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THE ITERATIVE TRANSFORMATION
METHOD: NUMERICAL SOLUTION
OF ONE-DIMENSIONAL PARABOLIC
MOVING BOUNDARY PROBLEMS
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98166 Messina, Italy

(Received 25 April 2000)

The main contribution of this paper is the application of the iterative transformation method to
the numerical solution of the sequence of free boundary problems obtained from one-
dimensional parabolic moving boundary problems via the implicit Euler's method. The
combination of the two methods represents a numerical approach to the solution of those
problems. Three parabolic moving boundary problems, two with explicit and one with implicit
moving boundary conditions, are solved in order to test the validity of the proposed approach.
As far as the moving boundary position is concerned the obtained numerical results are found
to be in agreement with those available in literature.

Keywords: Iterative transformation method; Implicit Euler's method; Parabolic moving
boundary problems

AMS Subject Classi®cations: 65L10, 65M06, 35R35

C.R. Category: G1.8

1. INTRODUCTION

A moving boundary problem is a nonlinear initial-boundary value problem

with a moving boundary whose position has to be determined as part of the

solution. Parabolic moving boundary problems describe many phenomena

of interest arising in physical and biological sciences, engineering,

*e-mail: rfazio@dipmat.unime.it
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metallurgy, soil mechanics, decision and control theory, etc. (see [6]). We

consider the following class of moving boundary problems of the parabolic

type

@2u

@x2
� @u

@t
� f �x; t� on t> 0; 0< x< s�t�

��t�u�0; t� � ��t� @u

@x
�0; t� � �t�; �2 � �2 6� 0;  6� 0

u�s�t�; t� � p
ds

dt
�t�

@u

@x
�s�t�; t� � q

ds

dt
�t�

s�0� � a; u�x; 0� � r�x� for 0� x� a

0 for a< x

�
�1:1�

where f ( � , � ) and r( � ) are given functions of their arguments, p and q are

given constants and s(t) is the unknown moving boundary. For a more

general class of problems see the last section. The problem (1.1) is nonlinear

because s(t) depends on the initial and boundary data so that a

superposition principle cannot be valid (that was pointed out by Landau

[15]). As a consequence obtaining analytical solutions for problems

belonging to the class (1.1) is a di�cult task (see [6, pp. 101 ± 139]).

Several numerical methods have been proposed for the solution of

moving boundary problems. Let us list here those of more frequent use:

®nite di�erence, ®nite element, isotherm migration, of lines, enthalpy,

truncation (alternating phase) and variational inequalities. For the funda-

mental aspects of those methods, as well as for an extended bibliography,

we refer the interested reader to [6, pp. 163 ± 282]. As far as the performance

of di�erent methods is concerned the introductory remark in a survey

paper by Fox [13] is pertinent: ``Problems of the same general nature can

di�er enough in detail to make a good method for one problem less

satisfactory and even mediocre for another almost similar problem''. This

point of view justi®es the development of so many di�erent numerical

methods.

At a more general level the numerical approaches for the solution of

moving boundary problems belong to three main classes, namely front-

tracking, ®xing-domain and ®xed-domain. In a front-tracking approach the

position of the moving boundary is computed explicitly by the numerical

algorithm. The method of lines is an example of the front-tracking strategy.

On the other hand in a ®xed-domain or in a ®xing-domain approach the

moving boundary can be recovered a posteriori from the solution properties.

2 R. FAZIO
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For a ®xing-domain approach a variable transformation is used in order to

reduce the problem to a computational domain. The isotherm migration

method belongs to the ®xing-domain class. A weak formulation of the

problem is usually used for the ®xed-domain approach. The enthalpy

method is within the ®xed-domain class.

Our approach belongs to the front-tracking class. We reduce a moving

boundary problem to a sequence of free boundary problems by an implicit

Euler's method and we apply the iterative transformation method in order

to transform each free boundary problem to initial value problems. The

combination of the two methods represents a numerical approach to the

solution of one-dimensional moving boundary parabolic problems.

The iterative transformation method was introduced within the similarity

analysis of moving boundary problems in [7, 9]. A constructive formulation

of the method is given in [10]. The iterative method was introduced as an

extension of the non-iterative transformation method de®ned in [12]. In

several cases of interest, the similarity analysis allows us to reduce a moving

boundary problem to a free boundary problem governed by ordinary

di�erential equations. As an example the application of the iterative

transformation method to a hyperbolic moving boundary problem is

considered in [8]. Here, instead of working out a preliminary similarity

analysis, which has a limited range of application, we apply the implicit

Euler's method. We have a strong motivation for using an implicit method:

for explicit methods stability arguments become important and that restricts

the choice of space and time steps and thus the achievable accuracy.

A di�erent application of the iterative transformation method, namely to

the numerical solution of boundary value problems on in®nite intervals, is

developed in [11].

The moving boundary conditions in (1.1) are called explicit when p 6� 0 or

q 6� 0 (implicit otherwise) . In the case of explicit moving boundary

conditions it is possible to apply a ®nite di�erence formula to ®nd a ®rst

approximation of the moving boundary position at the next time step. Of

course that is not possible when implicit moving boundary conditions are

prescribed. Moreover, existence and uniqueness of solution is easier to prove

for problems with explicit boundary conditions than for problems with

implicit ones (see [20]). Problems with implicit moving boundary conditions

arise in di�usion of oxygen and lactic acid in tissues [14], in the theory of

di�usion ¯ames [3], and in statistical decision theory [2].

Our numerical approach, which is de®ned in the next section, can be

applied to problems with either explicit or implicit moving boundary

conditions. The three test problems considered in Section 3 concern with
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two problems involving explicit and with a problem involving implicit

moving boundary conditions. In Section 4 we discuss the details of a positive

numerical test of convergence for the classical Stefan's problem. There, by

using the second and third test problems, we point out the role played by the

truncation error. Moreover, the numerical results obtained by our approach

are found to be in agreement with those reported in literature. Finally, in the

last section, we propose the extension of our approach to a wide class of

parabolic moving boundary problems where the governing di�erential

equation and the moving boundary conditions are also nonlinear and may

depend on the free boundary and its derivative.

2. THE NUMERICAL APPROACH

An implicit Euler's approximation of the time derivatives allows us to

reduce the problem (1.1) to the following sequence of free boundary

problems

d2Un

dx2
� Un ÿ Unÿ1

�t
� f �x; n�t�

�Un�0� � � dUn

dx
�0� � Un�sn� � p

sn ÿ snÿ1
�t

dUn

dx
�sn� � q

sn ÿ snÿ1
�t

s0 � a; U0�x� �
r�x� for 0� x� a

0 for a< x

�
�2:1�

where Un(x) � u(x, n�t) and sn � s(n�t) for n� 1, . . . ,N. Here and in the

following �t (�x) is the time (space) step size. It is not di�cult to ascertain

that for each value of n� 1, . . . ,N (2.1) represents, besides the term Unÿ1, a

particular case of the class of free boundary problems considered in [9]. As a

consequence the numerical solution of (2.1) can be obtained by an

appropriate use of the iterative transformation method de®ned there (see

also [10]).

Let us de®ne an ad hoc application of the iterative transformation method

to the numerical solution of (2.1). First, we introduce the modi®ed sequence

of free boundary problems

4 R. FAZIO
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d2Un

dx2
� hÿ2�=�Un ÿ h�1ÿ2��=�Unÿ1

�t
� h�1ÿ2��=�f �hÿ�=�x; n�t�

�Un�0� � �h�=�
dUn

dx
�0� � 

Un�sn� � h1=�p
hÿ�=�sn ÿ snÿ1

�t

dUn

dx
�sn� � h�1ÿ��=�q

hÿ�=�sn ÿ snÿ1
�t

s0 � a; U0�x� �
r�x� for 0� x� a

0 for a< x

�
�2:2�

where h is a numerical parameter. The sequence of free boundary problems

(2.1) is recovered from (2.2) by setting h� 1. Moreover, in (2.2) the

governing di�erential equation and the two boundary conditions at sn are

invariant with respect to the stretching group of transformations

x� � ��x; s�n � ��sn; U�n � �Un; h� � ��h �2:3�
where ln � is the group parameter and � and � are arbitrary (but non-zero)

constants.

In order to solve (2.1) numerically we consider a value h�, set s�n � snÿ1
(but s�n � 0:5 if s0� 0), ®x values of � and � and integrate inwards on �0; s�n�
the governing di�erential equation with the invariant endpoint conditions in

(2.2) in order to ®nd the values U�n�0� and �dU�n=dx���0�. As a consequence

of the partial invariance of (2.2) with respect to (2.3) we can easily obtain

� � ��n�t�U�n�0� � ��n�t�h��=��dU�n=dx���0�
�n�t�

Un�0� � �ÿ1U�n�0�
dUn

dx
�0� � ��ÿ1 dU�n

dx�
�0�

sn � �ÿ�s�n h � �ÿ�h�:

�2:4�

The method is iterative because we iterate di�erent values of h� until we ®nd
( from (2.4)) the value of jhÿ1j within a pre®xed tolerance. To this end a

root-®nding method can be used. A further numerical integration allows us

to de®ne Un on [0, sn]. We remark that in the application of the iterative

transformation method to the numerical solution of the sequence of free

boundary problems (2.1) we are allowed to consider Unÿ1 (x) at the n-th

time step as an invariant with respect to (2.3). Moreover, the choice s�n �
snÿ1 is useful because Unÿ1 (x) is de®ned only on [0, snÿ1]. However, if

sn> snÿ1, then in order to de®ne Un on [0, sn] it is necessary to extend Unÿ1
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(x) outside of [0, snÿ1] and this can be done in the standard way by setting

Unÿ1(x)�Unÿ1(snÿ1) for snÿ1< x� sn.

3. THREE TEST PROBLEMS

In this section we report three test problems that have been used in literature

in order to validate di�erent numerical methods. The ®rst is the classical

Stefan's problem

@2u

@x2
� @u

@t
u�0; t� � 1 u�s�t�; t� � 0

@u

@x
�s�t�; t� � ÿ 1

S

ds

dt
�t� s�0� � 0; u�x; 0� � 0 for 0< x

�3:1�

where S is the Stefan's number. A reliable approximate similarity solution

for (3.1) is available in [9]. The moving boundary is given by s(t)�At1/2. If

S� 0.1 then A� 0.440033; this value of A is in agreement up to four decimal

places with that obtained analytically (by an asymptotic expansion). The

following variant of the Stefan's problem

@2u

@x2
� @u

@t
u�0; t� � ÿ1 u�s�t�; t� � 0

@u

@x
�s�t�; t� � ds

dt
�t� s�0� � 0:25; u�x; 0� � 4xÿ 1 for 0� x� 0:25

0 for 0:25< x

�
�3:2�

was considered by Rubinstein [19, pp. 380 ± 387]. The test problem (3.2) was

used by Rubinstein [19, pp. 380 ± 387] and by Asaithambi [1] to validate,

respectively, the method of integral equations and the Galerkin method. In

(3.1) and (3.2) explicit boundary conditions at the moving boundary are

given.

As a third test problem we consider the Meyer's formulation [17] of a

problem from decision theory [21]

@2u

@x2
� @u

@t
� 1

2t2
@u

@x
�0; t� � ÿ 1

2

u�s�t�; t� � 0
@u

@x
�s�t�; t� � 0 s�0� � 0; u�x; 0� � 0 for 0< x

�3:3�

Meyer used this problem to validate the combination of the method of lines

and of the invariant imbedding method. The original formulation of the
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problem (3.3) considered by Sackett has a singularity in the boundary data

at the initial time. To overcome this di�culty Sackett used a sophisticated

similarity transformation whereas Meyer applied a simple subtracting of the

singularity from the boundary data. In (3.3) the governing di�erential

equation is singular at the initial time and the moving boundary conditions

are implicit.

4. NUMERICAL RESULTS

In this section in order to simplify the exposition, we limit ourselves to

report only the numerical results related to the moving boundary position.

Concerning the numerical solution of (3.1) we used the available

similarity solution in order to perform a test of convergence as reported

in Table I.

Here the D notation indicates a double precision arithmetic and in the

following the E notation a simple one. Of course the results listed in Table I

were obtained with a constant ratio �t/�x. The convergence of the

numerical solution to the similarity solution as �x goes to zero is evident.

Moreover, the last line of Table I reports the errors measured in the root

mean square (rms) norm de®ned by

kekrms �
�XN

n�1
�s�n�t� ÿ sn�2=N

�1=2

:

TABLE I Convergence test for the numerical solution of (3.1) with S� 0.1.
We used �� 1, �� 1 and s�1 � 0:5

�x Similarity

t 1Dÿ2 5Dÿ3 2.5Dÿ3 1.25Dÿ3 solution

0.025 0.0496 0.069575
0.05 0.0701 0.0806 0.098394
0.1 0.0992 0.1139 0.1245 0.139151
0.2 0.1403 0.1611 0.1761 0.1860 0.196789
0.3 0.2089 0.2234 0.2326 0.241016
0.4 0.2277 0.2489 0.2629 0.2717 0.278301
0.5 0.2841 0.2976 0.3061 0.311150
0.6 0.2953 0.3157 0.3288 0.3372 0.340848
0.7 0.3447 0.3575 0.3658 0.368158
0.8 0.3519 0.3716 0.3841 0.3925 0.393577
0.9 0.3968 0.4091 0.4175 0.417452
1. 0.4016 0.4206 0.4327 0.4413 0.440033

kekrms 0.0470 0.0282 0.0157 0.0080
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This is of interest because we can see that the rate of convergence is nearly

linear and that 1% of accuracy is achieved by the results obtained with

�t� 0.025.

As far as the numerical solution of (3.2) is concerned some representative

numerical results are reported in Table II. For this particular problem we

decided to solve the free boundary problem at the ®rst time step for several

values of �t instead of proceeding further in the numerical integration. This

because the non-zero initial conditions for the moving boundary problem

represent a test problem for the applicability of the iterative transformation

method already at the ®rst time step. For this problem reliable numerical

results are obtained anyway. That holds because of a negligible truncation

error in the considered range of time steps (cf. the last three columns of

Tab. III below).

The values listed by Rubinstein were determined with the maximum

relative error of 1%. In relation to problem (3.2) Rubinstein was also

interested in the determination of the time T de®ned by the equation

s(T )� 0.5. A simple linear extrapolation of our results in Table II provides

the value T� 0.122699, which can be compared with T� 0.12092 obtained

in [19, p. 386].

TABLE II Comparison of numerical results for the problem
(3.2). We used �� 1/2, �� 2, s�1 � 0:25 and �x� 1Eÿ3

Rubinstein [19, p. 386] This work

t s(t) �t s(�t)

0.01 0.281347 0.01 0.285078
0.02 0.307925 0.02 0.313744
0.04 0.354519 0.04 0.360851
0.06 0.395471 0.06 0.399998
0.08 0.432581 0.08 0.434228
0.1 0.466754 0.1 0.465035

TABLE III Comparison of numerical results for the problem (3.3). We used
�� 1/2, �� 2, s�1 � 0:5 and �x� 1Eÿ4

Sackett [21] Meyer [17] This work

t s(t) s(t) s(t) �t s(�t)

0.05 0.0025 0.0025 0.05 0.0025
0.1 0.009994 0.0100 0.0100 0.1 0.0100
0.2 0.039805 0.0398 0.0399 0.2 0.0399
0.3 0.088548 0.0886 0.0893 0.3 0.0900
0.4 0.154261 0.1543 0.1571 0.4 0.1583
0.5 0.234175 0.2343 0.2420 0.5 0.2451
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As far as the problem (3.3) is concerned the most signi®cant numerical

results obtained by our approach are listed in Table III.

From the last three columns of Table III we notice that the ®rst three

determinations of the moving boundary position obtained with di�erent

values of the ®rst time step coincide with those computed by proceeding

further in the numerical integration. However, owing to the truncation error

the di�erence in the two approximations increases at greater values of time.

For the numerical solution of the initial value problems involved in the

application of the iterative transformation method we used the classical

fourth order Runge-Kutta method. Moreover, we applied appropriate

termination criteria [18] in order to stop the iterations obtained by the

secant method. We always identi®ed a particular interval where the func-

tion �ÿ�h�ÿ1 changes sign (bracketing). Therefore, some preliminary

numerical experiments were used for the results reported in the Tables

above.

5. EXTENSION AND DISCUSSION

The numerical approach proposed so far can be extended to a class of

parabolic moving boundary problems more general than (1.1). In fact, let us

consider the following class of problems

@2u

@x2
� f

�
x; t; s;

ds

dt
; u;

@u

@x
;
@u

@t

�
on t> 0; 0< x< s�t�

��t�u�0; t� � ��t� @u

@x
�0; t� � �t�; �2 � �2 6� 0;  6� 0

u�s�t�; t� � p

�
t; s�t�; ds

dt
�t�
�

@u

@x
�s�t�; t� � q

�
t; s�t�; ds

dt
�t�
�

s�0� � a; u�x; 0� �
�

r�x� for 0� x� a

0 for a< x

�5:1�

where f( � , � , � , � , � , � , � ), p( � , � , � ,) and q( � , � , � ) are given functions of their

arguments. The class (5.1) encompasses several problems of interest; not

only problems governed by a nonlinear di�erential equation (see, as an

example, [16]), but also problems where the free boundary or its derivative

are involved in the governing equation (see, for instance, [4, 5]).
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The implicit Euler's method allows us to obtain from (5.1) the following

sequence of free boundary problems

d2Un

dx2
� f

�
x; n�t; sn;

sn ÿ snÿ1
�t

;Un;
dUn

dx
;
Un ÿ Unÿ1

�t

�
on 0< x< sn

��n�t�Un�0� � ��n�t� dUn

dx
�0� � �n�t�

Un�sn� � p

�
n�t; sn;

sn ÿ snÿ1
�t

�
dUn

dx
�sn� � q

�
n�t; sn;

sn ÿ snÿ1
�t

�
s0 � a; U0�x� �

r�x� for 0� x� a

0 for a< x :

�
As far as the application of the iterative transformation method is concerned

we have to consider instead of (2.2) the following modi®ed sequence of free

boundary problems

d2Un

dx2
� h�1ÿ2��=�f

�
hÿ�=�x; n�t; hÿ�=�sn;

hÿ�=�sn ÿ snÿ1
�t

;

hÿ1=�Un; h
��ÿ1�=� dUn

dx
;

hÿ1=�Un ÿ Unÿ1
�t

�
��n�t�Un�0� � ��n�t�h�=� dUn

dx
�0� � �n�t�

Un�sn� � h1=�p

�
n�t; hÿ�=�sn;

hÿ�=�sn ÿ snÿ1
�t

�
dUn

dx
�sn� � h�1ÿ��=�q

�
n�t; hÿ�=�sn;

hÿ�=�sn ÿ snÿ1
�t

�
s0 � a; U0�x� �

r�x� for 0� x� a

0 for a< x

�
for which the iterative transformation method is de®ned exactly as in

Section 2. Hence, it can be easily realized that our approach doesn't depend

on the linearity of the governing di�erential equation and of the moving

boundary conditions.

On the other hand, it is easily seen that the proposed approach, in its

present form, is applicable only to one-phase one-dimensional parabolic

moving boundary problems. The proposed approach is not suitable for the

10 R. FAZIO

I119T001071 . 119
T001071d.119



numerical treatment of two-phase, multi-dimensional or mushy regions

problems.

As a conclusion we have shown the applicability of the iterative

transformation method to solving the sequence of free boundary problems

obtained via the application of the implicit Euler's method to one-

dimensional parabolic moving boundary problems.
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