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THE JANTZEN SUM FORMULA FOR
CYCLOTOMIC ¢-SCHUR ALGEBRAS

GORDON JAMES AND ANDREW MATHAS

ABSTRACT. The cyclotomic g-Schur algebra was introduced by Dipper, James
and Mathas, in order to provide a new tool for studying the Ariki-Koike alge-
bra. We here prove an analogue of Jantzen’s sum formula for the cyclotomic
g-Schur algebra. Among the applications is a criterion for certain Specht mod-
ules of the Ariki-Koike algebras to be irreducible.

1. INTRODUCTION

In [6] Richard Dipper and the authors introduced the cyclotomic ¢—Schur alge-
bras and showed that they are quasi-hereditary cellular algebras. By definition,
a cyclotomic g—Schur algebra is a certain endomorphism algebra attached to an
Ariki-Koike algebra in much the same way as the ¢—Schur algebra [5] is defined as
an endomorphism algebra of a particular module for the Iwahori—-Hecke algebra of
the symmetric group.

One of our motivations for defining the cyclotomic ¢—Schur algebras was to pro-
vide another tool for studying the Ariki-Koike algebras. In this paper we use the
cyclotomic g—Schur algebras to prove a version of the Jantzen sum formula for the
Ariki-Koike algebras. Most of the argument is devoted to first proving an analogue
of Jantzen’s sum formula for the Weyl modules of the cyclotomic g—Schur alge-
bra. The result for the Ariki-Koike algebras is then deduced by a Schur functor
argument. As a corollary of these results we obtain criteria for the Weyl modules
of the cyclotomic g—Schur algebras, and for certain of the Specht modules of the
Ariki-Koike algebras, to be irreducible.

We note that as a special case of our results we obtain, for the first time, an
analogue of the Jantzen sum formula for Coxeter groups of type B.

In the case of the ¢—Schur algebra it is possible to give a geometric proof of
Jantzen’s sum formula [I]. As yet, in the cyclotomic case there is no algebra which
plays the réle of the quantum group of type A; consequently, an algebraic approach
is necessary. The proof we give generalizes and extends the argument of [13].

2. THE CYCLOTOMIC ¢—SCHUR ALGEBRA

We recall some definitions and results from [6].
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5382 GORDON JAMES AND ANDREW MATHAS

Fix integers r and n with » > 1 and n > 1 and let R be a commutative ring
with 1 and let ¢, Q1,Q2, ... ,Q, be elements of R, with ¢ invertible.

The Ariki—Koike algebra H [3] is the associative R—algebra with generators Tp, 77,

., T—1 subject to the following relations:

(To— Q1) (To —Qr) = 0,

TohToTh = TiIyIiTo,
(T; +1)(T; —q) = 0, for1 <i<n-1,
Ty Tl = TiTiaT;, for1<i<n-—2,
T, = T,T, for0<i<j—1<n-—2.
Let &,, be the symmetric group on {1,2,...,n}. Then &, is generated by
$1,82,--. ,Sn—1 Where s; = (4, + 1) for 1 <i <n. If w=s;,8;,...s;, is a reduced
expression for w € &, (that is, k is minimal), we write ¢(w) = k and define

Ty =TT, ... T; . Let H(&,,) be the subalgebra of H spanned by { T, | w € W };
then H(&,,) is the Iwahori-Hecke algebra of &,,.

Define elements L1, La,... ,Ly, of H by L; = ¢'"*Ti_1 ... TWToTy ... Ti_1. We
have the following well-known result (cf. [3|, 3.3] and 4, (2.1), (2.2)]).

2.1. Suppose that 1 <i<n—1and1<j<n. Then

(1) L; and L; commute.
(ii) T; and L; commute if i #j —1,5.
i)

(iil) T3 commutes with L;L;+1 and with L; + L;41.
(iv) Ifa € R and i # j, then T; commutes with (L1 — a)(Ls —a)...(L; — a).

A composition a = (a1,as,...) is a finite sequence of non—negative integers;
we denote by || the sum of the sequence. A multicomposition of n (into r com-
ponents) is an ordered r—tuple u = (™, ..., u(") of compositions u(¥) such that
S heq ™| = n. We call u*) the kth component of yi. A partition is a composition
whose parts are non—increasing; a multicomposition is a multipartition if all of its
components are partitions.

Definition 2.2. Suppose that u is a multicomposition of n and let a = (a1, ..., a;,)
be an r—tuple of integers ay such that 0 < ax < n for all k.
(i) Let uf = uauaz2- - ua, where uap = [[75,(L; — Qk) for 1 <k <.
(ii) Let Ty = ZweG,‘, T, where GH = Gu(l) X Glt(2> X oo X Gu(r).
(iii) Let m, =ulz, where a = (a1,...,a,) and a; = Zi:ll @], for 1 <k <r.
(iv) Let M* =m,H.

Note that u}z, = z,ul by ZI(iv) and that a; = 0 in Definition Z2/(iii).
Given two multicompositions p and v write p &> v if for all ¢ > 0 and k with
1<k<r
k—1 i k—1 i
Z 9| + Z“g'k) > Z )|+ Zyj(k).
j=1 j=1 j=1 j=1

If u > v and p # v, then we write p > v.

Let A be a finite subset of the set of all multicompositions of n which have r
components such that if g € A and A > p for some multipartition A, then A € A.
Let AT be the set of multipartitions in A.

The main arena for the investigations of this paper is the cyclotomic g—Schur
algebra, which we now define.
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CYCLOTOMIC ¢-SCHUR ALGEBRAS 5383

Definition 2.3 ([6]). The cyclotomic g—Schur algebra is the endomorphism algebra
S(A) = Endy, (EP M*).

pnEA

Generally we omit A and simply write S.

In order to describe a basis of S and its irreducible representations we next recall
the combinatorics of semistandard tableaux from [6].

Suppose that v is a multicomposition of n and let r = {1,2,... ,7}. The diagram
of v is the set

W] ={(,j,k) ENxNxr|1<j<A®},
The elements of [v] are the nodes of v; more generally, a node is any element of
NxNxr.

A v—tableau T is a mapping from the diagram of v into N X r; informally, we
shall regard T as an ordered r—tuple of labelled diagrams, as in the example below.
In particular, we will write T = (T(l), . ,T(r)) and will speak of the components of
T and their rows and columns. We say that T is a tableau of type p if the number
of entries in T equal to (i, k) is ugk) for all (i,k) e Nxr.

Below, and in all later examples, we write i), in place of the ordered pair (i, k).

Example 2.4. (i) Suppose that v is a multicomposition and let T be the v—
tableau of type v such that T"(i, j, k) = (i, k) for all (4,4, k) € [v].
(i) Let A = ((3,2),(2,1),(1?)). Then two A-tableaux are

T)‘—( 1101y 11|, 1o 12|,>andS—< 11]2 12', 2
2 2] %3] 2
Here S is a A-tableau of type ((1%),(1,2),(1,1,2,1)).

Given (i,k) and (4,1) in N x r, we say that (i, k) < (4,1) if either k <, or k =1
and ¢ < j.

o

13|7 >

o

Definition 2.5 ([6]). A A-tableau T = (T, ..., T(") of type p is semistandard if
A is a multipartition and
(i) the entries in each row of each component T(*) are non-decreasing; and,
(ii) the entries in each column of each component T(*) are strictly increasing; and,
(iii) if (a,b,¢) € [A] and T(a,b,¢) = (i, k), then k > c.
Let 7o(A, i) be the set of semistandard A-tableaux of type p.

For example, the A-tableau T* defined in Example 2.4((i) is the unique semistan-
dard A-tableau of type A. The A\—tableau S in Example 2Z4[ii) is also semistandard.

Before we can describe how the semistandard tableaux index a basis for S, we
first need to single out special semistandard tableaux which index a basis of the
Ariki-Koike algebra H.

Definition 2.6. (i) Let w = ((O)7 ..., (0), (1”)), a multipartition of n.
(ii) Let A be a multipartition. A standard A—tableau is a semistandard A—tableau
of type w.
(i) Let Std(A) = 7o(A,w) be the set of standard A-tableaux.

Let T be a v—tableau of type w. Then, for all € [v], we have T(x) = (¢,r) for
some i € {1,2,...,n}; we identify T with the map t determined by T(x) = (t(x),r)
for all € [v]. Then t is a standard tableau if and only if v is a multipartition and
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5384 GORDON JAMES AND ANDREW MATHAS

in each component t*) the entries are strictly increasing along each row and down
each column.

We will always denote tableaux of type w by lower case letters in order to dis-
tinguish them from tableaux of other types.

Given a multicomposition v, let t¥ be the tableau with the integers 1,2,... ,n
entered in order along the rows of [v]. The symmetric group &,, acts on the set of
v—tableaux of type w by letter permutations; note that the Young subgroup &, is
precisely the row stabilizer of t”.

If X is a multipartition and t is a standard A-tableau, then define d(t) € &,, by
t = t*d(t). Then d(t) is a (distinguished) right coset representative of & in &,,.

Let : H — H be the R-linear antiautomorphism of H determined by T = T;
for all ¢ with 0 <4 < n. In particular, T}, = T,,-1 for all w € &,,.

Definition 2.7. Suppose that A is a multipartition of n and that s and t are
standard A-tableaux. Let mg¢ = T;(s)m)\Td(t).

The proof of the following result can be found in [6] 3.26].

Theorem 2.8 (The Standard Basis Theorem). The Ariki-Koike algebra H is a
free R—module with cellular basis

m ‘ s and t are standard A—tableaux for
st some multipartition \ of n '

We call this basis the standard basis of H; it is a cellular basis in the sense of
Graham and Lehrer [§]. Note that mj, = my,.

Given a standard A-tableau t and a multicomposition u let p(t) be the A-tableau
of type p obtained by replacing each entry m in t by (i, k) if m appears in row ¢ of
the kth component of t#. For example, TA = \(t}).

2.9 ([6l Proposition 6.3]). Let u and v be multicompositions of n. Then M*NM"*
is a free R—module with basis
|S € To(A\, 1) and T € To(A,v) for some
st multipartition X of n

where mgr = 3 . (msi and (s,t) runs over all pairs of standard A-tableauz such
that S = pu(s) and T = v(t).
Note that my = mpp = Moy = Mgy = Mpapa.

In particular, Z9 shows that the maps ¢sr below are well-defined elements of S.

Definition 2.10. Let A be a multipartition of n and let y and v be multicompo-
sitions of n. Suppose that S € To(\, p) and T € To(A,v). Then pgr € S is the
‘H-homomorphism such that

pst(mah) = darmsth
for all « € A and all h € H.

Theorem 2.11 (The Semistandard Basis Theorem [6, 6.12]). The cyclotomic q-
Schur algebra S is free as an R—module with cellular basis

|S € To(A\ ), T € To(\, v) for some
49 st v €A and A€ AF '
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We call the basis {¢sr} the semistandard basis of S. Because it is cellular, the
R-linear map *: & — S determined by ¢§; = 15 is an anti-automorphism of S
(see [0, 6.9]).

For each multipartition X in A* let S be the R-submodule of S with basis

U e To(a, ),V € To(a, v) for some p,v € A and
{ww‘ a € At with a > A }

By [6, 6.11], S is a two-sided ideal of S.
Recall the A-tableau T* from Example[Z4(i). It is easy to see from the definitions
that @papa restricts to the identity map on M.

Definition 2.12. Let A € A*. The Weyl module W* is the submodule of S/S*
given by W* = (8 + ¢ )S.

We remark that in [6] we defined the Weyl module W to be a left S—module;
however it is more convenient here to define it as a right module.
By Theorem [ZIT the Weyl module W? is a free R-module with basis

{or | TeTo(N p),p €A}

where @1 = 8* + @, The cellular structure of S defines a natural symmetric
bilinear form ( , ) on W* which is determined by the requirement that

(ps, QOT>50T>‘T>‘ = ppagprrr mod S

for all semistandard A-tableaux S and T. Note that (ps, ) = 0 unless S and T are
tableaux of the same type. Also, by Theorem [Z.1T]

(2.13) (x@,y) = (x,yp*) for all z,y € Wand all p € S.

Consequently, rad W = {z € W* | (z,y) =0 for all y € W} is an S—submodule
of WA,

Because @raps is the identity map on M?, one sees that (prx, o) = 1; together
with Theorem [2ZTT] this implies the following result.

2.14 ([6l, Theorem 6.16]). For each A € At let F» = W*/radW?*. Then F* # 0;
moreover, if R is a field, then F is absolutely irreducible and { F> |\ € AT} is a
complete set of non—isomorphic irreducible right S—modules.

In addition to the simple S-modules we will be concerned with the simple H-
modules. Define N* to be the R-submodule of H with basis
{ s and t are standard p—tableaux for }
mst|

some multipartition p of n with p > A

(cf. the definition of S)‘). It follows from Theorem B-8|that N is a two—sided ideal
of H.

Definition 2.15. Let A be a multipartition. The Specht module S? is the right
H-module (N* 4+ my)H, a submodule of H/N*.

For t € Std(\) let m¢ = N* + my. Then, by Theorem 8, S* is free as an
R-module with basis { m | t € Std()) }.

Define a bilinear form on S* by requiring that (ms, m¢)my = mpgmex mod NA.
As before, rad §* is an H-module and we set D* = S*/rad S*.
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2.16 (|6, Theorem 3.30]). Suppose that R is a field. Then
{D*#0| X\ is a multipartition of n'}

is a complete set of non—isomorphic irreducible H-modules. Moreover, each D is
either absolutely irreducible or zero.

We remark that the bilinear forms defined on the modules W* and S*, and
the results relating to them, fit into the general framework of cellular algebras, as
devised by Graham and Lehrer [§].

Now suppose that w € AT; equivalently, assume that AT is the set of all multi-
partitions of n. Then @rere is idempotent in S; indeed, if v is a multicomposition
in A, then prvrv, the identity map on MY, is idempotent and the identity element
of S1is Y, cp prvre.

By identifying h € H with the homomorphism pj, € Homy(H, H) which is given
by pn(h') = hh' for all b’ € H, we see that H = @roreSprere. Let (WY i F?)
denote the composition multiplicity of the simple module F* in W" and similarly
for (S : D*). Then, by general arguments (see, for example, [9, §6]), we have the
following.

Proposition 2.17. Assume that every multipartition of n belongs to A*. Let U
be a right S—-module. Then Uprerw is a Tight H—module. In particular, if X is a
multipartition of n, then W prore = S* and F prore =2 DX, Furthermore, if R is
a field and D* # (0), then (S¥ : D) = (WY : FA) for all multipartitions v.

Thus, the decomposition matrix of H embeds into the decomposition matrix
of S.

Finally, we also require a better understanding of the basis elements ¢ of the
Weyl module W*. As for the Specht modules, if T is a semistandard \-tableau of
type p we let mp = N* + mqap. We claim that ¢r can be identified with the map
(also denoted 1)

(2.18) @r: M — (N* + M*)/N* given by m,h — mzh

for all h € H. In order to see this let M = @, ., M” and M* =@, ., N* N M".
Then each ¢ in S* maps M into M*; so we may regard S/S* as a set of maps from
M into M/M?. Consequently, g1 = S* + prar can be identified with the map from
M* into (M* 4+ M?*)/M* which sends m,, to M* +mq (since oag(my,) = moag).
Then, by the third isomorphism theorem,

(M* 4+ M)/ M* = M» /(M0 M?) = M*/(N*n M?*) = (N* + M*)/N*

justifying our claim.

3. THE GRAM DETERMINANT OF W/j

Throughout this section, fix a multipartition A € AT and a multicomposition
€ A. The p-weight space of W* is the R-submodule W, = W@puru; thus W)
is R—free with basis { o1 | T € To(A\, ) }-

Definition 3.1. The Gram determinant of le‘ with respect to the semistandard
basis is G, (A) = det ((gps, gaT>), where S and T run over the elements of To(\, p). If
To(A, 1) is empty, we set G, () = 1.
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(We determine the sign of G, (\) by fixing a total ordering of 7o(A, 1) which is
compatible with the partial ordering of Definition B below.)

The purpose of this section is to compute G, ()); we do this by first constructing
an orthogonal basis for VVlf‘ when R = F(q,Q1,...,Q,) and ¢q, Q1,...,Q, are
independent transcendental elements over a field F.

Definition 3.2. Given ¢ > 1 and k € r let y,y + 1,..., 2z be the entries in row ¢
of /"), Then Lﬁk is the element of Homy, (M”, M“) given by

Lﬁk(muh) = (Ly+ Lys1 +--+ L)myuh,
for all h € H.

The homomorphism L, maps into M* because B[(ii) and (iii) imply the fol-
lowing result.

Lemma 3.3. Suppose that (i,k) € Nxr and let y,y + 1,...,z be the entries in

row © of 4" Then Ly,+ Lyy1+---+ L, commutes with every element of H(&,,).
In particular, (Ly + Lyt + -+ Ly)my, = mu(Ly + Lyy1 +---+ Ly).

Note that LZ i = 0if ugk) = 0. Furthermore, using 2.1 again, the homomorphisms
L}, and LY, commute for all (i, k) and (j,) in N x r.

Below, often without mention, we will identify an element h of H with the
homomorphism p;, € Homy (H, H) given by pn(h') = hh' for all A’ € H. Under this
identification we have that L; = Ly, for i =1,2,... ,n.

Definition 3.4. (i) Let = = (a,b,c) € [A]. Then the residue of z is
res(z) = ¢* Q..
(ii) Let (i,k) € N x r and suppose that T € 7y(A, 1). Then
resr(i, k) = Z res(z).
z€[N]:T(z)=(i,k)

Similarly, given a standard tableau t € Std(\) we write res (i) = res(z) where
x is the unique node in [A] such that t(z) = i.

(iii) Let a = (a1,...,ar), with 0 < ay < n for all k, and suppose that t € Std(A).
Then

vesi(a) = [ T] (resc(s) — Qu)

k=1i=1

(cf. Definition [Z2(1)).
Note that if L}, = 0, then resr(i, k) = 0 for all T € To(A, ).

Example 3.5. Let A = ((3,1),(1)), = ((2),(2,1)), and let

t:( irl) 2|4|7) and T:(ll 11|12|7>'

L0 ] 22]
Then t € Std(\), T € To(\, 1) and T = p(t). The residues in the diagram of A are
< Qi | 4@ |q2Q1|7 | @ |>
'O
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Thus, resp(1l1) = res¢(1l) + res¢(2) = Q1 + ¢Q1, resr(ly) = res¢(4) + res¢(3) =
?Q1 + Q2 and resr(22) = res((5) = ¢ 1Q1. Let a = (0,2); then m,, = ulz, and
res¢(a) = (Q1 — Q2)(¢Q1 — Q2).

Definition 3.6. (i) Suppose that T € 7o(\, ) and (i, k) € Nxr. Let T; 5, denote
the subtableau of T consisting of all entries (j,1) < (i, k), and let Tfk be the
multipartition whose diagram is determined by T; j.

(ii) Given S and T € To(A\, p) write S > T if ka > Tfk for all (i,k) e Nxr.
(i) fS> T and S # T, we write S > T.

Proposition 3.7. Suppose that t is a standard A—tableau and let i be an integer
with 1 <i <mn. Then for each s € Std(\) there exists a; € R such that

m¢L; = res¢(i)my + Z A5 .

s>t

Proof. First consider the case where t = t*; then m¢ = N* + m,. Suppose that i
appears in row a and column b of the cth component of t* and let j be the smallest

integer appearing in t)‘(c); then j < i. Write my = zyuJ as in Definition 2:2] and
let Tj; =TjTj1... Tioq (set Ty, = 1if j =i) and T} ; = T7,.
Working modulo N* and using BIJ(ii) and 2ZI1(iii), we find that
mp Ly = myL; = x)\u:Li = qj*ix)\u:Ti,ijTj,i = qj*ix)\Ti,ju:LjTj,i
= ¢ 7' QearTijul Ty + ¢ 'axT juf (L — Q)T
= ¢ QeufanT; ; Tji + ¢~ 'anTy ju T s,
where b = (a1,... ,ac-1,0c + 1,dc41, - .. ,ar). Therefore,
mpL; = qj_chuZx)\Ti,jTj,i mod N*

because \T; juy. € HmyH N HuH C N* by Theorem 28 Now ¢/~'T; T},
is a g—Murphy operator in the Iwahori—-Hecke algebra of the symmetric group on
{j,7+1,...,i}; consequently, by [17, Theorem 4.6],

mpLi = (*7Qeutzy = resp (i)ulzy = resp (i)mp mod N*.

This completes the proof when t = t*. If t # t*, then there exists an integer k such
that s = t(k,k+ 1) > t (and 1 < k < n). Then my = msT and the result follows
by the argument of [4, Theorem 3.15]. O

Recalling the definitions of u} and res¢(a) from (Z2) and (B4) respectively, we
obtain the next result.

Corollary 3.8. Let t be a standard A\—tableau. Then for each s € Std(\) there
erists as € R such that

+ _
myuy = resi(a)my + g A5 .
s>t

Lemma 3.9. Let T € To(A, ). There exist unique standard A—tableausz first(T) and
last(T) such that

(i) p(first(T)) = p(last(T)) = T; and,
(ii) first(T) > t > last(T) for all t € Std(\) such that p(t) = T.
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Furthermore, if d = d(first(T)) and my = uxy, then
Moy = Z ufg Ty
wEG 1S,
and &) Nd&,d~! = &,, for some multicomposition vr of n.
Proof. Parts (i) and (ii) follow easily from the definitions; see [6] 4.7]. The final

statements are a consequence of the definition of mar and well-known properties
of distinguished double coset representatives (see, for example, [4, 1.6]). O

We remark that if t is a standard A-tableau, then t = first(t) = last(t) and
Vy = W.

Theorem 3.10. Suppose that T is a semistandard \—tableau of type p and let
(i,k) € Nxr. Then for each S € To(A, ) there exists ag € R such that

prLy,, = rese(i, k)pr + Z asps.
ST

Proof. Recalling our conventions for o7 from B-I8, and using Lemma[33 we have
SOTLZk(mM) = ¢r(mu(Ly + Lys1 + -+ L2)) = ma(Ly + Ly41 + -+ + L2)

where y,y + 1,... ,z are the entries in row i of . Let t = first(T); then, by
Lemma B3] mr = m¢h for some h € H(S,,). Therefore, by Proposition B1]

goTLZk(mH) =m¢(Ly+ Lyt1+---+L,)h
= resr(i, k)m¢h + Z asmsh

s>t
=resr(i, k)mr + E asmsg
S€To(A, 1)

for some ag,as € R, by 29 Since t = first(T), we deduce that ag = 0 unless S > T.
Therefore,

prLi) = rese(i, k)or + Z asps
SBT

as required. [l

Until further notice we assume that R is the rational function field F(q,Q1, . . ., @)
for some field F. We will compute the Gram determinant of W, as an element, of
this field and derive the general case from this.

Definition 3.11 (cf. [13, 3.18]). Let T € To(A, p).
LY —ress(i, k)
i) Let Er = Lk :
(i) Let B H H resy (i, k) — ress(i, k)

(i,k)ENXr SETo (N, 1)
ress(4,k)#resr(i,k)

(ll) Let ’lpT = ()OTET.

In the above definition we adopt the convention that empty products are 1. In
particular, only finitely many terms are non—trivial in the definition of Et because
the second product is empty whenever Lﬁ = 0. We also do not need to specify the
order of the terms in the product since all of the terms commute.
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The main reason why we have assumed that R = F(q, Q1,... ,Q;) is because of
the following crucial lemma. The lemma is false for general R.

Lemma 3.12. Suppose that R =F(q,Q1,...,Q,) and let S and T be distinct semi-
standard tableaux in To(\, p). Then ress(i, k) # resy(i, k) for some (i,k) € N x r.

Proof. Since S # T we may choose (i,k) € N x r minimal such that S; 5 # T; .
Then ress(i, k) # resr(i, k). O

Standard arguments using Theorem B.10] and Lemma [ZT2lnow prove the follow-
ing (cf. [16, (3.4)—(3.11)] or [15, Prop. 3.35]).
Theorem 3.13. Suppose that R = F(q,Q1,Q2,... ,Qr) and let S, T € To(\, p) and
(i,k) € Nxr. Then the following hold:

(1 'I)ZJTLZk = TGST(i, k)?/)'r,
(11 ETLZk = resT(i, k)ET,

(iii) Yr = o1 + D gpasps for some as € R,
(iV SOSET =0 Zfs > T,
(V Ys By = dstifr,

—

(vi) {91 | T € To(A\ )} is an orthogonal basis of W, .

Corollary 3.14. Let t € Std(\) and suppose that there exists s € Std(\) such that
t=s5(i,i+1) and s > t for some i with 1 < i < n. Then ¥y = Ys(T; + ) where

(g—1) res(4)

o= ress (1) —res¢(i)

Proof. By definition ¢ = ¢(F; and ¢y = @sT;. Furthermore, by assumption
resg (i) = res¢(i + 1) and ress(i + 1) = res(¢); consequently, Es 4+ Fy is symmetric
in L; and L;y1 and so T; commutes with Fs + F¢ by 211 Therefore,

Yy (ress (i) — resg(i)) = piBy(Liy1 — rese(i)), by (Theorem 3.13)(i),
= oi(Es + Ey) (Lit1 — rese(i)), by (Theorem 3.13)(ii),
=@ T;(Es + Ey) (Li+1 - rest(i))
= @s(Es + E)Ti(Lip1 —rese(i)), by 2.1(iii),
= Ty (Liy1 — rese(i)), by (Theorem 3.13)(iv).

Now T;L;y1 = (¢ — 1) L1 + L;T;, so

wt(ress(i) — rest(i)) = (g —1)res(i)vs + (resg(i) — rest(i))wsTi
and the result follows. O

Our next aim is to compute the inner products (¢r,tr). This will require a
considerable amount of combinatorial machinery.

Recall the definition of the tableau T, from (Definition [3.6])(i). We say that
a node y ¢ [Tfk] is an addable node of T; if [Tfk] U {y} is the diagram of a
multipartition. Similarly, a node y € [Tf&k] is removable from T, if [Tf&k] \ {y} is
the diagram of a multipartition.

Given nodes x = (i,7,k) and y = (a,b,c) define x < y if Kk < c or k = ¢ and
j>b.

Definition 3.15 (cf. [I3], 2.8] and [7} 4.1]). Let T € To(A, ) and for = € [A] sup-
pose that T(xz) = (i, k) and let (j,1) € N x r be maximal such that (j,1) < (i, k).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CYCLOTOMIC ¢-SCHUR ALGEBRAS 5391

(i) Let Ar(z) =], (res(z) —res(y)) where the product is over the addable nodes
y of T;  such that < y and an (4,k) can be added to T;j at y to give a
semistandard tableau.

(i) Let Rr(z) = ]I, (res(z) — res(y)) where the product is over the removable
nodes y of T;; such that x < y and (¢, k) does not appear in the column of T
containing y.

(i) Let 9o = J[ A

z€[N]

Example 3.16. Asin Example3.H, let A = ((3,1), (1)) and = ((2),(2,1)). Then
To(A, p) consists of the three tableaux

T = ( 1y 11|12|, ), Ty = ( Ly 11|12|) )
2

1]

and T3 = < 1y 11|22|7 >

1o

Recall that we are currently assuming that ¢, Q1, ... ,Q, are indeterminates. We
find that
N { (122Q1 - Q1 Q1 — QQ} {Q1Q1 - Q2 } ,

Q1 — qQn
s = {ngl —q Q1 4°Q1 — qu} {q‘lQl —4Q2¢'Q1—¢ Q> } 7

Q1 — g Q1 — Q2

and
- { (I;Ql - Q1 ¢*Q1 — q:2Q1 ’Q1 — qQ2 ¢*Q1 — q_lQQ} {q_lQl —qQ2 } .

Q1 —qQ1 ¢*Q1 — ¢ Q1 ?Q1 — Q2

Inspection shows that yr, vr, 71, € Flg,¢7 1, Q1,...,Q:]; cf. Corollary 329

Lemma 3.17. Let t € Std(\) and suppose that there exists a tableau s € Std(\)
such that s >t and t =s(i,i + 1) for some i with 1 <i <n. Then

. (resﬁ(i) - qrest(i)) (q res, (i) — rest(z’)) Yo

(resq(i) — rest(i))2

Proof. The proof of this result is straightforward and essentially identical to [13]
2.11]. We leave the details to the reader. O

If m is an integer, let [m], = 1+¢q+---+¢™  and {m}, = [1]4[2], ... [m],. For
a multicomposition v, let {v}, = [[;c, Hi>1{1/i(k)}q.

Given two rational functions f and g in R we write f ~ g if f = ¢*g for some
integer z. Since ¢* is always a unit in the rings we consider, there is no loss in
restricting our attention to R/~. We extend this relation to elements of H and S
in the obvious way.

Lemma 3.18. Suppose that my = u; zx. Then v ~ resp (b){A},.
Proof. Remove n from t* and apply induction (cf. [I3] 2.10]). O
Proposition 3.19. Suppose that t is a standard A—tableau. Then (g, () >~ ;.
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Proof. First suppose that t = t* and write my = ugx)\ as in Definition

Then ¢ = ¢ by Theorem B:IB_'(m) o (Y, V) = (o, pp). By definition,
(Pr, P )P = P @y mod SA and

PTA A PATA (mA) = P (mA) =mamy = m,\xkuﬁ = {/\}quué_ = ypmy mod N?

by Corollary B8 and Lemma BI8. Thus, (@, @) ~ v as required.

Now assume that t # t*. Then there exists a standard A-tableau s such that
s> tand s = t(4,4+ 1) where 1 <4 < n. By Corollary B4l ¢y = ¢5(T; + «) where
o = tezlresd) Therefore, using the facts that 72 = (¢ — 1)T; + q and that

ress (1) —res¢(7)
and ¥, are orthogonal, we see that

(Vi, ) = (YT + aths, s T + aths)
= (s Ti, s Ti) + 205 T, 1hs) + (s, hs)
= (s T7, 0s) + 20(0hs Ty, vs) + @ (s, )
= (2a+q— 1){¥:Ti, ¥s) + (@ 4 q) (s, s)
= (20 + ¢ — 1)(¥ — s, a) + (0% + ) (Y5, 1)5)
= (g +a)(1 — ) (¥s, ¥s).
(ress (i) —qres((i))(gress (i) — TeSe(i))

The reader will easily verify that (¢ — a@)(1 4+ a) = AT
so induction and Lemma [BI7 complete the proof.

Remark 3.20. The Proposition is really a statement about the orthogonal basis of
the Specht module S*. Indeed, if we let fi = ¢((my), then { fi | t € Std(\)} is
an orthogonal basis of S* (see Proposition ZZIT) and (fi, fi) ~ v where { , ) now
denotes the standard inner product on S*. It follows that, up to a power of ¢, the
determinant of the Gram matrix of S? is HteStd()\) V.

In order to compute the inner products (r,r), for arbitrary semistandard
tableaux T, we compare the homomorphisms ¢ and .

Lemma 3.21. Suppose that T € To(A, ) and let t = last(T). Then there exist
bs € R such that

Yrure = Py + Z bss.

s>t

Proof. By Theorem B.13(iii), there exist ag € R such that

Yrorure (1) = hr(my) = er(my) + Zasws(mu)

ST
=mr + E asms
ST

=m¢ + E AsMyg

s>t

for some as € R since t = last(T). The lemma now follows from parts (iii) and (vi)
of Theorem [3.13] O

Given a semistandard tableau T recall the multicomposition v from Lemma 391
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Lemma 3.22. Suppose that t is a standard A-tableau and let T = u(t). Write
my, = utx,. Then there exist cs € R such that

PrpreTr = CTPT + Z CsPs
S>T

and where cr ~ res¢(a){vr}q if T is semistandard and cr = 0 otherwise.

Proof. We have
rprere (my) = oi(my) = e (D)my, = mut z,, = resy(a)mr, + Z AsMsTy,
s>t

for some as € R by Corollary BR If T is semistandard, then maz, ~ {vr}¢moar
by Lemma B3 ¢f. [13, 3.9]. On the other hand, if T is not semistandard, then
moa &, is a linear combination of terms mpag where S > T by 20 Either way, if
we define cr as in the statement of the lemma, then

peprets (My) = crmr + Z CsMs
ST
for some cs € R since @pprore(m,) € M N M**. Hence, piproms = crpr +
> se1 Cs¥s as required. O

Definition 3.23. Suppose that t is a standard A-tableau such that T = u(t) is
semistandard. We define

Pl ={(z,y) [z <y and {(x) < t(y) and T(z) = T(y) }

and

W e J[ TS
res(xr) —res
(z,y)ePl Y

— 7t
where m,, = ug x,.

Example 3.24. Let A, p and T be as in Example [3.5 and let t; = first(T) and
to = last(T). Then

o= (M), o (FREE),

5| 5]
resy, (a) = resg, (a) = (Q1 — Q2)(¢Q1 — Q2) and
2 _ 2 _ 3 _
™ = resy (a) qqgll— gll and i, = res, (@) qqgll— 311 Zzgi - gz

Recall that ¢, Q1,. .. , @, are currently indeterminates. The reader may check that
Y, =~ 7,1 (use Example where T = Ta).

Lemma 3.25. Let T be a semistandard A—tableau of type p and write m,, = ufz,.
(i) If t = first(T), then w{" = res¢(a){vr}q.
(i) If t = last(T), then v ~ mi'~yr.

Proof. (i) Since t = first(T), the elements of P/* are ordered pairs (z,y) such that
x and y are in the same row of [A] and T(z) = T(y). Therefore, the nodes in P/
contribute a factor of {vr}, to " (cf. [I3, 2.15]).
(ii) This is a routine exercise in induction (cf. [I3], 2.16]).
(|
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Lemma 3.26. Let t € Std(\) and suppose that there exists an integer i with 1 <
i <mn ands € Std(\) such that s = t(i,i + 1), s > t and p(s) = pu(t) € To(A p).
Then

p qress(i) —resi(i) ,

Y resg (i) — res(i)

Proof. Let x and y be the nodes in the diagram of A such that t(z) = ¢ and
t(y) = i+ 1. Then s(z) =i+ 1 and s(y) = i and, since s > t, we have & < y.
Therefore, P/* = P U{(x,y)} and the result follows. O

Lemma 3.27. Suppose that t is a standard A—tableau such that T = p(t) is semis-
tandard. Then yprote ~ ' 1hr.

Proof. We first show that ¥(prere is an R—multiple of ¢7. Let (i,k) € N x r and

suppose that y,y + 1,... , z are the entries in row i of " Then, by Lemma
and Theorem BT3(1),

’lpthTprLﬁk = ’lpt(Ly 4+ -4 LZ)()OTuT;L = reST(i, k)’lpts&TwT;b.

Hence, by Lemmal3I2l if S € 7o(\, i) and S # T, then ¢ypromu Es = 0. However, by
Theorem BI3(vi), ¢ipromn = ZseTo(A,m as)g for some ag € R; 80 Yiprwtn = aridr
by Theorem BI3(v). Hence, ¢iprwre is an R—multiple of ¢r as claimed and it
remains to show that a¢ ~ ﬂ{‘ for all t.

Suppose first that t = first(T). By Theorem BI3(iii) there exist b, € R such that
Yy = @+ Y opi bsps. Write my, = ufx,. Then, by Lemma 22 there exist cs € R
such that

Yipromn = Puprems + 3 bepspromn ~ resi(a){vrlgpr + Y csps.
s>t S>T

However, 7' ~ resi(a){vr}, by Lemma B2Hi); so ¢prwmn =~ mi'ir by Theo-

rem BI3(iii) as required.

Finally, suppose that t # first(T). Then by Lemma B9 there exists a standard
A-tableau s such that s = t(i,i 4+ 1), s > t and p(s) = p(t). Now ¢ = ¢sT;
and @romT; = gt since (4,7 4+ 1) € &,. Once again by Corollary BT, ¢y =
Ys(T; + ) where a = La=Ljresi () Therefore,

resg (1) —res¢(i)

qresg (i) — resy(4)
resg (1) — res(7)

Yeprotn = Vs (T + a)prorn = (q 4 @)thsprom =~ ( )Wng

since Ysprore =~ mhapr by induction. To complete the proof it remains to apply
Lemma [3.261 O

Theorem 3.28. Let T be a semistandard A\—tableau of type p. Then (r,¥r) =~ vr.

Proof. Let t = last(T). By B2Z0 7{'¢r ~ ¢prerw and, by Lemma B2I] there
exist by € R such that Yrorure = ¢ + > o bstbs. Therefore, using T3] and
Theorem BT3(vi),

”{L<¢T;¢T> =~ <?/1Ta?/1t90'rww> = WTSOTmewO = <wT90T#T“’awt>
= (Y00 + Y bs(ths, ) = (e, ¥).

s>t

However, (1¢, 1) =~ ¢ by Proposition 319 and ~; ~ 7{'vr by Lemma B2H(ii), so
the theorem follows. O
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Corollary 3.29. Suppose that A\ € AT and p € A. Then G,,(\) ~ H yr.
T€To (N, p1)

Proof. By definition, G,,()\) = det ({¢s, ¢1)), where S and T run over To(\, p). By
Theorem B3] {tr}re7,(x,p) Is also a basis of VVlf‘ and the transition matrix between
this basis and the semistandard basis is unitriangular. [l

Remark 3.30. By definition, G,,()\) € Flg,¢™*, Q1 ..., Q,]; however, a priori, there
is no reason why the rational function [[; 71 should belong to this ring (cf. Exam-

ple B.16).

Now that we have computed G,,(\) we rewrite it in a more usable form. To do
this we introduce beta numbers for multipartitions.

Definition 3.31. Suppose that v is a multipartition of n and let ¢ € {1,2,... ,rn}
and write ¢ = (r — k)n + j where j € {1,2... ,n}.
(i) Define column ¢ of v to be column j of v(*),
(ii) Let s(c) = k.
(iii) Let B =n—7+ l/](-k)l. Then the sequence

ﬂ: (ﬂla"' 76nvﬂn+1a"' 7ﬂ2na"' 7ﬂ(7"—1)n+1a"' 7ﬂ7"n)7

is the sequence of beta numbers for v.

Note that, in the sense of [T} p. 77], (81 ..., [n) are beta numbers for v’
the partition which is conjugate to v("), and (841, ... , f2n) are beta numbers for
v("=D" and so on.

Definition 3.32. Given a sequence of integers a = (a1, @a, ... , @) and a multi-
composition 7 of n, define the integer d,(«) as follows.
(i) If ap = a, for some b # ¢ with s(b) = s(c), or a. < 0 for any ¢, then d,(a) = 0.
(ii) If « does not satisfy (i), then there exists a unique multipartition v and unique

elements wy, ... ,w, of &, such that if 3 is the sequence of beta numbers for
v, then
ﬁ = (alwl’ s s Qs O lawgy » -+ s Anfnawgy -+ - - aa(rfl)nJrnw,,.)-

Define d,(a) = (—1){w0++wo) |75 (v, 7).
Given a multipartition v € AT we also define d,(v) = |To(v, 7)|.

Now fix A € AT and p € A and let 8 = (B1,...,Bm) be the sequence of beta
numbers for \. Then d,(8) = |To(A, p)|-

Let (i,k) € N x r be maximal such that ugk) # 0 and set z = ugk). Then
every semistandard tableau T € 7o(A, 1) has precisely z entries equal to (i, k) and
these entries are at the feet of distinct columns of T. Indexing the columns of A by
1,2...,rn as in [B.31)(ii), let the columns which contain an entry (i, k) be labelled
by C = {c1 < ca < -+ < ¢} and let ¢ Dbe the multipartition of n — z whose

sequence of beta numbers is

602(617"'7ﬂ61_1)"'7ﬂ62_17"'7662_17"'757’77,)'

Then the tableau T obtained from T by deleting all of the entries (i, k) is a semi-
standard \“~tableau of weight fi, where fi is the multicomposition of n — z with

il = i (5,0) # (i, k), and 57 = 0.
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Since d,(8) = |To(A, p)|, by letting T range over the elements of 7o(A, 1), the
above argument shows that d,(3) = >, du(8°) where the sum is over all subsets
of {1,2,...,rn} with z elements. Similarly, with the help of Definition B33, for
any sequence of integers o = (o, ... , ) we have that

(3.33) dy(a) = dp(a®),
CcC{1,2,...,rn}
|Cl==

where the sequence a® is defined in the same way as 3.
Now consider the Gram determinant G, (A). Applying Corollary .29 and Defi-

nition [3.15}
Ar(z)
ao= 11w 11 1%8
T€To (A1) T€To (A, 1) z€[N]
(g )
TeTo0m) \ weln] B (z) = P (2)
T(x)#(3,k) T(x)=(i,k)

Ar(z
~ I G609 x ] 11 (@)
cc ()

c{1,2,...,rn} TETo(A\,u) z€E[N]
ICl== T(2)=(i,k)

Let T € To(A, ) and fix a node = € [A\] with T(x) = (i, k). By definition, both
Rr(z) and Ar(z) are products of the form [], (res(z) — res(y)). For each node y
appearing in the product Rr(z) there exists a unique y' in Ar(z) such that y' is
in the row below y; moreover, this gives a one—to—one correspondence between the
factors of Rr(x) and the factors of Ar(x) which are indexed by nodes which are
not in the first row of some component. Given such a triple z,y,y’, suppose that
z is in column c of X\ and that y and 3 are in columns b and b’ respectively. Then
c>b>0, s(b) =s(b) and Ar(x)/Rr(x) contains the factor

res(x) —res(y’) _ 0 Qse) =477 Q) _ ﬁ P M Q) — 4P Qi
res(z) — res(y) TP Q) — 4P Qsy TP Q) — 0P Quy

In this way, each column b < ¢ which does not contain an entry (i, k), and such that
n { b, contributes a factor to Ar(z)/Rr(x). The restriction that b is not divisible
by n is due to the fact that, if n | b and b < ¢, then column b cannot contain a
removable node. The columns b < ¢ with n dividing b correspond to the as yet
unaccounted for factors of Ar(z); thus such columns contribute a factor only to the
numerator of yr. Hence, we obtain the following “branching rule” for G, (X).

(3.34)

i=v

du(8°)
H(q_ﬁ“HQs(C) — a7 Qum) /
b<c
bgC
eHOVEI | O | R — —
CC{1,2,...,rn} ceC H (q CC?S(C) —4q Qe(b))
|C

|=2 b<c
nfbgC

We are now ready to give our first reformulation of Corollary B.29. For conve-
nience, we let rn = {1,2... ,rn} and given integers h > 0 and ¢ € rn define

S(h,e) ={bern|s() > s(c)orsb)=s(c)and B, > B.+h}.
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Theorem 3.35. Let A € A", u € A and let 8 be the sequence of beta numbers
for X\. Then

A) ~ H H H &+th( L —q ﬁqu(b)) w (B, ~1ﬁb+h,~~~yﬁu*hnnyﬁ'rn).

h>1c=1beS(h,c)

Proof. If n = 0, then G, (\) = 1 and, by virtue of Definition B.:32, the right hand

side is also 1. Consequently, we may assume by induction that [, Gz(A\Y) ~
G1G2G3G4 where

tel c C_ c
Gl*H H H H (7ﬁu+hQs(c)_qiﬁst(b))du’(ﬁl yeoe By Ry Be h,.“,,B,,,n)7

h>1CCrn ceErnpeS(h,c)
|Cl=z c¢C bggc

_3C el C_4_ c
G2=H H H H ( _ﬁc+1+hQs(c)*q_ﬁst(b))d“(ﬁl yeesBy Ry B —1=h,.. B

h>1 CCrn (‘El‘l’lbes(h c)
|C|=2—1 c¢C  pecC

,H H H H ﬂquhQS(C)_qfﬂst(b))dg(,Gf,...,BEJrhfl,...,Bf—hV”,Bf?n)y

h>2 CCrn cEmbeShc)
|C|=z—1 c¢C  peC

:H H H H (q_’86+hQS(C)—q_’B”J'_IQS(b))d’I('BlC"“’ﬁl’c_1+h""’ﬁ"‘c_h"“"grc”)

h>1 CCrn ce€rnpesS(h,c)
|Cl=2—1 ¢¢C  pgC

21—[ H H H L+hQ qfﬂbQS(b))dﬁ(ﬁf,...,BI?Jrh,...,Bf—h—l,...,ﬁfn)’

h>0 CCrn cernpeS(h, c)
|C|=z—1 c¢C  pgC

and
_(3C C_ C_q_ &
G47H H H H 'Bc+hQs(c)_q_Bst(b))du’(ﬁl oo By —14h,... B =1 h,.“,ﬂm’).

h>1 CCrn cernpeS(h,c)
|C|=z—2 cZC  p¢C

Note, that in all of the products above, the sets S(h, ¢) should really depend upon
B¢ however, the reader may check that the additional factors that this introduces
(in G3 and G4) all have exponent 0 and hence are trivial.

By our branching rule 334, G, (\) ~ BsBs [[ Ga(A®) where

_ _ _(aC
H H(q ﬁqule(c)_q ﬁst(b))d“(ﬁ )

CCrn b<c

and

_ _ _ 1 (3C
H H (q BCQS(C) —q ﬁst(b)) da (8 )

CCrn b<c

Now if s(b) = s(c), then b < ¢ if and only if 8, > (. and this is if and only if
0Oy > Bc + 1. Therefore,

_ C C _ C_ C
BaGo=T] I TI TI (6" Quiey—a P Quy) e B5 +ht S =hoBl)

h>1 CCrn cErnpeS(h,c)
|C|=2—1 c¢C  pgC

Similarly, we find that
yrtel e} C_ c
BsGs~T] TI I 1I ( G PRQ 0y — g O Q) # O e B e B =Rl BT

h>1 CCrn cernbes(h c)
|Cl=2—1c¢C  pgC
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Note that the restriction that n { b in Bs is not important because if n | b and
b€ S(0,c), then B, = 0 and so B, — 1 < 0 and dﬁ(ﬂc) = 0; consequently, neither
B3 nor G35 has a non—trivial factor indexed by column b.

Now G, (X) ~ G1(B2G2)(B3G3)Ga; so using [3.33 we deduce the result. O

Finally, we reinterpret Theorem B35 in terms of moving nodes in the diagram
of \. For each node « = (i, 7, k) in [\] let r,, denote the corresponding rim hook (in
AR)): see [T0, §18]. Let £4(ry) = )\Z(.k), —i be the leg length of r,, and res(r,) = res(fz)
where f, is the foot node of r, (that is, f, is the last node in the column of A\(*)
which contains z).

Definition 3.36. Suppose that A and v are multipartitions in AT. If A (¥ v let
gxv = 1; otherwise let gy, be the element of Q(q, @1, ..., Q) given by

I = H H (res(ry) — 1res(ry))6°”’7

z€[N] yEY]
[Ny =[A\rz

where g, = (—1)/(r=)+try),

Remark 3.37. These functions are not as complicated as their definition suggests.
First, note that gy, = 1 unless A*) = v(* for all but at most two k € r. If
g # 1 and XF) £ 0 and XD £ O for k #£ 1, then gy, ~ (¢?Qr — Q;)*! for
some integer d with —n < d < n. If X\ and v differ only on the kth component,
then gy, ~ (¢°Qk — Qr)/(¢®Qk — Q) =~ [a]y/[b], for some integers a and b in
{1,2,...,n}; of [13, 2.30].

Given an integral domain R containing parameters ¢, @1, ey @r we can consider
g as an element of the field of fractions of R by evaluating the indeterminates in
g appropriately and replacing 1 by the identity of R.

Corollary 3.38. Let R be an integral domain. Then

Gu(A) ~ H (QAu)d“(V),

veAt

considered as an element of R.

Proof. By general arguments, if R is an integral domain, then the Gram deter-
minant G, () can be computed by evaluating the polynomial [[;~vr at appro-
priate values of the indeterminates. Thus it suffices to consider the case where
R= F[qa qila Qla s 7Qr]'

Consider the expression we have obtained for G, (\) in Theorem As in
the proof of [I3], 2.30], the only time that d,(81,...,0p +h,...,Bc —h, ..., Brn)
is non—zero is when a rim hook with foot node in column ¢ of A can be moved to
a rim hook with foot node in column b. Hence G, () can be expressed as in the
statement of the corollary. O

This formula for G, (\) is the nicest of the three we have obtained. It is not
hard to apply; for each node = € [A] we have to move the rim hook r, down in the
diagram in all possible ways.

Example 3.39. Consider once more the case where A = ((3,1),(1)) and p =
((2), (2, 1)) In the diagrams below, we label the nodes x and y, their rim hooks,
and we have circled the corresponding foot nodes. We list the factors res(ry) —
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res(r,) rather than the functions (gy,)%*). In the last column we have given the
numbers d,,(v) = |To(v, p)|.

( |®|, I:l) — ( @ s I:l) (q2Q1 _ Ql)d*‘(@z)v(l)) 5
l’ |:|> (92Q1 — q*QQl)du((2,12),(1)) 1

El

N |@|> (01 — g2 (@D.2) o

| > (R0Q1 — q~1Qy)d(@D.0%) 1
[@)]
L

( @l X |, I:l) —_— ( éi) (qu — Ql)_du((Qz):(l)) 2
- < ], IZI) (qQ1 — =3Q1)~ (M) g
m
(X
( [ ], [ I@Ix] ) (qQ1 — qQ2)% ((1*)(3) 0
< | - ) (4Q1 — 472Q2) %) g
[
( o] l’ D) _) < L l’ D) (7' Q1 — ¢~2Qq) W (1:(0) 1
K
=
< Y1, |:|) (¢71Q1 — q~3Q) (W) ¢
X
3
(X
o, L1@[x]x]x] ) (G101 — qQo)~w(@.) g
o, [u]x]x |> (G Q1 — ¢~ Qo) % (@.3.2) ¢
X x
<@, y|x ) (¢1Q1 — q2Q5) % (©),2%1) o
X | X
e
< R ) (7'Q1 — ¢ *Qa) ™ (@:(7) ¢
Y |
X
]
(X
|

| I,IZI)_>(| [T | |@|> (01 — qQo) (@) o
LT T ) “10, — =10y (307 1
( ('Q1—q " Q2)

@]

If it is raining, the reader might like to check that the answer this gives for G, ()
agrees with that of Example (it does).
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Motivated by the theory of Coxeter groups, we make our next definition.

Definition 3.40. The Poincaré polynomial of the generic Ariki-Koike algebra H is
the element of Z[q,q~ ', Q1, ... ,Q.] given by

P(g Q- Q) ={n}y I II (@@r-aQv

1<k<I<r —n<d<n

If R is an integral domain, let Pg(q; @1, ... ,Q,) denote the corresponding special-
ization of P(q; Q1,...,Qr).

Note that it is possible that Pr(q; Q1,...,Qr) # 0 even if @ = 0 for some k € r.
It is for this reason that we had to introduce the rational functions gy, above.

Corollary 3.41. Suppose R is an integral domain such that Pr(q; Q1,...,Qr) is
a non—zero element of R. Then G, (\) #0 for all A\ € AT and all p € A.

Proof. By [337, for all A and pu, each factor of the polynomial g, divides
P(q;Q1,...,Qr); hence the result. O

Suppose that R is a field and that AT is the set of all multipartitions of n.
Then it is easy to see that the converse of Corollary [B41] is true. Furthermore,
G, (M) # 0 for all A and p if and only if each Weyl module is irreducible, so this is
equivalent to S being semisimple by [8, 3.8]. However, S is semisimple if and only
if H is semisimple by Proposition[2.17 so we see that H is semisimple if and only
if Pr(q;Q1,...,Qr) # 0. Thus we recover the main result of [2].

We also note that with a little more care the proof of Lemma .12, and hence
Theorem[3.13] goes through for any field R provided that ¢ # 1, Pr(q; Q1,--- , Q)
#0and Qi # 0 for all k € r.

4. THE SUM FORMULA AND IRREDUCIBILITY

We now apply the results of the previous section to describe the Jantzen filtra-
tion of the Weyl modules W* and the Specht modules S*. First we need some
preparation.

Throughout this section we assume that R is a principal ideal domain and that p
is a prime in R. Let F = R/pR. Then given an R—module Ug its reduction modulo
p is the F-module Up = (UR + pUR)/pUR =~ Ur®grF.

Suppose that Ug is a free R—module of finite rank equipped with a symmetric
bilinear form ( , ). For each ¢ > 0 let

Ugr(i) = {u € Ug | p" divides (u,u’) for allu’ € Ur}.
The Jantzen filtration of the F-module Uf is
Upr=Ur(0) DUp(1) D -+

where Ur(i) = Ur(i) @r F for all 4 > 0. Since Uy is finite dimensional, Ur(i) = 0
for all sufficiently large 3.

Let e1,es,... ,eny be an R-basis of Ug and let G = det (<ei,ej)) be the deter-
minant of the associated Gram matrix (an element of R).

Let vp: R* — N be the p-adic valuation map. Then an argument due to Jantzen
proves the following.
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4.1 ([14] Lemma 3]). Suppose that the bilinear form ( , ) is non-degenerate. Then
Vyp (G) = Zdim]FU]F(i).
i>0
Fix §,Q1,...,Q, € Rand let g = G+ pR, Q1 = Q1 +pR,... ,Q, = Q, +pR be
their canonical images in F. Let Sﬁ be the associated cyclotomic ¢g—Schur algebra
over R with parameters ¢, @1, ... ,Q,. Then its reduction modulo p, Sp = SR ®gF,
is the cyclotomic ¢—Schur algebra with parameters q, Q1,...,Q,. If A € A*, then
W will denote the corresponding Weyl module of Sg and W & W3 ®g F the

Weyl module of Sy.
As we did in [I3] §3], given a right Sp—module Uy and integers ay € Z we write

Up — Z a)\W]F)‘ if
AEA+
Ur @ @(—a)\)WF)‘ and @ axwi

reAat xeat
ax<0 ax>0

have the same composition factors. Using the cellular structure of Sg we obtain the
following result.
Lemma 4.2. Suppose that Ur is an Sp—module such that for all p € AT we have
dim U]FQOTMT;L = Z a) dim W]P%\SOT#TM
AEAT

for some ax € Z. Then Ug «— Y 5o+ aWp.

Let Ry be the field of fractions of R and extend v, to a map R}( — Z in the

natural way. Recall the rational functions g, € Ry and Pr(¢; @1, e ,QT) from
the end of the previous section. We can now state one of our main results.

Theorem 4.3. Let A € AT and suppose that Pr(q; @1, e ,Q\r) #0. Then
D OWRE) = D vp(gn) WK

>0 N

Remark 4.4. Note that we may omit the condition that A\ dominates v from the
second sum, since v, (ga,) = 0 unless A > v; however we have included this condition
to emphasize that only these multipartitions matter.

Proof. Suppose that p € AT with A > u and recall that G, ()\) is the Gram de-
terminant of the u—weight space Wﬁ(pTuTu, with respect to the semistandard basis.

Because Pr(q; Q1,...,0Q,) # 0 we know by Corollary 341 that Gu(\) # 0 in R.
Therefore, we can apply EIlto Wagrure to deduce that

Vp (GH ()\)) = Z dim]F W]P%\SDTMTM (Z)

i>0
Since d,,(\) = dimg W pruts, the result follows by Corollary .38 and Lemma

O

As our first application of this result we describe the irreducible Weyl modules.
Recall that if A € AT, then F? = W/ rad W3
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Corollary 4.5. Let A € AT and suppose that Pr(g; @1, e ,@r) #0. Then W3 is
irreducible if and only if vy(gx,) = 0 for all multipartitions v € AT such that X > v.

Proof. Because rad W@ = Wi (1), the Weyl module W3 is irreducible if and only
if W (1) = (0). If there exists a multipartition v € AT with v, (gx,) # 0, then we
may assume that v is minimal in the dominance ordering with this property. Then
F¥ is a composition factor of the right hand side of Theorem[£3] (in particular, we
must have v, (gx,) > 0); consequently, W (1) # (0) and so W3 is reducible.
Conversely, if v,(gx,) = 0 for all v € AT such that A > v, then rad W = (0) by
Theorem 3, hence, W} is irreducible. O

We extend the relation «— to Hp—modules in the obvious way. By considering
the case where AT is the set of all multipartitions and using Proposition 17 we
obtain the following.

Theorem 4.6. Let \ be a multipartition of n and suppose that Pr(q; @1, e Q)
is a non—zero element of R. Then

D USR() > vplgaw)S¥-
)\l;l/

>0

As in Corollary L5 Theorem automatically gives sufficient conditions for
S2 = D3. In order to obtain necessary conditions we need to work a little harder.

Theorem 4.7. Suppose that A € AT.
(i) If Sp = Dy, then W3 is irreducible.
(ii) Suppose W3 is irreducible, Pr(g; @1, ... ,Q\,«) # 0 and that every multiparti-
tion of n is contained in AT. Then Sp = Dp.
(iii) Suppose that Pr(g; @1, e ,@r) # 0. Then Sp = Dy if and only if vy(gr,) =0
for all multipartitions v of n such that A\ > v.

Remark 4.8. Notice that when Dy # (0) part (iii) gives necessary and sufficient
conditions for S to be irreducible; however, it can happen that Sg is irreducible
when D3 = (0). Even for the symmetric group (that is, the case where r = 1
and g = 1), the complete classification of the irreducible Specht modules S3 is an
open problem (except in characteristic 2; see [12]). If w ¢ A, then there also exist
examples where W is irreducible and Sp # D3.

Proof. (i) Suppose that S3 = Dp. Then rad S3 = (0), so the Gram determinant
of SR, with respect to its standard basis {my |t € Std(\) } must be a non—zero
element of F. However, by Remark and Corollary B3 this determinant is
equal to

GoN) +pR~ [] (9r)™" +pR.
vEAT

Hence, S = D3 if and only if (g, )% *) ¢ pR for all multipartitions v of n. On the
other hand, the Gram determinant of WH?, with respect to its semistandard basis,
is equal to

[T +pr= T T](9n)™® +pR.

HEA veEAT pEA
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Therefore, Wt = F3 if and only if (gx,)%*) ¢ pR for all v € A* and all yu € A.
However, it is easy to see that if v € AT and p € A, then d,(v) # 0 only if d,,(v) # 0
so the result follows.

(ii) Suppose that W3 is irreducible and let v be a multipartition of n such that
D% # (0) and (S : D¥) > 0. By Proposition 217, (Wy' : F¥) = (Sp : D) > 0.
However, WFA is irreducible, so ¥ = A and SI? = DI’F\ as claimed.

Part (iii) now follows from parts (i), (ii) and Corollary EZH O

The last four results apply to fields F of the form R/p where R is a principal ideal
domain, p is a prime in R and Pr(q; Q1,. .. ,Q,) # 0. At first sight the requirement

that Pg(q; @1, ..., Q) # 0 appears to be very restrictive; however, given any field
F containing 0 # ¢q, @1, - .. , @, we can always find suitable R and p.

Notation 4.9. Fix a field F containing elements ¢, @1, ... ,Q,, with ¢ # 0, and
let Sp be the cyclotomic g—Schur algebra over F with these parameters. Let
R = F[j], where ¢ is an indeterminate over F, and p = ¢ — ¢q. Define S to

be the cyclotomic —Schur algebra over R with parameters g, @1, N ,@r where
Qk: Qk(d_q+1)kna lf Qk?é07
G-, if Qr = 0.

Let Hr and Hy be the associated Ariki—Koike algebras.

Notice that R is a principal ideal domain, p is prime in R and F = R/p. More-
over, if m: R — T is the canonical projection, then 7(§) = ¢ and F(@k) = Qk
for k = 1,2...,r. Therefore, Sp = Sg ®r F and Hr = Hir ®r F. Finally,
Pr(g; @1, e ,@,,) # 0 because by construction every factor of Pg(q; @1, e ,@,,)
is non—zero. Thus we are in a situation where we can apply Theorem E3] and
its corollaries. Note that the Jantzen filtrations of the Weyl modules and Specht
modules depend upon R and p rather than on F.

In [I3, Theorem 4.19] we gave a purely combinatorial classification of those
partitions A such that W3 is irreducible (this is the case r = 1). We build upon
this to give such a criterion for the general case.

In addition to using the notation of (£3)), we write resp and resp for residues
in the rings R and F respectively. We also write SI(Fl)(n) for the g—Schur algebra
Sr(A) where A is the set of all partitions of n and @1 = 1 (that is, the case r = 1).

Theorem 4.10. Let A = (A ... A") € AT be a multipartition of n. Then Wy
is reducible if and only if
() for some k € r the Sél)(nk)fmodule Wf‘(m is reducible where ny, = |A\®)|; or,
(ii) for some v in AT there exist v = (i, j, k) € [\ and y = (a,b,c) € [v] such that
c>k, A\ re=[v]\ry and resp(ry) = resg(ry).

Remark 4.11. Less formally, condition (ii) says that it is possible to unwrap a rim
hook from [\ and wrap it back on to a later component without changing the
residue of the foot node.

Proof. By Corollary B5] W3 is reducible if and only if there exists a multipartition
v € AT such that vy (gx,) # 0. By RemarkB37) v (gx,) # 0 if and only if A > v and
there exist = (4, j, k) € [\] and y = (a, b, ¢) € [V] such that ¢ > k, [\]\ s = [V]\ 1y
and p divides resg(ry) —resg(ry). Now, p = §— ¢, so p divides resg(ry) — resg(ry)
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if and only if resp(ry) = resp(ry). By [13] Theorem 4.15], Wf(k) is reducible if

and only if there exists a partition u of ng (where ny = |[A®)|) such that A*)

dominates p and there exists z € [A®] and y € [u] with [A\®]\ r, =[] \ 7, and

resg(ry) = resp(ry). The theorem now follows. O
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