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SUMMARY

This paper presents a new algorithm to compute the distribution of the strain energy release rate along
the crack front for three-dimensional cracks (e.g surface cracks). The algorithm is economical and
accurate. The algorithm is illustrated via two-dimensional and three-dimensional examples including a
surface crack in a cylinder under internal 'pressure and sieJe-grooved compact-test specimens. It is shown,
via specific examples, that only a single, self-similar virtual crack extension is necessary to accurately
compute the strain-energy release-rate distribution along the crackfront.

INTRODUCTION

The finite-element method is well established as a tool for determination of stress intensity

factors in fracture mechanics. Isoparametic e l e m ~ n t s are among the, most frequently used

elements due to their ability to model the geometry of complex domains. The quarter-point
element 1,2 became very popular in linear elastic fracture mechanics (LEFM) because it can

accurately represent the singularities in those problems. Its use has been extended to other
problems as well. 3

Two main areas have received attention in fracture mechanics analyses: (i) to model

accurately the singular behaviour near the crack front; (ii) to compute the stress intensity

factor from the solution to the finite-element model of the problem. The present study deals

with the second problem, with emphasis on the use of isoparametric elements. The method

presented here has its origins in the virtual crack extension method of Hellen 4 and the stiffness

derivative method of Parks. 5 But in contrast to the VCEM, the Jacobian derivative method

presented herein does not require an arbitrary choice of a 'virtual' 6xtension that in the VCEM

becomes an 'actual' extension. We take advantage of the isoparametric formulation to

compute the strain energy release rates directly from the displacement field.

The Jacobian derivative method is a tr,ue post-processor algorithm. In thiS method the stress

intensity factors are computed from an independently obtained displacement solution.

Therefore, the displacement solution can be obtained with a program without any fracture

mechanics capability, although adequate representation 'of the singular behaviour near the

crack front is necessary. The displacement field may even be obtained by experimental

techniques. Furthermore, the proposed technique does not require computation of stresses,
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(1)

thus reducing computational cost and increasing accuracy. The Jacobian derivative method

als.o provides the distribution of the strain energy release rate along the crack front, G = G(s),

without any two-dimensional hypothesis (here s denotes a curvilinear co-ordinate along the

crack front).
The present study is motivated by delamination-type problems in composite laminates.

These problems exhibit planar growth - that is, the crack grows in its original plane. However,

the shape of the crack may vary with time. For example, an initially elliptic crack usually grows

with variable aspect ratio. Therefore we cannot in general assume self-similar crack growth.

The algorithm presented is simple, inexpensive, reliable and robust. The following literature

forms a background for the present study.

Numerous methods for the calculation of stress-intensity factors have appeared over the

years. The direct methods are those in which the stress-intensity factors are computed as a part

of the solution. The direct methods require special elements that incorporate the crack tip

singularity. 6 The indirect methods are those in which the stress-intensity factors are computed

from displacements or stresses that are obtained independently. The more popular indirect

methods are: extrapolation of displacements or stresses around the crack tip 7 and the nodal
force method. 8

,9 Integral metho'ds like .the J-integral method,IO the modified crack closure
integral, 11,12 and the virtual crack extension method 4

,5 are also used. The indirect methods can

be used with conventional elements or with special elements that incorporate the singularity

at the crack front.

The virtual crack extension method (VCEM) is appealing bec'ause it does not require

c0!TIputation of stresses, and therefore is inexpensive and accurate. However, the VCEM

requires two computations for two slightly different configurations. Improved versions of the

VCEM 4 or the stiffness derivative method 5 eliminate the second run but require the

specification of a 'virtual' crack extension (VCE), a small quantity that must be chosen
arbitrarily. Rounding errors may appear if the VCE is too small, and badly distorted elements

may result if the VCE is too large. 4

The virtual crack extension method postulates that the strain energy release rate can be
computed as

0(5) = au
oa

where U is the strain energy and a is the representative crack length. In the actual
implementation of VCE, however, one approximates equation (1) by the quotient aU/da; in

the limit da ~ 0 gives the desired value of G.

The Jacobian derivative method proposed here computes G(s) according to equation (1)

exactly. The method does not require the approximation of the derivative, and therefore the

choice of the magnitude of the 'virtual' crack extension does not arise. The concept has been
already applied in other fields. 13 Similar but different methods have been developed. 1 4 ~ 17 The

basic idea of the method can be summarized as follows. In the isoparametric formulation the
geometry and the solutions are'approximated with the same interpolation (or finite elements).

Therefore, the total potential energy depends both on the displacements and on the nodal

co-ordinates that ultimately represent the shape of the domain. Once the displacements have

been found for a fixed configuration, the potential energy depends .only on the nodal

co-ordinates of the boundary. Consequently, we can compute the strain energy release rate due

to a virtual crack extension simply by differentiating with respect to the nodal co-ordinates on
,the crack front. The nodal co-ordinates can. be treated as variables in the isoparametric
formulation of the problem. In the following Section we formally develop this idea.
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The object of the algorithm is to compute the strain energy release rate O(s) by equation (1).

Consider the total potential functional,

ll= 10 ([j aij deij) dO+ 10 Ji'Ui dn+ Lo li'ni dS (2)

Without loss of generality we consider a linear elastic material for which the strai:n energy U is

(3)

(4)

(5)

In the finite-element method the potential energy is approximated as

ll:;::uT[L ~ BTDB dn]u+ w

where· D is the constitutive matrix, B is the strain-displacement matrix, W is the work

performed by external loads, and u is the vector of nodal displacements.

The solution of the problem is obtained using the principle of virtual displacements (or the

minimum total potential energy):

arr = 0
au

Since the approximate potential energy is a function of the nodal displacements u and the crack

length a, we have

(6)

where

(7)

Assuming that no body forces are present, no forces are applied to the surfaces of the crack,

and the fixed-grip end condition (see appendix 6 of Reference 19 for an extended discussion)

holds during the virtual crack extension, we obtain

and

aTI=au=0
aq aq

Using equations (5), (8) and (9) in equation (6), we obtain

an = an = ~ [uT[r ! BTDB dO]· uJ
aa aq aq Jn 2

or

(8)

(9)

(10)
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where ne is a typical finite element. The indicated integration is carried out over the master
element (see Reddy I8):

(11)

Interchanging the order of integration and differentiation, which is possible because u is kept

constant "during the differentiation, we obtain

G = ! b UT[ r ~(BTDB 1 JI d~ d l1]UJ
2 e JOe aq

The integrand in equation (12) can be expanded as follows:

where

(12)

(13)

(14)

The strain displacement matrix B can be written in terms of the matrix of shape function <P as

and therefore

aB aJ- 1

-"=- til
aq aq

Consider the identity

Differentation with respect to a yields

0= oJ-
1

J +J-10J
aq aq

or

oJ-
1
= -J-1 oJ J- 1

aq aq

Substituting equation (19) in equation (16), we obtain

gquation (14) takes the form

:q [BTDB] = - [J- 1
:: BfDB-BTD[J-l :: B]

(15)

(16)

(17)

(18)

(19)

(20)

(21)

Finally, combining equations (21) and (13), and inserting the result into equation (11), we
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obtain the expression for the strain-energy release-rate,

G = ~ ~ u
T

[ 10. [( -BTDB - BTDB) I JI + BTDB 01: 1
] dr ds]U(22)

where u'is the displacement vector, known from the finite-element solution, and

B= [J- 1
:: B] (23)

The derivatives of the Jacobian must be computed as (note that oJ/aq = oj/do since J is

independent of u)

OXi OYi dZi
L: cPi,r a ; L: cPi,r a ; L: cPi,r a
i q i q i q

aJ aXi aYi aZi

aq
- L: cPi,s a ; L: cPi,s a ; L: cPi,s a (24)

i q i q i ' q

~ ax· ~ aYi ~ OZi
LJ cPi,t ~; LJ cPi,t -a ; LJ cPi,t -;-

i vq i q i uq

where (r, S, t) are the local co-ordinates of the isoparametric element, (Xi, Yi, Zi) are the global
co-ordinates of the nodes of the element and the vector

v = [OXi 0Yi aZi ]
oq' oq' oq (25)

is the input vector that indicates the direction and shape of the virtual crack extension;
aIJ IIoq is evaluated similarly.19 It is worth noting that the summation in equation (22)

extends only over the elements connected to the crack because there is 'no deformation of the

elements far away from the crack; that is, oJ/oq = 0 for elements not connected to the crack.

The evaluation of equation (22) requires the displacements ~ at the nodes of the

(isoparametric) elements surrounding the crack. The elements used in the post-processor can

be coded independently of those used in the finite-element program employed to obtain the

displacements. At least in principle, they do not need to be of the same type. In this paper,

however, both the main finite-element program and the post-processor use isoparametric
quarter-point elements.

COMPUTATIONAL ASPECTS

In order to apply the method we must specify the direction of the virtual crack extension

(but not its magnitude because it is a virtual crack extension). We give the direction of the VeE

at least for each node on the crack front. However, for some meshes it is convenient to also

use the mid-side nodes of the elements surrounding the crack front. Beyond that, any number

of nodes can be used as long as they surround the crack front. The Jacobian derivative method

uses the elements connected to these nodes to compute the strain energy release rate. Therefore
the cost of the solution grows-with the number of elements involved. But this cost is negligible

compared to the cost of the finite-element analysis of the complete structure. Usually the
solution is insensitive to the number of "'elements involved in the post-processing and only the

crack tip elements need to be used.
All virtual crack extension methods rely on the displacement field obtained for the original

crack shape. Therefore the virtual crack extension must be such that it preserves the shape of
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the crack. If the shape of the crack were to change, the nature of the singularity would change

significantly and the solution for the original shape would be of no help in predicting the new

situation. For two-dimensional problems, this means that the direction of the VeE is that of
the crack itself. For three-dimensional problems two aspects need to be considered. First, the
VCE must lie on the plane of the crack. This is a natural extension of the two-dimensional
argument. It does not mean that the .crack cannot grow out of its plane. It just means that
we are unable to compute anything, else with just one solution for the original shape. Second,
the VeE must have the shape of the original crack. Once again, it does not seem right to

pretend to change the shape of the crack when we only have the 'solution for one shape.
However, deviations to this premise have been reported in the literature with success. It is
probable that no big errors are introduced violating the later requirement because the nature
of the singularity supposedly does not change significantly as long as the crack remains in its
original plane. The second requirement does not mean that the crack .cannot grow with
variable aspect ratio. Even more, we may be able to predict the direction of the growth based
on the distribution of energy release rate along the crack front.

Since the Jacobian derivative method is a post-processor algorithm, we are tempted to use
it with several probable shapes for the VCE. However, we have found that this is unnecessary.
Just specifying a self-similar VCE we are able to compute the stress energy release rate
distribution along the crack front of a curved crack. The Jacobian derivative method computes
the contribution to the strain-energy release-rate G(s) element by element. Computation of
G(s) along the crack front is explained in the three-dimensional applications presented in the
following Section.

APPLICATIONS

In order to demonstrate the applicability of the proposed technique we present several
numerical examples. Since it is computationally very expensive to use very refined meshes for
three-dimensional problems we use coarse meshes in all the examples. We use collapsed,
quarter-point elements around the crack tip 1- 3 and quadratic isoparametric elements

elsewhere.

Two-dimensional problems

We use a series of two-dimensional meshes with 17 quadratic elements and 62 nodes (see
FiguJ;e 1) to study two problems:

(a) a plate with a single-edge crack
(b) a plate with a central crack.

The two cases differ only in the boundary conditions. In both cases, the load is uniform,
applied as equivalent loads at the edge away from the crack. Symmetry along the crack line

is exploited to model only one half of the specimen. We assume that a plane stress condition
holds. -

A three-dimensional analysis, performed for comparison, provides almost exactly the same
result as the two-dimensional model.

The present finite-element solutions are compared with the solutions presented by Paris and
Sih. 2o The results are tabulated in the form of correction factors to the stress intensity factor
in an infinite medium ko. Therefore the applicable stress intensity factor is k = k o* f(alb), with
ko = ao(a1r) 1/2. Table I contains the results for a plate with a single-edge crack. The plate has



THE JACOBIAN DERIVATIVE METHOD

L

b~
Figure 1. Two-dimensional finite-element mesh for plates with various through-the-thickness cracks

Table I. Values of f( alb) for a
plate with single-edge crack

alb JDM Gross Bowie

0·2 1·19 1·19 1·20

~ r0·4 1·38 1·37 1·37
0·6 1·86 1 ~66 1·68 a 1
0·8 2·14 2·12 2·14 1--2b--f
1·0 2·83 2·82 2·86

Table II. Values of f(alb)
for a plate with central crack

JDM Hellen

alb LIW= 1 LIW= 1

0·1 1·02 1·02

~ 10·2 1·06 1·05
0·3 1·13 1·12
0·4 1·23 1·21 1--2b--f
0·5 1·34 1·33
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length 2L, width 2b = Wand a crack of length a on one side. The finite-element solution is
compared with the solutions presented in Reference 20. The agreement is excellent even for a
coarse mesh. Table II contains the results for a square plate with at crack a the centre. The
plate has length 2L, width 2b = 2W and a crack of length 2a. The present finite-element
solution is compared with the solutions of Paris and Sih 20 for LI W = ex:> and the finite-element
results of Hellen4 for ·square plates. The agreement between the two finite-element solutions
is e-xcellent even for a coarse mesh.

Three-dimensional problems

Surface crack in a cylinder. Results are presented for a thick cylinder of internal radius
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~ Crack Surface

Figure 2. Detail of the cracked area of the cylinder with external crack. Only part of the mesh is shown. Hidden lines
have been removed

R i = 29.8 mm, thickness t = 5 mm, length 2b = 200 mm, subjected to internal pressure P. A
surface crack is located longitudinally on the outer surface. The shape of the crack is that of
-a segment of a circle (see insert in Figure 3 with 0 = 2.3 mm, Ie = 13.6 mm. Kaufmann et of. 21

presented experimental and numerical results for this particular crack shape.
A mesh with 275 elements and 4107 degrees of freedom is used to obtain the displacement

field around the crack front. A layer of 22 collapsed, quarter-point elements 1,2 surround the

c r ~ c k front. Quadratic isoparametric elements model the rest of the specimen. Detail of the
mesh around the crack front is shown in Figure 2. Four segments labelled Sl to S4 divide one
half of the crack front. On each segment, four collapsed elements surround the crack front.
The mesh becomes coarse rapidly toward the main portion of the cylinder.

The virtual crack extension direction is specified so as to produce a self-similar growth of
the "crack. All the nodes of the elements surrounding the crack front are used in the VeE.

These elements are those in the inner layer next to the crack front (see Figure 2). Therefore,
for this example, the algorithm uses the two layers of elements surrounding the crack front
to compute the strain energy release rate.

The Jacobian derivative method computes the contribution to the strain-energy release rate
element by element. Next, we add the contributions to the strain energy release rate of all the
elements that surround one sector (8;) of the crack front at a time (see Figure 2).

Then we divide this value by the length of the crack front covered by the corresponding
sector (8i) to obtain" the distribution of the strain energy release rate along the crack front.

In order to compare the results with others, we transform G(s) to K(s) by means of either
a plane strain or plane stress assumption, whichever is appropriate:

plane stress: K(s) = jIEG(s)}

plane strain: K(s) = J(~~~~]
The distribution of K(s) is shown in Figure 3 for the plane strain assumption, along with
results from Kaufman et af. 21 The results are normalized by the stress intensity factor K o at
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cP = 1r/2 for an elliptical crack embedded in an infinite body subjected to a uniform stress

K. - 2R1p Ir 'Ira J
0- R5 - Rl ~ II + 1·464 (a/c)l.65

Kaufman et ale 21 computed the stress intensity factor using the plane strain assumption and

the method of Reference 7. In our case', the distribution of O(s) is obtained directly from the

three-dimensional analysis without any two-dimensional assumption. The solutio'n by the

present method closely agrees with that presented in Reference 21.

Side-grooved compact test specimens. It is well known that the compact test specimen shows
a small variation of the stress intensity factor along the crack front. 22,23 However, if the sides

of the crack are grooved (see Figure 4) the stress intensity factor has an important variation

through the thickness. Reference 24 presents numerical results and experimental·evidence that

the stress intensity factol; grows considerably at the grooved side.
The geometry of the specimen is shown in Figure 4. Owing to symmetry only a quarter of

the specimen is modelled. A finite-'element mesh of 370 quadratic elements with 1985 nodes is

uniformly refined toward the side of the specimen and toward the crack front. 3-D collapsed,
quarter-point elements surround the crack front. Only elements surrounding the crack front

1.5 ,.---------------.

1.0

o
JA

"J4
0.5 f - ~

__ JDM .(present study)
aaDaa Kaufmann et all

0.0 - t ! n T T T T ~ r T n " I l ' T ! " ' 1 T ' M T n T ' ! ' I r r ! " , , " , " ' I T I ' : r ' r T n " I r r n i
0.0 0.2 0.4 9.6 0.8 1.0

2t/11"

Figure 3. Stress intensity factor distributions along the crack front of an external surface crack on a cylinder under
internal pressure

L8
0-1

~w~ I
1----'.25 w~

Figure 4. Side and front view of the 50070 side-grooved compact-test specimen; B = 0·5 W, a == 0·6 W
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2.0

50"

0.0 ~ r n T l r w : r f l ~ r T I " ! " l ' f T ' I " I " I " ' I T I ' ~ " ' " ' ~ I : ! ' " " I T ' I T ~
0.0 0.2 0.4 /0.6 0.8 1.0

2x B

Figure 5. Through-the-thickness distribution of the stress intensity factor normaiized with respect to the boundary
collocation solution 25 for-the smooth specimen x, 12· 5070 slide-grooved * ,25070 side-grooved d and 50070 side

grooved D. Solid lines from JDM· and symbol markers from Reference 24

are used in post-computation by the JDM. The plane-strain equations are used to transform

the strain energy distribution along the crack front to a stress intensity factor distribution. The

results are normalized with respect to the 2-D boundary collocation solution. 25

The thickness· distribution of the stress intensity factor along the crack front for compact

test specimens with and without grooved sides are shown in Figure 5 for a = 0 -6 Wand

B = 0 -5 W. The solid lines represent the results of the present study (JDM) and symbol

markers are taken from Figure 4 of Reference 24. The maximum value for the smooth

specimen differs by less than 0-2070 from the value reported in Reference 24 for a = O· 5 W.

The agreement is excellent, except perhaps for the 50070 side-grooved specimen, where

differences in· the finite-element mesh and in the Poisson ratio may have more influence than

in the other cases. Although tbe Poisson ratio was not reported in Reference 24 its effect on
the stress intensity factor is small, at least for the two-dimensional problem 25. In this study

we used: v = 0·33 and E= 10 7
• This example further demonstrates the applicability of the

JDM to accurately evaluate the stress intensity factor distribution along the crack front of 3-D

fractures.

CONCLUSIONS

A novel method of computing energy release rates and stress intensity factors is described and

its application to 2-D and 3-D problems is illustrated via specific examples. The Jacobian

derivative method (JDM) developed herein keeps all the advantages of the indirect methods

while adding new enhancements. Being an indirect method, it can be used with displacements

obtained with a variety of techniques. In particular, even experimental techniques can be used.

The method does not require costly mesh refinements, and it is not mesh-sensitive. Unlike the

VCEM, it does not require the specification of a small crack extension, which makes the JOM

a more robust algorithm. Its applicability for three-dimensional curved cracks is demonstrated.

Application to delaminations in composite materials along with refined plate theories is
reported in Reference 19.
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