABPF
1:L , AiAPF

1:L , and AKalman
1:L of length L =

300,000 to explore the parameter space, updating one of the 15
parameters components at a time with a Gaussian random walk
proposal with variance 0.1. The chains di�er in how the accep-
tance probabilities are computed, and correspond to using unbi-
ased estimates of the marginal likelihood obtain from the BPF,
iAPF or the Kalman �lter, respectively. In the latter case, this
corresponds to running a Metropolis–Hastings (MH) chain by
computing themarginal likelihood exactly.We started every run
of the iAPFwithN0 = 500 particles. The resulting average num-
ber of particles used to compute the �nal estimate was 500.2.
The number of particlesN = 20,000 for the BPF was set to have
a greater computational time, in this case ABPF

1:L took 50% more
time than AiAPF

1:L to simulate.
In Figure 3, we plot posterior density estimates obtained

from the three chains for 3 of the 15 entries of the transition
matrix A. The posterior means associated with the entries of
the matrix A were fairly close to A itself, the largest discrepancy
being around 0.2, and the posterior standard deviations were
all around 0.1. A comparison of estimated Markov chain auto-
correlations for these same parameters is reported in Figure 4,
which indicates little di�erence between the iAPF-PMMH and
Kalman-MH Markov chains, and substantially worse perfor-
mance for the BPF-PMMHMarkov chain. The integrated auto-
correlation time of the Markov chains provides a measure of the
asymptotic variance of the individual chains’ ergodic averages,
and in this regard the iAPF-PMMH and Kalman-MH Markov
chainswere practically indistinguishable, while the BPF-PMMH
performed between 3 and 4 times worse, depending on the
parameter. The relative improvement of the iAPF over the BPF
does seem empirically to depend on the value of δ. In experi-
ments with larger δ, the improvement was still present but less

0.3 0.34 0.38 0.42 0.46 0.5
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(a) iAPF
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(b) BPF

Figure . Boxplots of Ẑ/Z for different values of the parameter α using  replicates. The crosses indicate the mean of each sample.

Figure . Linear Gaussian model: density estimates for the specified parameters from the three Markov chains.
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8 P. GUARNIERO ET AL.

Figure . Linear Gaussian model: autocorrelation function estimates for the BPF-PMMH (crosses), iAPF-PMMH (solid lines), and Kalman-MH (circles) Markov chains.

pronounced than for δ = 0.25. We note that in this example,ψ∗

is outside the class of possible ψ sequences that can be obtained
using the iAPF: the approximations in � are functions that are
constants plus a multivariate normal density with a diagonal
covariance matrix, while the functions in ψ∗ are multivariate
normal densities whose covariance matrices have nonzero, o�-
diagonal entries.

5.3. Univariate Stochastic Volatility Model

A simple stochastic volatility model is de�ned by µ(·) =
N (·; 0, σ 2/(1 − α)2), f (x, ·) = N (·;αx, σ 2) and g(x, ·) =
N (·; 0, β2 exp(x)), where α ∈ (0, 1), β > 0 and σ 2 > 0 are sta-
tistical parameters (see, e.g., Kim, Shephard, and Chib 1998).
To compare the e�ciency of the iAPF and the BPF within a
PMMH algorithm, we analyzed a sequence of T = 945 obser-
vations y1:T , which are mean-corrected daily returns computed
from weekday close exchange rates r1:T+1 for the pound/dollar
from 1/10/81 to 28/6/85. These data have been previously ana-
lyzed using di�erent approaches, for example, in Harvey, Ruiz,
and Shephard (1994) and Kim, Shephard, and Chib (1998).

We wish to infer the model parameters θ = (α, σ, β) using
a PMMH algorithm and compare the two cases, where the
marginal likelihood estimates are obtained using the iAPF and
the BPF. We placed independent inverse Gamma prior distribu-
tions IG(2.5, 0.025) and IG(3, 1) on σ 2 and β2, respectively,
and an independent Beta(20, 1.5) prior distribution on the tran-
sition coe�cient α. We used (α0, σ0, β0) = (0.95,

√
0.02, 0.5)

as the starting point of the three chains: X iAPF
1:L , XBPF

1:L and XBPF′

L′ .
All the chains updated one component at a time with a Gaus-
sian random walk proposal with variances (0.02, 0.05, 0.1) for
the parameters (α, σ, β).X iAPF

1:L has a total length ofL = 150,000

Table . Sample size adjusted for autocorrelation for each parameter from the three
chains.

α σ 2 β

iAPF   
BPF   
BPF’   

and for the estimates of the marginal likelihood that appear in
the acceptance probability we use the iAPF withN0 = 100 start-
ing particles. For XBPF

1:L and XBPF′

1:L′ we use BPFs: XBPF′
1:L is a shorter

chain with more particles (L = 150,000 and N = 1000), while
XBPF′

1:L′ is a longer chain with fewer particles (L = 1,500,000,
N = 100). All chains required similar running time overall to
simulate. Figure 5 shows estimated marginal posterior densities
for the three parameters using the di�erent chains.

In Table 3, we provide the adjusted sample size of theMarkov
chains associated with each of the parameters, obtained by
dividing the length of the chain by the estimated integrated
autocorrelation time associated with each parameter. We can
see an improvement using the iAPF, although we note that the
BPF-PMMH algorithm appears to be fairly robust to the vari-
ability of the marginal likelihood estimates in this particular
application.

Since particle �lters provide approximations of the marginal
likelihood in HMMs, the iAPF can also be used in alterna-
tive parameter estimation procedures, such as simulated maxi-
mum likelihood (Lerman andManski 1981; Diggle and Gratton
1984). The use of particle �lters for approximatemaximum like-
lihood estimation (see, e.g., Kitagawa 1998; Hürzeler and Kün-
sch 2001) has recently been used to �t macroeconomic models
(Fernández-Villaverde and Rubio-Ramírez 2007). In Figure 6,

Figure . Stochastic volatility model: PMMH density estimates for each parameter from the three chains.
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α

Figure . Log-likelihood estimates in a neighborhood of the MLE. Boxplots correspond to  estimates at each parameter value given by three particle filters, from left to
right: BPF (N = 1000), BPF (N = 10,000), iAPF (N0 = 100).

we show the variability of the BPF and iAPF estimates of the
marginal likelihood at points in a neighborhood of the approxi-
mate MLE of (α, σ, β) = (0.984, 0.145, 0.69). The iAPF with
N0 = 100 particles used 100 particles in the �nal iteration to
compute the likelihood in all simulations, and took slightlymore
time than the BPF with N = 1000 particles, but far less time
than the BPF with N = 10,000 particles. The results indicate
that the iAPF estimates are signi�cantly less variable than their
BPF counterparts and may therefore be more suitable in simu-
lated maximum likelihood approximations.

5.4. Multivariate Stochastic Volatility Model

We consider a version of the multivariate stochastic volatil-
ity model de�ned for X = R

d by µ(·) = N (·;m,U⋆),
f (x, ·) = N (·;m + diag(φ)(x − m),U ) and g(x, ·) =
N (·; 0, exp(diag(x))), where m, φ ∈ R

d and the covariance
matrix U ∈ R

d×d are statistical parameters. The matrix U⋆ is
the stationary covariance matrix associated with (φ,U ). This is
the basic MSV model in Chib, Omori, and Asai (2009, Sec. 2),
with the exception that we consider a nondiagonal transition
covariance matrixU and a diagonal observation matrix.

We analyzed two 20-dimensional sequences of observations
y1:T and y′

1:T ′ , where T = 102 and T ′ = 90. The sequences
correspond to the monthly returns for the exchange rate with
respect to the US dollar of a range of 20 di�erent interna-
tional currencies, in the periods 3/2000–8/2008 (y1:T , pre-
crisis) and 9/2008–2/2016 (y′

1:T ′ , post-crisis), as reported
by the Federal Reserve System (available at http://www.
federalreserve.gov/releases/h10/hist/). We infer the model
parameters θ = (m, φ,U ) using the iAPF to obtain marginal

likelihood estimates within a PMMH algorithm. A similar study
using a di�erent approach and with a set of six currencies can
be found in Liu and West (2001).

The aim of this study is to showcase the potential of the
iAPF in a scenario where, due to the relatively high dimension-
ality of the state space, the BPF systematically fails to provide
reasonable marginal likelihood estimates in a feasible compu-
tational time. To reduce the dimensionality of the parameter
space we consider a band diagonal covariance matrix U with
nonzero entries on the main, upper, and lower diagonals. We
placed independent inverse Gamma prior distributions with
mean 0.2 and unit variance on each entry of the diagonal ofU ,
and independent symmetric triangular prior distributions on
[−1, 1] on the correlation coe�cients ρ ∈ R

19 corresponding
to the upper and lower diagonal entries. We place independent
Uniform(0, 1) prior distributions on each component of φ and
an improper, constant prior density for m. This results in a
79-dimensional parameter space. As the starting point of the
chains, we used φ0 = 0.95 · 1, diag(U0) = 0.2 · 1 and for the 19
correlation coe�cients we set ρ0 = 0.25 · 1, where 1 denotes
a vector of 1s whose length can be determined by context.
Each entry of m0 corresponds to the logarithm of the standard
deviation of the observation sequence of the relative currency.

We ran two Markov chains X1:L and X ′
1:L, corresponding to

the data sequences y1:T and y
′
1:T ′ , both of themupdated one com-

ponent at a time with a Gaussian random walk proposal with
standard deviations (0.2 · 1, 0.005 · 1, 0.02 · 1, 0.02 · 1) for the
parameters (m, φ, diag(U ), ρ). The total number of updates
for each parameter is L = 12, 000 and the iAPF with N0 = 500
starting particles is used to estimate marginal likelihoods within
the PMMH algorithm. In Figure 7, we report the estimated
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Figure . Multivariate stochastic volatility model: density estimates for the parameters related to the Pound Sterling. Pre-crisis chain (solid line), post-crisis chain (dashed
line), and prior density (dotted line). The prior densities for (a) and (b) are constant.

smoothed posterior densities corresponding to the parameters
for the Pound Sterling/U.S. Dollar exchange rate series. Most of
the posterior densities are di�erent from their respective prior
densities, and we also observe qualitative di�erences between
the pre- and post-crisis regimes. For the same parameters, sam-
ple sizes adjusted for autocorrelation are reported in Table 4.
Considering the high-dimensional state and parameter spaces,
these are satisfactory. In the later steps of the PMMH chain,
we recorded an average number of iterations for the iAPF of
around 5 and an average number of particles in the �nal ψ-
APF of around 502. To compare this with the BPF, we found that
with N = 107 particles, at a cost of roughly 200 times the iAPF-
PMMH per step, a BPF-PMMH Markov chain accepted only 4
out of 1000 proposed moves, each of which attempted to update
a single parameter.

The aforementioned qualitative change of regime seems to be
evident looking at the di�erence between the posterior expecta-
tions of the parameter m for the post-crisis and the pre-crisis
chain, reported in Figure 8. The parameterm can be interpreted
as the period average of the mean-reverting latent process of the

Table . Sample size adjusted for autocorrelation.

m£ φ£ U£ U£, €

Pre-crisis    
Post-crisis    

Figure . Multivariate stochastic volatility model: differences between post-crisis
and pre-crisis posterior expectation of the parameterm for the  currencies.

log-volatilities for the exchange rate series. Positive values of the
di�erences for close to all of the currencies suggest a generally
higher volatility during the post-crisis period.

6. Discussion

In this article, we have presented the iAPF, an o�ine algorithm
that approximates an idealized particle �lter, whose marginal
likelihood estimates have zero variance. Themain idea is to iter-
atively approximate a particular sequence of functions, and an
empirical study with an implementation using parametric opti-
mization for models with Gaussian transitions showed reason-
able performance in some regimes for which the BPF was not
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able to provide adequate approximations. We applied the iAPF
to Bayesian parameter estimation in general state-space HMMs
by using it as an ingredient in a PMMHMarkov chain. It could
also conceivably be used in similar, but inexact, noisy Markov
chains; Medina-Aguayo, Lee, and Roberts (2015) showed that
control on the quality of the marginal likelihood estimates can
provide theoretical guarantees on the behavior of the noisy
Markov chain. The performance of the iAPF marginal likeli-
hood estimates also suggests they may be useful in simulated
maximum likelihood procedures. In our empirical studies, the
number of particles used by the iAPF was orders of magnitude
smaller than would be required by the BPF for similar approx-
imation accuracy, which may be relevant for models in which
space complexity is an issue.

In the context of likelihood estimation, the perspective
brought by viewing the design of particle �lters as essentially
a function approximation problem has the potential to signif-
icantly improve the performance of such methods in a variety
of settings. There are, however, a number of alternatives to
the parametric optimization approach described in Section
5.1, and it would be of particular future interest to investigate
more sophisticated schemes for estimating ψ∗, that is, speci�c
implementations of Algorithm 3. We have used nonparamet-
ric estimates of the sequence ψ∗ with some success, but the
computational cost of the approach was much larger than
the parametric approach. Alternatives to the classes F and �

described in Section 3.2 could be obtained using other conjugate
families, (see, e.g., Vidoni 1999). We also note that although we
restricted the matrix � in (15) to be diagonal in our examples,
the resulting iAPF marginal likelihood estimators performed
fairly well in some situations, where the optimal sequence ψ∗

contained functions that could not be perfectly approximated
using any function in the corresponding class. Finally, the
stopping rule in the iAPF, described in Algorithm 4 and which
requires multiple independent marginal likelihood estimates,
could be replaced with a stopping rule based on the variance
estimators proposed in Lee andWhiteley (2015). For simplicity,
we have discussed particle �lters in which multinomial resam-
pling is used; a variety of other resampling strategies (see Douc,
Cappé, and Moulines 2005, for a review) can be used instead.

Appendix A: Expression for the Asymptotic Variance
in the CLT

Proof of Proposition 3. We de�ne a sequence of densities by

π
ψ

k (x1:T ) :=

[

µ
ψ
1 (x1)

∏T
t=2 f

ψ
t (xt−1, xt )

]

∏k
t=1 g

ψ
t (xt )

∫

XT

[

µ
ψ
1 (x1)

∏T
t=2 f

ψ
t (xt−1, xt )

]

∏k
t=1 g

ψ
t (xt ) dx1:T

,

x1:T ∈ XT ,

for each k ∈ {1, . . . ,T}. We also de�ne π
ψ

k (x j) :=
∫

π
ψ

k (x1: j−1, x j, x j+1:T )dx− j for j ∈ {1, . . . ,T}, where x− j :=
(x1, . . . , x j−1, x j+1, . . . , xN ). Combining equation (24.37) of

Doucet and Johansen (2011) with elementary manipulations

provides,

σ 2
ψ =

T
∑

t=1

[

∫

X

π
ψ

T (xt )
2

π
ψ
t−1(xt )

dxt − 1

]

=
T
∑

t=1

[∫

X

ψ∗
t (xt )

ψt (xt )
π

ψ

T (xt )dxt ·
∫

X
ψt (xt ) π1

t−1(xt )dxt
∫

X
ψ∗
t (xt ) π1

t−1(xt )dxt
− 1

]

=
T
∑

t=1

{

E

[

ψ∗
t (Xt )

ψt (Xt )

∣

∣

∣

{

Y1:T = y1:T
}

]

×
E
[

ψt (Xt ) |
{

Y1:t−1 = y1:t−1

}]

E
[

ψ∗
t (Xt ) |

{

Y1:t−1 = y1:t−1

}] − 1

}

,

and the expression involving the rescaled terms ψ̄∗
t and ψ̄t then

follows. �
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