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Amorphous pseudocapacitive nanomaterials are highly desired in energy storage applications for their disordered crystal
structures, fast electrochemical dynamics, and outstanding cyclic stability, yet hardly achievable using the state-of-the-art
synthetic strategies. Herein, for the first time, high capacitive fiber electrodes embedded with nanosized amorphous
molybdenum trioxide (A-MoO3-x) featuring an average particle diameter of ~20 nm and rich oxygen vacancies are obtained via
a top-down method using α-MoO3 bulk belts as the precursors. The Jahn-Teller distortion in MoO6 octahedra due to the
doubly degenerate ground state of Mo5+, which can be continuously strengthened by oxygen vacancies, triggers the phase
transformation of α-MoO3 bulk belts (up to 30μm long and 500 nm wide). The optimized fibrous electrode exhibits among the
highest volumetric performance with a specific capacitance (C

V
) of 921.5 F cm-3 under 0.3 A cm-3, endowing the fiber-based

weaveable supercapacitor superior C
V
and E

V
(energy density) of 107.0 F cm-3 and 9.5mWh cm-3, respectively, together with

excellent cyclic stability, mechanical robustness, and rate capability. This work demonstrates a promising strategy for
synthesizing nanosized amorphous materials in a scalable, cost-effective, and controllable manner.

1. Introduction

Wearable devices, ranging from epidermal electronic skins
[1, 2], bendable displays [3, 4], weaveable memories [5],
smart textiles [6–8], and healthcare sensors [9, 10] to flexible
solar cells [11, 12] and nanogenerators [13, 14], are leading a
new electronic revolution and desperately demand for
matchable energy storage devices with superior volumetric
capacitance that can store and supply power efficiently.
Among all candidates, fiber supercapacitors (FSCs) are of
particular interest owing to their good flexibility, lightweight,
high wearing safety, and long servicing lifespan [15–18].
Many efforts have been paid to enhance the energy perfor-
mance of FSCs by incorporating pseudocapacitive nanoma-
terials, such as vanadium oxide (V2O5), manganese oxide
(MnO2), and molybdenum oxide (MoO3), due to their high

theoretical capacitances originated from the multivalent
redox centers [19–23]. Nevertheless, the aforementioned
materials suffer from sluggish ion/electron transportation
because of their highly crystalized structure with anisotropic
characteristics and wide bandgaps. In addition, the distinct
volume expansion during charge-discharge (ion deintercala-
tion-intercalation) results in rapid performance decay.
Therefore, the exploration of advanced electrode materials
with efficient charge storage capability is highly required.

As a typical transitional metal oxide, MoO3 possess high
theoretical specific capacitance due to the multielectron
transfer process during proton intercalation-deintercalation
[24, 25]. Compared with crystalline counterparts, nanosized
amorphous MoO3 (A-MoO3) are highly desired for their dis-
ordered structures, good chemical stability, high elasticity,
low internal energy, and large surface area, enabling isotropic
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ion-diffusion, enhanced electrochemical dynamics, excellent
mechanical robustness, and superior structure stability dur-
ing charge/discharge cycling [26]. Ideally, the synthesis of
A-MoO3 should be convenient with tunable compositions
(e.g., oxygen vacancies and hybridization), free of contami-
nation (e.g., surfactants) for eliminating possible blockage
of active sites, and scalable for industrial production. How-
ever, the currently utilized bottom-up strategies, for example,
solvothermal reaction [27, 28], electrochemical deposition
[26], and photochemical deposition [29], are subjected to
numerous issues, including (i) special attention needs be paid
to reaction environment (e.g., temperature) to stabilize the
metastable amorphous phase, (ii) nonuniform coating
resulted from unevenly distributed electric field on electrode
surface, (iii) rigorous experimental conditions, e.g., ultravio-
let illumination, (iv) possible contamination from organic
additives, and (v) complicated procedures which are not
suitable for massive preparation. Moreover, these methods
are incompatible with the state-of-the-art fiber-spinning
techniques [30, 31].

Herein, for the first time, high-performance fiber
electrodes embedded with nanosized A-MoO3-x featuring
an average particle diameter of 20nm and rich oxygen
vacancies are obtained via a newly developed top-down
strategy by directly phase transformation of α-MoO3 crys-
tals. The underlying mechanism for amorphization and
nanocrystallization is highlighted and attributed to the
strengthened Jahn-Teller distortion in MoO6 octahedra
arising from the doubly degenerate ground state of Mo5+.
The enlarged interfacial contact between A-MoO3-x and
rGO endues the obtained A-MoO3-x/rGO hybrid fiber an
ultrahigh C

V
of 921.5 F cm-3 under 0.3A cm-3 in 1M

H2SO4, enabling the assembled solid-state FSC superior
C
V

and E
V

of 107.0 F cm-3 and 9.51 mWh cm-3, respec-
tively, together with outstanding flexibility, cyclic stability,
and rate capability.

2. Results

When the degenerate orbitals in transition metal-based
octahedral complexes are occupied by an odd number of
electrons, the Jahn-Teller effect occurs through crystal
distortion in order to lower the overall energy. Herein, the
Jahn-Teller effect was employed for phase engineering of
α-MoO3 simply triggered by oxygen vacancies. α-MoO3
belts with dimensional features in micron-scale (Figure S1)
were synthesized via hydrothermal reaction between Mo
powder and hydrogen peroxide at 220°C for 15.0 h. The
as-synthesized MoO3 possess well-defined belt-like mor-
phology with a length of 5 to 30μm and a width of 200
to 500nm. The lattice spacings of ~0.36nm and ~0.39 nm
shown in Figure S2 are well indexed to (001) and (100)
planes of α-MoO3 [32]. The characteristic peaks in X-ray
diffraction (XRD) pattern (Figure S3a) match those of α-
MoO3 crystals with orthorhombic phase well (JCPDs: 05-
0508). In a typical experiment schematically illustrated in
Figure 1(a), α-MoO3 belts were hydrothermally reacted with
graphene oxide (GO) nanosheets in sealed glass capillaries
(~1mm in diameter) at 160°C for 6.0 h to achieve nanosized

A-MoO3-x and simultaneously obtain A-MoO3-x/rGO
hybrid fibers. As indicated in Figure 1(b), the resultant A-
MoO3-x/rGO hybrid fiber possesses a wrinkle surface with a
diameter of ~30.1μm. Although no observable particles can
be found under the cross-section view of A-MoO3-x/rGO
hybrid fiber (Figure 1(c)), C, O, and Mo are actually distrib-
uted uniformly, which was evidenced by the energy disper-
sive spectrometer (EDS). The fiber length was facilely
adjusted by the size of a microreactor, and the obtained long
A-MoO3-x/rGO hybrid fiber (Figure 1(d)) could be bent and
wound on a PTFE rod, demonstrating its good flexibility. The
resultant A-MoO3 nanoparticles (~20nm in diameter) are
evenly anchored on rGO nanosheets (Figure 1(e)), and the
amorphous phase is formed with very small crystalline
domains inside not completely transformed (Figures 1(f)–
1(h)). The closed diffraction rings with several highlight
points in the FFT pattern (Figure 1(h)) also suggest the exis-
tence of polycrystalline structure in the nanoparticles. This is
in good accordance with the XRD pattern (Figure S3b), in
which the characteristic peaks of α-MoO3 crystals disappear
after hydrothermal treatment and the broadened peak is
attributable to rGO. By contrast, the characteristic XRD pat-
tern of the orthonormal phase maintains when α-MoO3 belts
were hydrothermally treated without any additives or with
graphite powder (Figure S4), indicating that GO is crucial
for the amorphization and collapse of α-MoO3 crystals.

Ex situ TEM images clearly reflect the morphology evolu-
tion of α-MoO3 belts during hydrothermal reaction with GO
from 0.5 to 10.0 h (Figure 2(a)), where the pristine α-MoO3
belts with large size were collapsed into small particles at
0.5 h and fully converted to nanosized A-MoO3-x at 6.0 h.
The size and phase transformation of α-MoO3 belts can also
be evidenced from the SEM images and XRD patterns of
intermediate state A-MoO3-x/rGO hybrid fibers (Figures S5
and S6). Furthermore, the chemical states and valance evolu-
tion of C and Mo were investigated by X-ray photoelectron
spectroscopy (XPS). The four deconvoluted peaks of C 1s
can be well ascribed to C-C (284.6 eV), C-OH (285.2 eV),
C-O (286.9 eV), and O=C-OH (288.5 eV) on GO nanosheets,
respectively, suggesting the existence of abundant oxygen-
containing groups (Figure 2(b)). As expected, upon hydro-
thermal treatment, the oxygen-containing groups were effec-
tively eliminated from GO nanosheets, restoring the high
electrical conductivity. The controllable manipulation of the
concentration of oxygen vacancies is observed from the
fine-scanned Mo 3d region. The characteristic peaks at
232.9 eV (Mo6+ 3d5/2) and 236.1 eV (Mo6+ 3d3/2) tend to
downshift (Figure 2(c)), suggesting that oxygen vacancies
are gradually generated with an increasing content of Mo5+

(16.1 at%, 21.6 at%, 24.7 at%, and 63.4 at% at 0.5 h, 4.0 h,
6.0 h, and 10.0 h, respectively) and α-MoO3 crystals are
reduced under hydrothermal condition. The reaction process
can be simplified as follows:

MoO3 �����!
−C−OH

Mo6+1−xMo5+x O3−x ð1Þ

The overall amorphization and collapse of α-MoO3
belts can be ascribed to the strengthened Jahn-Teller
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distortion, as illustrated in Figure 2(d). According to crystal
field stabilization energy of α-MoO3, lattice distortion hap-
pens in [MoO6] unit due to the destroyed symmetry of elec-
tron cloud, which is known as the Jahn-Teller effect [33,
34]. In addition, the electronic instability of Mo5+, which
can be created by introducing oxygen vacancies in α-
MoO3, will further enhance the Jahn-Teller distortion,
leading to changes in crystal and electronic structure
[21, 35]. The formation of oxygen vacancies and the defor-
mation of surface lattice were theoretically unveiled using
density functional theory (DFT), giving further evidence on
the strengthened Jahn-Teller distortion. As shown in
Figure 3(a), surface oxygen atoms can be classified into three
types, Ot, Oa, and Os, respectively, upon the differences of
the chemical state (chemical bonding or van der Waals
force). For example, Ot vacancy (V(Ot)) reserves the instinct
lattice symmetry with slight atomic displacement, whereas
V(Os) and V(Oa) induce large lattice deformation
(Figure 3(b)), e.g., 6% of lattice shrink for V(Oa) [36, 37].
Since the oxygen-containing groups, e.g., C–OH, C=O, and
-COOH, generally play a critical role in interface reactions,
by taking GO nanosheets into consideration, approximate
models of CH3OH and H2CO were adopted to elucidate the
formation of oxygen vacancies. Our calculation shows that
α-MoO3 has a strong affinity towards C-OH groups rather
than C=O, and the energy barrier for the linkage between
Mo atom and -OH is 0.25 eV (Figure 3(c)). Based on Bader
charge analysis, Oa and Os are more negatively charged than

Ot; consequently, H atoms are prone to contact with Oa and
Os, forming an intermediate of ∗Oa-H (or Os-H) with an
energy barrier of 0.55 eV. Subsequently, when a second pro-
tonation process occurs on the surface, an oxygen vacancy
is generated together with a corresponding Mo5+ Jahn-
Teller center, which would destabilize the octahedral envi-
ronments via stretching and contraction Mo-O bonds and
boost more Oa and Os site exploration [38–40]. Therefore,
in our experiment, the abundant oxygen-containing func-
tional groups (e.g., C-OH, C=O, and C-O-C as shown in
Figure 2(b)) on GO nanosheets hydrothermally reacted
with α-MoO3 at 160°C. The accumulation of oxygen
vacancies led to the rupture of Mo-O bonds in MoO6 octahe-
dra and the deformation of surface lattice. Ultimately, the
amorphization and collapse of α-MoO3 into amorphous
nanoparticles were achieved.

Guided by the above mechanism, the electrochemical
performance of the A-MoO3-x/rGO fiber electrode was
optimized via simply regulating the time of hydrothermal
treatment and feeding ratio of GO and α-MoO3. The cyclic
voltammograms (CVs) at the scan rate of 2mVs-1 were mea-
sured in a three-electrode configuration within the potential
window between 0 and 0.8V using Ag/AgCl (saturated
KCl) as the reference electrode and H2SO4 (1M) as the acidic
electrolyte, respectively. As expected, moderate amount of
oxygen vacancies, uniform loading of amorphous nanoparti-
cles, and the mild reduction of GO nanosheets together
endow the resultant A-MoO3-x/rGO fiber the maximum
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Figure 1: Synthesis and characterization of A-MoO3-x/rGO hybrid fiber. (a) Schematic illustration showing the structure evolution of
α-MoO3 belts during the preparation of A-MoO3-x/rGO hybrid fibers. (b) SEM (scanning electron microscope) image of A-MoO3-x/rGO
hybrid fiber obtained at 6.0 h. (c) Cross-sectional SEM image of the obtained A-MoO3-x/rGO hybrid fiber and the corresponding
EDS mapping. (d) Digital photograph of A-MoO3-x/rGO hybrid fiber wounded on a PTFE rod. (e) TEM (transmission electron
microscope) image of A-MoO3-x/rGO hybrid fiber at the synthetic time of 6.0 h. The insets are particle size distribution of A-MoO3-x
on rGO nanosheets and the local TEM image with higher magnification, respectively. (f–h) HRTEM and the corresponding FFT images of
A-MoO3-x/rGO hybrid fiber obtained at 6.0 h.
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current density in CV curves at 2mVs-1 and longest dis-
charge time in GCD (galvanostatic charge-discharge) profiles
at 1.4A cm-3 (Figure S7), respectively. The C

V
calculated

from GCD results measured at 1.4A cm-3 peaks at
612.7 F cm-3 (corresponding to 1.33F cm-2 at 3.1mAcm-2)
for A-MoO3-x/rGO fiber obtained at 6.0h hydrothermal reac-
tion with the feeding ratio of 2 : 1 between GO and α-MoO3
(Figure 4(a)). It is noteworthy that the extended hydrother-
mal reaction time (10.0 h) leads to degradation of fiber per-
formance for the feeding ratio of 4 : 1 and 2 : 1 probably
attributable to the extensive elimination of the oxygen-
containing groups on GO nanosheets, whereas the continu-
ous capacitance increase for 1 : 1 samples can be ascribed to
the incomplete conversion of α-MoO3. This observation
adheres to the above-proposed mechanism in Figure 2(d).
Compared to the approximate rectangular-shaped CV
curve of bare rGO fiber, the A-MoO3-x/rGO fiber electrode
exhibits much larger current density with three pairs of
stable and prominent redox peaks which can be ascribed
to the multielectron transfer process of the Mo centers
(Figure 4(b)) [41]. By contrast, pristine α-MoO3 belts show
rapid capacitance decay during cycling (Figure S8). The
optimized A-MoO3-x/rGO fiber electrode delivered an
ultrahigh C

V
of 921.5 F cm-3 at 0.3A cm-3, retaining

397.8 F cm-3 at 7.0A cm-3 (Figures 4(c) and S9). This perfor-
mance is 2.5-fold improvement compared to that of bare
rGO electrode and much superior to those of PANI/MWCNT

film (238F cm-3) [42], MoO3-x nanopaper (652F cm
-3) [43],

HxMoO3−y (350F cm-3) [44], MoS2/HGO fiber (448F cm-3)
[45], andMoS2-rGO fiber (491.1F cm-3) [46] reported in liter-
atures (Figure 4(d)). The electrochemical behavior of A-
MoO3-x/rGO fiber electrode was further characterized using
electrochemical impedance spectroscopy (EIS). The EIS slope
of hybrid fiber electrode at low-frequency range is slightly
lower than that of bare rGO fiber electrode, indicating com-
promised ion diffusion for hybrid fibers (Figure S10). In
addition, by employing Dunn’s approach [47, 48], the
diffusion-contributed and capacitive-contributed capacitances
of A-MoO3-x/rGO hybrid fiber were calculated as illustrated
in Figure S11. The result shows that at 2mVs-1, the hybrid
fiber exhibits a C

V
of ~732.0 F cm-3 with 50.6% capacitive

contribution, attributable to the shortened ion diffusion
pathway and improved electron transport conductivity of
A-MoO3-x nanoparticles compared to α-MoO3 crystals
(Figure S12).

By, respectively, using A-MoO3-x/rGO and rGO fibers as
electrodes, symmetric FSCs were assembled. CV profiles in
H2SO4/PVA gel electrolyte were obtained under 2mVs-1.
The FSC based on rGO fiber exhibits an almost rectangular
CV curve, indicating a typical EDLC behavior. Comparably,
A-MoO3-x/rGO FSC (Figure 5(a)) delivers a larger current
density with a pair of obvious peaks corresponding to the
redox chemistry on A-MoO3-x. According to the GCD pro-
files in Figure 5(b), the A-MoO3-x/rGO FSC exhibits an
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ultrahigh C
V
of 107.0 F cm-3 (corresponding to 128.6mF cm-

2, 3.94mF cm-1, and 78.3 F g-1, respectively) at 0.14Acm-3

(Figure 5(c)), which stands at a high level compared to that
of other flexible supercapacitors, e.g., 10.9 F cm-3 for MnO2-
MWCNT fiber device (0.1A cm-3), 28.1 F cm-3 for Ni(OH)2/
CNT fiber device (0.4A cm-3), and 53.5 F cm-3 for MoO3/
rGO-based asymmetric device (0.1A cm-3) [49–51]. At
1.4A cm-3, the capacitance decreases to 55.3 F cm-3 with
51.7% retention. In contrast, only 26.9% of the initial capac-
itance (63.1 F cm-3) was retained for the rGO-based device
when the current density increased from 0.14 to 1.4A cm-3.
According to the equations of E

V
= 1/2 × C

V
×V

2 and
P
V
= E

V
/tdischarge (E

V
and P

V
, respectively, represent the

volumetric energy density and volumetric power density, V is
the working voltage, while tdischarge stands for the discharge
time), E

V
of the A-MoO3-x/rGO FSC increases from 4.5 to

9.5mWhcm-3 with the corresponding P
V

varying between
0.84 and 0.06Wcm-3. As shown in Figure 5(d), the perfor-
mance of our device is superior to the flexible supercapacitors
based on PPy/rGO/MWCNT (0.94mWhcm-3) [52], Fe2O3/
PPy (0.22mWhcm-3) [53], FeOOH/PPy (2.0mWhcm-3) [54],
CNT/N-rGO (6.3mWhcm-3) [55], and poly(styrene-butadi-
ene-styrene)-G (6.6mWhcm-3) [56] and competitive to those
based on G@PEDOT (7.0mWhcm-3) [57], PPy@nanocellulose
(7.7mWhcm-3) [58], and PANI/rGO (8.8mWhcm-3) [59]. In
addition, the A-MoO3-x/rGO FSC exhibits excellent flexibility
and cycling stability. 98.6% capacitance was sustained after

bending-unbending for 5000 cycles (Figure 5(e)), and 90.4%
capacitance was retained after GCD cycling for 5000 times at
2.0Acm-3 (Figure 5(f)).

To satisfy specific demands on energy and power, super-
capacitors are required to be assembled in series or in paral-
lel. Three hybrid fiber-based supercapacitors presenting
similar CV and GCD behaviors were picked out. As shown
in Figures 6(a) and 6(b), respectively, by connecting three
devices in series, the output voltage can be extended to 3
times, while the connection in parallel tripled both the CV
current and GCD discharge time. Moreover, as practical
demonstration, a red LED array spelled word “IAM” could
be lightened by a tandem system containing 6 FSCs on a
piece of gauze (Figure 6(c)). Meanwhile, three hybrid fiber
devices connected in series and braided on a cloth glove
could also lighten a yellow LED. It is noteworthy that the yel-
low LED would neither extinguish nor diminish brightness
with finger curved from 0° to 135°. These demonstrations
indicate that the A-MoO3-x/rGO hybrid fibers are promising
to be applied in future wearable electronic devices to serve as
main/emergency power supply as well as adapt to human
daily movements.

3. Discussion

In summary, the strengthened Jahn-Teller effect induced by
the accumulation of Mo5+ was utilized for the phase
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engineering of α-MoO3 and A-MoO3-x/rGO hybrid fiber
electrode was successfully optimized via the controllable
introduction of oxygen vacancies. In favor of amorphous
MoO3-x nanoparticles with appropriate oxygen vacancy
content evenly anchored on 3D interconnected graphene

networks, the obtained hybrid fiber delivered an ultrahigh
C
V
of 921.5 F cm-3 together with outstanding cycling stability

and flexibility, endowing the assembled FSC superior energy
storage capability. The universality of the Jahn-Teller effect in
crystal engineering other transitional metal oxide needs
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further investigation, which will be beneficial towards mass
manufacturing high-performance hybrid fibers for future
wearable energy storage systems.

4. Materials and Methods

4.1. Synthesis of GO Nanosheets. A modified Hummers’
method was employed to synthesize GO nanosheets [60].
Briefly, expandable graphite flakes (1.0 g), NaNO3 (0.5 g),
and concentrated H2SO4 (46mL) were mixed and placed in
an ice bath under stirring. KMnO4 (5.0 g) was slowly added
to keep the reaction temperature below 20°C. Then, the mix-
ture was heated to 35 ± 1°C and maintained for 8.0 h before
adding deionized water (46mL). 4mL H2O2 (30wt%) was
subsequently added to the resultant suspension; then, GO
nanosheets were collected and washed thoroughly.

4.2. Synthesis of α-MoO3 Belts. Typically, 1.0 g Mo powder
was firstly dissolved in 15mL H2O2 (20wt%) to obtain a light
yellow solution. The mixture was hydrothermally heated at
220°C for 15.0 h, and the precipitate was collected.

4.3. Synthesis of A-MoO3-x/rGO Hybrid Fibers. Typically, GO
aqueous solution (4mgmL-1) was mixed with α-MoO3 belts
and the mass ratio was controlled 2 : 1. After violently shak-
ing, the mixture became homogeneous and subsequently
was injected into a glass capillary with an inner diameter of
~1.0mm. After being sealed at both ends using a welding

torch, the glass capillaries were heated in an electric oven at
160°C for 6.0 h. The obtained hydrogel fibers (self-assem-
bled) were then thoroughly washed using deionized water
and dried at 60°C in a vacuum oven.

4.4. Material Characterization. Field-emission scanning
electron microscope (FESEM; JEOL, JSM-7800F) and trans-
mission electron microscope (TEM; JEOL, 1400 PLUS) were
employed for morphology characterizations. X-ray diffrac-
tion (XRD; smartlab; Cu Kα radiation, λ = 1:5406Å) was
used for identifying crystal structure. The confocal micro-
Raman system (WITEC Alpha 300M+) was performed using
a diode laser of 633nm at ambient conditions. X-ray photo-
electron spectroscopy (XPS) was carried out on a PHI Quan-
tera spectrometer. Tensile tester (HY-0350) and Keithley
2400 were used for measuring the failure strength and electri-
cal conductivity of fibers.

4.5. DFT Calculations. Vienna Ab initio Simulation Package
(VASP) was adopted for theoretical calculations based on
a gradient approximation described by Perdew-Burke-
Ernzerhof (PBE) [61–63], ab initio molecular dynamics for
open-shell transition metals, and ab initio molecular dynam-
ics for open-shell transition metals. The wavefunctions in the
core region were described by the projector augmented wave
(PAW) method [64]. 10-5 eV and 0.02 eVÅ-1 were, respec-
tively, set for total energy and the Hellmann-Feynman force
on each relaxed atom during geometry optimization. In order
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to exterminate any interaction, a spacing of 10Å was chosen
between two nanosheets. The activation barriers and transi-
tion states were determined by the climbing image nudged
elastic band (NEB) method [65].

4.6. Electrochemical Measurement of Single Electrodes. The
electrochemical performance of A-MoO3-x/rGO hybrid

fiber was tested in a three-electrode configuration with a
reference electrode of Ag/AgCl (saturated KCl aqueous
solution), a counter electrode of Pt plate, and the electro-
lyte of 1M H2SO4. CV, and GCD measurements were
performed on an electrochemical workstation (CHI660D,
Chenhua). The fiber volume (Vwe) was obtained according
to Vwe = L × π × ðD/2Þ2, where L represents fiber length while

Emergency 

power supply

Movement
adaptability 

0.0 0.8 1.6 2.4

–120

–80

–40

0

40

80

C
u

rr
en

rt
 (
�

A
) 

Voltage (V)

Two devices in series

Two devices in parallel 

Three devices in series
Three devices in parallel

Device 1

Device 2

Device 3

0 50 100 150 200 250 300 350
0.0

0.8

1.6

2.4

3.2

V
o

lt
ag

e 
(V

)

Time (s)

(a) (b)

(c)
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D is fiber diameter. The electrochemical performance of pris-
tine α-MoO3 was also measured in the same three-electrode
system.

4.7. Electrochemical Characterization of FSCs. Two ~1.5 cm
long A-MoO3-x/rGO hybrid fibers (diameter of ~50μm)
were placed closely on a polymeric (PET) substrate, on top
of which H2SO4/PVA gel was coated. Ag paste was applied
on one end of fiber electrode for better electrical connection.
The electrochemical characterization and capacitance calcula-
tion of FSCs are similar to that of a single electrode.
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