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The iterative reweighted Mixed-Norm Estimate

for spatio-temporal MEG/EEG source reconstruction
Daniel Strohmeier, Yousra Bekhti, Jens Haueisen, and Alexandre Gramfort

Abstract—Source imaging based on magnetoencephalography
(MEG) and electroencephalography (EEG) allows for the non-
invasive analysis of brain activity with high temporal and good
spatial resolution. As the bioelectromagnetic inverse problem is
ill-posed, constraints are required. For the analysis of evoked
brain activity, spatial sparsity of the neuronal activation is a
common assumption. It is often taken into account using convex
constraints based on the l1-norm. The resulting source estimates
are however biased in amplitude and often suboptimal in terms
of source selection due to high correlations in the forward
model. In this work, we demonstrate that an inverse solver
based on a block-separable penalty with a Frobenius norm
per block and a l0.5-quasinorm over blocks addresses both of
these issues. For solving the resulting non-convex optimization
problem, we propose the iterative reweighted Mixed Norm
Estimate (irMxNE), an optimization scheme based on iterative
reweighted convex surrogate optimization problems, which are
solved efficiently using a block coordinate descent scheme and
an active set strategy. We compare the proposed sparse imaging
method to the dSPM and the RAP-MUSIC approach based on
two MEG data sets. We provide empirical evidence based on
simulations and analysis of MEG data that the proposed method
improves on the standard Mixed Norm Estimate (MxNE) in terms
of amplitude bias, support recovery, and stability.

Index Terms—Electrophysical imaging, brain, inverse meth-
ods, magnetoencephalography, electroencephalography, struc-
tured sparsity.

I. INTRODUCTION

Source imaging with magnetoencephalography (MEG)

and electroencephalography (EEG) delivers insights into

the active brain with high temporal and good spatial

resolution in a non-invasive way [1]. It is based on solving

the bioelectromagnetic inverse problem, which is a high

dimensional ill-posed regression problem. In order to render

Copyright (c) 2016 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work was supported by the German Research Foundation
(Ha 2899/21-1), the European Union (FP7-PEOPLE-2013-IAPP 610950),
the EDF and Jacques Hadamard Mathematical Foundation (Gaspard Monge
Program for Optimization and operations research), the French National
Research Agency (ANR-14-NEUC-0002-01), and the National Institutes of
Health (R01 MH106174).

D. Strohmeier is with the Institute of Biomedical Engineering and
Informatics, Technische Universiät Ilmenau, Ilmenau, Germany; e-mail:
daniel.strohmeier@tu-ilmenau.de

Y. Bekhti is with the LTCI, CNRS, Télécom ParisTech, Université Paris-
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its solution unique, constraints have to be imposed reflecting

a priori assumptions on the neuronal sources. In the past,

several source reconstruction techniques have been proposed,

which are based on the assumption that only a few focal

brain regions are involved in a specific cognitive task.

Inverse methods favoring sparse focal source configurations

to explain the MEG/EEG signals include parametric [2],

scanning [3]–[6], and imaging approaches [7]–[12]. These

techniques, which are partly used in clinical routine, are

suitable e.g. for analyzing evoked responses or epileptic

spike activity. Classic MEG/EEG source imaging technique

using sparsity-inducing penalties are the Selective Minimum

Norm Method [7] or Minimum Current Estimate (MCE)

[13]. Both approaches are based on the Lasso [14], i.e.,

regularized regression with an l1-norm penalty, which is

a convex surrogate for the optimal, but NP hard l0-norm

regularized regression problem. To reduce the sensitivity to

noise and avoid discontinuous, scattered source activations

[8], mixed norms such as the l2,1-mixed-norm used in Group

Lasso [15] or Group Basis Pursuit [16] can be applied.

The idea is to take the spatio-temporal characteristics of

neuronal activity into account by imposing structured sparsity

in space or time [8], [9], [17], [18]. We refer to [19] for

a general review on group selection in high-dimensional

models. A prominent example is the Mixed-Norm Estimate

(MxNE) proposed in [9], which extends the MCE to multiple

measurement vector problems by applying a block-separable

convex penalty. Each block represents the source activation

over time of a dipole with free orientation at a specific

source location. Spatial sparsity is promoted by an l1-norm

penalty over blocks, whereas a Frobenius norm per block

promotes stationary source estimates, i.e., a source with

a non-zero amplitude at one time instant has a non-zero

amplitude during the full time window of interest [9],

[20]. The Frobenius norm also prevents the orientations of

the free orientation dipoles from being biased towards the

coordinate axes [21]. These convex approaches allow for fast

algorithms with guaranteed global convergence. However,

the resulting source estimates are biased in amplitude and

often suboptimal in terms of support recovery [22], which

is impaired by the high spatial correlation of the MEG/EEG

forward model. As shown e.g. in the field of compressed

sensing, promoting sparsity by applying non-convex penalties,

such as logarithmic or lp-quasinorm penalties with 0 < p < 1,

improves support reconstruction in terms of feature selection,

amplitude bias, and stability [22]–[24]. Several approaches

for solving the resulting non-convex optimization problem

have been proposed including generalized shrinkage [25],

iterative reweighted l1 [22], [26]–[28], or iterative reweighted
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l2 optimization [29]–[33]. See [27], [34] for a review of

these approaches for single and multiple measurement

vector problems. Several MEG/EEG sparse source imaging

techniques based on iterative reweighted l2 optimization

have been proposed [29], [35]–[38]. An iterative reweighted

l1 optimization technique for EEG source imaging was

proposed in [39], which however does not impose structured

sparsity and applies a fixed orientation constraint [40]. In

this paper, we propose the iterative reweighted Mixed-Norm

Estimate (irMxNE), a novel MEG/EEG sparse source imaging

approach based on the framework of iterative reweighted l1,

which promotes structured sparsity to improve MEG/EEG

source reconstruction. A preliminary version of this method

was presented in [41]. Similar approaches have recently been

proposed in other fields of research [34], [42]. The irMxNE

is based on a non-convex block-separable penalty, which

combines a Frobenius norm per block and an l0.5-quasinorm

over blocks. The non-convex objective function is minimized

iteratively by computing a sequence of weighted MxNE

problems. For solving the convex surrogate problems, we

propose a new computationally efficient strategy, which

combines block coordinate descent [27], [43], [44] and a

forward active set strategy with convergence controlled by

means of the duality gap, which converges significantly

faster than the original MxNE algorithm proposed in [9]. We

provide information on the integration of different source

orientation constraints [40] and discuss specific problems of

MEG/EEG source imaging such as depth bias compensation

and amplitude bias correction. We present empirical evidence

using simulations and analysis of two experimental MEG data

sets that the proposed method outperforms MCE and MxNE

in terms of amplitude bias, active source identification, and

stability. Finally, we compare the proposed approach with the

dSPM [45] and RAP-MUSIC method [5] based on two MEG

data sets.

Notation: We mark vectors with bold letters, a ∈ R
N , and

matrices with capital bold letters, A ∈ R
N×M . The transpose

of a vector or matrix is denoted by a
T and A

T . The scalar a[i]
is the ith element of a. A[i, :] corresponds to the ith row and

A[:, j] to the jth column of A. ‖A‖Fro indicates the Frobenius

norm, and ‖A‖ the spectral norm of a matrix.

II. MATERIALS AND METHODS

A. The inverse problem

The MEG/EEG forward problem describes the linear rela-

tionship between the MEG/EEG measurements M ∈ R
N×T

(N number of sensors, T number of time instants) and the

source activation X ∈ R
(SO)×T (S number of source loca-

tions, O number of orthogonal dipoles per source location

with O = 1 if source orientation is postulated, e.g. using the

cortical constraint [46], and typically O = 3 otherwise). The

model then reads:

M = GX+E , (1)

where G ∈ R
N×(SO) is the gain or leadfield matrix, a known

instantaneous mixing matrix, which links source and sensor

signals. E is the measurement noise, which is assumed to

be additive, white, and Gaussian, E[:, j] ∼ N (0, I) for all

j. This assumption is acceptable on the basis of a proper

spatial whitening of the data using an estimate of the noise

covariance [47]. As SO ≫ N , the MEG/EEG inverse problem

is ill-posed and constraints have to be imposed on the source

activation matrix X to render the solution unique. By partition-

ing X into S blocks Xs ∈ R
O×T , where each Xs represents

the source activation at a specific source location s over time

and across O orthogonal current dipoles, we can apply a

penalty term P(X) promoting block sparsity by combining

a Frobenius norm per block and a l0.5-quasinorm penalty over

blocks. The optimization problem reads:

X̂ = argmin
X∈RSO×T

1

2
‖M−GX‖2Fro + P(X)

X̂ = argmin
X∈RSO×T

1

2
‖M−GX‖2Fro + λ

S∑

s=1

Ps(Xs)

X̂ = argmin
X∈RSO×T

1

2
‖M−GX‖2Fro + λ

S∑

s=1

√
‖Xs‖Fro ,

(2)

where λ > 0 is the regularization parameter balancing the

data fit and penalty term. Similar to the constraint applied

in MxNE [9], P(X) promotes source estimates with only

a few focal sources that have non-zero activations during

the entire time interval of interest. The Frobenius norm per

block Xs, which combines l2-norm penalties over time and

orientation as proposed in [8], [13], [20], imposes stationarity

of the source estimate and prevents the source orientations

from being biased towards the coordinate axes [21]. The

l0.5-quasinorm penalty promotes spatial sparsity.

B. Iterative reweighted Mixed Norm Estimate

The proposed block-separable regularization functional is an

extension of the l2,p-quasinorm penalty with 0 < p < 1 used

in [22], [26], [27], [32]. These works showed, based on the

framework of Difference of Convex functions programming

or Majorization-Minimization algorithms, that the resulting

non-convex optimization problem can be solved by iteratively

solving a sequence of weighted convex surrogate optimization

problems with weights being defined based on the previous es-

timate. The convex surrogate problem is obtained by replacing

the non-decreasing concave function Ps(Xs) with a convex

upper bound using a local linear approximation at the current

estimate. By solving this sequence of surrogate problems,

the value of the non-convex objective function decreases, but

without guarantee for convergence to a global minimum. The

cost function in Eq. (2) can thus be minimized by computing

the sequence of convex problems given in Eq. (3). The weights

for the kth iteration are obtained from the previous source

estimate X̂
(k−1). Intuitively, sources with high amplitudes in

the (k-1)th iteration will be less penalized in the kth iteration
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and therefore further promoted.

X̂
(k) = argmin

X∈RSO×T

1

2
‖M−GX‖2Fro + λ

∑

s

‖Xs‖Fro

2

√∥∥∥X̂(k−1)
s

∥∥∥
Fro

= argmin
X∈RSO×T

1

2
‖M−GX‖2Fro + λ

∑

s

1

w(k)[s]
‖Xs‖Fro

(3)

As each iteration is equivalent to solving a weighted MxNE

problem, we call this optimization scheme the iterative

reweighted MxNE (irMxNE). Due to the non-convexity of the

optimization problem in Eq. (2), the procedure is sensitive to

the initialization of w(k)[s]. In this paper, we use w
(1)[s] = 1

for all s as proposed in [26]. Consequently, the first iteration of

irMxNE is equivalent to solving a standard MxNE problem. As

each iteration of the iterative scheme in Eq. (3) solves a convex

problem with guaranteed global convergence, the initialization

of X has no influence on the final solution. X can thus be

chosen arbitrarily and we use warm starts for improving the

computation time. For sources with ‖X̂
(k)
s ‖Fro = 0, Eq. (3)

has an infinite regularization term. Typically, a smoothing pa-

rameter ǫ is added to avoid weights to become zero [22], [26],

[31]. Here, we reformulate the weighted MxNE subproblem

and apply the weights without epsilon smoothing by scaling

the gain matrix with a weighting matrix W
(k) as given in

Eq. (4). After convergence, we reapply the scaling to X̃
(k) to

obtain the final estimate X̂
(k).

X̃
(k) = argmin

X∈RSO×T

1

2
‖M−GW

(k)
X‖2Fro + λ

∑

s

‖Xs‖Fro

= argmin
X∈RSO×T

1

2
‖M−G

(k)
X‖2Fro + λ

∑

s

‖Xs‖Fro

X̂
(k) = W

(k)
X̃

(k)

(4)

with W
(k) ∈ R

SO×SO being a diagonal matrix, which is

computed according to Eq. (5):

W
(k) = diag(w(k) ⊗ 1(O))

with w
(k)[s] = 2

√∥∥∥X̂(k−1)
s

∥∥∥
Fro

,
(5)

where 1(O) ∈ R
O is a vector of ones and ⊗ is the Kronecker

product. In each MxNE iteration, we restrict the source

space to source locations with w
(k)[s] > 0 to reduce the

computation time.

We control the global convergence of each weighted

MxNE subproblems in Eq. (4) by monitoring the duality gap.

For details on convex duality in the context of optimization

with sparsity-inducing penalties, we refer to [48]. In the

following, we summarize the rationale for this stopping

criterion. For a general minimization problem, the minimum

of the primal objective function Fp(X) is bounded below

by the maximum of the associated dual objective function

Fd(Y), i.e., Fp(X
∗) ≥ Fd(Y

∗), where X
∗ and Y

∗ are

the optimal solutions of the primal and dual problem. The

duality gap η = Fp(X) − Fd(Y) ≥ 0, where X and Y are

the current values of the primal and dual variable, is thus

non-negative and provides an upper bound on the difference

between Fp(X) and Fp(X
∗). If strong duality holds, the

duality gap at the optimum is zero. To use this stopping

criterion in practice, we need to derive the dual problem and

choose a good feasible dual variable Y given a value of X,

which allows for η = 0 at the optimum.

Due to Slater’s conditions [49], strong duality holds for

the MxNE subproblem and we can check convergence of an

iterative optimization scheme solving Eq. (4) by computing the

current duality gap η(i) = Fp(X
(i)) − Fd(Y

(i)) ≥ 0. Based

on the Fenchel-Rockafellar duality theorem [50], the dual

objective function associated to the primal objective function

Fp (X) =
1

2
‖M−GX‖2Fro + λΩ(X)

=
1

2
‖M−GX‖2Fro + λ

∑

s

‖Xs‖Fro

is given in Eq. (6). For a detailed derivation, we refer to [9].

Fd (Y) = −
1

2
‖Y‖2Fro +Tr

(
Y

T
M

)
− λΩ∗

(
G

T
Y/λ

)
(6)

where Tr indicates the trace of a square matrix, and Ω∗ the

Fenchel conjugate of Ω, which is the indicator function of the

associated dual norm. As shown in [9], a natural mapping from

the primal to the dual space is given by a scaling of the residual

Ỹ = M−GX. This is motivated by the fact that the solution

of the dual problem at the optimum is proportional to the

residual, which follows from the associated KKT conditions

[9]. The scaling is done according to Eq. (7) such that the dual

variable Y satisfies the constraint of Ω∗.

Y = Ỹ

/
max

(
max

s

∥∥∥GT
s Ỹ

∥∥∥
Fro

/
λ, 1

)
(7)

In practice, we terminate the iterative optimization scheme

for solving MxNE, when the estimate at the ith inner iteration

X
(i) is ǫ-optimal with ǫ = 10−6, i.e., η(i) < 10−6. According

to [9], this is a conservative choice provided that the data is

scaled by spatial pre-whitening.

For solving the weighted MxNE subproblems, we propose

a block coordinate descent (BCD) scheme [43], which, for

the problem at hand, converges faster than the Fast Iterative

Shrinkage-Thresholding algorithm (FISTA) proposed earlier

in [9] (cf. section III-B). A BCD scheme for solving the Group

LASSO was proposed in [27], [44]. The subproblem per block

has a closed form solution, which involves applying the group

soft-thresholding operator, the proximity operator associated to

the l2,1-mixed-norm [9]. Accordingly, the closed form solution

for the BCD subproblems solving the MxNE problem can be

derived, which is given in Eq. (8).

X
(k)

s = X
(k−1)
s + µ[s]GT

s

(
M−GX

(k−1)
)

X̃
(k)
s = X̃

(k)
s max


1−

µ[s]λ

max
(∥∥∥X(k)

s

∥∥∥
Fro

, µ[s]λ
) , 0




(8)
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The step length µ[s] for each BCD subproblem is deter-

mined by µ[s] = L−1
s with Ls = ‖G

T
s Gs‖ being the Lipschitz

constant of the data-fit restricted to the sth source location. This

step length is typically larger than the step length applicable in

iterative proximal gradient methods, which is upper-bounded

by the inverse of L = ‖GT
G‖. Pseudo code for the BCD

scheme is shown in Algorithm 1.

Algorithm 1 MxNE with BCD

Require: M, G, X, µ, λ > 0, ǫ > 0, and S.

1: Initialization: η = Fp (X)−Fd (Y)
2: while η ≥ ǫ do

3: for s = 1 to S do

4: Xs ←− Solve Eq. (8) with X, µ, and M

5: end for

6: η = Fp(X)−Fd(Y)
7: end while

The BCD scheme is typically applied using a cyclic sweep

pattern, i.e., all blocks are updated in a cyclic order in each

iteration. However, as the penalty term in Eq. (2) promotes

spatial sparsity, most of the blocks of X̂ are zero. We can thus

reduce the computation time by primarily updating blocks, that

are likely to be non-zero, while keeping the remaining blocks

at zero. For this purpose, data-dependent sweep patterns (such

as greedy approaches based on steepest descent [51], [52]) or

active set strategies [53], [54] can be applied. In this paper,

we combine BCD with a forward active set strategy proposed

in [9], [54]. Pseudo code for the proposed MxNE solver is

provided in Algorithm 2.

Algorithm 2 MxNE with BCD and active set strategy

Require: M, G, λ > 0, ǫ > 0, and S.

1: Initialization: X = 0, A = {}, η = Fp (X)−Fd (Y)
2: for s = 1 to S do

3: µ[s] = ‖GT
s Gs‖

−1

4: end for

5: while η ≥ ǫ do

6: A∗ ⊆ {s | ‖GT
s (M−GX)‖Fro > λ}

7: A = A ∪ A∗

8: Define G
A and X

A by restricting G and X to A
9: X̂

A ←− Solve Algorithm 1 with µ, GA and X0 = X
A

10: X = X̂
A for s ∈ A, else 0

11: η = Fp(X)−Fd(Y)
12: end while

We start by estimating an initial active set of sources

A by evaluating the Karush-Kuhn-Tucker (KKT)

optimality conditions, which state that X̂s = 0 if

‖GT
s (M−GX)‖Fro ≤ λ [9]. We select the N sources

as the initial active set, which violate this condition the most

(we use N = 10 in practice). Subsequently, we restrict the

source space to the sources in A and estimate X̂
A by solving

Eq. (4) with convergence controlled by the duality gap. After

convergence of this restricted optimization problem, we check

whether X̂
A is also an ǫ-optimal solution for the original

optimization problem (without restricting the source space to

A) by computing the corresponding duality gap η assuming

that all sources, which are not part of the active set, have

zero activation. If X̂
A is not an ǫ-optimal solution indicated

by η ≥ ǫ, we re-evaluate the KKT optimality conditions and

update the active set A by adding the N sources with the

highest score. We then repeat the procedure with warm start.

We terminate irMxNE when ‖X̂(k) − X̂
(k−1)‖∞ < τ

with a user specified threshold τ , which we set to 10−6 in

practice. The proposed optimization algorithm for irMxNE

is fast enough to allow its usage in practical MEG/EEG

applications. Full pseudo code for irMxNE is provided in

Algorithm 3.

Algorithm 3 Iterative reweighted MxNE

Require: M, G, λ > 0, ǫ > 0, τ > 0, and K.

1: Initialization: W(1) = I, X̂(1)

2: for k = 1 to K do

3: G
(k) = GW

(k)

4: X̃
(k) ←− Solve Algorithm 2 with G

(k) and X
(k)

5: X̂
(k) = W

(k)
X̃

(k)

6: if ‖X̂(k) − X̂
(k−1)‖∞ < τ then

7: break

8: end if

9: W
(k+1) ←− Solve Eq. 5 with X̂

(k)

10: end for

C. Source constraints and bias

1) Source orientation: The proposed BCD scheme is ap-

plicable for MEG/EEG inverse problems without and with

orientation constraint. For imposing a loose orientation con-

straint [40], we apply a weighting matrix K = diag([1, ρ, ρ])
to each block of the gain matrix Gs ∈ R

N×3 with Gs[:, 1]
corresponding to the dipole orientated normally to the cortical

surface, and Gs[:, 2] and Gs[:, 3] to the two tangential dipoles.

The weighting parameter 0 < ρ ≤ 1 controls up to which angle

the rotating dipole may deviate from the normal direction [20],

[40]. The orientation-weighted gain matrix G̃ is hence defined

as G̃ = G
(
I(S) ⊗K

)
, where I(S) ∈ R

S×S is the identity

matrix. Since the penalty in Eq. (8) does not promote sparsity

along orientations, the irMxNE result is not biased towards the

coordinate axes [21]. When the source orientation is postulated

a priori (e.g. normal to the cortical surface), each block Xs

corresponds to the activation of a fixed dipole. Consequently,

the Frobenius norm per block can be replaced by the l2-norm

of the source activation of the corresponding fixed dipole.

2) Depth bias compensation: Due to the attenuation of

the bioelectromagnetic field with increasing distance between

source and sensor, deep sources require higher source ampli-

tudes to generate sensor signals of equal strength compared to

superficial sources. Consequently, inverse methods, which are

based on constraints penalizing the source amplitudes, have a

bias towards superficial sources. In order to compensate this

bias, each block of the gain matrix is weighted a priori. Here,

we apply the depth bias compensation proposed in [55], which

computes the weights used for depth bias compensation based

on the SVD of the gain matrix.
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3) Amplitude bias compensation: Source activation es-

timated with source reconstruction approaches based on

lp-quasinorms with 0 < p ≤ 1, such as MxNE and ir-

MxNE, show a varying degree of amplitude bias due to the

inherent shrinkage. The standard practice for compensating

the amplitude bias consists in computing the least squares

fit after restricting the source space to the support of X̂,

which is typically an over-determined optimization problem.

In contrast, we apply the debiasing approach proposed in [20],

which preserves the source characteristics and orientations

estimated with irMxNE by estimating a scaling factor for each

source, which is constrained to be above 1 and constant over

orientation and time. The bias corrected source estimate X̃ is

computed using D as X̃ = DX̂, where the diagonal scaling

matrix D is estimated based on the convex problem:

D̂ = argmin
D

‖M−G(D⊗I(O))X̂‖
2
Fro s.t.

{
Dij ≥ 1, i = j

Dij = 0, i 6= j

D. Simulation setup

We compare MCE, MxNE and irMxNE in terms of ampli-

tude bias, support recovery, and stability using simulated au-

ditory evoked fields. The simulation, which was repeated 100

times, is based on a real gain matrix computed with a three-

shell boundary element model using 4699 cortical sources

with fixed orientation (normal to the cortical surface), and

a 306-channels Elekta Neuromag Vectorview system (Elekta

Neuromag Oy, Helsinki, Finland) with 102 magnetometers

and 204 gradiometers. The sampling rate was set to 1 kHz

and we restricted the analysis to the time window from

60 ms to 150 ms. We generated single trials by activating two

dipolar sources, one in each transverse temporal gyrus, with

Gaussian functions peaking at 100 ms and 110 ms with a peak

amplitude of 55 nAm and 45 nAm, Xsim. Background activity

was generated by ten dipolar sources placed randomly on the

cortical surface. Each dipole was activated with filtered white

noise with a peak amplitude of 100 nAm. The filter coefficients

were determined by fitting an auto-regressive process of order

5 to real baseline MEG data [20]. By averaging 100 single tri-

als, the SNR of the evoked response, which we compute using

spatial whitened data as SNR = ‖Msignal‖
2
Fro/‖Mnoise‖

2
Fro, was

set to SNR = 2.63± 0.46. Source reconstruction was com-

puted without orientation constraint, where none of the dipoles

used to generate the gain matrix was oriented perpendicularly

to the cortical surface. All methods were applied with different

regularization parameters λ given as a percentage of the

respective λmax, which is the smallest regularization parameter

leading to an empty active set [9]. We evaluate the source

reconstruction performance by means of the true and false

positives counts. We consider a source to be a true positive, if

its geodesic distance along the cortical surface from the true

source location is less than 1 cm. A value of 1 cm is what

would be considered an acceptable localization error for most

neuroscience applications. Moreover, we present the active

set size and the root mean square error in the sensor space,

RMSE = ‖GXsim −GX̂‖Fro. To evaluate the stability of the

reconstructed support, we compute Krippendorff’s alpha [56].

E. Experimental MEG data

We evaluate the performance of MxNE and irMxNE using

data from the MIND multi-site MEG study [57]–[59]. We use

two different data sets from one exemplary subject, auditory

evoked fields (AEF) and somatosensory evoked fields (SEF),

recorded using the 306-channels Elekta Neuromag Vectorview

system. A detailed description of the data and paradigms can

be found in [57]–[59]. For the AEF data set, we report results

for AEFs evoked by left auditory stimulation with pure tones

of 500 Hz. The analysis window for source estimation was

chosen from 50 ms to 200 ms based on visual inspection of the

evoked data to capture the dominant N100m component. For

the SEF data set, we analyzed SEFs evoked by bipolar electri-

cal stimulation (0.2 ms in duration) of the left median nerve. To

capture the main peaks of the evoked response and to exclude

the strong stimulus artifact, the analysis window was chosen

from 18 ms to 200 ms based on visual inspection. Following

the standard pipeline from the MNE software [60], signal

preprocessing for both data sets consisted of signal-space

projection for suppressing environmental noise, and baseline

correction using pre-stimulus data (from -200 ms to -20 ms).

Epochs with peak-to-peak amplitudes exceeding predefined

rejection parameters (3 pT for magnetometers, 400 pT/m for

gradiometers, and 150 V for EOG) were assumed to be af-

fected by artifacts and discarded. This resulted in 96 (AEF)

and 294 (SEF) artifact-free epochs, which were resampled to

500 Hz. The gain matrix was computed using a set of 7498

cortical locations, and a three-layer boundary element model.

The stability of the source reconstruction was tested using

a resampling technique. For each data set, we generated 100

random sets of epochs by randomly selecting 80% of all avail-

able epochs without replacement. The noise covariance matrix

for spatial whitening was estimated for each subsample using

pre-stimulus data (from -200 ms to -20 ms). We applied both

MxNE and irMxNE on the average of each random set without

orientation constraint. Due to the lack of a ground truth, the

source reconstruction performance is evaluated by means of

the Goodness of Fit (GOF) and the active set size. To compare

results with well established source reconstruction techniques,

we compute the dSPM solution [45] without orientation con-

straint and the RAP-MUSIC estimate [5] for both data sets

using the MNE-Python software [61]. For RAP-MUSIC, we

use single-dipole and two-dipole independent topographies to

address the problem of correlated sources [4]. A similar idea

is pursued e.g. by dual core beamformers [62]. The correlation

threshold was set to 0.95 as proposed by Mosher et al. [4]. The

rank of the signal subspace was determined by thresholding

the eigenvalues of the data covariance based on an estimate

of the noise variance. As we apply a spatial whitening, the

threshold was set to 1.

III. RESULTS

A. Simulation study

The results of the simulation study (100 repetitions) for

different regularization parameters (from 5 to 100 % of λmax)

are presented in Fig. 1. The source space contained 4699

sources and one source per hemisphere was active indicated
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Fig. 1: Results of the simulation study based on simulated AEFs for MCE, MxNE and irMxNE. The source space contained a

total of 4699 sources and the simulation was repeated 100 times: (a) mean true positive count (left A1), (b) mean true positive

count (right A1), (c) mean false positive count, (d) mean active set size, (e) mean RMSE without (solid) and with (dashed)

debiasing, and (f) Krippendorff’s α.

by the horizontal dashed lines in Fig. 1a and b. True posi-

tive counts above this threshold indicate suboptimally sparse

source estimates, whereas counts close to zero indicate false

negatives. We can see that the irMxNE approach provides the

best support recovery. It allows to reconstructs single dipoles

in both regions of interest, whereas MCE and MxNE find

multiple correlated sources. Particularly for low values of

λ, MCE and MxNE overestimate the size of the active set

leading to a large number of false positives, whereas irMxNE

generates significantly less false positives. The mean active

set size confirms that irMxNE provides the sparsest result

of all three methods. The mean RMSE is shown in Fig. 1e.

While all methods profit from the debiasing procedure, the

effect on irMxNE is less pronounced compared to the other

methods indicating a reduced amplitude bias. The best result

is obtained with irMxNE. Krippendorff’s α indicates that the

support reconstructed with irMxNE is more stable compared

to MCE or MxNE. The source estimate is thus less dependent

on the epochs used for generating the evoked response.

B. Experimental MEG data

1) Auditory evoked fields: We first compare the perfor-

mance of the proposed BCD scheme for solving the weighted

MxNE with the Fast Iterative Shrinkage Thresholding Al-

gorithm (FISTA) [63], a proximal gradient method used in

[9]. Both methods were applied with and without active set

strategy. All computations were performed on a computer

with a 2.4 GHz Intel Core 2 Duo processor and 8 GB RAM.

The computation times as a function of λ are presented in

Fig. 2. The BCD scheme outperforms FISTA both with and

without active set strategy. Combining the BCD scheme and

the active set strategy reduces the computation time by a factor

of 100 and allows to compute the MxNE on real MEG/EEG

data in a few seconds. Since subsequent MxNE iterations are

significantly faster due to the restriction of the source space,

irMxNE also runs in a few seconds on real MEG/EEG source

localization problems.
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Fig. 2: Computation time as a function of λ for MxNE on

real MEG data (free orientation) using BCD and FISTA with

(solid) and without (dashed) active set strategy.

We applied MxNE and irMxNE (with and without

debiasing) with different regularization parameters λ to 100

AEF data sets generated by averaging randomly selected

subsets of epochs. The mean GOF around the N100m

component (from 90 ms to 150 ms) and the mean active set

size are presented in Fig. 3 as a function of λ. We can see

that the debiasing procedure has a strong effect on MxNE,

whereas the GOF of the irMxNE result is only slightly

improved indicating less amplitude bias. Debiased MxNE

and irMxNE yield similar GOFs with similar plateaus, but

irMxNE provides a sparser, i.e., simpler model.



7

10
20
30
40
50
60
70
80
90

100
M

e
a
n
 G

O
F

(a)

10 20 30 40 50 60 70 80 90 100
/ max (%)

0

5

10

15

20

25

A
ct

iv
e
 s

e
t 

si
ze

(b)

MxNE

irMxNE

Fig. 3: Mean GOF, and active set size for MxNE and irMxNE

without (solid) and with (dashed) debiasing for the AEF data.

The selection probability for all sources being, at least once,

part of the active set obtained with MxNE or irMxNE is shown

in Fig. 4. MxNE selects multiple sources with high probability

within each region of interest, which is a consequence of the

correlated design. The irMxNE approach is more selective and

provides sparser source estimates. Moreover, the number of

false positives, i.e., sources outside of the regions of interest,

is lower for irMxNE, particularly for low values of λ.

Fig. 4: Source selection probability for the AEF data set using

MxNE (left) and irMxNE (right). The plot is restricted to

sources that are active in at least one random subsample.

The colored patches on the inflated brain indicate regions of

interest based on anatomical labels (green, yellow, red). Source

indices, which are in the regions of interest, are highlighted

by corresponding color marks. The transversal temporal gyrus

is indicated in green.

Exemplary source reconstructions for debiased MxNE and

irMxNE are illustrated in Fig. 5. For comparison, we present

a RAP-MUSIC estimate based on single- and two-dipole

independent topographies [4], [5]. The maximum dSPM

score [45] per source is shown as an overlay on each cortical

surface. MxNE with λ/λmax = 60% shows activation in both

primary auditory cortices with main peaks around 110 ms

corresponding to the N100m component. The activation

on the right hemisphere is however split into two highly

correlated dipoles, which are partly located on the wrong

side of the Sylvian fissure. Increasing λ does not fix the

latter issue, since dipoles in the left primary auditory cortex

are eliminated before actually erasing spurious activity on

the right hemisphere. The loss of the active source in the

left auditory cortex is also indicated by the drop of the GOF

in Fig. 3. The size of the signal subspace for RAP-MUSIC

was estimated to be 50 by the thresholding procedure. Being

based on an empirical estimate of the data covariance,

this procedure tends to overselect the rank of the signal

subspace [5] and the RAP-MUSIC estimate depends on the

correlation threshold. With the setting proposed in [4], only

two independent topographies, a single- and a two-dipole

topography, yield sufficient subspace correlations. The dipoles

are reconstructed close to the primary auditory cortex on

both hemispheres. The GOF of the three-dipole model is

86.7%. Using single- and two-dipole topographies provides

better RAP-MUSIC estimates than using only single-dipole

topographies. The irMxNE with λ/λmax = 60%, which

converged after 10 iterations, reconstructs single dipoles in

both primary auditory cortices. Intuitively, the green and blue

sources, which are the strongest sources according to MxNE

with λ/λmax = 60%, are favored at the next iteration of

the reweighted scheme pruning out the source on the wrong

side of the Sylvian fissure present in the MxNE result. The

estimated source locations roughly match the peaks of the

dSPM estimate. The source estimate obtained with dSPM

or similar linear inverse methods (sLORETA, MNE, etc.)

is however spatially smeared. To reduce the smearing of

the dSPM estimate, one could increase the threshold, yet

it would make it time dependent and certainly too high

to see weaker sources. Alternatively, post-processing is

generally required, e.g. by defining regions of interest, to

improve interpretability. Note also that, in contrast to dSPM,

source amplitudes obtained with irMxNE are moments of

electrical dipoles expressed in nAm, which is similar to

dipole fitting procedures [2]. The GOF of the two-dipole

model obtained with irMxNE is 81.9% and thus only slightly

lower than the three-dipole model obtained with RAP-MUSIC.

2) Somatosensory evoked fields: We applied MxNE

and irMxNE (with and without debiasing) with different

regularization parameters to 100 averaged random subsets

of epochs of the SEF data set. The mean GOF and the

corresponding active set size for MxNE and irMxNE (with

and without debiasing) as a function of the regularization

parameter λ are shown in Fig. 6. We can see again that

irMxNE yields significantly sparser source estimates, which

however allow for a better GOF compared to MxNE. The

GOFs of the MxNE and irMxNE results with and without
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(a) MxNE with λ/λmax = 60% (b) MxNE with λ/λmax = 70%

(c) RAP-MUSIC (2 independent topographies) (d) irMxNE with λ/λmax = 60%

Fig. 5: Source reconstruction

results using AEFs evoked by

left auditory stimulation. The

estimated source locations for

MxNE (a, b), RAP-MUSIC (c)

and irMxNE (d), indicated by

colored spheres, and the cor-

responding time courses are

color-coded. The maximum of

the dSPM estimate per source,

which is thresholded for visual-

ization purposes, is shown as an

overlay on each cortical surface.

debiasing illustrate also that the irMxNE source estimates are

less biased in amplitude.
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Fig. 6: Mean GOF, and active set size for MxNE and irMxNE

without (solid) and with (dashed) debiasing for the SEF data.

Fig. 7 presents the selection probability for all sources,

which are non-zero in at least one MxNE or irMxNE estimate.

The irMxNE typically selects only one source per region of

interest for different values of λ. The number of false positives

is also significantly lower. These results confirm the findings

obtained from the AEF data set in section III-B1. The stability

analysis reveals also that the source in the ipsilateral secondary

somatosensory cortex (iS2) is less stable compared to the

contralateral sources, which might be caused by its relatively

weak field pattern [12].

Fig. 7: Selection probability for sources obtained with MxNE

(left) and irMxNE (right) for the SEF data. The plot is

restricted to sources that are active in at least one random

subsample. The colored patches on the inflated brain indicate

regions of interest based on anatomical labels (green, yellow,

red). Source indices, which are in the regions of interest, are

highlighted by corresponding color marks.

Fig. 8 presents source reconstruction results obtained with
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MxNE and irMxNE for selected regularization parameters. As

in section III-B1, we show a RAP-MUSIC estimate and added

the maximum dSPM score per source as an overlay to all

subfigures. MxNE with λ/λmax = 40% reconstructs dipoles

in the contralateral primary somatosensory cortex (cS1), the

contralateral and ipsilateral secondary somatosensory cortices

(cS2 and iS2), and the posterial parietal cortex (cPPC). The

source locations roughly coincide with the main peaks of

the dSPM estimate. As for the AEF data set, the source

activation per region is split into several correlated dipoles.

An increase of the regularization parameter results in a loss of

physiologically meaningful source activity such as activation

in iS2, which is visible in the dSPM estimate. The relevance

of this activation is also indicated by the drop of the GOF in

Fig. 6. The signal subspace estimation for RAP-MUSIC yields

a signal subspace size of 43. Hence, the RAP-MUSIC estimate

depends on the choice of the correlation threshold. For our

settings, four independent topographies, two single- and two

two-dipole topographies, are above the subspace correlation

threshold. Dipoles are reconstructed in all relevant areas. The

activation in cS1 is split into several dipoles, probably due to

the fixed orientation source model applied in RAP-MUSIC.

The GOF of this six-dipole model is 82,6%. The RAP-

MUSIC estimate benefits from using single and two-dipole

topographies. The irMxNE approach with λ/λmax = 40%
converged after 14 reweightings. The resulting source estimate

contains four single dipoles representing activation in each of

the four regions. The GOF of the four-dipole model obtained

with irMxNE is 81.4% and thus higher than the GOF of the

corresponding MxNE estimate and only slightly lower than

the GOF of the six-dipole model obtained with RAP-MUSIC.

IV. DISCUSSION AND CONCLUSION

In this work, we presented irMxNE, an MEG/EEG in-

verse solver based on regularized regression with a non-

convex block-separable penalty. The non-convex optimiza-

tion problem is solved by iteratively solving a sequence of

weighted MxNE problems, which allows for fast algorithms

and global convergence control at each iteration. We proposed

a new algorithm for solving the MxNE surrogate problems

combining BCD and a forward active set strategy, which

significantly decreases the computation time compared to the

original MxNE algorithm [9]. This new algorithm makes the

proposed iterative reweighted optimization scheme applicable

for practical MEG/EEG applications. The approach is also

applicable to other block-separable non-convex penalties such

as the logarithmic penalty proposed in [22] by adapting the

definition of the weights in Eq. (5). The irMxNE method is

designed for offline source reconstruction, which is still the

main application of MEG/EEG source imaging in research and

clinical routine. However, we are aware of a growing interest

in real-time brain monitoring [64]. New techniques such as

parallel BCD schemes [51], clustering approaches [65], and

safe rules [66] can help to further reduce the computation

time. As proposed in [22], [26], the first iteration of irMxNE

is equivalent to computing the standard MxNE. Consequently,

the irMxNE result is at least as sparse as the MxNE estimate.

The iterative reweighting procedure can thus be considered

as a post-processing for MxNE improving source recovery,

stability, and amplitude bias. This was confirmed by empirical

results based on simulations and two MEG data sets. We

attribute this to the spatial correlation and the poor condi-

tioning of the forward operator in MEG/EEG source analysis.

An alternative approach to improve the conditioning of the

inverse problem based on clustering the columns of the gain

matrix is presented in [65], which however affects the spatial

resolution. The source locations reconstructed by irMxNE

roughly coincided with the main peaks of the dSPM estimate,

which demonstrate that the proposed inverse solver can present

a simple and easy-to-interpret spatio-temporal picture of the

active sources. The models reconstructed with RAP-MUSIC

provided a slightly higher goodness of fit, but contained more

active sources. We found that RAP-MUSIC benefits from

using single-dipole and two-dipole independent topographies.

The use of higher-order source models, which are limited

to a small number of correlated sources, however signifi-

cantly increases the computational complexity, particularly for

source spaces with high resolution. Approaches improving the

computation time of RAP-MUSIC are presented in [64]. In

contrast, irMxNE makes no assumption on the number of

correlated sources. Its computation time is not dramatically

affected by the resolution of the source space. Model selection

for sparse source imaging approaches, which amounts here

to choosing the regularization parameter, is a critical aspect.

Automatic approaches based on minimizing the prediction

error such as cross-validation tend to overestimate the number

of active sources and increase the false positive rate. Here,

we selected the regularization parameter based on the GOF

and the size of the active set. A similar procedure is used e.g.

in sequential dipole fitting. The development of an automatic

model selection procedure for the proposed inverse solver is

future work. In particular, approaches maximizing model sta-

bility are an interesting alternative [67], [68]. Model selection

is however a general issue in MEG/EEG source reconstruction.

In our comparison with RAP-MUSIC, we found e.g. that

the size of the signal subspace and the correlation threshold

have a strong influence on the final source estimate. Due

to the limited number of samples, we can only obtain an

empirical estimate of the data covariance, which involves the

risk of overestimating the size of the signal subspace using the

thresholding procedure. The correlation threshold is used to

switch to higher order source models and to account for noise

components in the signal subspace. Similar to MxNE, irMxNE

assumes that the locations of active sources is constant over

time. Hence, it should be applied to data, for which this

model assumption is approximately true, e.g., by selecting

intervals of interest or applying a moving window approach.

To go beyond stationary sources, the reconstruction of non-

stationary focal source activation can be improved by applying

sparsity constraints in the time-frequency domain such as in

the TF-MxNE [20]. Preliminary results on the application of

non-convex regularization for such models based on iterative

reweighting procedures were presented in [69]. The irMxNE

solver is available in the MNE-Python package [61].
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(a) MxNE with λ/λmax = 40% (b) MxNE with λ/λmax = 55%

(c) RAP-MUSIC (4 independent topographies) (d) irMxNE with λ/λmax = 40%

Fig. 8: Source reconstruction

results using SEFs evoked by

electrical stimulation of the

left median nerve. The es-

timated source locations for

MxNE (a, b), RAP-MUSIC (c)

and irMxNE (d), indicated by

colored spheres, and the cor-

responding time courses are

color-coded. The maximum of

the dSPM estimate per source,

which is thresholded for visual-

ization purposes, is shown as an

overlay on each cortical surface.
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