
Introduction
Java Memory Model

Conclusion

The Java Memory Model

Jeremy Manson1, William Pugh1, and Sarita Adve2

1University of Maryland

2University of Illinois at Urbana-Champaign

Presented by
John Fisher-Ogden
November 22, 2005

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Motivations
Definitions
Problems Addressed

Outline

Introduction
Motivations
Definitions
Problems Addressed

Java Memory Model
Sequential Consistency
Out of Thin Air
Causality
Well-Behaved Executions
Optimizations

Conclusion

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Motivations
Definitions
Problems Addressed

Overview

I Java memory model—revised as part of Java 5.0 (JSR-133).

I Guarantees sequential consistency for data-race free programs

I Requires that the behavior of incorrectly synchronized
programs be bounded by a well-defined notion of causality.

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Motivations
Definitions
Problems Addressed

Motivations

I Original Java Memory Model (JMM) not well specified and
difficult to understand. Semantics of final fields and volatile
unclear.

I Maintain safety and security guarantees in the face of
incorrectly or incompletely synchronized programs.

I Balance flexibility for code transformations and optimizations
with lucidity for programmers writing concurrent code.

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Motivations
Definitions
Problems Addressed

Definitions

Memory Model

I Correspondence between each load instruction and the store
instruction that supplies the value retrieved by the load.

I Interesting mainly for multi-threaded programs. Reorderings in
single-threaded programs maintain “as if sequential”
semantics.

I Partially determines legal JVM and compiler implementations.

Incorrectly Synchronized (Data Race)

I Thread A writes to a variable.

I Thread B reads that same variable.

I The write and read are not ordered by synchronization.

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Motivations
Definitions
Problems Addressed

Definitions Cotd.

Happens-Before Order

I Transitive closure of program order and synchronizes-with
order.

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Motivations
Definitions
Problems Addressed

Synchronization

Atomicity

I Locking to obtain mutual exclusion.

Visibility

I Ensuring that changes to object fields made in one thread are
seen in other threads.

Ordering

I Ensuring that you aren’t surprised by the order in which
statements are executed.

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Motivations
Definitions
Problems Addressed

Problems Addressed

Several serious problems existed in the old memory model.

I Difficult to understand ⇒ widely violated.

I Did not allow reorderings that took place in every JVM.

I Final fields could appear to change value without
synchronization (default value → final value).

I Allowed volatile writes to be reordered with nonvolatile reads
and writes which was counter-intuitive for most developers.

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Motivations
Definitions
Problems Addressed

Volatile Example

class VolatileExample {
int x = 0;
volatile boolean v = false;
public void writer() {

x = 42;
v = true;
}

public void reader() {
if (v == true) {

//uses x - now guaranteed to see 42.
}
}
}

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Motivations
Definitions
Problems Addressed

Double-Checked Locking

// double-checked-locking - don’t do this!

private static Something instance = null;

public Something getInstance() {
if (instance == null) {

synchronized (this) {
if (instance == null)

instance = new Something();
}
}
return instance;
}

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Motivations
Definitions
Problems Addressed

Double-Checked Locking Cont’d

Looks clever, but doesn’t work!

I Writes that initialize the Something object and the write to
the instance field can be done or perceived out of order

I Thread could see non-null reference to instance but default
values for fields of the Something object.

Make instance volatile

I Brief synchronization not very expensive anymore.

I Stronger volatile semantics increases cost of volatile almost to
cost of synchronization.

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Sequential Consistency
Out of Thin Air
Causality
Well-Behaved Executions
Optimizations

Java Memory Model

Essentially provides two things:

I For data-race-free programs, guarantees sequential
consistency.

I Requires the behavior of incorrectly synchronized programs be
bounded by a well defined notion of causality.

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Sequential Consistency
Out of Thin Air
Causality
Well-Behaved Executions
Optimizations

Sequential Consistency

Each thread(CPU) executes instructions in order.

Each thread(CPU) sees all operations in some total order.

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Sequential Consistency
Out of Thin Air
Causality
Well-Behaved Executions
Optimizations

Out-of-Thin-Air Guarantees

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Sequential Consistency
Out of Thin Air
Causality
Well-Behaved Executions
Optimizations

Write Speculation

Previous strategy of leaving semantics for incorrectly synchronized
programs unspecified inconsistent with Java’s security and safety
guarantees.

Thread 1 could speculatively write 42 to y , creating a logical chain
that is self-justifying.

Security violation - create a reference “out-of-thin-ar” to an object
that should not be accessible.

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Sequential Consistency
Out of Thin Air
Causality
Well-Behaved Executions
Optimizations

Causality

Need to incorporate causality into memory model to avoid circular
reasoning.

Notion of “cause” tricky—cannot employ data and control
dependence

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Sequential Consistency
Out of Thin Air
Causality
Well-Behaved Executions
Optimizations

Iterative Justification

Model builds a justified execution iteratively

I Using a sequentially consistent execution is too relaxed in
some subtle cases.

I Well-behaved execution—a read that is not yet committed
must return the value of a write that is ordered before it by
happens-before.

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Sequential Consistency
Out of Thin Air
Causality
Well-Behaved Executions
Optimizations

Well-Behaved Executions

Given a well-behaved execution:

I may commit any uncommitted writes that occur in it

I may commit any uncommitted reads that occur but require
that the read return the value of a previously committed write
in both the justifying execution and the execution being
justified.

Occurrence of a committed action and its value does not depend
on an uncommitted data race.

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Sequential Consistency
Out of Thin Air
Causality
Well-Behaved Executions
Optimizations

Optimizations

Formally prove legality of various reorderings and transformations:

I Synchronization on thread local objects can be removed

I Redundant nested synchronization can be removed

I Volatile fields of thread local objects can be treated as normal
fields

Also prove if an execution of a correctly synchronized program is
legal under the Java memory model, it is sequentially consistent.

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model



Introduction
Java Memory Model

Conclusion

Conclusion

Java Memory Model:

I Addressed problems with previous model

I Guarantees sequential consistency for correctly synchronized
programs

I Bounds behavior of incorrectly synchronized programs by a
well-defined notion of causality

Jeremy Manson, William Pugh, and Sarita Adve The Java Memory Model


	Introduction
	Motivations
	Definitions
	Problems Addressed

	Java Memory Model
	Sequential Consistency
	Out of Thin Air
	Causality
	Well-Behaved Executions
	Optimizations

	Conclusion

