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Abstract— Particle filtering shows great promise in addressing 
a wide variety of non-linear and /or non-Gaussian problem. A 
crucial issue in particle filtering is the selection of the importance 
proposal distribution. In this paper, the iterated extended 
kalman filter (IEKF) is used to generate the proposal 
distribution. The proposal distribution integrates the latest 
observation into system state transition density, so it can match 
the posteriori density well. The simulation results show that the 
new particle filter superiors to the standard particle filter and 
the other filters such as the unscented particle filter (UPF), the 
extended kalman particle filter (PF -EKF), the EKF.  

1. INTRODUCTION 

      Nonlinear filtering problems arise in many fields 
including statistical signal processing, economics, statistics, 
biostatistics, and engineering such as communications, radar 
tracking, sonar ranging, target tracking, and satellite 
navigation [1-7]. The best-known algorithm to solve the 
problem of nonlinear filtering is the extended Kalman filter. 
This filter is based upon the principle of linearizing the 
measurements and evolution models using Taylor series 
expansions. The series approximations in the EKF algorithm 
can, however, lead to poor representations of the nonlinear 
functions and probability distribution of interest. As a result, 
this filter can diverge. Another popular solution strategy for 
the general nonlinear filtering problem is to use sequential 
Monte Carlo methods, also known as particle filters. 

Particle filtering is a class of methods for filtering, 
smoothing etc. in non-linear and/or non-Gaussian state space 
models that may perform significantly better than traditional 
methods like the extended Kalman filter. A key issue in 
particle filtering is the selection of the proposal distribution 
function. In general, it is hard to design such proposals. Now 
there have many proposed distributions have been proposed in 
the literature. For example, the prior, the EKF Garssian 
approximation and the UKF proposal are used as the proposal 
distribution for particle filter [2,3,4]. In this paper, we follow 
the same approach, but replace the EKF proposal by an IEKF 
proposal. Because the IEKF compute the updated state not as 
an approximate conditional mean-that is, a linear combination 
of the prediction and the innovation, but as a maximum a 
posteriori (MAP) estimate [1]. So the IEKF can be used to 
generate proposal distributions with more precise that are 
close to the true mean of the target distribution. 

  This work is organized as follows.  The generic particle 
filter is formulated in Section 2.The proposed iterated 
extended kalman particle filter  is presented in Section 3. 

Simulation results are given in Section 5.Conclusions are 
presented in Section 6. 

2. PARTICLE FILTER 

2.1 Modeling Assumption 
      Consider the nonlinear discrete time dynamic system:  

       ( )1 1,k k k kx f x v− −=                (1) 

              ( ),k k k kz h x e=                                     (2) 

where : x vn n
kf xnℜ ×ℜ →ℜ and : x e zn n n

kh ℜ ×ℜ →ℜ represent the 
system evolution function and the measurement model 
function. xn

kx ∈ℜ is the system state at time k , zn
kz ∈ℜ is 

the measurement vector at time k . v and  
represent the process noise and the measurement noise 
respectively. 
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2.2 Particle Filter 
The sequential importance-sampling (SIS) algorithm is a 

Monte Carlo method that forms the basis for most sequential 
MC filters developed over the past decades; see [3]. The 
sequential MC approach is known variously as bootstrap 
filtering, the condensation algorithm, particle filtering etc. 
The key idea is to represent the required posterior density 
function by a set of random samples with associated weights 
and to compute estimates based on these samples and weights. 

Let { }0: 1
, sNi i

k k i
x w

=
denote a random measure that 

characterizes the posterior pdf , 
where

0: 1:( |k kp x z )

{ }0: , 0,...,i
k sx i N= is a set of support points with 

associated weights { }, 0,...,i
k sw i N= and { }0: , 0,...,k jx x j k= = is 

the set of all states up to time . The weights are normalized 
such that 
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( | )i
k kp z x is the likelihood function of the measurements 

, is the importance density. It can be kz 1( | ,i i
k k kq x x z− )
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shown that as , the approximation (1) approaches 
the true posterior density . 

sN → ∞

0: 1:( |k kp x z )
From the equation (3) and (4), it is show that the particle 

filter consists of recursive propagation of the weights and 
support points as each measurement is received sequentially. 
Furthermore, a common problem with the particle filter is the 
degeneracy phenomenon. In order to avoid the degeneracy 
phenomenon of the particles, the resampling scheme is 
important to the particle filter. To the resampling scheme, 
there are many selections such as sampling importance 
resampling, residual resamping and minimum variance 
sampling. In this paper, the residual resampling is used in all 
of the experiments. So a generic particle filter is then as 
described by Algorithm 1.  The detail derivation of the 
particle filter can be founded in [3].  

                     

3. THE ITERATED EXTENDED KALMAN 

PARTICLE FILTER 
       The choice of proposal function is one of the most 
critical design issues in importance sampling algorithm. 
Doucet, etc [7] proved the optimal proposal distribution 

0: 1 1:( | , )k k kq x x z−  can minimize the variance of 

the importance weights conditional on 
0: 1 1:( | , )k k kp x x z−=

0: 1kx − and . This 
choice of proposal distribution has also advocated by other 
researchers. However, This optimal importance density 
suffers two major drawbacks. It requires the ability to sample 
from and to evaluate the integral over the new 

state. In the general case, it may not be straightforward to do 
either of these things. Therefore, the distribution 
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is the most popular choice of proposal function. Compared 
with the optimal proposal distribution, it is attractive due to its 
simplicity in sampling from the prior densities and the 
calculation of weights. But because it is not incorporating the 
most recent observations, the proposal distribution is very 
inefficient sometimes, and the estimation result is poor. In 
order to solve this problem, several techniques have been 
proposed. For example, the EKF or UKF approximation is 
used as the proposal distribution for a particle filter. In this 
section, we will use the IEKF to generate proposal 
distributions with a better performance than the EKF or UKF. 
3.1 The Iterated Extended Kalman Filter 
       The conditional probability density function of 

( 1x k )+ given 1kZ + can be written, assuming all the pertinent 
random variables to be gaussian, as Algorithm 1: Generic Particle Filter 

1. Initialization:   0k =
• For 0,..., si = N , draw the states 
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Maximizing the above with respect to is equivalent to 
minimizing  

( 1x k + )x q x x z−∼
i
kw

 

Assign the particle a weight, , according to (4) 

END FOR 

• FOR 1: si N=  

Normalize the weights: 

1: s
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=
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k  

• END FOR 
• Resample: 

Multiply /Suppress samples 
( )
0:
i
kx with high/low 

importance weights , respectively, to obtain 
i
kw

sN random samples 
( )
0:
i
kx  approximately 

distributed according to  0: 1:( |k kp x z )
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k sw N=  
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The iterative minimization of (6), say, using a Newton-
Raphson algorithm, will yield an approximate MAP estimate 
of ( 1x k + . This is done by expanding J  in a taylor series 
up to second order about the i th iterated value of the estimate 
of ( 1x k )+ , denoted (without time argument) as ix , 
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where, using abbreviated notation, 
                                  ' | ix x
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are the gradient and Hessian of with respect to J ( 1x k )+ . 
Setting the gradient of (7) with respect to x to zero yields 

the next value of x in the iteration to minimize as 

              ( ) 11i i i i
xx xx x J J
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The gradient is, using now the full notation, J
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The Hessian of , retaining only up to the first 
derivative of , is  

J
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where  
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is the Jacobian of the relinearized measurement equation. 
       Using the matrix inversion lemma[1], one has 
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which is the iterated extended Kalman filter. 
       Starting the iteration for with 0i =

    ( ) (0ˆ ˆ1| 1 1|x k k x k k+ + +                               (13) 
causes the last term in ()to be zero and yields after the first 
iteration ,that is ,the same as the first-order 
(noniterated)EKF 
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       The covariance associated with ( )ˆ 1| 1ix k k+ + is, from (11), 
given by 
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3.2 The Iterated Extended Kalman Particle Filter 

As shows in section above, an approximate MAP 
estimate can be obtained by an iteration that amounts to 
relinearization of the measurement equation. So the iterated 
extended kalman filter is able to more accurate than the EKF. 
Distribution generated by the IEKF generally has a bigger 
support overlap with the true posterior distribution than the 
overlap achieved by the EKF estimates. So this makes the 
IEKF a better candidate for more accurate proposal 
distribution generation within the particle filter framework. 

The new filter that results from using a IEKF for 
proposal distribution generation within a particle filter 
framework is called the iterated extended kalman particle 
filter. The algorithm of the IEKF is as follows 

 
Algorithm 2: The Iterated Extended Kalman Particle Filter 

1. Initialization: 0k =   

• For 0,..., si N= , draw the states 
( )
0
ix from the 

prior  0( )p x
2. FOR  1, 2....k =  

• FOR 1: si N=  

--Compute the Jacobians  of the process 
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                                            measurement model 
                                           Update the covariance 
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                                       Update the state estimate ˆ
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                                           END FOR 
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--Assign the particle a weight, , according to (4) 
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END FOR 
• FOR 1: si N=  

Normalize the weights: 
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• END FOR 
• Resample: 

Multiply /Suppress samples 
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i
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importance weights , respectively, to obtain i
kw

sN random samples ( )
0:
i
kx  approximately distributed 

according to  0: 1:( |k kp x z )
For 1 : si N= , set 1i
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4. SIMULATION 

This section presents the simulation result of the proposed 
algorithm described above. In order to compare the 
performance with these of the convention methods, the 
system models were taken from [4] as following 
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where is a Gamma kv ( )3, 2aς random variable modeling the 

process noise, The measurement noise  is drawn from a 
Gaussian distribution .The experiment was 
repeated 100 times with random re-initialization  for each run. 
All of the particle filters used 200 particles and residual 
resampling. The output of the algorithm is the mean of 
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samples set that can be computed. 
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                     Fig.1. Estimate of the system state 
Fig.1 compares the estimate of the system state generated 
from a single run of the different particle filter. The results 
show that the estimate of the PF and the PF-EKF sometimes 
biased the true state very large. Because the UKF and IEKF 
calculates the posterior covariance accurately to the 2rd order, 
it make the UPF and the PF-IEKF provided improvement 
over the results of the PF and that PF-EKF clearly achieved 
the better performance. Table1 summarizes the performance 
of the different filters. The table shows the means and 
variances of the mean-square-error (MSE) of the state 
estimates. To non-linear and /or non-Gaussian problem, the 
performance of the PF-IEKF is superior to the other solutions, 
and the EKF is the worst.  
                          Table 1: The mean and variance of the MSE 

  

Algorithm

EKF

UKF

IEKF

PF

PF-EKF

PF-UKF

PF-IEKF

MSE

Mean Var

0.3933 0.0182

0.2969 0.0127

0.1504 0.0098

0.2205 0.0477

0.3231 0.0183

0.0062

0.00120.0495

0.0675

 
5. CONCLUSION 

      In this paper, a new particle filter that uses the IEKF to 
generate the proposal distribution is proposed. Because the 
IEKF can generate an approximate MAP estimate of the 
system state, the proposal distribution based on the IEKF is 

closer to the true posterior distribution than the other such as 
the EKF and UKF. The simulation result shows the proposed 
particle filter is evidently better than the standard particle 
filter. At the same time, because the performance of the IEKF 
is superior to the EKF and UKF, the precise of the proposed 
particle filter is higher the PF-EKF and the UPF.  
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