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Abstract

We determine the magnetic field strength in the OMC1 region of the Orion A filament via a new implementation
of the Chandrasekhar–Fermi method using observations performed as part of the James Clerk Maxwell Telescope
(JCMT) B-Fields In Star-forming Region Observations (BISTRO) survey with the POL-2 instrument. We combine
BISTRO data with archival SCUBA-2 and HARP observations to find a plane-of-sky magnetic field strength in
OMC1 of B 6.6 4.7pos =  mG, where B 4.7posd = mG represents a predominantly systematic uncertainty. We
develop a new method for measuring angular dispersion, analogous to unsharp masking. We find a magnetic
energy density of 1.7 10 7~ ´ - J m−3 in OMC1, comparable both to the gravitational potential energy density of
OMC1 (∼10−7 J m−3) and to the energy density in the Orion BN/KL outflow (∼10−7 J m−3). We find that neither
the Alfvén velocity in OMC1 nor the velocity of the super-Alfvénic outflow ejecta is sufficiently large for the BN/
KL outflow to have caused large-scale distortion of the local magnetic field in the ∼500 yr lifetime of the outflow.
Hence, we propose that the hourglass field morphology in OMC1 is caused by the distortion of a primordial
cylindrically symmetric magnetic field by the gravitational fragmentation of the filament and/or the gravitational
interaction of the BN/KL and S clumps. We find that OMC1 is currently in or near magnetically supported
equilibrium, and that the current large-scale morphology of the BN/KL outflow is regulated by the geometry of the
magnetic field in OMC1, and not vice versa.

Key words: ISM: individual objects (OMC 1) – magnetic fields – techniques: polarimetric – stars: formation

1. Introduction

The role of magnetic fields in the star formation process is
currently poorly observationally constrained (e.g., Crutcher
2012). Measurements of magnetic field strength in star-forming
clouds vary from a few microgauss in quiescent low-mass
regions (e.g., Crutcher & Troland 2000) to 10 mG in massive
molecular clouds (e.g., Curran & Chrysostomou 2007). None-
theless, low- and high-mass star-forming regions appear to
have many commonalities in both their gas and their magnetic
field morphologies.

Recent observations, particularly those made by the
Herschel Space Observatory, have shown that filaments are

ubiquitous in molecular clouds (e.g., André et al. 2010), and

have led to the hypothesis that the dominant mode of formation

of solar-mass stars is to form on dense, self-gravitating

filaments (André et al. 2014). A recently proposed paradigm

of magnetically regulated filamentary star formation (André

et al. 2014) suggests that material flows onto filaments along

magnetic field lines, until the filament has accreted sufficient

mass to collapse under gravity to form a series of prestellar

cores.
In low-mass star-forming regions, the magnetic field

orientation has been seen to be perpendicular to the filament

direction in low-density material surrounding dense, self-
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gravitating filaments. Faint “striations” are seen in the low-

density molecular gas parallel to the magnetic field direction,

suggesting that material is accreting onto filaments along

magnetic field lines (Sugitani et al. 2011; Palmeirim et al. 2013;

Matthews et al. 2014). Observations of high-mass star-forming

regions have shown behavior qualitatively similar to that in

low-mass star-forming regions (Ward-Thompson et al. 2017).

However, in order to accurately constrain the role of magnetic

fields in high-mass filaments, and to understand the connection

between the roles of magnetic fields in low- and high-mass star

formation, detailed studies of the strength of magnetic fields in

high-mass filaments, and their contribution to the energy

balance of high-mass star-forming regions, must be undertaken.
The Orion Nebula is the nearest site of high-mass star

formation to the Earth (O’Dell et al. 2008). The complex

morphology of the region is well resolved by modern

telescopes, allowing its multiple sites of past and ongoing

high-mass star formation to be studied in detail (see, e.g.,

Bally 2008; O’Dell et al. 2008). In this paper we are concerned

with the OMC1 region, located at a distance of 388±5 pc
(Kounkel et al. 2017) in the center of the “integral filament”

(Bally et al. 1987)—a dense molecular cloud and a site of

ongoing high-mass star formation.
OMC1 is located behind the Trapezium cluster, a group of

young stars containing sufficient OB stars to photoionize the

surrounding gas. The ionized gas surrounding the Trapezium

cluster is bounded by the Orion Bar photon-dominated region,

which we see edge-on, to the southeast of and in front of the

dense gas of OMC1 (e.g., O’Dell et al. 2008). OMC1 consists

of a large mass of submillimeter-bright dense gas, separated

into two principal clumps—the northern Becklin–Neugebauer–

Kleinmann–Low (BN/KL) clump (Becklin & Neugebauer

1967; Kleinmann & Low 1967) and the southern Orion S

clump (Batrla et al. 1983; Haschick & Baan 1989). The BN/
KL clump hosts an extremely powerful explosive molecular

outflow, with a wide opening angle and multiple ejecta known

as the “bullets of Orion” (Kwan & Scoville 1976; Allen &

Burton 1993).
The magnetic field of the OMC1 region has an hourglass

morphology (Schleuning 1998; Houde et al. 2004; Ward-

Thompson et al. 2017). A variety of magnetic field strengths

have been reported in OMC1, ranging from a few hundred

microgauss (Crutcher et al. 1999, CN Zeeman effect, 23″

resolution; Houde et al. 2009, dust polarization, 12″ resolution)

to a few milligauss (Hansen & Johnston 1983, Norris 1984;

Johnston et al. 1989; Cohen et al. 2006, OH maser emission,

0 15–0 3 resolution; Hildebrand et al. 2009, dust polarization,

20″ resolution; Tang et al. 2010, energetics arguments from 1″

resolution dust continuum observations).
In this paper we analyze observations of the OMC1 region

taken in polarized light by the POL-2 polarimeter (Friberg et al.

2016; P. Bastien et al. 2017, in preparation) operating in

conjunction with the SCUBA-2 (Submillimetre Common-User

Bolometer Array 2) camera (Holland et al. 2013) on the James

Clerk Maxwell Telescope (JCMT). We use these data along-

side archival JCMT photometric and spectroscopic data in

order to determine the strength of the magnetic field in OMC1
using the Chandrasekhar–Fermi method (Chandrasekhar &

Fermi 1953), and to investigate the relative importance of the

magnetic field to the energy balance of OMC1.

The POL-2 data used in this work were taken as part of the
BISTRO (B-Fields in Star-forming Region Observations) survey
(Ward-Thompson et al. 2017) and as part of the POL-2
commissioning project. The BISTRO survey is observing the
high-column-density regions of the molecular clouds of the
Gould Belt (Herschel 1847; Gould 1879) in polarized light, in
order to produce a large and homogeneous data set for the
investigation of the role of magnetic fields in the physics of star
formation in nearby molecular clouds.
The structure of this paper is as follows. In Section 2 we discuss

the observations and data reduction. In Section 3 we determine the
magnetic field strength in OMC1 using the Chandrasekhar–Fermi
method. In Section 4 we estimate the energy balance between the
magnetic field, gravitational interaction, thermal and nonthermal
gas motions, and outflow of OMC1. In Section 5 we discuss our
results, and in Section 6 we summarize our conclusions.

2. Observations

The POL-2 observations used in this analysis were originally
presented by Ward-Thompson et al. (2017), and form part of the
JCMT BISTRO Large Program. We refer readers to that work
for a detailed description of the data reduction, and summarize
the key points here. Continuum observations in polarized light at
850 μm were made by inserting POL-2 (Friberg et al. 2016; P.
Bastien et al. 2017, in preparation) into the optical path of
SCUBA-2 (Holland et al. 2013). The OMC1 region was
observed 21 times with POL-2 between 2016 January 11 and 24
in a mixture of very dry weather (Grade 1; 0.05225 GHzt < ) and
dry weather (Grade 2; 0.05 0.08225 GHz t < ), providing a total
of 14 hr of on-source integration. The JCMT has an effective
beam size of 14.1 arcsec at 850 μm, equivalent to 0.027 pc at a
distance of 388 pc.
The 850 μm data were reduced in a two-stage process. The

raw bolometer timestreams were first converted to separate
Stokes Q and Stokes U timestreams using the process calcqu in
SMURF (Berry et al. 2005). The Q and U timestreams were then
reduced separately using an iterative map-making technique,
makemap in SMURF (Chapin et al. 2013), and gridded to
4 arcsec pixels. The iterations were halted when the map pixels,
on average, changed by <5% of the estimated map rms noise.
In order to correct for the instrumental polarization, makemap
is supplied with a total intensity image (I ) of the source, taken
using SCUBA-2 while POL-2 is not in the beam (Friberg et al.
2016; P. Bastien et al. 2017, in preparation). We took our total
intensity image of OMC1 from a SCUBA-2 observation made
using the standard SCUBA-2 DAISY mapping mode.
The Stokes Q and U observations were combined using the

process pol2stack in SMURF to produce an output half-vector
catalog (“half-vector” refers to the ±180° ambiguity in
magnetic field direction). The half-vectors that we use in this
work are gridded to a 12 arcsec pixel size to improve the signal-
to-noise ratio. Throughout this work we use polarization half-
vectors rotated by 90° to trace the magnetic field direction,
hereafter referred to as “magnetic field half-vectors.”
The absolute calibration of the data is discussed by Ward-

Thompson et al. (2017). In this work we use the measured magnetic
field angles, U Q0.5 arctanq = ( ), and polarization fraction,
P Q U Q U I0.52 2 2 2 0.5d d= + - +( [( ) ( ) ]) , in OMC1. P is
debiased using the mean of the Q and U variances, Q 2d( ) and
U 2d( ) respectively. We note that there are many methods for

debiasing polarization data (see, e.g., Montier et al. 2015a, 2015b).
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However, in this work we use P for half-vector selection only, so
the effect of our choice of debiasing method on our results is
minimal. The measured magnetic field angles are determined from
the relative values of the Stokes Q and U parameters, and hence do
not depend on the absolute calibration (i.e., the polarized intensity)
of the data.

3. Results

We determined the magnetic field strength in OMC1 using
the Chandrasekhar–Fermi (CF; Chandrasekhar & Fermi 1953)
method. The CF method assumes that the underlying magnetic
field geometry is uniform, and that the dispersion of measured
polarization angles (after any necessary correction for measure-
ment errors) represents the distortion of the magnetic field by
turbulent and other motions in the gas.

We determined the plane-of-sky magnetic field strength
(Bpos) in OMC1 using the formulation of the CF method given
by Crutcher et al. (2004):

B Q n
v

4 9.3 H G, 1
v

pos 2pr
s
s s

m= ¢ »
D
á ñq q

( ) ( )

where vs is the one-dimensional nonthermal velocity dispersion

in the gas; sq is the dispersion in polarization position angles; ρ

is the gas density; vD is the FWHM velocity dispersion in

km s 1- ( v 8 ln 2vsD = ( ) ); sá ñq is the typical deviation in

polarization position angle in degrees; n H2( ) is the number

density of molecular hydrogen ( nm HH 2r m= ( ), where μ is the

mean molecular weight of the gas); and Q¢ is a factor of order

unity accounting for variation in field strength on scales smaller

than the beam (labelled Q¢ to distinguish it from the Stokes Q

parameter). Crutcher et al. (2004) take Q 0.5¢ = (see Ostriker

et al. 2001). We adopt this value throughout this paper. We

discuss the appropriate value of theQ¢ parameter in Section 5.4

below.
Crutcher et al. (2004) note that the CF method does not

constrain the line-of-sight component of the magnetic field
strength, and that statistically,

BB
4

2pos
p

» ∣ ∣ ( )

on average, where B∣ ∣ is the magnitude of the magnetic field

strength half-vector. However, this statistical correction assumes

that the magnetic field has a large-scale geometry that is not

biased by a preferred axis. The magnetic field in Orion A is

clearly highly ordered (see Figure 1), and so we cannot rule out a

preferred orientation for the line-of-sight field. The relevance of

this correction to the plane-of-sky field strength that we measure

is hence unclear. We discuss this further below.

3.1. Angular Dispersion in OMC1

In order to apply the CF method to the magnetic field in
OMC1, which is both highly ordered and significantly
nonuniform, it is necessary to remove or account for the effect
of the underlying field geometry before estimating the
dispersion in position angle. We present a method for
measuring angular dispersion in an ordered field that is
analogous to unsharp masking: we estimated the behavior of
the undistorted magnetic field by applying a smoothing
function to our map of polarization angle. We then subtracted
our estimated undistorted (i.e., smoothed) magnetic field

directions from the measured polarization angles (rotated by
90° to trace magnetic field direction) in order to find the
difference between the measured magnetic field angle and the
mean field direction in each pixel in the map.
We subtract the smoothed map ( qá ñ) from the map of

measured position angle ( obsq ), giving a residual map showing
the deviation in angle in each pixel from the mean field
direction, qD , i.e.,

. 3obsq q qD = - á ñ ( )

The observed and smoothed maps of position angle, and their

residual, are shown in Figure 2.
We estimate mean field directions by smoothing the map of

measured angles using a 3×3 pixel boxcar average. The
3×3 pixel boxcar filter was chosen in order to allow a
smoothing length smaller than the radius of curvature of the
magnetic field in the regions of Orion A with high signal-to-
noise ratio. We measure polarization angles in the range
0 180q < , measuring angles east of north.

The 180° ambiguity in magnetic field direction, which is
inherent in polarimetric observations, introduces a discontinuity
in the distribution of angles. For our choice of range of angles,
this discontinuity occurs at 0° or 180°. In order to avoid creating

Figure 1. A map of the polarization half-vectors in the center of OMC1, with
half-vectors rotated by 90° to show the direction of the magnetic field, modified
from Ward-Thompson et al. (2017). The background grayscale image is a
SCUBA-2 850 μm total intensity image of Orion A. The Orion BN/KL, Orion
S, and Orion Bar features are labelled. Only those half-vectors with
P P 3d( ) are shown. The half-vector color scale is chosen for contrast
against the background image and has no physical meaning.
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artefacts in our smoothed map due to averaging over groups of

pixels within which this discontinuity is crossed, we tested each

3×3 pixel boxcar in order to determine whether the greatest

difference in angle between pixels within the boxcar was 90 °.

If this was the case, we mapped the pixels within that boxcar

from the range 0 180q <  to the range 90 90q-  < ,
and repeated the test of maximum difference in angle. If the

maximum difference in angle remained 90 ° after this mapping,

then we concluded that the observed variation in angle was real

and that the field in the vicinity of that pixel was insufficiently

uniform over the boxcar for the smoothing function to be valid,

and so we excluded that pixel from further analysis. However, if

the mapping reduced the maximum difference in angle to a range

90< °, then we treated that boxcar as containing pixels that cross

the 0°/180° discontinuity, and determined the average position

angle from the angles mapped to the range 90 90q-  < .
Where necessary, we then reversed the mapping in angle.

The pixels that we exclude from the analysis are marked in

gray in the central and right panels of Figure 2. These pixels

represent a small fraction of the total number of well-

characterized pixels in OMC1.

We investigated how the measured standard deviation of the
distribution of deviation angles, sq, varies as a function of
uncertainty in deviation angle d qD( ) for the general case of a
Gaussian distribution of angles each with and associated
experimental uncertainty by performing Monte Carlo simula-
tions of data sets with a range of fixed underlying dispersions
and randomly generated measurement errors. We found that,
when measured over well-characterized pixels, the standard
deviation tends closely to the true underlying standard
deviation. If measured over poorly characterized pixels, the
standard deviation increases linearly with maximum allowed
uncertainty on angle. These results are shown in AppendixA.
We tested the validity of our “unsharp masking” method of

recovering angular dispersion by testing it on sets of synthetic
observations with various field curvatures, intrinsic angular
dispersions, and measurement uncertainties. The results of these
tests are shown in AppendixB. We find that our “unsharp
masking” method accurately recovers the true angular dispersion
of the data, provided that the systematic variation in field
direction over the box size due to the changing direction of the
underlying field is significantly smaller than the random variation
in field direction due to the dispersion in position angle. We find

Figure 2. Position angles of magnetic field half-vectors in OMC1. The color maps in each panel show as follows: left panel—the observed magnetic field position
angles, ;obsq central panel—mean magnetic field position angle, qá ñ, from smoothing obsq with a 3×3 pixel boxcar filter; right panel—the residual values of position
angle, obsq qá ñ– . The color scale is the same in all panels and is chosen to wrap around the discontinuity at 0°/180°. In all panels the measured magnetic field half-
vectors (as shown in Figure 1) are marked in black. In the central panel, the smoothed magnetic field position angles are marked in white, for comparison. In the
central and right panels, pixels excluded due to changes of angle 90 ° in their boxcar window are marked in gray. The region outlined in black in the right panel
marks the pixels over which the magnetic field strength in OMC1 is measured (i.e., where 2.0maxdq < , as discussed in the text). Stokes I emission is shown as gray
contours on the left panel. The JCMT 850 μm beam is marked as a white circle in the lower left corner of the left panel.
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that we are in this regime throughout the central region of
OMC1, and so the measured angular dispersion should be an
accurate estimate of the intrinsic angular dispersion in the data.

We tested the effect of measurement uncertainties on our
recovery of angular dispersion using the unsharp-masking
method, and found that, as in the generalized case, sq is not
altered by measurement errors, provided that those measure-
ment errors are small. However, as previously, the measured
angular dispersion increases approximately linearly with
measurement uncertainty if the latter is comparable to or
greater than the angular dispersion. This is true regardless of
the degree of field curvature.

We find that for angular dispersions of ∼4°, the effect of
measurement error on sq is minimal while 2max dq , where

maxdq is the maximum uncertainty in any pixel included in the
smoothing box. We thus restrict our application of the unsharp-
masking method in OMC1 to those pixels for which

2.0maxdq < . Uncertainties on position angle are calculated
by pol2stack from the variances on the Q and U values in each
pixel in the coadded Q and U maps from which the vector
properties are calculated, using standard error propagation (see
Section 2). We are therefore confident that our method is valid
in this case.

Taking the mean of the standard deviations of the
distributions containing only the best-characterized pixels
(0.2 2.0maxdq < < ; up to 138 pixels), we find a mean
dispersion of 4.0 0.3sá ñ =   q . The measured angular
dispersion sq is plotted as a cumulative function of maxdq in
Figure 3.

The pixels with low measurement uncertainties form a
contiguous region with low residuals, marked in the right panel
of Figure 2. The variation in d qD( ) across OMC1 is shown
explicitly in Figure B6 in AppendixB. This contiguous region
includes the high-density region of OMC1: the BN/KL and S
regions, the space between them, and much of the region in
which the magnetic field shows an hourglass morphology.

While there is variation in the dispersion of magnetic field
half-vectors about the mean field direction across OMC1, our
data are sufficiently well characterized that we have a
statistically significant sample of good measurements in the
center of the OMC1 molecular cloud, the region of most
interest for our scientific analysis. We thus adopt the angular
dispersion that we consistently measure across this region,

4.0 0.3sá ñ =   q , throughout the rest of this study. We
henceforth restrict our analysis to the dense center of the
OMC1 cloud, containing the BN/KL and S clumps.

3.2. Velocity Dispersion in OMC1

We determined the average velocity dispersion in the gas in
OMC1 from the C18O J 3 2=  measurements of OMC1
made by the Heterodyne Array Receiver Program (HARP;
Buckle et al. 2009) and presented by Buckle et al. (2012).
HARP is mounted on the JCMT, and hence the C18O
observations, with a rest frequency of 329.33 GHz (Müller
et al. 2001), have the same resolution as the POL-2 850 μm
data. We assume that C18O traces approximately the same
material as the 850 μm dust emission. As C18O traces number
densities up to a few times 105 cm−3 (e.g., Di Francesco et al.
2007), comparable to the median value we determine in
OMC1 (see below), this assumption should be valid. We fitted
the C18O data in the manner described by Pattle et al. (2015):
we fitted a single Gaussian to each pixel, accepting fits with a
signal-to-noise ratio (S/N) 5 . We took the Gaussian width of
the fit to be the 1D velocity dispersion in C18O in that pixel.
The C18O data in OMC1 are generally well fitted by a single

Gaussian, particularly on the bright central filament where the
majority of the mass lies. There are a few positions at which the
C18O data show double peaks or broad wings suggestive of
outflow contamination, but these are typically found off-
filament in regions of low density and low signal-to-noise ratio
that are also coincident with the BN/KL outflow (discussed
below). These regions are generally excluded from our fitting
by the S/N cut we apply, and we expect outflow contamination
to have minimal effect on the mean velocity dispersion that we
measure over the region.
We converted the C18O velocity dispersions to nonthermal

velocity dispersions using the relation

k T

m
, 4v v

2
,
2 B

C O
C O

18
18

s s= - ( )

where vs is the nonthermal gas velocity dispersion, v,C O18s is the

velocity dispersion of C18O, mC O18 is the mass of the C18O

molecule (m 30C O18 = amu), and all other symbols are as

defined previously. The temperature in each pixel was taken to

be the temperature at that position determined using

Equation (7), below. (Typical temperature values are found to

be ∼15 K, as discussed below.)
We measured a mean 1D C18O velocity dispersion of

1.33 0.31v,C O18s =  km s−1, and a mean 1D nonthermal gas
velocity dispersion of 1.32 0.31vs =  km s−1 ( v 3.12D = 
0.73 km s−1) over the area we defined above, where the
uncertainty is the standard deviation on the mean. This is very
similar to the mean 1D gas velocity dispersion of 1.24 km s−1

determined across the integral filament by Buckle et al. (2012).
The gas in OMC1 is highly supersonic, and so the contribution
of thermal motions to the total linewidth is minimal.

Figure 3. The standard deviation, sq, of the distribution of the magnetic field
angles in the OMC1 data about the mean magnetic field direction as a
cumulative function of maximum allowed uncertainty in the 3×3 pixel
smoothing box, maxdq (black), plotted on a Monte Carlo simulation of the
distribution of the measured standard deviation for a data set with a true
standard deviation of 4.0° (dark green). Green shaded regions show the 1σ, 2σ,
and 3σ uncertainties on the Monte Carlo simulation. Vertical gray lines show
the region over which the average angular dispersion sá ñq is measured.
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3.3. Volume Density of OMC1

We determined the average number density of particles in
the OMC1 region using SCUBA-2 450 and 850 μm observa-
tions presented by Mairs et al. (2016), which were taken as part
of the SCUBA-2 Gould Belt Survey (Ward-Thompson et al.
2007). We determined column densities by repeating the
method described by Salji et al. (2015a), using the OMC1
maps presented by Mairs et al. (2016). We chose to determine
column densities from SCUBA-2 data in order to perform our
analysis as self-consistently as possible. Contamination of the
measured SCUBA-2 850 μm flux density by emission from the
12CO J 3 2=  transition can reach fractions ∼15%–20% in
OMC1 (Coudé et al. 2016), and so we used an 850 μm map
that has been corrected for CO contamination in the manner
described by Sadavoy et al. (2013). Before performing the
following analysis we convolved the 450 μm SCUBA-2 map
with the 850 μm resolution using a convolution kernel based on
the model JCMT beams as described by Pattle et al. (2015),
using the method introduced by Aniano et al. (2011).

We assumed that the dust in OMC1 is optically thin and
emits as a modified blackbody,

I m N B TH , 5H 2m k n=n n( ) ( ) ( ) ( )

where In is the intensity at frequency ν, 2.86m = is the mean

molecular weight per hydrogen molecule, assuming that the gas

is ∼70% hydrogen by mass (see Kirk et al. 2013), mH is the

mass of a hydrogen atom, N H2( ) is the column density of

molecular hydrogen, B Tn ( ) is the Planck function at dust

temperature T, and k n( ) is the dust mass opacity function

(Hildebrand 1983). k n( ) is then given by

, 6
0

0
k n k

n
n

= n

b⎛

⎝
⎜

⎞

⎠
⎟( ) ( )

where
0
kn is the dust opacity at the reference frequency 0n and

β is the dust emissivity index. We take 0.1
0
k =n cm2 g−1 at

10n = THz, assuming a dust-to-gas ratio of 1:100 (Beckwith &

Sargent 1991), and take 2.0b = (Draine & Lee 1984).
We determined a temperature for each pixel from the ratio of

850 μm flux density (I850) to 450 μm flux density (I450) using
the implicit relation

I
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which we solved using a look-up table for each pixel in the

map. We then solved Equation (5) for column density, using

the temperatures we estimated using Equation (7).
We excluded all pixels for which T 50> K, because in

these cases both the 450 and 850 μm data points would tend
toward the Rayleigh–Jeans tail of the blackbody function, and
so Equation (7) would be insensitive to temperature.

We defined a rectangular area for OMC1 centered on R.A.
05 35 15h m s, decl. 5 23 05. 75-  ¢  with angular width 1 38¢  and
angular height 3 4. 5¢  , corresponding to 0.18 pc and 0.35 pc
respectively at a distance of 388 pc. We measured the median
H2 column density in this area to be 3.6 2.8 1023 ´( ) cm−2.
Column density varies by several orders of magnitude across
OMC1, in the range 1022–1025 cm−3. Hence, we consider our
median value of column density to be representative of typical
conditions in OMC1.

The uncertainty on our measurement of column density is
dominated by systematic uncertainties on the dust emission
model. We estimated the uncertainty on our column density by
conservatively assuming that the reference dust opacity

0
kn is

accurate to ∼50% (e.g., Roy et al. 2014), that the dust opacity
index b has an uncertainty of approximately ±0.3, representative
of the range of dense-gas b values common in the literature (see,
e.g., Schnee et al. 2010; Planck Collaboration et al. 2011;
Sadavoy et al. 2016), and that the uncertainties on the 850
and 450 μm flux densities are dominated by their calibration
uncertainties, of 5% and 10% respectively (Dempsey et al. 2013).
Propagating these uncertainties through Equations (5)–(7), we
found a median fractional systematic uncertainty in column
density of 79% over our defined area in OMC1. Thus, we take
our median column density to be 3.6 2.8 1023 ´( ) cm−2.
We assume that OMC1 is a cylindrical filament with radius

r=0.09 pc and length L=0.35 pc, and hence volume r L2p ,
and that the area that we defined is the projection of that
volume onto the plane of the sky, with area rL2 . The volume
density of the filament is then related to the median column
density by

n
N

r
iH

2 H
cos , 82

2

p
=( )

( )
( )

where i is the inclination angle of the filament to the plane of

the sky. We assume that the filament is close to the plane of the

sky, i.e., icos 1» . The plane-of-sky morphology of OMC1
does not suggest that the filament is significantly elongated

along the line of sight. However, we note that if the filament

were inclined at 45° to the plane of the sky, the volume density

would decrease by a factor of 2 , and the inferred magnetic

field strength would decrease by a factor of 1.19.
For our median column density of N H 3.6 2.82 =  ´( ) ( )

1023 cm−2, we determined a representative volume density
in OMC1 of n H 0.83 0.66 102

6»  ´( ) ( ) cm−3. If our
assumed cylindrical geometry is correct, then the uncertainty
on our estimate of column density will also be relevant to our
estimate of volume density.

3.4. Magnetic Field Strength in OMC1

Using Equation (1) with our measured values of vD =
3.12 0.73 km s−1 and 4.0 0.3sá ñ =   q , we determined the
relationship between plane-of-sky magnetic field strength and
gas volume density to be

B

n

v
9.3

km s

deg
G cm 7.3 2.3 G cm ,

9

pos
1

3 2 3 2

s
m m=

D
á ñ

= 
q

-
- -( )

( )

( )

/ /

and that between total magnetic field strength and gas volume

density to be

B

n

B

n

4
9.2 2.9 G cm . 10

pos 3 2

p
m= =  -∣ ∣

( )/

For our representative gas density in OMC1, n H2 =( )

0.83 0.66 106 ´( ) cm−3, we determined the plane-of-sky
magnetic field strength in the OMC1 region to be B 6.6pos = 
4.7mG.
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The stated uncertainty on Bpos was determined by combining

the uncertainties on n H2( ), vD , and sá ñq given above using the
standard total-derivative method of error propagation, rather
than adding the fractional uncertainties in quadrature (as is
sometimes done when multiplying a set of values with
associated statistical uncertainties). This conservative method
was chosen in order to demonstrate the full range of Bpos values
that are consistent with our measurements. The uncertainty on
Bpos is dominated by the systematic uncertainty on n H2( ), and
so our uncertainty B 4.7posd = mG is likewise predominantly
systematic, representing an absolute range B 1.9pos = –11.3 mG
in OMC1, rather than a 1s statistical uncertainty. Throughout
this analysis we have attempted to treat our uncertainties
robustly. We emphasize that no other analysis of a similar type
ever published will be free from (frequently unacknowledged)
uncertainties of this order of magnitude. We can state that our
results suggest a field strength in OMC1 of a few milligauss
with sufficient certainty to allow us to perform an order-of-
magnitude energetics analysis of the region. We proceed,
taking B 6.6pos = mG to be representative of the magnetic field
strength in OMC1.

If Equation (2) is relevant to Orion, then we can infer a
typical total magnetic field strength in OMC1 of B 8.4= ∣ ∣
6.0 mG. However, as the line-of-sight geometry of the
magnetic field is not known, we consider the plane-of-sky
field strength only for the remainder of this work, noting that
the total magnetic field strength is likely to be of the same order
of magnitude, and that the correction to the magnetic field
strength described by Equation (2) would not alter our
conclusions.

The magnetic field half-vectors in OMC1 are clearly highly
ordered, suggesting that the magnetic field contributes
significantly to the energy balance in OMC1. We discuss this
further below. We summarize the values used in the CF
calculation of magnetic field strength in Table 1, for reference.

4. Energetics Calculations

We infer a very strong magnetic field in the OMC1 region,
as discussed in the section above. However, the hourglass field
morphology shown in Figure 1 suggests that the magnetic field
does not dominate the energy budget of OMC1, because it
appears to show significant deviation from the cylindrical
magnetic field geometry that has previously been seen in dense
filaments (Palmeirim et al. 2013; Matthews et al. 2014).

Other sources of energy in the OMC1 region include
gravitational potential energy, particularly that of the Orion
BN/KL and Orion S clumps (the northern and southern bright
regions in Figure 1, respectively), and energy injected by the
BN/KL outflow (shown in Figure 4).

If the energy budget in OMC1 were dominated by the
gravitational potential energy of the BN/KL and S clumps,

the field geometry might be caused by some combination of
axisymmetric collapse of the Orion A filament and of the two
clumps moving toward each other, both of which mechanisms
would result in the field being dragged from an initially
cylindrically symmetric morphology into the hourglass morph-
ology seen. These formation mechanisms are illustrated in
Figures 5 and 6. Similar movement of material along filaments
has been observed and inferred from a combination of
spectroscopic data and simulations (e.g., Balsara et al. 2001).
Measurements of the line-of-sight velocity of the filament in
isotopologues of CO (Buckle et al. 2012) do not rule out large-
scale motion of material along the filament: the S clump
appears to be moving toward us relative to the filament, while
BN/KL shows no motion relative to the filament. These
two gravity-mediated formation mechanisms for the hourglass
field are distinct: in the former, the BN/KL clumps and the
hourglass form contemporaneously from a gravitationally
unstable filament, while in the latter, the hourglass forms as a
result of the gravitational interaction of the pre-existing clumps.
However, the overall effect of each mechanism on the observed
magnetic field morphology is qualitatively very similar, and
present-day observations cannot distinguish between these two
histories.
If the energy budget in OMC1 were dominated by the

BN/KL outflow, then the hourglass field morphology might be
caused by the magnetic field being forced from an initially
cylindrically symmetric morphology by the passage of the
explosive outflow through the filament. The BN/KL outflow is a
very strong explosive outflow (Thaddeus et al. 1972), the
apparent origin of which coincides with the center of the BN/KL

Table 1

Measured Properties Relevant to the CF Analysis in OMC1

Property Symbol Value

Angular dispersion sá ñq 4.0 0.3  
FWHM velocity dispersion vD 3.12±0.73 km s−1

Hydrogen column density N H2( ) 3.6 2.8 1023 ´( ) cm−2

Hydrogen volume density n H2( ) 0.83 0.66 106 ´( ) cm−3

Plane-of-sky magnetic field strength Bpos 6.6 4.7 mG

Figure 4. The polarization half-vectors, rotated by 90° to show magnetic field
direction, (white) of OMC1 and contours of H2 emission (Bally et al. 2015)
showing the BN/KL outflow, overlaid on SCUBA-2 850 μm emission. The
white star marks the position of the center of the BN/KL outflow (Bally et al.
2015).
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clump. The BN/KL outflow is one of the most energetic

outflows known in a star-forming region, with a total energy in

the outflow of 4 1040~ ´ J (Kwan & Scoville 1976). The
outflow has a wide opening angle, and high-velocity wings with

multiple ejecta, often referred to as the “bullets of Orion” (Allen
& Burton 1993). The sources BN, n, and I, located in the core of

the BN/KL object, have proper motions consistent with their
having undergone a close dynamical interaction ∼500 years ago

(Gómez et al. 2005). It has been hypothesized that the BN/KL
outflow was produced as a result of this interaction (Bally &
Zinnecker 2005). This hypothesis is supported by the dynamic

age of the BN/KL outflow, ∼500 yr, which is comparable to the
time since the interaction (Zapata et al. 2009), and by the kinetic

energy released by the interaction, 2 10 J40~ ´ (Gómez et al.
2005), which is comparable to the energy in the outflow (Kwan

& Scoville 1976).
Hence, one possible explanation for the orientation of the field

lines around the OMC1 filament is that it started out in a
cylindrically symmetric configuration, perpendicular to the

filament, and was subsequently distorted into its current

configuration by the energetic outflow from the BN/KL object,
the major axis and opening angle of which are approximately

coincident with the orientation of the hourglass geometry of the
magnetic field. The orientation of the hourglass is 64 .2 6 .5-    ,

measured east of north (Ward-Thompson et al. 2017). We
estimate a position angle of the BN/KL outflow of ∼−61° from

the visual extinction data presented by Youngblood et al. (2016)

(see their Figure 3), consistent with the orientation of the
hourglass magnetic field. The BN/KL outflow and the magnetic

field morphology are compared in Figure 4. This formation
mechanism is illustrated in Figure 7.

We test these two hypotheses for the formation of the
hourglass morphology by considering the total energy and

energy density in the Orion BN/KL region due to the magnetic
field, the gravitational interaction of BN/KL and S, and the
BN/KL outflow.

4.1. Magnetic Energy Density of OMC1

The magnetic energy density is given by

U
B

2
11B

2

0m
= ( )

in SI units, where 0m is the permeability of free space. For

B 6.6pos = mG, U 1.7 10B
7~ ´ - J m−3. The total magnetic

energy is then

E U V , 12B B= ( )

where V is the volume over which the magnetic field is applied.

For our defined volume of OMC1, E 4.8 10B
40~ ´ J.

4.2. Mass-to-flux Ratio in OMC1

We determine the ratio of mass to magnetic flux, M F, in
OMC1 in units of the critical ratio,

M

M
, 13
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critical

l =
F
F

( )

( )
( )

where the observed M F ratio is given by
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B

H
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H 2m
F

=⎜ ⎟
⎛

⎝

⎞

⎠
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and the critical M F ratio by
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1
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15
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Figure 5. A cartoon of one of our proposed formation mechanisms for the hourglass magnetic field morphology of OMC1 and the orientation of the BN/KL outflow,
in which the magnetic field is shaped by the gravitational collapse of the Orion A filament. The magnetic field is initially cylindrically symmetric and is frozen into the
gas. The gravitationally unstable filament collapses axisymmetrically, dragging the flux-frozen magnetic field to create an hourglass-shaped pinch.
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(Nakano & Nakamura 1978). We note that the constant1 2p is

model-dependent and varies with source geometry (e.g.,

McKee et al. 1993), but should be correct to within a factor

of a few. The critical ratio is determined as described by

Crutcher et al. (2004):

N

B
7.6 10

H
, 16obs

21 2

pos

l = ´ - ( )
( )

where N H2( ) is in units of cm−2 and Bpos is in units of Gm . A

value of 1l < (magnetically subcritical) indicates that the

magnetic field strength is sufficiently high to support against

gravitational collapse, while 1l > (magnetically supercritical)

indicates that the magnetic field cannot prevent gravitational

collapse. Crutcher et al. (2004) further note that, statistically,

the observed M F ratio will overestimate the true value by a

factor of 3, and so

1

3
. 17obsl l= ( )

Note that this is a correction for the geometrical effect of

overestimation of N H2( ) due to the unknown orientation of the

source relative to the plane of the sky.
Using our best estimate of plane-of-sky magnetic field

strength, B 6.6pos = mG, and our median value of column

density, N H 3.6 102
23= ´( ) cm−2, we find 0.41obsl ~ . If the

statistical correction given by Crutcher et al. (2004) applies in
OMC1, this implies 0.14l ~ . However, as the OMC1
filament appears to lie in or near the plane of the sky, applying
this correction may cause us to significantly overestimate the
degree to which OMC1 is magnetically subcritical. We thus

use the observed value, 0.41obsl ~ , noting that this may be a
slight overestimate.
A value of 0.41obsl ~ suggests that the OMC1 region is

typically somewhat magnetically subcritical, and so suggests
that the magnetic field can provide support against gravitational
collapse (i.e., the filament fragmenting or collapsing toward its
axis) on the scales that we probe with these observations.
Although our spatially averaged value of obsl is less than unity,
it is clear that OMC1 cannot be magnetically subcritical
everywhere, because the region is an active site of star
formation, and so at least some parts of the cloud must have
undergone gravitational collapse in the past. This result
suggests that, on the scales probed by our observations,
OMC1 is at or near magnetic criticality. We discuss the
gravitational stability of OMC1 further in Section 4.3.1.
These values are comparable to the ratios of magnetic to

gravitational force measured in OMC1 by Koch et al. (2014),
who found a ratio of 0.75l ~ using Caltech Submillimeter
Array (CSO) observations, and of 1.26l ~ using Submilli-
meter Array (SMA) observations. Both of these values are
consistent with unity, again suggesting that OMC1 is near
magnetic criticality.

4.3. Gravitational Potential Energy of OMC1

We determine the masses of the BN/KL and S clumps using
the column density map described in Section 3.3. Measuring
the extent and central positions of these clumps from our
column density map, we estimate a mass of 1001±791Me
for the BN/KL clump and a mass of 286±226Me for the S
clump, with a plane-of-sky separation of 88 arcsec, equivalent
to 0.166 pc at a distance of 388 pc. We assume that all of the
mass along the line of sight toward each clump is associated
with that clump, and hence that any mass distributed along the

Figure 6. A cartoon of one of our proposed formation mechanisms for the hourglass magnetic field morphology of OMC1 and the orientation of the BN/KL outflow,
in which the magnetic field is shaped by the gravitational interaction of Orion BN/KL and S. The magnetic field is initially cylindrically symmetric and is frozen into
the gas. The two clumps are gravitationally attracted toward each other, and drag the magnetic field frozen into them along with them, while leaving the field in the
lower-density filament largely undeviated.
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line of sight is negligible. Both clumps are significantly
extended objects, with the BN/KL clump having major and
minor axis diameters of ∼1.5 arcmin and ∼1.0 arcmin
respectively, while the S clump has major and minor axis
diameters of ∼1.0 arcmin and 0.7 arcmin respectively. We
determine a total mass in the area of OMC1 over which we
performed our CF analysis of 1413 1116 Me. The large
majority (∼92%) of the mass in the center of OMC1 is thus in
the BN/KL and S clumps, suggesting that our assumption that
BN/KL and S dominate the mass distribution along their lines
of sight is justified.

4.3.1. Gravitational Stability of the OMC1 Filament

We first estimated the global gravitational stability of the
OMC1 region using the critical mass per unit length (line
mass) of Ostriker (1964) for an isothermal filament,

M

L G

2
, 18

crit

2s
=⎜ ⎟

⎛

⎝

⎞

⎠
( )

where s represents the gas velocity dispersion. Assuming

initially that the gas in OMC1 is supported by thermal

pressure, for a typical gas temperature of 15 K (representative

of the conditions we measure in OMC 1), the critical line mass

is M L 1.62 10crit,15 K
15= ´( ) kg m−1≈25 Me pc−1. As

discussed above, we measured a total mass of 1413 1116
Me over a 0.35 pc length of the OMC1 region. Thus, in

the vicinity of OMC1, we measure a line mass of

M L 4038 3190=  Me pc−1, significantly larger than the

thermal critical line mass. This suggests that the OMC1
filament, in this region, would be significantly gravitationally

unstable in the absence of either turbulent support or a

magnetic field.
If we assume that the nonthermal gas velocity dispersion acts

as a hydrostatic pressure in providing support against
gravitational collapse (the microturbulent assumption; see
Chandrasekhar 1951a, 1951b), we can take σ=σv, 3D

3 2.30vs= = km s−1. Note that this assumes that the
velocity dispersion is isotropic. We then find a critical line
mass M L 1.59 10crit,turb

17= ´( ) kg m−1≈2470Me pc−1,
comparable to but slightly lower than our observed line mass.
This is likely to represent an upper limit on the amount of
support that can be provided by turbulent gas pressure. These
results suggest that the OMC1 filament can at best be
marginally supported against collapse by turbulent gas
pressure. We also note that previous studies of the integral
filament have found its radial density profile to be inconsistent
with the self-gravitating isothermal cylinder model of Ostriker
(1964) (Johnstone & Bally 1999; Salji et al. 2015b).
Fiege & Pudritz (2000) modified the stability criterion of

Ostriker (1964) to estimate the stability of magnetized
filaments, proposing the criterion
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where is the magnetic energy per unit length, and is the

gravitational energy per unit length,

M

L
G. 20

2

 = -⎜ ⎟
⎛

⎝

⎞

⎠
( )

Using our total mass of 1413Me, we estimate a gravitational
potential energy per unit length of 4.52 1024 = ´∣ ∣ J m−1.
This is equivalent to a total gravitational potential energy in

Figure 7. A cartoon of another of our proposed formation mechanisms for the hourglass morphology of the magnetic field of OMC1, in which the field is shaped by
the effects of the BN/KL outflow. An initially cylindrically symmetric field is disrupted by the explosive outflow. The opening angle of the outflow determines, and
approximately matches, the opening angle of the hourglass of the magnetic field.
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OMC1 of E 4.9 10G
40= ´ J, and so to a gravitational

potential energy density U 1.9 10G
7= ´ - J m−3 over the

volume over which we performed our CF analysis
(V r L 2.62 102 47p= = ´ m3), very similar to our estimated
magnetic energy density for the region.

We estimate the magnetic energy per unit length to be
4.44 1024 = ´ J m−1. The magnetic critical line mass is

then given, in the 15 K case, by M L 9.56crit,mag,15 K = ´( )

1016 kg m−1=1480Me pc−1. In the turbulent-support case,
the magnetic critical line mass is M L 9.35crit,mag,turb = ´( )

1018kg m−1 = 1.45 × 105Me pc−1.
These values suggest that the magnetic field contributes

significantly to supporting the filament against gravitational
collapse. In the thermal case, our results suggest that the
filament is marginally gravitationally unstable, although the
critical and observed values of M L match within experimental
uncertainty. In the turbulent case, we find that the filament is
definitively stable, and supported by its magnetic field. The
former of these scenarios—a filament in approximate equili-
brium between gravitational collapse and magnetic support—is
more physically plausible than the latter, particularly as the
significant deviation from cylindrical symmetry in the magnetic
field suggests that the field has been significantly deviated in
the recent past. If the filament has collapsed gravitationally,
thereby compressing the local magnetic field and so evolving to
a state of approximate equilibrium, we would expect an
observed line mass similar to, rather than significantly smaller
than, the critical line mass.

Our results suggest that the turbulence in OMC1 is not
providing significant support against gravitational collapse.
This is not a surprising result; the microturbulent assumption
holds only on scales smaller than the thermal Jeans length (see
Mac Low & Klessen 2004, and references therein). The thermal

Jeans length ( c G ;J sl p r= Jeans 1928) in OMC1 is
0.03Jl ~ pc for our representative values of T 15= K and

n 0.83 106= ´ cm−3. Thus, while turbulence may provide
some support against gravitational collapse on small scales,
large-scale gravitational motions in OMC1 (occurring on size
scales 10 1 - pc) cannot be supported against in this manner.

Our results therefore suggest that the gravitational and
magnetic energy densities in OMC1 are similar. However, the
analysis above is performed for a uniform cylindrically
symmetric geometry, which is demonstrably not the case in
OMC1. As the large majority of the mass of OMC1 is within
the BN/KL and S clumps, we estimate the gravitational
potential energy density of the BN/KL–S system as a check on
our results. We thus proceed by assuming that the gravitational
potential of the region is currently dominated by these two
clumps, regardless of their formation mechanism. We deter-
mine the gravitational potential energy of the BN/KL–S
system in two limits: first, by considering the clumps as
separate point sources, and second, by considering the system
as a prolate spheroid of uniform density.

4.3.2. Point-source Model

As we do not know the line-of-sight component of the
separation between the two clumps, we multiply our measured
separation of 0.166 pc by 2 (assuming conservatively that the
filament is orientated at 45° to the plane of the sky), and so
estimate a total separation between the two clumps of
∼0.23 pc. From these values we infer a gravitational potential

energy in OMC1 using the relation

E
GM M

r
, 21G

1 2= - ( )

where M1 is the mass of the BN/KL clump, M2 is the mass of

the S clump, and r is the separation of the clumps.
Using Equation (21), we find E 1.0 10G

40= - ´ J. This is
comparable to our estimate of magnetic energy in OMC1 and to
our estimate of EG in Section 4.3.1. However, our estimate of the
total magnetic energy of OMC1 is determined by multiplying
the mean magnetic energy density by a larger volume of OMC1
than is occupied by the BN/KL–S system. In order to make a
more meaningful comparison, we compare the magnetic energy
density in OMC1 to the gravitational potential energy density in
a region just enclosing the BN/KL–S system: a box of angular
width 1′15″ and angular height 2′50″, equivalent to 0.141 pc and
0.320 pc respectively at a distance of 388 pc. On the assumption
that the OMC1 filament is cylindrical and inclined at 45° to the
plane of the sky, we infer a volume occupied by the BN/KL–S
system of 2.1 1047´ m3, and so a gravitational potential energy
density

U
E

V
, 22G

G=
∣ ∣

( )

of U 0.5 10G
7= ´ - J m−3, a value comparable to our

representative magnetic energy density, U 1.0 10B
7» ´ -

J m−3.

4.3.3. Prolate-spheroid Model

We also model the BN/KL–S system as a prolate spheroid
of uniform density with total mass 1286Me (the combined
masses of BN/KL and S), semimajor axis 0.16 pc, and
semiminor axis 0.071 pc. We calculate the gravitational
potential energy using the relation

E G a a
e

e

e

8

15

1
ln

1

1
, 23G

2 2
1
4

3p r= - ´
+
-

⎜ ⎟
⎛

⎝

⎞

⎠
( )

where a1 is the semiminor axis, a3 is the semimajor axis, ρ is

the density of the spheroid, defined as the total mass divided by

a a
4

3 1
2

3p , and e is the eccentricity of the spheroid,

e
a

a
1 . 24

1

3

2

= -
⎛

⎝
⎜

⎞

⎠
⎟ ( )

See, e.g., Binney & Tremaine (2008) for a derivation of this

result.
Using Equation (23), we find E 8.6 10G

40= - ´ J. This is
comparable to the total magnetic energy that we estimate for
OMC1, and to our previous estimates of EG. Dividing this value
by the volume of the spheroid as defined above, we find a
gravitational potential energy density ofU 8.8 10G

7= ´ - Jm−3,
a value somewhat larger than, but comparable to, our estimated
magnetic energy density.

4.4. Energy Density of the BN/KL Outflow

The total energy in the BN/KL outflow is 4 1040~ ´ J
(Kwan & Scoville 1976). We estimate a mean energy density in
the outflow by assuming that both wings of the outflow occupy
equal volumes, each a sector of a sphere with an opening angle
of 1 radian (estimated from the data presented by Bally et al.
2015) and a radius of 0.26 pc, the furthest distance in projection
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travelled by a Herbig–Haro object associated with the outflow
(Bally et al. 2015; correcting for their assumption of a distance
of 414 pc to OMC 1). The total volume of the outflow is then

V
r

2
2

3
1 cos , 25outflow

3p
f= ´ -[ ( )] ( )

where f is the half-angle of the outflow. For the values given

above,V 2.7 10outflow
47= ´ m3. The mean energy density of the

BN/KL outflow would then be U 1.5 10outflow
7~ ´ - J m−3,

comparable to the energy density that we infer for the magnetic

field in OMC1. However, it must be noted that the energy of the

BN/KL outflow will not be evenly distributed within the volume

defined by Equation (25): the “bullets of Orion,” which occupy

the majority of the volume under consideration, are Herbig–Haro

objects ejected ballistically by the outflow, and have a current total

kinetic energy of 1037~ J (Allen & Burton 1993). The large

majority of the energy of the outflow is concentrated in the

central, highly collimated outflow that caused the ejection of

the “bullets.” If we assume that the volume occupied by the

collimated outflow is negligible compared to the volume occupied

by the bullets, then we find an energy density for the ballistically

ejected bullets ofU 4 10bullets
11~ ´ - J m−3. We use the former

value in the subsequent discussion, as representing an upper limit

on the energy density of the large-scale outflow.

4.5. Alfvén Velocity in OMC1

We calculated the Alfvén velocity cA in OMC1 using the
relation

c
B

, 26A

0m r
= ( )

where all symbols are as defined above. For our representative

density of 0.83 0.66 106 ´( ) cm−3 and field strength of

B 6.6 4.7pos =  mG, we infer an Alfvén velocity of 9.4 6.6
kms−1.

From this value we can calculate the maximum distance that
the magnetic field could have deviated Alfvénically from its
original configuration in 500 years (the approximate age of the
BN/KL outflow; Gómez et al. 2005), and find that the
maximum deviation is 4.8 3.4 10 3 ´ -( ) pc. This value is
orders of magnitude smaller than the size scale on which we
see variation in the geometry of the magnetic field ( 10 1~ - pc).
We discuss this result further in Section 5.

4.6. Kinetic Energy in OMC1

4.6.1. Kinetic Energy of the BN/KL–S Interaction

We calculate the kinetic energy of the relative line-of-sight
motion of Orion BN/KL and S, in order to determine whether
the energy of the clumps’ relative motion could significantly
affect the energy balance of the region. We determine line-of-
sight velocities from our fitting of the HARP C18O data (Buckle
et al. 2010). We measure average systemic velocities of vlos,BN =
8.8 0.8 km s−1 for BN/KL and v 6.8 0.3los,S =  km s−1

for S, and hence a relative velocity between the clumps of
v 2.0 0.9rel,los =  km s−1.

Assuming that in the inertial frame of the BN/KL–S system
the clumps began their motion from rest, we can deduce from

the conservation of linear momentum that

v
M

M M
v 27f ,BN

S

BN S
rel,los=

+
( )

v
M

M M
v , 28f ,S

BN

BN S
rel,los= -

+
( )

where vf is the line-of-sight velocity of the clump in the inertial

frame of the BN/KL–S system, and MBN and MS are the

masses of BN/KL and S as determined above. From

Equations (27) and (28) we determine line-of-sight velocities

of v 0.4f ,BN ~ km s−1 and v 1.6f ,S ~ - km s−1. Using our

previous mass estimates for BN/KL and S and the equation

for translational kinetic energy,

E Mv
1

2
, 29K,trans

2= ( )

we find a total line-of-sight kinetic energy of 1.1 10 J38~ ´ for

BN/KL and 3.9 10 J38~ ´ for S, two orders of magnitude

lower than the gravitational, magnetic, and outflow energies. It

should be noted that this is the energy of only one of the three

components of the relative motion of BN/KL and S. However,

the kinetic energy of the motion of the clumps in the plane-of-sky

directions would have to be 102~ times that of the motion along

the line of sight—i.e., the plane-of-sky velocities would have to

be ∼10 times the line-of-sight velocities—to significantly affect

the energy balance of the region.

4.6.2. Internal Thermal Energy of BN/KL and S

We calculate the internal thermal energies of Orion BN/KL
and S by determining average temperatures for each core using
the temperature map described in Section 3.3. We measure a
mean temperature of 15 3 K in BN/KL and 17 3 K in S.
The internal thermal energy is given by

E Mc
3

2
, 30K s,thermal

2= ( )

where cs is the sound speed in the gas,

c
k T

m
. 31s

B= ( )

For a typical core temperature of 15 K and the masses of BN/
KL and S as determined above, we find a sound speed

c 0.23s = km s−1 and a total thermal kinetic energy for BN/KL
and S of 2.0 1038´ J, insufficient to significantly affect the

energy balance of the region.

4.6.3. Internal Nonthermal Energy of BN/KL and S

The internal nonthermal kinetic energy is given by

E M
3

2
. 32K v,non thermal ,

2
NTs= ( )‐

For the internal nonthermal linewidth 1.32vs = km s−1 and

the masses of BN/KL and S as determined above, the total

nonthermal kinetic energy of BN/KL and S is 6.6 1039~ ´ J.

This is slightly lower than, but comparable to, the lower end of

our estimated range of gravitational energies. This would

suggest that the nonthermal kinetic energy may contribute to

the total energy balance of OMC1 but does not dominate it.
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However, as discussed in Section 4.3.1 above, it is likely that

nonthermal motions in OMC1 are not providing significant

support against gravitational collapse on scales larger than the

Jeans length, 0.03Jl ~ pc.

5. Discussion

5.1. Interaction of the Magnetic Field and the BN/KL Outflow

The magnetic field in OMC1 is clearly highly ordered,
despite the presence of the highly energetic BN/KL outflow,
which suggests that, on large scales, the magnetic field is
sufficiently strong not to be totally disrupted by the outflow.
Our estimates of the magnetic and outflow energy densities are
very similar, although both are probably correct only to within
an order of magnitude. The key quantities relevant to the
energetics of OMC1 are summarized in Table 2.

The central, highly collimated, part of the BN/KL outflow is
likely to have sufficient energy to disrupt the local magnetic
field. Tang et al. (2010) showed, using 870 mm SMA
observations with 1 arcsec resolution, that the polarization
half-vectors at the center of the BN/KL region trace an
approximately circular structure, and proposed that this might
be due to the local magnetic field being dragged along by the
outflow. The effect of this circular polarization structure on our
maps is to produce a completely depolarized region approxi-
mately the size of the JCMT beam (FWHM∼14 arcsec) at the
central position of the BN/KL outflow, consistent with
observations by Schleuning (1998), Rao et al. (1998), and
Houde et al. (2004).

As discussed above, the Alfvén velocity in OMC1 is
sufficiently small that the distortion in the magnetic field,
which extends significantly beyond the maximum extent of the
outflow (on size scales 10 pc1~ - ), cannot have occurred
through an Alfvénic perturbation of the field in the 500 years
that the BN/KL outflow has existed. A perturbation in the
magnetic field expanding Alfvénically could have deviated the
magnetic field on a maximum scale 10 3~ - pc in 500 years.
However, outflows and ejecta moving supersonically and
super-Alfvénically could alter the magnetic field more rapidly,
through compression or dragging of gas into which the
magnetic field is frozen (e.g., Padoan & Nordlund 1999).
The maximum deviation of the field would thus be set by the
maximum travel distance of the outflow ejecta.

Estimates of the typical line-of-sight velocity of the outflow
ejecta range from ∼80 km s−1 (e.g., Furuya & Shinnaga 2009)
to ∼150 km s−1 (e.g., Bally et al. 2017), significantly greater
than the Alfvén velocity. Ejecta travelling at a constant velocity
of 150 km s−1 could travel a maximum distance of 0.077 pc.
Although some deceleration of the ejecta over time is likely,
the maximum travel distance of the ejecta is ∼10−2 pc, an order
of magnitude smaller than the size scale of the deviations in the
magnetic field. Inspection of Figures 1 and 4 shows that the
maximum extent of the deviation in the magnetic field is
significantly larger than the maximum extent of the outflow.
Moreover, while the total energy densities of the magnetic

field and of the BN/KL outflow are comparable, the energy
density of the ballistic outflow ejecta is several orders of
magnitude smaller than that of the magnetic field. Thus we
conclude that while there is sufficient energy in the BN/KL
outflow to potentially alter the geometry of the magnetic field
in OMC1, the outflow is too young to have caused the large-
scale hourglass shape seen in the magnetic field in OMC1.
It hence seems plausible that the direction of propagation,

and the opening angle, of the ballistically ejected BN/KL
outflow (the “bullets”) may be constrained by the magnetic
field morphology in the region; i.e., on large scales the outflow
is being shaped by the magnetic field, rather than the converse.

5.2. Interaction of the Magnetic Field and the
Gravitational Potential

We now consider whether the hourglass morphology could
have been caused by gravitationally driven motion of material
in the filament. The gravitational potential energy density and
magnetic energy density of the central part of OMC1 are
comparable to one another, suggesting that the filament may be
in or near equipartition of energy between the gravitational and
magnetic fields, and may hence have been in approximate
equilibrium before the formation of the BN/KL outflow.
If the primordial magnetic field were uniform and perpend-

icular to the filament, then its energy density ought to have
been lower than that which we now observe; distortion of the
magnetic field by gravitationally driven motions, either of
material along the filament to form the BN/KL and S clumps,
or of the BN/KL and S clumps themselves, might have
compressed the field lines and so increased the magnetic field
strength and the magnetic energy density.
We therefore hypothesize that the magnetic field has been

compressed by the large-scale motions of material along the
filament to the point that its energy is now comparable to that
of the gravitational interaction of the two clumps in OMC1,
and hence that any motion of the clumps toward one another
has been halted or slowed by the balance of forces between the
gravitational interaction and the magnetic field, with the
magnetic field providing a “cushion” preventing further flow
of gas along the filament (see Figure 6). Any further interaction
of the BN/KL and S clumps will thus be secular and mediated
by ambipolar diffusion.

5.3. Comparison with Existing Measurements

The magnetic field that we infer in OMC1 is very strong,
but not unprecedentedly so. The milligauss-strength field that
we observe in OMC1 has large-scale structure that varies on
size scales 10 1~ - pc, which we observe at a spatial resolution
of 0.026 pc (for our assumed distance of 388 pc). Magnetic

Table 2

Properties of OMC1 Relevant to the Energy Balance of the Region

Property Value

UB 1.7 10 7~ ´ - J m−3

UG 0.5–8.8 10 7´ - J m−3

Uoutflow 1.5 10 7~ ´ - J m−3

Ubullets 4 10 11~ ´ - J m−3

EB 4.8 1040~ ´ J

EG 1.0-( –8.6 1040´) J

Eoutflow
a 4 1040~ ´ J

Ebullets
b 1037~ J

EK,trans 5.0 1038~ ´ J

EK,thermal 2.0 1038~ ´ J

EK,non thermal‐ 6.6 1039~ ´ J

Notes.
a
Kwan & Scoville (1976).

b
Allen & Burton (1993).
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field strengths of the order of a few milligauss have been
measured in dense gas in high-mass star-forming regions
on a wide variety of spatial scales. For example, Curran &
Chrysostomou (2007), observing with SCUPOL at 14 arcsec
resolution, measured a magnetic field strength of 5.7 mG in
Cepheus A (0.05 pc spatial resolution for their assumed
distance of 725 pc), and magnetic field strengths ∼1 mG in
both DR21(OH) (2 pc spatial resolution at 3 kpc) and the low-
mass star-forming region RCrA (0.009 pc spatial resolution at
130 pc). Recent ALMA observations have found magnetic field
strengths in the range 0.2–9 mG in the high-mass W43-MM1
star-forming region, with 0.5 arcsec (∼0.01 pc) resolution
(Cortes et al. 2016), and field strengths of 0.4–1.7 mG have
recently been measured in DR21 using SMA observations with
3–4 arcsec resolution (0.02–0.03 pc for their assumed distance
of 1.4 kpc) (Ching et al. 2017). Other measurements of
milligauss-strength magnetic fields include (but are not limited
to) Girart et al. (2009, 2013), Crutcher et al. (2010) and
references therein, Stephens et al. (2013), Qiu et al. (2013,
2014), and Pillai et al. (2015, 2016).

There are various existing measurements of the magnetic
field strength in the OMC1 molecular cloud. Hildebrand et al.
(2009) used Hertz data with 20 arcsec resolution to estimate a
plane-of-sky magnetic field strength in the OMC1 region of
3.8 mG (without formal uncertainties), using their “dispersion
function” method of measuring the dispersion in angle of
the magnetic field due to turbulence. The field measured using
the “unsharp-masking” method presented in this work is
approximately consistent with the field strength estimated by
Hildebrand et al. (2009).

Crutcher et al. (1999) measured the CN Zeeman effect at two
positions in the northern bright peak of OMC1, R.A. J2000 =( )

05 35 14. 5h m s , decl. (J2000) 05 22 06. 5= -  ¢  and R.A. (J2000)=
05 35 13. 5h m s , decl. (J2000) 05 22 51. 5= -  ¢  , detecting a line-of-
sight magnetic field strength of −0.36±0.08mG at the
northern position and making no detection at the southern
position. The CN Zeeman effect is thought to measure the line-
of-sight magnetic field strength in molecular clouds at densities
of 105–106cm−3 (Crutcher et al. 1996), comparable to the
densities that we consider in this work. This would suggest that
the line-of-sight magnetic field strength is an order of magnitude
lower than the plane-of-sky field strength. However, if the
hourglass morphology of the magnetic field in OMC1 is three-
dimensional, and rotationally symmetric about the main axis of
the OMC1 filament, and the OMC1 filament is orientated in or
near the plane of the sky, then the sum of the line-of-sight
components of the magnetic field strength vectors at any given
position ought to cancel, and so the measured line-of-sight
magnetic field strength ought to be significantly smaller than the
plane-of-sky field strength. If this is the case then our results are
not necessarily inconsistent with those of Crutcher et al. (1999).

Houde et al. (2009) measured a magnetic field strength in
OMC1 of 0.76 mG using SHARP data at 12 arcsec resolution,
arguing that the integration of polarized emission along the line
of sight of the molecular cloud and within the beam of the
telescope leads to overestimation of the magnetic field strength.
They account for this effect by attempting to infer the turbulent
correlation length of the cloud. We discuss this effect further
below.

Interferometric observations of OH maser emission in the
BN/KL region consistently produce milligauss magnetic field
strengths. Cohen et al. (2006) measured magnetic field

strengths in the range 1.8–16.3 mG from MERLIN observa-

tions at ∼0.15 arcsec resolution, and suggested a general line-

of-sight magnetic field strength of ∼1–3 mG, within which

there are localized regions of higher field strength. Hansen &

Johnston (1983) found a magnetic field strength ∼3 mG from

0.2 arcsec observations with the Very Large Array (VLA).

Norris (1984), observing with MERLIN at 0.3 arcsec resolu-

tion, also found a magnetic field strength ∼3 mG, while

Johnston et al. (1989) estimated a magnetic field strength of

1–3 mG based on VLA observations of 0.3 arcsec resolution.
Tang et al. (2010) determine a magnetic field strength 3

mG in Orion BN/KL. They argue that dense clumps that they

observe in NH3 in the BN/KL region (with angular sizes 1<
arcsec) are magnetically confined, and that this magnetic

confinement requires a field strength 3 mG if it is to be

maintained in the presence of the energetic outflows in this

region. This value is consistent with our measured magnetic

field strength.

5.4. Choice of Q¢ Parameter

The choice of the normalization parameter, Q¢, in the CF

equation (Equation (1)) has been the subject of considerable

debate in the literature. The accuracy of the CF equation is

affected by the integration of polarized emission both along the

line of sight of the molecular cloud and within the beam of the

telescope (e.g., Houde et al. 2009). Both of these averaging

effects will, if the field is uncorrelated within the beam or

between turbulent cells along the line of sight, cause the

dispersion in angle to be underestimated, and so cause the

magnetic field strength to be overestimated.
Ostriker et al. (2001) determined that for realistic molecular

cloud geometries, and where angular dispersion 25sá ñ <q °, a

normalization parameter Q 0.5¢ » is required to accurately

recover the plane-of-sky magnetic field strength. This is an

effect of cloud geometry, and is independent of smoothing

effects.
Heitsch et al. (2001) investigated the effect of smoothing

their simulations of magnetized clouds (equivalent to observing

with poorer resolution), and found that for strong magnetic

fields with well-resolved angular field structure (as we have in

Orion, with the hourglass morphology), the CF method

produces accurate results, typically correct to within a factor

of 2. Heitsch et al. (2001) found that for very poorly resolved

and/or weak fields, the CF method could overestimate the

magnetic field strength by up to a factor ∼10, but none of these

cases applies to OMC1. Crutcher et al. (2004), working with

JCMT SCUPOL data (the same resolution as our own data and

observing clouds at comparable distances), discussed these

effects and suggested that for well-resolved filaments and

cores, the value of Q 0.5¢ ~ of Ostriker et al. (2001) is

appropriate, noting that it is accurate to ∼30%.
Modeling suggests that the number of independent turbulent

eddies N along the line of sight causes the standard CF method

to overestimate the magnetic field strength Bpos by a factor of

N (e.g., Houde et al. 2009; Cho & Yoo 2016). Cho & Yoo

(2016) proposed that the number of independent turbulent

eddies along the line of sight can be estimated from the

standard deviation of centroid velocities normalized by the

average line-of-sight velocity dispersion over the region under
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consideration, i.e.,

N

1
, 33

V

v

c
s
s
~ ( )

where Vcs is the standard deviation of the mean of the centroid

velocities measured across OMC1, and vs is the average of the

line-of-sight velocity dispersions measured across OMC1.
Using our C18O data, we found that 1.33 0.31vs =  km s−1

(see Section 3.2). From the same data, measuring over the same

area, we find a value of 0.97 0.03Vcs =  km s−1. Thus, we

estimate a value of N1 0.73 0.31=  , slightly less than,

but consistent with, unity. This would suggest that there are

few ( 2 ) turbulent eddies along the line of sight. Hence, any

overestimation of Bpos resulting from line-of-sight effects in our

results should be small, and will not alter the order of

magnitude of our measured magnetic field strength, or any of

our scientific conclusions.

6. Conclusions

In this paper we have determined the magnetic field strength
in the OMC1 region using a Chandrasekhar–Fermi analysis of
polarization observations made using the POL-2 polarimeter on
the JCMT as part of the BISTRO survey and of POL-2
commissioning work. We used archival SCUBA-2 and HARP
observations in order to determine the volume density and gas
velocity dispersion in OMC1. We estimated the angular
dispersion in OMC1 by applying a smoothing kernel to the
distribution of angles and subtracting the smoothed magnetic
field direction from the measured distribution of angles, a
method analogous to unsharp masking.

We measured B n 7.3 2.3 G cmpos
3 2m=  - / in OMC1,

and hence for a typical gas density of n H 0.832 = ( ) (

0.66 106´) cm−3, we determined a plane-of-sky magnetic
field strength of B 6.6 4.7pos =  mG, where B 4.7posd = mG
represents a predominantly systematic uncertainty. This value
is comparable to the magnetic field strength of 3.8 mG
measured in OMC1 by Hildebrand et al. (2009), and to
previous Zeeman measurements of OH masers in the BN/KL
region, and is comparable to magnetic field strengths measured
in other high-mass star-forming regions.

The magnetic field in OMC1 shows a distinctive hourglass
morphology. We investigated the relative importance of the
gravitational instability of the filament and gravitational
potential of the Orion BN/KL and S clumps, and of the
highly energetic BN/KL outflow, in shaping the magnetic field
in OMC1. We investigated the relative contributions of the
magnetic field, gravitational interaction, and outflow to the
energy balance in OMC1. We found that the magnetic field
has an energy density 1.7 10 7~ ´ - J m−3. We estimated the
gravitational potential energy density in the center of OMC1
to be of the order 10−7 J m−3, and the outflow energy density to
be also ∼10−7 J m−3 (although we expect the energy density to
be significantly nonuniform across the volume of the outflow).
Hence, we expect each of these effects to contribute similarly to
the energy balance in OMC1.

We investigated the translational, thermal, and nonthermal
kinetic energies in OMC1, and found them to be smaller than
the other terms contributing to the energy balance of OMC1.
The nonthermal kinetic energy may be sufficiently large to
contribute to the energy balance, but it cannot dominate it,
and moreover it is unlikely to be providing support against

gravitational collapse on scales larger than the thermal Jeans
length, 0.03Jl ~ pc.
We estimated the mass-to-flux ratio of OMC1 to be

0.41obsl ~ , less than but similar to unity, suggesting that the
OMC1 region is near magnetic criticality or slightly
magnetically subcritical. We also demonstrated that, in the
absence of a magnetic field, the filament would be globally
gravitationally unstable according to the criterion of Ostriker
(1964). However, the line mass of the filament is comparable to
the magnetic critical line mass, suggesting that the filament is in
or near magnetically supported equilibrium.
We determined the Alfvén velocity in OMC1 to be

9.4 6.6 km s−1, and hence that the outflow could only
produce Alfvénic distortions on size scales of the order 10−3 pc
in 500 yr (the approximate lifetime of the outflow),
significantly smaller than the 10 1~ - pc size scale of the
hourglass morphology. We found that the typical velocity of
the ballistic ejecta is significantly greater than the Alfvén
velocity, suggesting that perturbation of the field by the outflow
would occur non-Alfvénically. However, the distance travelled
by outflow ejecta is ∼10−2 pc, smaller than the size scale of
the hourglass morphology. Moreover, the energy density of the
ballistic ejecta is several orders of magnitude smaller than the
energy density of the magnetic field. Hence, we concluded that
the outflow is too young to have caused the large-scale
morphology of the magnetic field in OMC1.
We further hypothesized that the direction of propagation

and opening angle of the large-scale, ballistically ejected, BN/
KL outflow (the “bullets of Orion”) is constrained by the
magnetic field geometry of the OMC1 region.
We concluded that the gravitational interactions in OMC1

have sufficient energy to be in or near equipartition with the
magnetic field. We hypothesized that the magnetic field
morphology is the result of compression of an initially uniform
and cylindrically symmetric magnetic field by some combina-
tion of the gravitational fragmentation of the filament and the
gravitational interaction of the BN/KL and S clumps. We
further hypothesized that the magnetic field, while initially
insufficiently strong to prevent the motion of material along the
filament, may now have been increased by its compression to
be sufficiently strong to slow or halt the flow of gas along the
filament, and hence the interaction of the BN/KL and S
clumps. The hourglass magnetic field may produce a cushion-
ing and/or anchoring effect on the gas in the filament, causing
any further interaction of the two clumps to be secular and
mediated by ambipolar diffusion.
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Appendix A
Effect of Measurement Uncertainties on Angular

Dispersion—the General Case

Here we investigate the effect of the measurement
uncertainty on recovered angular dispersion for the general
case of a set of angles normally distributed about a mean of
zero. The aim of this investigation is to understand what, if any,
systematic bias is introduced into a Chandrasekhar–Fermi
analysis by measurement uncertainty on position angle. We
consider the generalized case in this appendix. In Appendix B
we discuss the effect of measurement uncertainty on the
“unsharp masking” method used in this work.

We performed Monte Carlo simulations in order to
determine the effect of measurement uncertainty dq on the
measured dispersion of angles sq around the mean field
direction. We generated 1000-element sets of distributions of
angles trueqD . Each set trueqD was normally distributed about a
mean of 0, with a specified standard deviation ,truesq . For each
1000-element set we generated an accompanying set of

measurement uncertainties dq, which were randomly drawn
from a uniform distribution with a range 30 30dq-  < .
We note that the distribution of measurement uncertainties

chosen for this analysis is not intended to be representative of
the measurement uncertainties in our own data, which are 6< °

everywhere where P P 5d > . We simply aim to understand the
systematic effect of measurement error on recovered angular
dispersion.
We note that there are two effects that deviate a measured

magnetic field angle from the mean field direction: the
physical dispersion in angle due to turbulence, and measure-
ment error on position angle. These two effects do not add in
quadrature: the former is a physical quantity that we aim to
measure, while the latter is a statistical uncertainty on the
former that is equally likely to move the measured deviation
toward the mean field direction as away from it. Thus, the
observed deviation in angle, qD , is given, for the ith member
of the distribution, by

. A1i i itrue,q q dqD = D + ( )

Note that idq can be negative. The distribution qD thus contains

both intrinsic dispersion and statistical uncertainties. The

observed dispersion in the data, sq, is then taken to be the

standard deviation of qD .
We repeated the process described above 10,000 times for

each of a set of specified values of ,truesq . The mean observed
dispersion sq¯ over those 10,000 repeats was taken to be the best
estimate of recovered dispersion, while the standard deviation
of the observed dispersion, dsq¯ , was taken to represent 1s
uncertainty on sq¯ .
The results of these Monte Carlo simulations are shown in

Figure A1, in which sq¯ is plotted as a cumulative function of
measurement uncertainty. We find two regimes of behavior for
sq. The measured angular dispersion sq agrees well with the
true angular dispersion ,truesq in well-characterized pixels, when
the maximum uncertainty on angle maxdq is smaller than the
true dispersion of the distribution of angles, i.e., ,trues s»q q

Figure A1. The behavior of measured dispersion in angle as a function of
maximum allowed uncertainty on angle, for underlying Gaussian distributions
with widths 20° (red), 15° (orange), 10° (green), 5° (blue), and 1° (purple).
Angular uncertainties are drawn from a uniform distribution between 0° and
30°. Shaded regions indicate 1σ uncertainty on mean measured deviation.
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when max ,truedq sq . However, when maxdq is equal to or

greater than ,truesq , sq increases approximately linearly with

maxdq , i.e., ,trues s>q q when max ,truedq sq .
Figure A1 shows that when maxdq is equal to or greater than

,truesq (i.e., when the data are less well characterized than our

POL-2 data, as discussed below), then the systematic effect of

the angular uncertainty on sq must be accounted for. Previous

attempts to do this have included subtraction of mean

measurement uncertainty in quadrature (e.g., Crutcher et al.

2004, observing with SCUPOL, with measurement uncertain-

ties expected to be sufficiently large to be in the regime in

which correction was required).

Appendix B
Demonstration of the “Unsharp Masking” Method of

Determining Angular Dispersion

We tested our “unsharp masking” method of determining

angular dispersion by applying it to a series of sets of synthetic

observations. Our method was as follows: (1) we generated a

set of parabolas with a specified focal length, (2) we applied a

Gaussian angular dispersion to these data, the standard

deviation of which is the measurement that we wish to recover,

(3) we applied a set of measurement errors to the data, drawn

from a Gaussian distribution with a specified standard

deviation, (4) we smoothed the “dispersion + errors” map

with a 3 3´ boxcar filter, (5) we subtracted the smoothed map

from the “dispersion + errors” map, (6) we measured the

standard deviation in the residuals map, and compared it to the

input standard deviation. We note that we implicitly assume

throughout this analysis that the pixels over which we smooth

are linearly independent, i.e., for real data, pixel size 
beam size.

We tested this method for a range of focal lengths of
parabolas. Our input parabolas took the form

y
f
x h

1

4
B1h

2= + ( )

where h is an integer offset. We specified the focal length f in

terms of its ratio to the size of the smoothing box size S, in this

case 3 pixels.
The set of parabolas that we tested are shown in Figure B1.

We modeled parabolas with f S values of 2.0, 1.0, 0.5, 0.4,
0.3, 0.2, 0.1, and 0.05, i.e., with focal lengths f of 6.0, 3.0, 1.5,
1.2, 0.9, 0.6, 0.3, and 0.15 pixels. We also tested the zero-
curvature case, i.e., f = ¥.
We modeled angular dispersion ,truesq in the range 1 

10,true s q . We drew uncertainties dq from uniform distribu-
tions with ranges max max dq dq dq- , choosing values of

maxdq in the range 0°–10°. In any given pixel with coordinates
i j,( ), the measured angle obsq is given by

i

f
tan

2
, B2i j i j i jobs, ,

1
true, , obs, ,q q dq= + D +-

⎛

⎝
⎜

⎞

⎠
⎟ ( ) ( )

where the intrinsic deviation in the field direction trueqD( ) is

drawn from a probability distribution with Gaussian widths

,truesq , and the uncertainty on measurement angle is drawn from

a uniform distribution specified by the value of maxdq .
The mean field direction qá ñ is given, in a pixel with

coordinates i j,( ), by

S

1
B3i j

l k

i k j l, 2 obs, ,
S

S

S

S

1
2

1
2

1
2

1
2

å åq qá ñ =
=- =-

+ +
-

-

-

-

( )

where box size S is an odd integer greater than 1. The

recovered deviation in mean field direction qD in pixel (i, j) is

then given by

. B4i j i j i j, obs, , ,q q qD = - á ñ ( )

The recovered dispersion sq is then the standard deviation

of qD .
We estimated the mean value of sq and the standard

deviation on that value by performing Monte Carlo simula-
tions. For each of our chosen values of f S, ,truesq , and maxdq ,
we drew 500 sets of angular deviations and uncertainties, and
found the mean and standard deviation of the values of sq
recovered from these 500 data sets. An example model is
shown in Figure B2, with f S 0.4= , 4 .0,trues = q , and

2maxdq < , similar to what we measure in regions of OMC 1
with high signal-to-noise ratio.
The results of our synthetic observations in the limiting case

where measurement errors are negligible are shown in
Figure B3.

B.1. Effect of Field Curvature

Our synthetic observations predict that for field curvatures
f S 0.3 , this method recovers ,truesq with reasonable
accuracy (see Figure B3); this is true while 3.0,true s q .
This method overestimates ,truesq for very low values of

,truesq , as can be seen in Figure B3. The method fails for very
high degrees of curvature in the underlying field ( f S 1 ), as
best seen in the cases f S 0.10= and f S 0.05= in
Figure B3. The failure of the method at low ,truesq and at high

Figure B1. The model parabolas that were tested, with focal lengths f of ¥,
6.0, 3.0, 1.5, 1.2, 0.9, 0.6, 0.3, and 0.15 pixels (bottom to top; y offset is
arbitrary). Parabolas shown in green were sufficiently shallow for angular
dispersion to be accurately recovered (i.e., ,trues s»q q ); the method fails for
parabolas shown in red.
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field curvature f S is likely to be due to the systematic
variation in field direction over the box size (due to the
changing direction of the underlying field) being comparable to
or greater than the random variation in field direction due to the
dispersion on position angle. The difference between the mean
angle and the observed angle ( obsq qá ñ– ) thus becomes a
measure of field curvature rather than of angular dispersion.

Degrees of field curvature f S for which ,truesq is recovered
well (for a box size of of 3 3´ pixels) are shown in green in
Figure B1, while field curvatures f S for which the method

fails are shown in red. We define failure in general as

,trues s>q q for all ,truesq , and in our specific case as sq differing
from ,truesq by 10 % when 4,trues ~ q . Comparison of this
figure with the magnetic field in the high-S/N region of
OMC1 over which we perform the analysis (Figure 2(c))
shows that over the vast majority of this region the field
curvature is definitively in the regime in which angular
dispersion is recovered well. We estimate that in the highest-
curvature region of OMC1, the field curvature reaches a
maximum of f 0.83» , i.e., f S 0.28» . Hence, over all of the
high-S/N region of OMC1, the field curvature is in the regime
f S 0.3 , and so this method does not overestimate the
angular dispersion in this case. Another check on this is
examination of the residual map (Figure 2(c)); we do not see
systematically higher residuals in regions of higher field
curvature, which suggests that we are accurately recovering
the true angular dispersion.

B.2. Effect of Box Size

We note that, in the absence of significant effects from field
curvature, there is a slight tendency for this method to
underestimate larger values of ,truesq . In the limiting case of
no curvature ( f S = ¥), this method systematically recovers a
value of sq that is 0.94´ the true angular dispersion ,truesq , and
recovered angular dispersions sq for fields that have curvature
tend to this value as ,truesq becomes large (see Figure B3).
This systematic underestimation is a result of the 3 3´ pixel

boxcar filter not being sufficiently large to sample the full range
of variation in angle across the map, and so underestimating

,truesq . In the zero-curvature case ( f S = ¥), we find that as
smoothing box size S increases, sq tends toward ,truesq : a
5 5´ pixel box recovers 0.981 ,trues´ q , while a 7 7´ pixel
box recovers 0.984 ,trues´ q . However, as S is increased, the
effect of systematic variation in field direction over the box
becomes more significant, and for even relatively shallow field
curvatures the angular dispersion is significantly overestimated
as a result.

Figure B2. (a) Underlying field model; f S 0.4= . (b) Model observations, with 4.0,trues = q and 2maxdq < . (c) Smoothed map, showing estimated mean field
direction qá ñ. (d) Residuals, obsq q qD = á ñ– . Black vectors indicate magnetic field direction. In panel (c), white vectors indicate smoothed magnetic field direction, for
comparison.

Figure B3. Comparison of input and recovered angular dispersions in the
limiting case where measurement errors are negligible (note that the case

f S 2.0= tends closely to f S = ¥). The dashed line shows the 1:1 line.
The solid black line marks 4.0,trues = q ; the gray shaded region shows the
range of sq values recovered for field curvatures seen in OMC1
when 4.0,trues = q .
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The effect of this systematic underestimation is minimal
while ,truesq is small; moreover, for small ,truesq the slight
overestimation of sq due to systematic variation in the field
direction over the smoothing box mitigates this effect (see
Figure B3). For relatively large angular dispersions
( 8,true s q ; considerably higher than is seen in OMC1), the
systematic underestimation produces a 1 s offset between sq
and ,truesq . If a data set were to fall into that regime, sq could be
corrected for this systematic effect simply by multiplying it by
a factor 1.06.

For our data, the dispersion that we measure, 4.0sá ñ =  q
0.3, falls into the regime where any systematic effects from
field curvature and box size mitigate against each other;
Figure B3 shows that values of ,truesq in the range 3°–8° will be
recovered accurately for a wide range of field curvatures f S.
We note also that the systematic offsets in angular dispersion
that are predicted by our synthetic observations are smaller than
the statistical uncertainty on our result.

B.3. Effect of Measurement Errors

As demonstrated in AppendixA, over well-characterized
pixels, and in the absence of field curvature, sq should not be
systematically altered by measurement errors. We test here
whether this result holds when field curvature is included. We
drew uncertainties dq from uniform distributions with ranges

max max dq dq dq- , choosing values of maxdq in the range
0°–10°. The results of these tests, for a field curvature
f S 0.4= , are shown as solid lines in Figure B4. The results
of these tests for the zero-curvature unsharp-masking case are
shown as dotted lines on the same figure.

We see that as in the generalized zero-curvature case, sq is
not altered by measurement errors while those measurement
errors are small. However, as previously, sq increases
approximately linearly with maxdq when max ,truedq sq . This
is true both for the zero-curvature and f S 0.4= unsharp-
masking examples shown in Figure B4. We do not see any

tendency for sq to deviate more rapidly from ,truesq as maxdq
increases in the case f S 0.4= than in the zero-curvature case.
We find that for 4,trues » q , the systematic effect of

measurement error on sq is minimal while 2max dq , as is
the case in the region of OMC1 over which we perform our
analysis (discussed below).

B.4. Application to OMC1 Data

As discussed above, if 2max dq , then ,trues s»q q (if f S is
sufficiently small). We thus restrict our application of the
unsharp-masking method in OMC1 to those pixels for which
the maximum uncertainty in any pixel included in the
smoothing box is 2.0< . Uncertainties on position angle are
calculated by pol2stack from the variances on the Q and U
values in each pixel in the coadded Q andU maps from which
the vector properties are calculated, using standard error
propagation (see Section 2).
Figure B5 shows the distribution of uncertainties obsdq on the

pixels in OMC1 for which P P 5d and which are not
excluded from the analysis for containing changes in angle
90 ° in their smoothing box (see Section 3.1).
The pixels in OMC1 with low measurement uncertainties

can be seen as a contiguous region with low residuals in
Figure 2(c). Figure B6 shows the variation in maxdq across
OMC1, with the region over which 2.0maxdq <  outlined in
black. This contiguous region includes the high-density region
of OMC1: the BN/KL and S regions, the region between
them, and most of the region in which the magnetic field shows
an hourglass morphology.
We took the standard deviation of the cumulative distribu-

tion of qD as a function of increasing maxdq in order to
determine a representative value of sq for OMC1. This is
plotted in Figure 3. Taking the mean of the standard deviations
of the distributions containing only the best-characterized
pixels (0.2 2.0maxdq < < ; up to 138 pixels), we found a
dispersion of 4.0 0.3sá ñ =   q . We thus adopt this value of
angular dispersion for our Chandrasekhar–Fermi analysis of
Orion A, as being determined from the best-characterized
pixels, and from the area of most relevance for our scientific

Figure B4. The effect of measurement errors on recovered angular dispersion sq,
for a field curvature f 1.2= ( f S 0.4;= solid lines) and for the zero-curvature
case ( f S ;= ¥ dashed lines). The solid black line shows sq when 4.0,trues = q
and 2.0maxdq < , as is the case for the well-characterized pixels in OMC1.

Figure B5. The distribution in uncertainties on measured position angles obsdq
for valid pixels in OMC1 with P P 5d .

19

The Astrophysical Journal, 846:122 (21pp), 2017 September 10 Pattle et al.



analysis. As shown by Figures B3 and B4, the angular
dispersion that we determine from these pixels will be an
accurate estimate of the true angular dispersion in OMC1.
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