
The IUB Rugbot: an intelligent, rugged mobile

robot for search and rescue operations

Andreas Birk, Kausthub Pathak, Soeren Schwertfeger and Winai Chonnaparamutt

International University Bremen (IUB)

Campus Ring 1, 28759 Bremen, Germany

a.birk@iu-bremen.de, http://robotics.iu-bremen.de/

Abstract— The paper describes the IUB Rugbot, a rugged
mobile robot that features quite some on-board intelligence. The
robot and its software is the latest development of the IUB rescue
robot team, which is active since 2001 in this research area.
IUB robotics takes an integrated approach to rescue robots. This
means that the development of the according systems ranges
from the basic mechatronics to the high-level functionalities for
intelligent behavior.

FINAL VERSION

@incollection{

rugbot_ssrr06,

Author = {Birk, Andreas and Pathak, Kausthub

and Schwertfeger, Soeren and

Chonnaparamutt, Winai},

Title = {{The IUB Rugbot: an intelligent,

rugged mobile robot for search and

rescue operations}},

BookTitle = {IEEE International Workshop on

Safety, Security, and Rescue Robotics

(SSRR)},

Publisher = {IEEE Press},

Year = {2006} }

I. INTRODUCTION

Rescue robotics features an interesting combination of al-

lowing basic research while being application oriented [1]. The

focus for the application oriented systems is on rugged, simple

platforms that mainly act as mobile cameras [2][3][4]. On the

other hand, any bit of intelligence in the sense of perception

and world-modeling capabilities up to autonomy is very useful

not only from a basic research but also from an application

perspective. Researchers in the rescue community accordingly

work on issues like mapping or fully autonomous victim

detection [5] and navigation as well as exploration [6], [7],

[8]. The work on the so to say intelligence side of the robots

even ranges up to multi robot teams [9] [10]. But advanced

locomotion systems are also a topic of research in the rescue

community. Examples include jumping [11] and snake robots

[12]. Last but not least, the human machine interaction as well

as the operator station itself are of scientific interest [17].

The IUB rescue robot team is interested in the basic research

aspects of the field while at the same time trying to develop

fieldable solutions. IUB robotics is engaged in this research

area since 2001 and it has participated in many RoboCup

rescue robot competitions that gave valuable feedback about

the performance of the systems [13] [14] [15] [16]. The latest

development of the group is the so-called Rugbot (figure

1) that provides a sturdy, rugged platform suitable for real

applications while providing significant computation power

and sensor interfaces to allow basic research on the many open

questions in this field and robotics in general.

Fig. 1. Two Rugbots in the IUB rescue arena.

The rest of this paper is structured as follows. Section two

gives an overview of the hardware of the Rugbots. In section

three the basic software aspects are presented. Section three

gives a more in detail description of the higher level software

onboard the robots. The software on the operator station is

presented in section four. Section five concludes the paper.

II. THE ROBOT HARDWARE

As mentioned in the introduction, IUB robotics takes an

integrated approach to rescue robotics. The group develops

the system from scratch, ranging from the electronics over

the mechanics up to the higher software levels. The Rugbot

robot type (figure 1) is the latest result of these efforts. The

early versions of the Rugbot were used in the RoboCup 2005

competition in Osaka [13]. The Rugbot is based on the so-

called CubeSystem, which is a collection of hardware and

software components for fast robot prototyping [18], [19]. The

CubeSystem consists of the RoboCube controller hardware

[20], a special operating system called CubeOS [21] and

libraries for common robotics tasks [22].



Fig. 2. The support flipper of Rugbot is based on a special ball screw design
that can take large forces.

Fig. 3. On the left, a RoboCube processor-, bus- and I/O-board stacked
together, leading to a compact controller hardware. On the right, the structure
of a CubeSystem application including hard- and software.

Fig. 4. Rugbot going up stairs.

The Rugbots are tracked vehicles. They are relatively

lightweight (about 35 kg) and have a small footprint (ap-

proximately 50 cm x 50 cm). They are very agile and fast in

unstructured environments and they also perform well on open

terrain. This holds for tracked vehicles in general [23][24],

which can also be seen by their popularity in the RoboCup

rescue league, for example in the robots of Team Freiburg,

Robhaz, Casualty or IRL [25] [26] [27] [28]. A special feature

of rugbot is an active flipper mechanism (figure 2) that allows

to negotiate rubble piles and stairs (figure 4). Rugbots have

significant computation power in form of an onboard PC and

they can be equipped with a large variety of sensors. The

standard payload includes a laser-scanner, ultrasound sensors,

four cameras, one thermo camera, and rate gyros. The onboard

software is capable of mapping, detection of humans and fully

autonomous control, teleoperation is in varying degrees is also

supported [29]. The on-board batteries allow for 2.5 to 3

hours of continuous operation including moving through rough

terrain.

III. OVERVIEW OF THE RUGBOT’S INTELLIGENT

SOFTWARE

The intelligent software on the Rugbots is designed to

support the whole range from teleoperation to full autonomy.

Its lowest layer resides on the RoboCube where a hard realtime

system provides all functionalities for the basic motor and

motion control [29]. The so to say higher intelligence func-

tionalities are implemented on an additional high-performance

PC on the robot. Finally, an operator station in form of an

additional PC is used to provide the essential data to a human

operator. Nevertheless, it is important to note that the operator

station purely serves this purpose and that all crucial software

for the run to run is implemented on board the robot itself.

In addition to the core higher level software on the robot

as well as on the operator station, which is describe in more

detail in the following sections, the group engages in several

basic research activities. These include work on a special GUI

for adjustable autonomy [30], mapping of large areas with

multiple robots [31] [32], and exploration under the constraints

of wireless networking [7] [33].

IV. THE ON-BOARD SOFTWARE

A. Robot Server

The robot-server is a multi-threaded program running at

about 10 Hz. on a Linux computer mounted on the robot.

It has been coded in C++. All system-wide constants like

port numbers, resolutions, etc., are read at startup from a

configuration file. The various tasks performed by this process

are:

• Operator GUI interaction: The NIST RCS framework

[34] has been used to handle communication between

the robot-server and the operator GUI. This framework

allows data to be transferred between processes running

on the same or different machines using Neutral Message

Language (NML) memory buffers. All buffers are located

on the robot computer, and can be accessed by the

operator GUI process asynchronously. A schematic of the

various buffers used is shown in Fig. 6.

• Communication with the robot drive: As mentioned be-

fore, the IUB robotics group has developed a collection

of hardware and software components for fast robot

prototyping called the CubeSystem. The three main parts

of this system are:

1) RoboCube: This is an embedded controller family

based on the MC68332 processor.

2) CubeOS: An operating system family.

3) RobLib: a library with common functions for

robotics. These functions include motor speed com-

mands, odometry computations, and control of ac-

cessory hardware like flipper and lights.



Fig. 5. Two maps of large buildings generated by multiple robots. On the left, a map from 6 robots running in simulation. On the right, a result based on
the real world data of 4 robots.

Drive Commands:

Motor speeds,

Flipper Actuation

Robot Pose Data

Laser RF Data

Map data

Auxilliary

Commands:

Mapping,

Autonomy, Lights
Operator GUI

Autonomy status

Robot PC

Operator PC

N
M

L
S
e
r
v
e
r

L
a
y
e
r

Robot-server

Cube System

Fig. 6. Communication between the robot-server and operator-GUI using
NML buffers.

The robot-server uses serial communication to transfer

operator drive commands from the NML buffer to the

Cube system.

• Sampling sensors: The IUB Rugbot is equipped with sev-

eral onboard sensors. Some of these are briefly described

in the following:

1) Laser Range Finder: A HokuyoURG04-LX has

been used [36]. It has an angular field of view of

240
o and angular resolution of 0.36

o. The range

accuracy is ±10 mm.

2) Gyro: An XSense MTi 3DOF gyro [37] as been

used. It has a static accuracy of 0.5
o in roll/pitch

and 1
o in heading direction. The robot-server uses

the gyro in polling mode to recalibrate the Cube

system’s odometry heading direction. This tech-

nique enables the creation of satisfactory maps using

odometry alone, without the use of scan-matching.

Please also refer to the description of mapping

below.

• Mapping: The robot-server process can run several map-

ping algorithms in separate threads for comparison.

Whenever new pose and LRF data becomes available, all

the mapping threads are notified. The map data is trans-

ferred via NML buffers to the operator GUI, which can

switch between available maps. Currently two mapping

algorithms have been tested:

– A basic occupancy-grid ray-tracing algorithm which

uses LRF and odometry data. The odometry heading

direction is corrected using the gyro data as men-

tioned earlier.

– A Grid based particle filter SLAM algorithm devel-

oped by Grisetti et al [39].

B. Cameras

Several static webcams are mounted on the robot to give

the operator a good view of the robot’s surroundings. The

streaming of camera data from the robot to the GUI is not

handled inside the robot-server using NML. Instead, separate

palantir [38] server processes are spawned for each static

webcam.

Additional fexibility is provided by a centrally mounted

Panasonic KX-HCM280 pan-tilt webcam with optical zoom.

The control of this camera is done directly by the operator

GUI, using an http based protocol.

V. THE OPERATOR STATION SOFTWARE

The operator hardware consists of a PC or a Laptop running

Linux. Additionally a Gamepad is attached to the computer

via USB. The main operator software has a graphical user

interface to provide information and interact with the operator.

Alternatively a text-only operator may be used.

A. Design Decisions

The GUI consist of a single window that is using Qts Grid

Layout. This way the contents scale with the window size

and the GUI is thus optimally usable with different resolu-

tions. Former operator implementations were using multiple

windows for video streaming, map display and others. This

turned out to be difficult to use and quite error-prone.

The design of the GUI itself was inspired by the idea, that

the information needed for the actual driving of the robot

should be on the top of the window while all additional

information should be in the lower parts. Additional design



Fig. 7. The standard GUI for controlling an IUB rescue robot.

decisions had to be made since the available space inside the

window became short quite fast. Controls that are used quite

rarely (like ”connect to”) went into the menu and a tab was

introduced to hold the map, a big video display and the log.

B. Main control

The most important controls are located in the attention-

heavy top left corner of the window. Here the user can change

the movement status of the robot by choosing between ”no

movement”, ”joystick movement” and ”autonomy”. The option

to (temporally) switch off the mapping when driving in heavy

terrain and the light switch are located underneath this control.

C. Driving information

The driving information are presented at the top of the

window. In the center the streamed video from the front

camera is displayed with a resolution of 320 times 240 pixel.

The view of the left and the right track which are usefull to

circumscribe obstacles are displayed on the left respectively

right side of the front view with a resolution of 160 times

120 pixel. A modified palantir client is used for this video

streaming which supports stretching over the streams actual

resolution. This client also has a context menu which allows

to disconnect, reconnect or connect to a different server.

In the top right corner different status information of the

robot are displayed. The joystick position determining the

speed is shown for each track as well as a bar indicating the

resistance the motors have to overcome. This is usefull for stall

detection. Two displays for the roll and the pitch are shown

below those bars. The roll is indicated in the left one while

the pitch of the robot is represented on the right. Additionally

the current position of the flipper is displayed, taking the pitch

into account which allows the user to easily estimate the flipper

angle compared to flat ground.

D. Secondary information

In the bottom part of the window information that are of less

importance during driving the robot are displayed. On the left

side the latest laser range finder scan and the infrared camera

are shown. The infrared camera uses the same palantir client

as the front and track views. It is used to find hidden victims

and to get more information about a victims status. The laser

scanner canvas is usefull to find out whether the robot will

fit through a passage or not and to get a feeling about the

surrounding of the robot since it has an opening angle of 280

degrees.

The biggest widget in the GUI is the tab located on the

bottom left. The tab is used to display detailed information

with great resolution which is, on the other hand, not used

that often. The following tabs are used or in development.

• The Panasonic viewer Some robot have a Panasonic KX-

HCM280 webcam mounted. This is a pan-tilt camera

which supports a real zoom. A client software running in

its own thread has been written to control the camera and

to receive and paint the pictures. The camera is mainly

controlled via the gamepad which is described later.

• The log Here all messages coming from the robot, the

operator software or the user are displayed. There are

three different priority levels: Error messages, warnings

and notices. The purelylog is filterable by topics and



sortable by each row. The time that elapsed between two

log entries is displayed when marking these entries.

• The maps The maps are generated and stored in the robot.

Every two seconds the latest map is transferred to the

operator using the NML buffer. This update is indicated

by a slight colorchange of the map background. The map

is zoomable (with the + and - keys) and scrollable. A right

click on the maps creates a new entry in the victim list.

The position of the victim can be corrected with drag and

dropping the number on the map. A victim dialog will

pop up when doubleclicking on the victim number.

Currently two different maps are shown. The first map

was generated using the odometry information which

were corrected using the gyro. The second map uses the

Grisetti algorithm. A third map is being developed that

implements scan matching.

• Another tab that is being developed is used to display

three dimensional sensor data gathered by a 3D laser

scanner.

E. The victim dialog box

In this dialog box the user can fill in information that

he gathered for victims. After doubleclicking on the victim

number the following information about the the victim can

be filled in: tag, form, motion, Heat, sound, Co2, state (an

editable pull down box), situation (an editable pull down

box) and annotations. The dialog shows the map and has two

checkboxes. If the ”Save Image” checkbox is activated, the

current images of the front view and the thermo camera are

saved (or updated) to include them in the report. The ”Bug me

again” checkbox is currently not used. There are three options

to save the dialog box. ”Confirm” saves the victim, ”reject”

deletes it and ”unsure” doesn’t override the victim report files

but keeps the current information.

F. The victim report

The victim report is generated using static tex files together

with automaticly generated ones. It features an overall map.

The user has to generate this overview map whenever he

thinks he has a good map. For that he has to go to the GUI

menu, select mapping ”Mapping”, and press ”Save Map”. The

software then automatically rotates the map to the north and

saves it as a png file in the report directory. Once a victim is

confirmed in the victim dialog a tex file is written containing

all the information the user provided. This way no victim is

lost if the GUI should happen to crash. A script in the report

folder automatically generates the pdf report using pdflatex

and opens it with acroread.

G. Steering the robot

A game pad is used to steer the robot. For that reason the

game pad thread is only started when a connection to a robot

is active. The analog joystick is used for smoothly driving

the robot. For that values for the x and y axis are converted

into speed commands for the left and right tracks. The slider

is used to lower the maximum speed thus enabling precise

movement in narrow environments.

The gamepad features several buttons. The two right most

buttons (Z and C) are used for the flipper movement. The upper

button (Z) moves the flipper up and the lower button (C) moves

it down. The S button is used to stop the flipper. There are

two buttons on the back of the joystick. The right one is used

to switch between the tabs in the GUI. This is a convenient

way of switching between the map tabs for orientation and the

Panasonic camera tab when searching for victims. The other

buttons are for the control of the Panasonic pan tilt zoom

camera. Pressing left back button while moving the joystick

pans and tilts the camera. The two middle buttons (Y and B)

are for zooming in and out. The Top left button (X) homes

the camera, which means that the camera will look forward

and the standard zoom will be applied.

H. GUI implementation

The GUI uses Trolltechs cross-platform Qt Class Libraries.

Several threads are running in parallel to handle the massive

amount of data. Each camera view has its own thread (we use

a modified palantir client to lower refresh rate which saves

bandwith. Palantir uses socket connections. The Panasonic

webcam view also runs in its own thread using the cameras

HTTP protocol. All other data is send via the nml using the

nml data buffers. The buffers are read within an own thread

and mutexes and signals are used to process the data in other

threads. The joystick is, last but not least, controlled by a

separate thread, too.

I. Text-mode operator

The GUI inherits its basic functions from an operator class

which only has text output. It is thus possible to steer the

robot using the joystick without any GUI. In this case the

camera images could be displayed (supposedly also on another

computer) using the palantir client or a webbrowser for the

Panasonic webcam.

VI. CONCLUSION

The IUB Rugbot was introduced in this paper. It is the latest

development from IUB robotics in the field of rescue robotics.

The robot is very rugged and mobile as it is intended to

support fieldable solutions. At the same time it offers substan-

tial processing power and on-board sensors. This allows the

development of advanced higher level software as presented

in this paper.

REFERENCES

[1] A. Birk and S. Carpin, “Rescue robotics - a crucial milestone on the
road to autonomous systems,” Advanced Robotics Journal, vol. 20, no. 5,
2006.

[2] M. M. R. Murphy, J. Casper and J. Hyams, “Potential tasks and research
issues for mobile robots in robocup rescue,” in RoboCup-2000: Robot

Soccer World Cup IV, ser. Lecture notes in Artificial Intelligence 2019,
T. B. Peter Stone and G. Kraetszchmar, Eds. Springer Verlag, 2001.

[3] R. G. Snyder, “Robots assist in search and rescue efforts at wtc,” IEEE

Robotics and Automation Magazine, vol. 8, no. 4, pp. 26–28, 2001.



[4] A. Davids, “Urban search and rescue robots: from tragedy to technol-
ogy,” Intelligent Systems, IEEE [see also IEEE Intelligent Systems and

Their Applications], vol. 17, no. 2, pp. 81–83, 2002, tY - JOUR.

[5] S. Bahadori, L. Iocchi, D. Nardi, and G. Settembre, “Stereo vision based
human body detection from a localized mobile robot,” in Proceedings.

IEEE Conference on Advanced Video and Signal Based Surveillance,

2005., 2005, pp. 499–504, tY - CONF.

[6] D. Calisi, A. Farinelli, L. Iocchi, and D. Nardi, “Autonomous navigation
and exploration in a rescue environment,” in Safety, Security and Rescue

Robotics, Workshop, 2005 IEEE International, 2005, pp. 54–59, tY -
CONF.

[7] M. Rooker and A. Birk, “Communicative exploration with robot packs,”
in RoboCup 2005: Robot Soccer World Cup IX, ser. Lecture Notes in
Artificial Intelligence (LNAI), I. Noda, A. Jacoff, A. Bredenfeld, and
Y. Takahashi, Eds. Springer, 2006.

[8] M. N. Rooker and A. Birk, “Combining Exploration and Ad-Hoc
Networking in RoboCup Rescue,” in RoboCup 2004: Robot Soccer

World Cup VIII, ser. Lecture Notes in Computer Science, D. Nardi,
M. Riedmiller, and C. S. e. al., Eds. Springer-Verlag GmbH, 2005.

[9] A. Farinelli, G. Grisetti, L. Iocchi, S. Lo Cascio, and D. Nardi,
“Design and evaluation of multi agent systems for rescue operations,” in
Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003

IEEE/RSJ International Conference on, vol. 4, 2003, pp. 3138–3143
vol.3, tY - CONF.

[10] A. Farinelli, L. Iocchi, D. Nardi, and V. Ziparo, “Task assignment with
dynamic perception and constrained tasks in a multi-robot system,”
in Robotics and Automation, 2005. Proceedings of the 2005 IEEE

International Conference on, 2005, pp. 1523–1528, tY - CONF.

[11] H. Tsukagoshi, M. Sasaki, A. Kitagawa, and T. Tanaka, “Design of
a higher jumping rescue robot with the optimized pneumatic drive,”
in Robotics and Automation, 2005. Proceedings of the 2005 IEEE

International Conference on, 2005, pp. 1276–1283, tY - CONF.

[12] T. Kamegawa, T. Yamasaki, and F. Matsuno, “Evaluation of snake-like
rescue robot ”kohga” for usability of remote control,” in Safety, Security

and Rescue Robotics, Workshop, 2005 IEEE International, 2005, pp. 25–
30, tY - CONF.

[13] A. Birk, S. Carpin, W. Chonnaparamutt, V. Jucikas, H. Bastani,
I. Delchev, I. Krivulev, S. Lee, S. Markov, and A. Pfeil, “The IUB 2005
rescue robot team,” in RoboCup 2005: Robot Soccer World Cup IX,
ser. Lecture Notes in Artificial Intelligence (LNAI), I. Noda, A. Jacoff,
A. Bredenfeld, and Y. Takahashi, Eds. Springer, 2006.

[14] A. Birk, “The IUB 2004 rescue robot team,” in RoboCup 2004: Robot

Soccer World Cup VIII, ser. Lecture Notes in Artificial Intelligence
(LNAI), D. Nardi, M. Riedmiller, and C. Sammut, Eds. Springer,
2005, vol. 3276.

[15] A. Birk, S. Carpin, and H. Kenn, “The IUB 2003 rescue robot team,”
in RoboCup 2003: Robot Soccer World Cup VII, ser. Lecture Notes in
Artificial Intelligence (LNAI), D. Polani, B. Browning, A. Bonarini, and
K. Yoshida, Eds. Springer, 2004, vol. 3020.

[16] A. Birk, H. Kenn, M. Rooker, A. Akhil, B. H. Vlad, B. Nina, B.-
S. Christoph, D. Vinod, E. Dumitru, H. Ioan, J. Aakash, J. Premvir,
L. Benjamin, and L. Ge, “The IUB 2002 rescue robot team,” in
RoboCup-02: Robot Soccer World Cup VI, ser. LNAI, G. Kaminka,
P. U. Lima, and R. Rojas, Eds. Springer, 2002.

[17] T. Kimura and M. Ishizaki, “Development of an operating board for
rescue robots considering safety and misuse of operators,” in Safety,

Security and Rescue Robotics, Workshop, 2005 IEEE International,
2005, pp. 66–68, tY - CONF.

[18] A. Birk, “Fast robot prototyping with the CubeSystem,” in Proceed-

ings of the International Conference on Robotics and Automation,

ICRA’2004. IEEE Press, 2004.

[19] A. Birk, H. Kenn, and T. Walle, “On-board control in the RoboCup
small robots league,” Advanced Robotics Journal, vol. 14, no. 1, pp. 27
– 36, 2000.

[20] ——, “RoboCube: an “universal” “special-purpose” hardware for the
RoboCup small robots league,” in 4th International Symposium on

Distributed Autonomous Robotic Systems. Springer, 1998.

[21] H. Kenn, CubeOS, The Manual. Vrije Universiteit Brussel, AI-
Laboratory, 2000.

[22] A. Birk, H. Kenn, and L. Steels, “Programming with behavior pro-
cesses,” International Journal of Robotics and Autonomous Systems,
vol. 39, pp. 115–127, 2002.

[23] F. Hardarsson, “Locomotion for difficult terrain,” Mechatronics Lab,
Dept. of Machine Design, Tech. Rep., 1997.

[24] J. Y. Wong, Theory of Ground Vehicle, 3rd edition. John Wiley and
Sons, Inc., 2001, ch. 4.5.

[25] A. Kleiner, B. Steder, C. Dornhege, D. Meyer-Delius, J. Prediger,
J. Stueckler, K. Glogowski, M. Thurner, M. Luber, M. Schnell, R. Kuem-
merle, T. Burk, T. Bräuer, and B. Nebel, “Robocuprescue - robot league
team rescuerobots freiburg (germany),” in RoboCup 2005: Robot Soccer

World Cup IX, ser. Lecture Notes in Artificial Intelligence (LNAI),
I. Noda, A. Jacoff, A. Bredenfeld, and Y. Takahashi, Eds. Springer,
2006.

[26] W. Lee, S. Kang, S. Lee, and C. Park, “Robocuprescue - robot league
team ROBHAZ-DT3 (south korea),” in RoboCup 2005: Robot Soccer

World Cup IX, ser. Lecture Notes in Artificial Intelligence (LNAI),
I. Noda, A. Jacoff, A. Bredenfeld, and Y. Takahashi, Eds. Springer,
2006.

[27] M. W. Kadous, S. Kodagoda, J. Paxman, M. Ryan, C. Sammut,
R. Sheh, J. V. Miro, and J. Zaitseff, “Robocuprescue - robot league team
CASualty (australia),” in RoboCup 2005: Robot Soccer World Cup IX,
ser. Lecture Notes in Artificial Intelligence (LNAI), I. Noda, A. Jacoff,
A. Bredenfeld, and Y. Takahashi, Eds. Springer, 2006.

[28] T. Tsubouchi and A. Tanaka, “Robocuprescue - robot league team
Intelligent Robot Laboratory (japan),” in RoboCup 2005: Robot Soccer

World Cup IX, ser. Lecture Notes in Artificial Intelligence (LNAI),
I. Noda, A. Jacoff, A. Bredenfeld, and Y. Takahashi, Eds. Springer,
2006.

[29] A. Birk and H. Kenn, “A control architecture for a rescue robot ensuring
safe semi-autonomous operation,” in RoboCup-02: Robot Soccer World

Cup VI, ser. LNAI, G. Kaminka, P. U. Lima, and R. Rojas, Eds.
Springer, 2003, vol. 2752, pp. 254–262.

[30] A. Birk and M. Pfingsthorn, “A hmi supporting adjustable autonomy of
rescue robots,” in RoboCup 2005: Robot Soccer World Cup IX, ser.
Lecture Notes in Artificial Intelligence (LNAI), I. Noda, A. Jacoff,
A. Bredenfeld, and Y. Takahashi, Eds. Springer, 2006.

[31] A. Birk and S. Carpin, “Merging occupancy grid maps from multiple
robots,” IEEE Proceedings, special issue on Multi-Robot Systems, ac-
cepted.

[32] S. Carpin, A. Birk, and V. Jucikas, “On map merging,” International

Journal of Robotics and Autonomous Systems, vol. 53, pp. 1–14, 2005.
[33] M. Rooker and A. Birk, “Combining exploration and ad-hoc networking

in robocup rescue,” in RoboCup 2004: Robot Soccer World Cup VIII, ser.
Lecture Notes in Artificial Intelligence (LNAI), D. Nardi, M. Riedmiller,
and C. Sammut, Eds. Springer, 2005, vol. 3276, pp. pp.236–246.

[34] The NIST Real-Time Control Systems Library.
http://www.isd.mel.nist.gov/projects/rcslib/, 2006.

[35] A. Birk, The Cube System. IUB Robotics Website. http://robotics.iu-
bremen.de/CubeSystem/, 2006.

[36] Hokuyo Scanning Laser Range Finder. http://www.hokuyo-
aut.jp/products/urg/urg.htm, 2006.

[37] XSens MTi 3 DOF Gyro. http://xsens.com, 2006.
[38] Palantir: A multichannel interactive streaming solution.

http://www.fastpath.it/products/palantir, 2006.
[39] G. Grisetti, C. Stachniss, and W. Burgard. Improving Grid-based

SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals
and Selective Resampling. Proc. of the IEEE Int. Conf. on Robotics

and Automation, 2005. http://www.informatik.uni-freiburg.de/ stach-
nis/research/rbpfmapper


