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ABSTRACT

Introduction: Basic fibroblast growth factor
(bFGF) plays several key roles in wound healing.
Over the last 2 decades, clinical and basic
research on bFGF has been actively conducted
in Japan with reports on its potent efficacy in
accelerating the healing of chronic ulcers and
burn wounds by stimulating key cellular players
in the skin. However, its efficacy remains
unrecognized internationally. Thus, this study
reviews current knowledge about the therapeu-
tic value of bFGF in wound management and
scar prevention accumulated in Japan over the
last 2 decades.
Methods: We review the Japanese literature
that demonstrates the anti-scarring effects of
bFGF and exhaustively assess how these effects

are exerted. Using the search terms ‘‘bFGF OR
growth factors AND wound healing in Japan’’
and ‘‘bFGF AND scar prevention in Japan,’’ we
conducted a search of the PubMed database for
publications on the role of bFGF in wound and
scar management in Japan. All eligible papers
published between 1988 and December 2019
were retrieved and reviewed.
Results: Our search yielded 208 articles; 82
were related to the application of bFGF for
dermal wound healing in Japan. Of these, 27
fulfilled all inclusion criteria; 11 were laboratory
studies, 7 were case reports, 4 were clinical
studies, and 5 were randomized controlled
trials.
Conclusion: Further research, with recognition
of the therapeutic value of bFGF in wound and
scar management and its clinical applications,
is needed to provide additional clinical advan-
tages while improving wound healing and
reducing the risk of post-surgical scar
formation.

Keywords: Basic fibroblast growth factor; Burn
injuries; Chronic ulcer; Wound healing; Scar
prevention
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Key Summary Points

This article reviews current knowledge
about the therapeutic efficacy of bFGF in
wound management and scar prevention,
which has been accumulated in Japan over
the last 2 decades, including Japanese
animal model studies, case reports, clinical
studies, and randomized controlled trials.

The application of bFGF immediately after
debridement and before grafting can
improve the healing of chronic ulcers or
second-degree burns and prevent
pathological scar development.

bFGF signaling promotes both fibroblast
proliferation and migration in wound
healing by activating the PI3K/Rac1/JNK
pathway andmay prevent pathological scar
formation by inhibiting TGFb1/SMAD
signaling.

Several bFGF delivery systems are being
developed, including controlled-release
bFGF formulations such as bFGF gelatin
sheets, which provide better healing
outcomes. However, further research on
these alternative formulations may
provide optimal clinical advantages.

INTRODUCTION

Wound healing normally is a finely orches-
trated multi-phase process that involves a
variety of cell types. Studies on wound healing
have revealed that dysfunction in some growth
factors plays a role in non-healing wounds.
These findings have directed advanced bio-
engineering technology to consider the use of
exogenously prepared growth factors and
cytokines.

Several growth factors have demonstrated
potent efficacy for surgical use such as platelet-
derived growth factor (PDGF) [1], vascular
endothelial growth factor (VEGF) [2], fibroblast
growth factor (FGF), epidermal growth factor
(EGF), keratinocyte growth factor (KGF),

transforming growth factor beta (TGF-b), and
granulocyte–macrophage colony-stimulating
factor (GM-CSF) [3, 4].

Preparations that contain recombinant
growth factors are available for external use in
various formulations, for example, solution,
spray, ointment, and gel. However, as summa-
rized in Table 1, the use of these preparations is
associated with certain limitations regarding
safety and drug delivery systems, which require
high doses and/or repeated application, result-
ing in dire side effects including oncogenesis
[5–7].

In this article, we focus on basic fibroblast
growth factor (bFGF), a member of the FGF
family of growth factors and signaling proteins.
In 1988, Kaken Pharmaceutical Co., Ltd.,
Tokyo, Japan, obtained exclusive licensing
rights to recombinant human bFGF (rhbFGF)
Trafermin. This drug was originally developed
for patients with decubitus ulcers and skin
ulcers.

Following several clinical trials and extensive
research and development focusing on rhbFGF
for tissue regeneration, in 2001, Kaken Phar-
maceutical successfully launched Fiblast�, the
world’s first rhbFGF preparation marketed in
Japan as a topical spray for accelerating healing
of burn wounds and diabetic leg ulcers. During
the ensuing 8 years, it was observed that
Fiblast� spray potently and safely promoted
wound healing and reduced scar formation in
the clinical setting throughout Japan. Based on
these findings, along with additional clinical
research and good safety data, the Clinical
Practice Guidelines for Burn Injuries published
by the Japanese Society for Burn Injuries in 2009
recommended bFGF as treatment for second-
degree burns. Since then, bFGF has become
widely used as a treatment modality for wound
healing and scar reduction in the clinical setting
in Japan.

However, the excellent efficacy of bFGF in
wound healing remains largely unrecognized
internationally. This may reflect the fact that
while other countries have also conducted
research on the ability of growth factors to
improve wound healing, clinical and basic
research in Japan has proactively investigated
the role of bFGF in wound healing over the last
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20 years and are thus at the forefront of clinical
experience and research leading this
application.

In North America and Europe, significant
attention has been paid and massive efforts
have been focused on FGFs to generate FGFR
inhibitors for application in the field of oncol-
ogy [8, 9]. In China, recent advances in bio-
engineering have led to the production of FGF
ligands, revealing their role in enhancing
wound repair and regeneration of injured tissue
[10–13].

Simultaneously, the clinical application of
FGF ligands in the field of oncology as well as in
wound healing has been reported in Japan.
Nevertheless, the Japanese clinical experience
with FGF ligand products, especially bFGF, has
demonstrated a remarkable positive impact in
accelerating the process of healing and in the

management of chronic wounds such as dia-
betic foot ulcers. Thus, improving the recogni-
tion of the potential clinical application of
bFGF in wound healing and tissue repair in the
West is necessary to overcome the financial
burden of wound management, such as diabetic
foot ulcers, and to provide sufficiently improved
wound healing.

Therefore, in this article we review current
knowledge about the therapeutic value of bFGF
in wound management and scar prevention,
which has been accumulated in Japan over the
last 2 decades. In particular, we review animal
studies, case reports, clinical studies, and ran-
domized controlled trials (RCTs) that demon-
strate the anti-scarring effects of bFGF in Japan.
We also exhaustively assess the mechanism by
which bFGF exerts these effects.

Table 1 Specific growth factors and their roles in clinical applications for promoting wound healing

Growth
factors

Platelet-derived
growth factor PDGF
(Regranex�)

Vascular endothelial growth factor
(VEGF 165)

EGF Epidermal growth factor
(Heberprot-P�)

Administration Topical Topical Topical or intralesional

Injection

Type of wound Diabetic foot ulcer Diabetic foot ulcer Burns, non-healing ulcer, and diabetic

foot ulcer

Action Maintains cell growth

and division, chemo-

attractant for

mesenchymal

cells, angiogenesis

Enhances angiogenesis; stimulating

proliferation and migration of

endothelial cells

Promotes proliferation and migration of

keratinocytes and tensile strength of

new skin; induces fibronectin

production

Limitations Increased cancer risk

reported with higher

doses

Minimal efficacy in

pressure ulcers and

venous ulcers

Few attempts of using VEGF as an

adjunctive treatment in wound

healing

Most VEGF therapies are focused on

anticancer treatments by inhibiting

proliferation of tumor blood vessels

Healing is hindered by matrix

metalloproteinases rapidly degrading

growth factors or cytokines.

Lack of sophisticated delivery systems

for providing sustained levels of EGF

and inhibiting its degradation.

Pain at the injection site is common

Reference(s) [73–75] [76–79] [80, 81]

Recombinant growth factors are available in various formulations (e.g., solution, spray, ointment, and gel). However, some
limitations regarding safety, cost, and drug delivery systems accompany these medications as listed above
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METHODS

Literature Search and Data Selection

Using the search terms ‘‘bFGF OR growth factors
AND wound healing in Japan’’ and ‘‘bFGF AND
scar prevention in Japan,’’ all original articles
related to bFGF treatment in wound and scar
management in Japan were identified by a
PubMed search. Eligible papers published
between 1988 and December 2019 were
retrieved and reviewed. In addition, important
reference articles from the included articles
were reviewed. Three independent researchers
performed the literature search to identify all
relevant studies.

Inclusion Criteria
This study included articles that (1) reported on
the use of topical bFGF in wound healing
management and scar prevention; (2) described
the effect of bFGF on these wounds. There were
no restrictions with regard to the number of
patients in the clinical study or the follow-up
duration. The systematic review also aimed to
include all in vivo studies that employed topical
bFGF-treated models of wound healing and
scarring along with all in vitro studies that
involved bFGF-treated wounds or pathological
scar-derived tissues/cells. The language of the
article was not restricted to English.

Exclusion Criteria
The following articles were excluded: (1) articles
on the use of bFGF for non-cutaneous wound
healing; (2) imperfect literature reviews; (3)
conference papers that reported data with
unresponsive associated authors; (4) repeated
publications.

Statistical Analysis

No formal statistical analysis was performed
because the extensive methodological hetero-
geneity of the articles limited this study to a
qualitative analysis. This article is based on
previously conducted studies and does not
contain any studies with human participants or
animals performed by any of the authors.

RESULTS

A total of 208 articles were identified from the
search, as shown in the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses
(PRISMA) flowchart for literature attrition
(Fig. 1). After screening by title, 82 were relevant
to the application of bFGF for dermal wound
healing in Japan. Subsequently, 60 were
screened by abstract for adherence to the
inclusion criteria.

Finally, a total of 27 full-text articles satisfied
all the eligibility criteria and were reviewed in
their entirety including: 11 laboratory studies, 7
case reports, 4 clinical studies, and 5 RCTs. The
included articles are summarized (Tables 2, 3).

Fig. 1 PRISMA flowchart showing literature attrition
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Table 2 Laboratory studies on the role of bFGF in cutaneous wound management and scar prevention

Title Type
of
study

Method Number
of
subjects

Results

Eto et al.

[33]

In

vitro

In

vivo

Evaluation of the therapeutic remodeling

effects of basic fibroblast growth factor

(bFGF) treatment in an animal model

using human hypertrophic scar tissue

implanted into nude mice

6 Significant decrease in scar tissue weight

and collagen quantity

Funato et al.

[34]

In

vitro

Examination of the effect of bFGF on

apoptosis in normal rat palatal

fibroblasts and rat palatal scar fibroblasts

using the TUNEL assay

3 bFGF induced apoptosis in myofibroblasts

during palatal scar formation

Akasaka

et al. [50]

In

vitro

Investigation of the mechanisms

underlying pro-apoptotic effects of

bFGF on granulation tissue fibroblasts

during wound healing after

pretreatment with transforming growth

factor (TGF)-beta1

5–7 bFGF promoted apoptosis of injured

tissue-derived fibroblasts pre-treated

with TGF-b1

Kanazawa

et al. [53]

In

vitro

Examination of bFGF-induced fibroblast

migration in wound healing with

concurrent blockade of the effect of

bFGF on fibroblast proliferation by

using mitomycin-C

5 bFGF promoted dermal fibroblast

migration during the wound healing

process by activating the PI3K-Rac1-

JNK pathway

Kawai et al.

[65]

In

vivo

Evaluation of the effect of artificial dermis

with bFGF-impregnated gelatin

microspheres or bFGF in solution when

implanted into full-thickness skin

defects on the back of guinea pigs

4 Incorporation of bFGF into the artificial

dermis demonstrated effectiveness by

accelerating fibroblast proliferation and

capillary formation in a dose-dependent

manner

Kanda et al.

[66]

In

vitro

In

vivo

Application of collagen-gelatin sponge

(CGS) impregnated with 7 lg/cm2 or

14 lg/cm2 of bFGF to full-thickness

skin defects of normal mice and

decubitus ulcers created in diabetic mice

(length of the neoepithelium, and total

area of newly formed capillaries in CGS

were evaluated)

36 Artificial dermis, CGS, impregnated with

7-lg/cm2 bFGF accelerated dermis-like

tissue formation 2 or 3 times earlier

than artificial dermis alone
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DISCUSSION

Clinical and Experimental Significance
of bFGF

Local bFGF Treatment Accelerates Wound
Healing
Wound healing normally begins with
hemostasis and then progresses through three
overlapping phases driven by biomechanical
responses, namely, inflammation, proliferation,
and maturation. bFGF, along with other growth
factors, plays key roles in wound healing as

shown by the significantly slower healing of
full-thickness skin wounds in bFGF-knockout
mice than in wild-type mice [14]. Moreover,
many studies show that external application of
bFGF promotes wound healing. For example, a
study found greatly improved skin hardness
with local bFGF injections following lower limb
reconstructive surgery with tissue engineering
using a tissue scaffold and secondary split-
thickness skin graft [15]. Similarly, increased
granulation and accelerated epithelialization
were observed after treating rat full-thickness
acute incisions with bFGF fused to a fibrin-
binding peptide (Kringle1) compared with

Table 2 continued

Title Type
of
study

Method Number
of
subjects

Results

Kanda et al.

[67]

In

vitro

Evaluation of the ability of a scaffold,

CGS, for sustained release of bFGF,

using a pressure-induced decubitus ulcer

model in genetically diabetic mice by

assessment of the wound area and

histological assessment of neo-

epithelization

40 CGSs impregnated with 7–14 lg/cm2

bFGF accelerated wound healing

Tabata,

et al. [68]

In

vitro

In

vivo

Evaluation of the biological activity of

controlled release of bFGF incorporated

into gelatin hydrogel after subcutaneous

implantation into the back of mice

6 Controlled release of biologically active

bFGF caused by biodegradation of the

acidic gelatin hydrogel induced a

prolonged vascularization effect

Tabata et al.

[69]

In

vivo

In vivo release of bFGF from a

biodegradable gelatin hydrogel carrier

was compared with in vivo degradation

of hydrogel in a diffusion chamber, and

implanted in the mouse subcutis for

certain periods of time

6 Biologically-active bFGF was released as a

result of in vivo degradation of the

hydrogel and induced significant

neovascularization

Mizuno

et al. [70]

In

vitro

In

vivo

Examination of the stability of bFGF in a

chitosan film and the therapeutic effect

on wound healing in genetically diabetic

mice (db/db mice)

5 The rate of healing was accelerated by

promotion of fibroblast proliferation

and granulation tissue formation

Matsumoto

et al. [72]

Ex

vivo

Histological analyses of effectiveness of

bFGF-impregnated gelatin sheet in a

murine model

4 The findings suggested that controlled

release of bFGF using gelatin sheet is

effective for promoting wound healing
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Table 3 Clinical studies on the role of bFGF in cutaneous wound management and scar prevention

Title Type of
study

Method Number
of
subjects

Results

Akita et al.

[19]

Randomized

controlled

trial

(RCT)

Clinical assessment of postoperative

color uniformity in split-thickness

skin grafting

40 bFGF treatment contributed to a

better color match with skin grafting

postoperatively

Morimoto

et al. [20]

RCT Clinical evaluation of the safety and

efficacy of collagen/gelatin scaffold

impregnated with bFGF (7 or 14 lg/

cm2) in the treatment of chronic

skin ulcers after debridement

17 In 16 out of 17 patients, the wound

bed improved 14 days after

application without serious adverse

reactions

Uchi et al.

[21]

RCT Clinical assessment of topical bFGF

treatment of non-ischemic diabetic

ulcers for 8 weeks, in a dose-

dependent manner

150 bFGF accelerated wound healing in

diabetic ulcers with 75% or greater

reduction in the area of the wound

Akita et al.

[22]

RCT Clinical assessment of patients

receiving topical bFGF or no bFGF;

outcomes were compared for clinical

scar extent, passive scar hardness,

elasticity, and moisture analysis of

the stratum corneum at 1 year after

complete wound healing

153 Combined use of bFGF and artificial

skin substitute led to improved

wound quality (scars) and facilitated

wound healing

Hayashida

et al. [23]

RCT Clinical evaluation of the effect of

bFGF treatment in pediatric patients

with deep second-degree burn

wounds

20 Accelerated healing, reduced scarring,

and improved color matching with

normal skin compared with controls

up to half a year postoperatively

Akita et al.

[15]

Clinical

study

Clinical assessment of sequential lower

extremity reconstruction using an

artificial dermis with or without

bFGF administration, and secondary

split-thickness skin grafting by

measuring hardness using a

durometer, and moisture parameters

for at least 6 months after the final

procedure and comparison with

normal skin controls

12 bFGF-treated sequential artificial

dermis and skin grafting

demonstrated better scarring and

well-organized stratum corneum

after healing
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Table 3 continued

Title Type of
study

Method Number
of
subjects

Results

Ono et al.

[31]

Prospective

clinical

study

Investigation on bFGF injected into

the dermis of wound margins in full-

thickness wounds in patients

postoperatively after resection of skin

tumors

230 Significant reduction of hypertrophic

scarring and widening of remnant

scars without any serious side effects

Sugamata

et al. [62]

Clinical

study

Clinical assessment of combined

artificial dermis and application of

Fiblast� spray in 6 cases of traumatic

fingertip amputation

6 The shapes of the fingertips were

satisfactorily reconstructed in all

patients

Matsumoto

et al. [72]

Clinical

study

Examination of the safety of bFGF-

impregnated gelatin application for

patients

4 The findings suggested that controlled-

release bFGF using gelatin sheet is

effective for promoting wound

healing

Saijo et al.

[82]

Case reports Application of combined treatment of

artificial dermis and bFGF to treat

cranial bone-exposing wounds

followed by free skin grafting

2 The formation of granulation tissue

was promoted and acted as a wound

bed for the subsequent skin grafting

Kurokawa

et al. [83]

Case report Topical application of bFGF to

chronic leg ulcers at a dose of

30 lg/day for 3 months

1 The ulcer area was reduced by

promoted angiogenesis, re-

epithelization, granulation and scar

formation

Asai et al.

[84]

Case report Topical application of a mixture of

peripheral blood mononuclear cells

(PBMC) and bFGF to diabetic foot

ulcer

1 The ulcer was completely closed and no

new ulceration recurred after

6 months follow-up

Ito et al.

[85]

Case report Combined application of bilayer

artificial dermis graft and bFGF

without secondary skin grafts or flaps

to large soft tissue defect of the heel

after a degloving injury

1 bFGF induced wound closure and

successful reconstruction without

sacrificing skin from donor sites

Akita et al.

[86]

Case report Simultaneous application of bFGF

with regular surgical debridement

and skin grafting was investigated for

skin hardness by clinical examination

and instrumental measurement

1 Wounds treated with bFGF produced

scars that were significantly less hard

1 year after final wound closure
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positive controls. The authors also noted that
after subcutaneous implantation, a fibrin scaf-
fold suffused with the Kringle1-bFGF fusion
protein efficiently induced local angiogenesis,
indicating that this approach was also useful for
wounds deficient in plasma clot formation [16].

In addition, bFGF treatment of incisional
wounds in diabetic rats was found to improve
epithelialization, granulation, and wound-
breaking strength to levels observed in non-di-
abetic mice [17].

Several RCTs have been conducted in Japan
to examine the efficacy and safety of bFGF in
treating chronic skin ulcers, diabetic ulcers, and
venous ulcers. An RCT on the utility of Fiblast�

spray to improve healing of ulcers or second-
degree burns after debridement and split thick-
ness skin grafting revealed that applying bFGF
immediately after debridement and before
grafting significantly improved scar quality and
graft color match [18, 19].

Furthermore, a first-in-human RCT evaluated
the utility of an artificial dermis with sustained-
release bFGF to improve healing of chronic skin
ulcers. The artificial dermis comprising a colla-
gen/gelatin sponge was designed to release
bFGF for[ 10 days. The patients were random-
ized to application of either a low-dose (7 mg/
cm2 bFGF impregnation) or high-dose (14 mg/
cm2 bFGF impregnation) preparation after

wound debridement. The degree of wound
improvement was assessed 14 days after the
sponge was applied. Of the 17 patients divided
into the two low- and high-dose groups, 16
demonstrated significant wound improvement,
as indicated by the granulation and epithelial-
ization that reduced the wound area by C 50%.
No serious adverse effects were reported [20].
Moreover, a placebo-controlled RCT assessed
the ability of topical 0.001% (50 mg) or 0.01%
(500 mg) bFGF application for up to 8 weeks to
improve healing of non-ischemic diabetic
ulcers. The low- and high-dose treatments
reduced the wound area by[75% in 72.3% and
82.2% of the patients, respectively. In contrast,
this reduction was only seen in 57.5% of the
placebo-treated patients. Thus, bFGF treatment
accelerated diabetic ulcer healing [21]. In addi-
tion, bFGF treatment was found to improve
healing of partial thickness skin burns in two
RCTs. The first trial was in adult patients; 119
wounds were treated with topical 1 lg/cm2

bFGF, while 122 wounds received standard care.
The bFGF-treated wounds closed on average
3 days earlier than the control wounds. The
second trial was in pediatric patients who were
treated with the same regimen used in the
adults; the 15 treated wounds closed on average
3.7 days before the control wounds [22, 23].

Table 3 continued

Title Type of
study

Method Number
of
subjects

Results

Muneuchi

et al. [87]

Case reports 0.1 mL of bFGF (Fiblast�) was

injected into the sutured collagen

layer of artificial dermis followed by

daily injection of bFGF for 2 weeks,

topical ointment with recombinant

bFGF was then continued

2 The wound was completely

epithelialized 10 weeks after injury

with good sensory recovery

Yamaka

et al. [88]

Case report Topical application of rhbFGF

30 lg/daily in combination with

prostaglandin E1 ointment applied

directly to therapy-resistant chronic

leg ulcers in scleroderma

1 The lesions were completely re-

epithelialized within 20 days and the

ulcers did not recur during the

20-month follow-up period
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Local bFGF Treatment Prevents Pathological
Scar Formation
Scarring is influenced by multiple factors, and
this accounts for the wide variations of the dif-
ferent clinical types of scars. These range from
typical flat white scars, sunken atrophic scars,
and aggressively growing fibroproliferative
pathological scars, namely, keloids and hyper-
trophic scars [24].

These pathological scars often develop fol-
lowing trauma and burn injuries and are quite
common; in the US alone about 40 million
cases of pathological scars are reported every
year [25]. Over the past decade, findings from
clinical and animal studies have greatly
improved our understanding of the pathogen-
esis of keloids and hypertrophic scars, particu-
larly that their development and progression is
driven by chronic inflammation [26]. This
knowledge has facilitated the development of
therapies that prevent or reduce pathological
scarring and act at least in part by blocking or
ameliorating wound/scar inflammation. These
include silicone tape, compression garment
therapy, steroid injections, laser therapy, cryo-
surgery, radiotherapy, and surgical excision
[26–30]. However, because pathological scars
remain difficult to treat, there are continued
ongoing research efforts to develop new thera-
pies to prevent their formation. In Japan, stud-
ies showing that bFGF accelerates wound
healing and smooth epithelialization have led
to considerations that local application of bFGF
could also prevent the formation of pathologi-
cal scars in trauma and burn injuries. This
hypothesis was supported by a report where
immediate rinsing with or injection of bFGF
into sutured incisional wounds following
resection of skin tumors significantly reduced
the likelihood of developing hypertrophic scars
or scar widening after healing versus untreated
control wounds [31]. Also, repeated bFGF
treatment started soon after wounding for
formed hypertrophic scars in full-thickness
excisional wounds in rabbit ears greatly
decreased pathological scarring as shown by
significant reductions in scar elevation and
epidermal thickness indices [32].

Local bFGF Treatment May Reduce Pre-
existing Pathological Scars
Some evidence suggests that bFGF treatment
could also reduce pre-existing pathological
scars. Eto et al. showed that implanting human
hypertrophic scars onto nude mice and treating
the scars with a controlled-release bFGF formu-
lation decreased the size of the scars. The
hydroxyproline content also decreased, and
collagen fiber degradation was observed. Thus,
bFGF induced collagen degradation in hyper-
trophic scars. This observation was supported
by the fact that bFGF treatment upregulated
matrix metalloproteinase-1 expression in
fibroblasts from hypertrophic scars, but not in
fibroblasts from normal dermis [33]. Also, there
is some evidence that bFGF could induce
myofibroblast apoptosis. Funato et al. reported
that converting palatal fibroblasts into myofi-
broblasts followed by treatment with bFGF
resulted in apoptosis. Interestingly, they
showed that compared to normal palatal
fibroblasts, myofibroblasts from palatal scars are
more sensitive to bFGF, as shown by the greater
tyrosine autophosphorylation of their bFGF
receptors [34].

Cellular Mechanism and Signaling
Pathways of bFGF

Local bFGF Treatment Accelerates Wound
Healing by Several Cellular Mechanisms
The mechanisms underlying these wound
healing effects of bFGF reflect the multiple
properties of this glycoprotein. Specifically, due
to its strong mitogenic properties, bFGF accel-
erates the division and proliferation of cells in
the wound bed, namely, endothelial cells, der-
mal fibroblasts, and keratinocytes. Moreover, its
chemoattractant properties influence the
migration of these cells during wound healing,
thereby promoting neovascularization and
epithelialization. In addition, bFGF attracts
leukocytes to the wound, thus helping to initi-
ate the inflammatory phase of wound healing.
It also strongly stimulates the production and
metabolism of major extracellular macro-
molecules such as collagen, tropoelastin, and
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hyaluronic acid by fibroblasts, thereby shaping
scar tissue maturation [35].

bFGF Signaling Pathways that Participate
in Wound Healing
bFGF is known to efficiently promote fibroblast
proliferation and migration [36, 37]. The effects
of bFGF on signaling pathways that drive these
and other important fibroblast functions in
normal and abnormal wound healing remain
incompletely understood. However, there are
several lines of evidence suggesting that FGFs,
and in particular bFGF, activate other signaling
pathways in fibroblasts, as follows.

In relation to the signaling initiated in
fibroblasts by bFGF exclusively, in vitro and
in vivo studies show that bFGF accelerates
human fibroblast migration by independently
activating the PI3K/Rac1/JNK pathway [38].
This is supported by several studies on cultured
human dermal fibroblasts, which show that
bFGF treatment induces fibroblast migration by
significantly increasing Akt, Rac1, and JNK
activity [39, 40]. Moreover, Shi et al. showed
that reactive oxygen species (ROS) are a key
component in this cascade of events [41]. These
findings led to proposing the notion that bFGF

promotes the migration of human dermal
fibroblasts by binding to and activating FGFR,
which stimulates Akt. This drives the phos-
phorylation of Rac1, which activates both JNK
and NOX [41]. Both events then lead to the
production of ROS, which activates FAK and
paxillin, in turn inducing the cytoskeletal rear-
rangement needed for fibroblast migration
(Fig. 2) [41, 42].

bFGF Could Prevent Pathological Scarring
by Various Mechanisms
Regulating ECM Synthesis and Degrada-
tion bFGF may prevent excessive dermal
deposition of collagen, which plays a crucial
role in the development and progression of
keloids and hypertrophic scars. This deposition
is the result of an imbalance between collagen
synthesis and degradation that leads to a dis-
organized and voluminous fiber structure in the
dermis [43, 44]. While collagen deposition is a
necessary part of normal wound healing,
excessive deposition causes pathological scar-
ring [45, 46]. Because bFGF treatment acceler-
ates the appropriate deposition and distribution
of collagen in wounds [47–49], the application
of bFGF to the injured area soon after wounding

Fig. 2 Proposed signaling pathway of bFGF in promoting the migration of human dermal fibroblasts by activating PI3K/
Akt-Rac1-FAK-JNK signaling, which induces the cytoskeletal rearrangement needed for fibroblast migration
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may hasten the appropriate development of the
ECM in the wound, and this effect of local bFGF
may help to prevent the onset of the chronic
inflammation that drives pathological scarring.

Inducing Apoptosis of Granulation-Tissue
Fibroblasts bFGF treatment was reported to
reduce collagen density, decrease expression of
fibronectin, tissue inhibitor of metallopro-
teinase-1, collagen I, and collagen III, and
increase expression of matrix metallopro-
teinase-1 in ear wounds. bFGF also increased
apoptosis of fibroblasts in granulation tissue
[32]. This is consistent with a report where bFGF
treatment induced apoptosis in granulation-
tissue fibroblasts. In contrast, bFGF had no
effect on fibroblasts from uninjured dermis,
suggesting that bFGF might inhibit scar forma-
tion by promoting programmed cell death of
fibroblasts in granulation tissue throughout the
remodeling stage of wound healing [50].

Interfering with Myofibroblast Forma-
tion bFGF may also prevent pathological
scarring by interfering with the formation of
myofibroblasts, which is considered the most
important mechanism underlying the develop-
ment of keloids and hypertrophic scars. Myofi-
broblasts are activated collagen-hypersecreting
cells that differentiate terminally from the nor-
mally quiescent dermis-derived cells (particu-
larly dermal fibroblasts) into activated collagen-
hypersecreting myofibroblasts. This event
occurs by a process called endothelial/epithelial
to mesenchymal transition (EMT). Formation of
myofibroblasts is the most important mecha-
nism underlying the development of keloids
and hypertrophic scars [36]. Indeed, Tiede et al.
showed that multipotent human dermis-
derived progenitor cells tend to differentiate
into myofibroblasts in the presence of serum
and that co-culture with bFGF inhibits this
mesodermal differentiation; bFGF-cocultured
cells expressed much lower levels of the myofi-
broblast marker alpha-smooth muscle actin (a-
SMA) than control cells [36]. It is likely that this
effect of bFGF is also mediated by the ability of
this cytokine to inhibit the TGFb1/SMAD-de-
pendent pathway, and the study of Shi et al. in
hypertrophic rabbit ear showed that topical

application of bFGF downregulated a-SMA
expression as well as TGFb1/SMAD signaling
[32]. This is believed to be initiated through the
expression of miR-20a, which in turn represses
the expression of the TGFb receptor complex
(ALK5 and TGFBR2) and SARA, thus inhibiting
Smad2 and Smad3 activation, which plays an
important role in the development of fibropro-
liferative disorders (Fig. 3) [51].

Finally, bFGF may impede pathological
scarring by promoting fibroblast proliferation
[37, 52]. It may also act by enhancing fibroblast
migration. Kanazawa et al. showed that bFGF
promoted the migration of fibroblasts when the
proliferation of these cells was blocked by mit-
omycin C treatment [53].

Effect of bFGF on Non-fibroblast Cell
Types

The findings described above show that bFGF
promotes fibroblast migration and perhaps
proliferation, differentiation, and survival of
these cells also. It should be noted that the
name fibroblast growth factor (FGF) reflects the
fact that these molecules were initially known
for these effects on fibroblasts. However, it was
later shown that FGFs were identical to
endothelial cell growth factors [54, 55]. Thus,
FGFs do not act specifically on fibroblasts.
Moreover, several animal studies showed that
bFGF affects not only fibroblast and endothelial
cell functions [56, 57], but also influences ker-
atinocyte proliferation and migration [58, 59],
nerve regeneration [60], and vascular smooth
muscle cell proliferation [61].

Methods of bFGF Delivery for Improving
Wound Healing

In Japan, hrbFGF preparation Fiblast� spray has
been used as a topical spray to improve wound
healing by directly spraying it onto the wound
area. This is then followed by applying a stan-
dard dressing. Its efficacy in this formulation is
demonstrated in a study by Sugamata et al.
where the healing period was shortened and
good reconstruction of the fingertip shapes was
achieved in amputated human fingertips
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reconstructed with artificial dermis and then
treated with Fiblast� spray [62].

Currently, Fiblast� spray is routinely used
throughout Japan for negative pressure wound
therapy. This combination therapy became
available after the Japanese national health
insurance system coverage of the use of the
V.A.C. ATS� Negative Pressure Wound Therapy
System (Kinetic Concepts, Inc., Tokyo, Japan).
This widespread use of the Fiblast� spray is
emblematic of its considerable effectiveness in
wound healing.

Controlled Release of bFGF Is Associated
with Increased Efficacy
Free bFGF is water soluble and is rapidly degra-
ded in vivo. Thus, it has a short half-life [63].
Therefore, various formulations have been
developed to prevent this degradation. Xiang
et al. showed that bFGF-encapsulated liposomes
(bFGF-lip) improved healing of deep second-

degree burns in rats relative to treatment with
blank liposomes [64]. Similarly, another study
by the Department of Plastic and Reconstructive
Surgery in the Graduate School of Medicine of
Kyoto University showed that artificial dermis
with incorporated biodegradable gelatin bFGF-
containing microspheres when implanted into
full-thickness skin defects in guinea pigs accel-
erated fibroblast proliferation and wound
angiogenesis [65]. Further experiments by this
group showed that implantation of murine full-
thickness skin wounds with bFGF-impregnated
collagen/gel sponges greatly accelerated the
formation of dermis-like tissue [66]. This group
also found that similar treatment of debrided
decubitus ulcers in diabetic mice accelerated
wound closure, epithelialization, and angio-
genesis [67]. Thus, this group began an investi-
gator-initiated first-in-human RCT in 2010 to
examine the effects of this approach in patients
with persistent ulcers. The findings were

Fig. 3 bFGF downstream mediators Ras and PI3K acti-
vate miR-20a expression, which in turn inhibits the
expression of the TGFb receptor complex (ALK5 and

TGFBR2) and SARA, thus blocking the Smad2 and
Smad3 activation, which plays an important role in the
development of fibroproliferative disorders
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reported in 2013 as described previously.
Briefly, an artificial dermis consisting of a col-
lagen/gelatin sponge with sustained release of
bFGF for [ 10 days significantly improved
chronic ulcer healing [20].

Another group examined the effect of
implanting a controlled-release bFGF-impreg-
nated gelatin hydrogel in mouse incisions. This
innovative approach significantly increased
neovascularization when subcutaneously
implanted in the back of the mice [68, 69]. This
early study showed that a gelatin scaffold could
release a single growth factor or drug in a con-
trolled fashion, thereby increasing the efficacy
of the active agent in wound healing.

Fiblast� Spray vs. bFGF-impregnated Gelatin
Sheet
In contrast with studies reporting the effective-
ness of bFGF in accelerating wound healing, a
study has shown no significant difference
between bFGF-chitosan film compared with
chitosan film only when applied to surgically
created full-thickness wounds in diabetic mice
[70]. Additionally, a pilot, randomized, double-
blind study compared the topical application of

bFGF with placebo in 17 diabetic patients with
neurotrophic foot ulcers and reported similar
outcomes of bFGF and placebo for healing
chronic diabetic ulcer of the foot. Thus, it was
hypothesized that using a single growth factor
such as bFGF alone might be insufficient for
healing of such severe wounds [71].

The effectiveness of the bFGF-impregnated
gelatin sheet was compared with conventional
spray administered in a murine model for
wound healing. Compared with the bFGF spray
group, the bFGF-gelatin group demonstrated
significantly better wound healing outcomes
including faster wound closure, greater area of
mature collagen at the early stage of wound
healing, and higher vascular density. This sug-
gests that bFGF-impregnated gelatin sheet
yields a better acceleration effect on wound
healing compared with bFGF spray [72].

There is now considerable evidence showing
that bFGF accelerates healing of a wide range of
wounds, including pressure ulcers, second
degree burns, leg ulcers, and diabetic ulcers, in
addition to prevention of scar formation. A
large body of research also indicates that bFGF
effectively accelerates the process of wound

Fig. 4 Illustrative overview of the biological actions of bFGF application in chronic ulcer and burn injury involved in
accelerating wound healing and preventing pathological scar development
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healing and can prevent the development of
pathological scars as illustrated in Fig. 4. This is
as a result of stimulating the proliferation, dif-
ferentiation, and migration of fibroblasts and
endothelial cells and keratinocytes in the skin,
in addition to regulating ECM production and
metabolism as previously discussed. These
potent effects on key cellular players in wound
healing account for the widespread routine use
of the commercially available rhbFGF prepara-
tion Fiblast� spray to promote wound healing
and prevent fibroproliferative scarring in the
clinical setting throughout Japan.

This study has some limitations. First, the
review was restricted to the Japanese literature
and as such may not reflect research findings
abroad. Second, the list of keywords used for
retrieving articles in the PubMed database
search was incomplete and thus may not rep-
resent the full range of such studies. Third, the
majority of the studies were animal studies and
so are not representative of clinical applicabil-
ity. Hence, further translational research is
needed.

CONCLUSION

In the 2 decades since Fiblast� spray was laun-
ched in Japan, several other bFGF delivery sys-
tems have been developed, including
controlled-release bFGF formulations such as
bFGF gelatin sheets. Further research on these
alternative formulations is needed to clarify
additional clinical advantages, including greater
convenience and lower treatment costs, while
simultaneously efficiently improving wound
healing and reducing the risk of post-surgical
scar formation.
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