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Physicists discover 

a candidate for the 

boson Higgs 
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July 4: Each expt shows invariant mass spectrum for 

four-lepton events. 
 
 
 
 
 
 
 
 
 
CMS, ATLAS both see excess near 125 GeV. 
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July 4: γγ invariant mass spectra 
CMS, ATLAS both see excess near 125 GeV 
 
 
 
 
 
 
 
 
CMS and ATLAS each conclude  
“observation”of a new particle. 

 
 

For many of us, it passed the “interocular traumatic test.” 
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July 4 ‘12: CMS and ATLAS presented p-values and effect sizes.  E.g., CMS: 

Effect sizes: Cross section in units of 
SM cross section. Also mass. http://indico.cern.ch/event/197461/ 

γγ γγ 

All modes incl low sensitivity 



Publications: Physics Letters B, vol. 216 (2012) 

ATLAS:  “The significance of an excess in the data is first 

quantified with the local p0, the probability that the background can 

produce a fluctuation greater than or equal to the excess observed in 

data. The equivalent formulation in terms of number of standard 

deviations, Zl, is referred to as the local significance. 
 

CMS: “The probability for a background fluctuation to be at least as 

large as the observed maximum excess is termed the local p-value, 

and that for an excess anywhere in a specified mass range the global 

p-value”... Both the local and global p-values can be expressed as a 

corresponding number of standard deviations using the one-sided 

Gaussian tail convention.” 

As one involved, I think that both experiments did an excellent 
job in scientific analysis, both in the talks and the papers.   

But p-values remain controversial... 
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Google on “criticism of p-values”, or  
“criticism of null hypothesis statistical testing (NHST)”, 
for a plethora of articles. 
 

What’s it all about? 
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(1957) 
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Big issue: Bayesian methods use only the probability of obtaining 
the data actually observed (Likelihood Principle), while tail 
probabilities such as p-values also use probability of obtaining data 
more unlikely than that observed. 
 
Oft-quoted Jeffreys: "What the use of [the p-value] implies, therefore, 
is that a hypothesis that may be true may be rejected because it has 
not predicted observable results that have not occurred." 
 
Raftery (1995}) "...there is no justification for the step in the 
derivation of the p-value where "probability density for data as 
extreme as that observed" is replaced with "probability for data as 
extreme, or more extreme".   
 
 
...but this is not the only issue: Bayesians disagree with each other. 
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“Estimation” for parameter θ 

Physicist: “measured value” or “best-fit value” of θ  
Psychologist: “effect size” (in original units) 
Statistician: “point estimate” of θ 
 

Physicist: “uncertainty”, “confidence interval”, less often 
“credible interval” for θ  

Statistician: “interval estimate” for θ (confidence interval, 
credible interval, ...) 

 

In estimation, there is already a lot to say about frequentist 
vs Bayesians methods.  

But for many problems (fixed dimensionality...), dependence 
on the Bayesian prior goes away asymptotically (large n). 

 

My talk is not about differences in estimation, but about 
something much more disturbing (at least to me). 
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Hypothesis testing (aka Model Selection) 
E.g.: Is θ equal to some particular value θ0 ? 

Frequentist approach is usually some mix of rival Fisher 
and Neyman-Pearson methods and terminology. 

Closely related to interval estimation (1-to-1 map). 

Bayesian hypothesis testing is separate from estimation: 

It’s so separate that recommended “objective” priors for θ 
are different for estimation and testing (!).  

Bayesians compute probabilities that hypotheses are true   
a la Theory of Probability by Harold Jeffreys (1939, 1961).  

This talk is about hypothesis testing, and Jeffreys-Lindley 
paradox contrasting frequentist and Bayesian results. 

The dependence of the Bayesian result on the prior for θ 
remains asymptotically. 
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Classical Hypothesis Testing 

• In Neyman-Pearson hypothesis testing (James 2006), 
frame discussion in terms of null hypothesis H0 and an 
alternative H1. (E.g., H0 = S.M., H1 = CMSSM).         
Consider repeated tests on independent samples. 

α: probability (under H0) of rejecting H0 when it is true, i.e.,          
false discovery claim (Type I error) 

β: probability (under H1) of accepting H0 when it is false, i.e.,          
not claiming a discovery when there is one (Type II error) 

θ: parameters in the hypotheses 

• Common for H0 to be nested in H1 , i.e. H0 corresponds to 
particular parameter values θ0 (e.g. zero or ∞) in H1.  

• Competing analysis methods can be compared by 
looking at graphs of β vs α at various θ, and at graphs of 
power 1−β vs θ at various α (power function). 
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Classical Hypothesis Testing (cont.) 
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James 2006, pp. 258, 262 

Where to live on the β vs α curve is a long discussion.  (Even longer when 
considered as n events increases, so curve moves toward origin.)  
Decision on whether to declare discovery requires two more inputs:  
1) Prior belief in H0 vs H1 

2) Cost of Type I error (false discovery claim) vs cost of Type II error 
(missed discovery) 

A one-size-fits-all criterion of α corresponding to some fixed threshhold 
like 5σ is without foundation in the frequentist stat literature. 
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Neyman and Pearson (1933a) "These two sources of error can rarely be 
eliminated completely; in some cases it will be more important to avoid 
the first, in others the second. ...The use of these statistical tools in any 
given case, in determining just how the balance should be struck, must 
be left to the investigator. " 
 

Lehmann (2005) "The choice of a level of significance α is usually 
somewhat arbitrary...the choice should also take in consideration the 
power that the test will achieve against the alternatives of interest.... " 
 

[But if power is a function of the unknown θ, that’s a problem for 
frequentists, who generally cannot put a prior on θ and take a weighted 
average of the power.] 
 

Lehmann (2005) "Another consideration that may enter into the 
specification of a significance level is the attitude toward the hypothesis 
before the experiment is performed.  If one firmly believes the hypothesis 
to be true, extremely convincing evidence will be required before one is 
willing to give up this belief, and the significance level will accordingly be 
set very low.“ 
 

Choice of threshold α for rejecting H0 
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Kendall and Stuart and successors (Stuart 1999) "...unless we have 
supplemental information in the form of the costs (in money or other 
common terms) of the two types of error, and costs of observations, we 
cannot obtain an optimal combination of α, β, and n for any given 
problem."   
 
And, in HEP, the tradition started in Alvarez group, much motivated by 
multiple trials factors: 
 
Rosenfeld (1968) "To the theorist or phenomenologist the moral is simple: 
wait for nearly 5σ effects. For the experimental group who have spent a 
year of their time and perhaps a million dollars, the problem is harder...go 
ahead and publish...but they should realize that any bump less than about 
5σ calls only for a repeat of the experiment." 
 

Choice of threshold α for rejecting H0 (cont.) 



Classical Hypothesis Testing: p-values and Z-values 
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In N-P theory, α is specified in advance.  Suppose after obtaining 
data, you notice that with α=0.05 previously specified, you reject 
H0, but with α=0.01 previously specified, you accept H0.  In fact, 
you determine that with the data set in hand, H0 would be 
rejected for α ≥ 0.023.  This interesting critical value has a name: 

After data are obtained, the p-value is the smallest value of α for 
which H0 would be rejected, had it been specified in advance.  

Typically that critical value of α was not specified in advance, so 
p-values do not correspond to Type I error rates of the 
experiments which report them.       

Interpretation of p-values is a long, contentious story – beware! 
Fisher had a very different philosophical view of them than N-P. 
In HEP, converted to Z-value, equivalent number of Gaussian σ. 
E.g., for one-tailed test, p=1.35E-3 is Z=3; p=2.87E-7 is Z=5. 



Aside on Confidence Intervals 

“Confidence intervals”, and this phrase to describe them, were 
invented by Jerzy Neyman in 1934-37.   

Neyman described a way to construct a set of confidence 
intervals. It is really ingenious – perhaps a bit too ingenious 
given how often confidence intervals are misinterpreted. 

In particular, the confidence level does not tell you “how 
confident you are that the unknown true value is in the interval” 
– only a subjective Bayesian credible interval has that property! 
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Confidence Intervals and Coverage 

Recall: in math, one defines a vector space as a set with certain 
properties, and then  
The definition of a vector is “an element of a vector space”.                        
(A vector is not defined in isolation.) 
 

Similarly, whether constructed in practice by Neyman’s 
construction or some other technique,   

The definition of a confidence interval is “an element of a 
confidence set*”,  

where the confidence set is a set of intervals defined to have the 
property of frequentist coverage under repeated sampling. 

 

 

 

* Also called family of intervals, or (when graphed) confidence 
band or confidence belt. (Set is also used by some authors to 
mean one interval.) 
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Confidence Intervals and Coverage (cont.) 

Let the unknown true value of θ be θt .  

In repeated experiments, the confidence intervals obtained will 
have different endpoints [θ1, θ2], since the endpoints are 
functions of the randomly sampled x. 

The fraction C.L. = 1 - α of intervals obtained by Neyman’s 
construction will contain (“cover”) the fixed but unknown θt : 

 

        P(θt ∈ [θ1, θ2]) = C.L. = 1 - α.  (definition of coverage) 

 

The random variables in this equation are θ1 and θ2, and not θt.  

Coverage is a property of the set of intervals, not of an individual 
interval. 

It is not necessary that all experiments have the same θt , or 
even measure the same quantity. 
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Classical Hypothesis Testing: Duality 
“Test for θ=θ0” ↔ “Is θ0 in confidence interval for θ” 
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“There is thus no need to derive optimum properties 
separately for tests and for intervals; there is a one-to-one 
correspondence between the problems as in the dictionary in 
Table 20.1” – Stuart 1999, p. 175. 



Classic example of Bayesian hypothesis testing 
Test H0: θ=θ0 vs H1: θ≠θ0 

Concept: Calculate posterior probability of H0. 

Let π0 be prior prob for H0. Then π1 = 1−π0 is prior prob for H1. 

Conditional on H1 being true, we also need prior probability 
density for θ: g(θ). [Lebesgue measure] 

[Conceptual issue: π0 is like a bit of Dirac δ-ftn at θ=θ0. Called 
“probability mass” or “counting measure”.] 

So suppose X having density f (x|θ) is observed.    

Consider case: f (x|θ) is normal with mean θ, rms σ, and 
sample is {x1, x2, ... , xn}. 

 

Max Lik. Est. for θ is               having rms  
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g(θ) 
π0 

L(θ) 

θ θ0 
^ 

θ 

σtot 

τ 
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A = normalization constant so that sum of above two is unity. 
 
                                     

Posterior Probs from Bayes’s rule: prior × L 



Bob Cousins, S. Carolina, 4/2014 24 

A = normalization constant so that sum of above two is unity. 
Let τ be scale that characterizes range of θ for which prior g is relatively large. 
Consider case  σtot << τ  .   
 
                                   .   

Posterior Probs from Bayes’s rule: prior × L 
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A = normalization constant so that sum of above two is unity. 
Let τ be scale that characterizes range of θ for which prior g is relatively large. 
Consider case  σtot << τ  .   
 
                                   .  Bayes Factor = (Posterior odds favoring H0 )/Prior odds 
: 
 

Posterior Probs from Bayes’s rule: prior × L 

where                                                           is usual discrepancy in units of σ . 
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Key point: g(θ) is normalized, so                         . Hence very generally,   

Meanwhile, classical likelihood ratio comparing null value and the MLE value: 

So also very generally, 
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Recall z is the “number of sigma” of the effect. 

 

 

 

The factor σtot/τ is called the Ockham (Occam) factor, penalizing H1 in the 

likelihood ratio for having the degree of freedom to choose “best-fit” θ, 

whereas H0 predicts it. 

For experiments having the same z (say 5σ effect), the Bayes Factors can be 

dramatically different.  

For 5σ results with small enough σtot, BF can strongly favor H0 ! 

(And meanwhile the likelihood ratio also favors the alternative H1.) 

 

Recalling                                  , the JL paradox is often viewed as an 

issue of sample size n: the interpretation of “5σ” should depend on n, 

according to the BF. From this point of view, the paradox arises for large n. 

The Jeffreys-Lindley Paradox 
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g(θ) 
π0 

L(θ) 

θ θ0 
^ 

θ 

σtot 

τ 

g(θ) 
π0 

L(θ) 

θ θ0 
^ 

θ 

σtot 

τ 

Tale of two 5σ effects 

π0 L(θ0) unchanged 
∫ g(θ) L(θ) dθ  smaller 

BF for H0 bigger! 
 
 



Jeffreys (1939, 1961) curiously downplayed the discrepancy:  
 
"In spite of the difference in principle between my tests and 
those based on the [p-values],  
and the omission of the latter to give the increase in the critical 
values for large n,  
dictated essentially by the fact that in testing a small departure 
found from a large number of observations we are selecting a 
value out of a long range and should allow for selection,  
it appears that there is not much difference in the practical 
recommendations."   
 
Lindley (1957) highlighted how bad it could be, difference in 
scaling in sample-size n. 
Bartlett (1957) noted Lindley’s oversight of the role of τ: makes 
result “much more arbitrary” (remains asymptotically). 
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Quite striking how opinions differ on where to put the “blame”, e.g.: 

 

1) The δ-function for H0 makes no sense.  

2) Very small σtot means we should not be trusting the model f (x|θ), 
so what’s the fuss about? No good scientist believes their null 

hypothesis!(And “All models are wrong!”) 

3) (From a Bayesian) Jeffrey’s method should be replaced by a 

method based on decision theory that gives different results. 

4) Frequentist tail probabilities are obviously wrong way to make 

inference; p-values dramatically overstate evidence against H0. 

5) Paradox goes away if the prior depends on n in compensating way. 

6) Etc., etc. 

 

Every assumption in JL has been scrutinized! 

A sampling of quotes in remaining slides 



Lindley (2009) lauds the "triumph" of Jeffreys “...putting a concentration of prior 
probability on the null---no ignorance here---and evaluating the posterior 
probability using what we now call Bayes factors."   
  
Bernardo (2009) "Jeffreys intends to obtain a posterior probability for a precise 
null hypothesis, and, to do this, he is forced to use a mixed prior which puts a 
lump of probability p=Pr(H0) on the null...This has a very upsetting 
consequence, usually known as Lindley's paradox...I find it difficult to accept a 
procedure which is known to produce the wrong answer under specific, but not 
controllable, circumstances." 
 
Zellner 2009) Physical laws such as E=mc2 are point hypotheses, and "Many 
other examples of sharp or precise hypotheses can be given and it is incorrect 
to exclude such hypotheses a priori or term them `unrealistic'... ." 
 
Gelman & Rubin(1995) "More generally, realistic prior distributions in social 
science do not have a mass of probability at zero... . "  

The δ-function for H0 
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Raftery(1995) "social scientists are prepared to act as if they had prior 
distributions with point masses at zero...social scientists often entertain the 
possibility that an effect is small ". 
 
C. Robert and J. Rousseau (2011), "Down with point masses! " ... "What 
matters in pointwise hypothesis testing is not whether or not θ=θ0 holds but 
what the consequences of a wrong decision are." 
 
But the key point was made in 1963 by Edwards, Lindman, Savage: 
"Bayesians...must remember that the null hypothesis is a hazily defined 
small region rather than a point." 
 
Thus a key issue is the size of this “hazily define region”; I call it ε0 . 

The δ-function for H0 (cont.) 
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g(θ) 
π0 

L(θ) 

θ θ0 
^ 

θ 

σtot 

τ 

Three scales in θ 

1)  ε0 ,   width of “δ-ftn” with prob π0 , scale set by H0 

2)  σtot , width of L(θ), total measurement uncertainty 

3)  τ,     width of g(θ), scale set by H1 
 

JL paradox arises if:  ε0 << σtot << τ 
 

The three scales are largely independent in HEP. 

In particular, τ cannot be reliably inferred from σtot . 
  

ε0 



J. Berger and Delampady (1987) "the precise null testing situation is a prime 
example in which objective procedures do not exist," and "Testing a precise 
hypothesis is a situation in which there is clearly no objective Bayesian analysis 
and, by implication, no sensible objective analysis whatsoever.” 
 
A common idea, dating to Jeffreys: use a prior with the same amount of 
information as a dataset with n=1.  Also generalizations. 
Kass and Wasserman (1995) refer to this as "unit information prior”. 
 
Raftery(1995) points out the problem: the "important ambiguity...the definition of 
[n], the sample size.” 
 
It’s a frontier research topic: Berger and Pericchi (2001) "this is the first general 
approach to the construction of conventional priors in nested models."   
 
Bayarri et al (including Berger) (2012) "...a new model selection objective prior 
with a number of compelling properties." 

Is there an “objective” (default) prior g(θ)?  
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Edwards (1963) "...in typical applications, one of the hypotheses---the null 
hypothesis---is known by all concerned to be false from the outset"  
 
Vardeman (1987) "Competent scientists do not believe their own models or 
theories, but rather treat them as convenient fictions.  A small (or even 0) prior 
probability that the current theory is true is not just a device to make posterior 
probabilities as small as p values, it is the way good scientists think!" 
 
Casella and R. Berger (1987c) "Most researchers would not put 50% prior 
probability on H0.  The purpose of an experiment is often to disprove H0 and 
researchers are not performing experiments that they believe, a priori, will fail 
half the time!"   
 
Kadane (1987) "For the last 15 years or so I have been looking seriously for 
special cases in which I might have some serious belief in a null hypothesis. I 
have found only one [testing astrologer]... I do not expect to test a precise 
hypothesis as a serious statistical calculation.“ 
 
This is all rather amusing to a high energy physicist.  See paper for discussion. 

Does anyone believe their null hypotheses? 
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Bernardo refers unapprovingly to point null hypotheses in an "objective" 
framework, and to the use begun by Jeffreys of two "radically different" types of 
priors for estimation and for hypothesis testing.  
 
The JL paradox "clearly poses a very serious problem to Bayes factors, in that, 
under certain conditions, they may lead to misleading answers. Whether you 
call this a paradox or a disagreement, the fact that the Bayes factor for the null 
may be arbitrarily large for sufficiently large n, however relatively unlikely the 

data may be under H0 is, to say the least, deeply disturbing...” 
 
He has an alternative based on Bayesian decision theory that I hope is 
investigated further. 

The Bayesian alternative of José Bernardo 
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Lots of food for thought.  The conditions for the JL paradox are common 
in HEP, so it should not be ignored. 
 
In my paper I discuss what it means for a high energy physicist to 
“believe” our models. (The core physics model is a mathematical limit, or 
an effective field theory, for the more complete one.)   
 
In searches for physics beyond the SM, belief in null (SM) is high.  In 
search for first observation of physics within the SM (as in Higgs search) 
our null hypothesis is rather artificial (all of SM except some piece). 
 
Meanwhile we continue with p-values, nearly always accompanied by 
confidence intervals for the various effect sizes (as was the case on July 
4, 2012).  I opine in my paper that the combination of information given to 
consumers in papers such as the Higgs discovery even allows for an 
informal estimate of a Bayes factor.   
 
But clearly more work (both foundational and practical) on the JL paradox 
is called for. 

Conclusion 



BACKUP 
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June: Peer-reviewed papers:  
 
Observation of a new particle in the 
search for the Standard Model Higgs 
boson with the ATLAS detector at the 
LHC.  
“…compatible with the production and 
decay of the Standard Model Higgs 
boson.” 
 
Observation of a new boson at a mass 
of 125 GeV with the CMS experiment at 
the LHC 
“..consistent, within uncertainties, 
with expectations for the standard 
model Higgs boson.” 
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Definition of “Probability” 

• Abstract mathematical probability P can be defined in terms of 
sets and axioms that P obeys.  If the axioms are true for P, then 
P obeys Bayes’ Theorem (see next slide) 

          P(B|A) = P(A|B) P(B) / P(A). 

• Two established* incarnations of P are: 

1) Frequentist P: limiting frequency in ensemble of imagined 
repeated samples (as usually taught in Q.M.).         
P(constant of nature) and P(SUSY is true) do not exist (in a 
useful way) for this definition of P (at least in one universe). 

2) (Subjective) Bayesian P: subjective (personalistic) degree 

of belief.  (de Finetti, Savage)                                                     
P(constant of nature) and P(SUSY is true) exist for You. 
Shown to be basis for coherent personal decision-making. 

• It is important to be able to work with either definition of P, and 

to know which one you are using! 
*Of course they are still argued about, but to less practical effect, I think. 
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P, Conditional P, and Derivation of Bayes’ Theorem       
in Pictures 

A B 

Whole space 

P(B) × P(A|B) =  × = 

P(A)  =  P(B)  =  

P(A ∩ B) =  

P(B|A) =  P(A|B) =  

P(A) × P(B|A) =  × = =   P(A ∩ B)  

=   P(A ∩ B)  

⇒  P(B|A)  = P(A|B) × P(B) / P(A)  Bob Cousins, S. Carolina, 4/2014 42 



What is the “Whole Space”? 

• Note that for probabilities to be well-defined, the “whole 
space” needs to be defined, which can be hard for both 
frequentists and Bayesians!. 

• Thus the “whole space” itself is more properly thought 
of as a conditional space, conditional on the 
assumptions going into the model (Poisson process, 
whether or not total number of events was fixed, etc.). 

• Furthermore, it is widely accepted that restricting the 
“whole space” to a relevant subspace can sometimes 
improve the quality of statistical inference – see the 
discussion of “Conditioning” in later slides. 

• I will not clutter the notation with explicit mention of the 
assumptions defining the “whole space”, but some 
prefer to do so – in any case, please keep them in mind. 
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Probability, Probability Density, and Likelihood 

• Poisson probability P(n|µ) = µn exp(-µ)/n! 

• Gaussian probability density function (pdf) p(x|µ,σ): 
p(x|µ,σ)dx is differential of probability dP. 

• In Poisson case, suppose n=3 is observed.   
Substituting n=3 into P(n|µ) yields the                               
likelihood function L(µ) = µ3 exp(-µ)/3! 
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Likelihood Ratios L(µ1) /L(µ2) 

are useful and frequently used. 
0 9 12 15 3 6 

L(µ) = µ3e
-µ

/3!  

µ 

µML = 3  

It is tempting to consider area 
under L, but L(µ) is not a 

probability density in µ: 
 
Area under L is meaningless.  



Change of variable x, change of parameter θ 

• For pdf p(x|θ) and (1-to-1) change of variable from x to y(x):  

            p(y(x)|θ) = p(x|θ) / |dy/dx|.  

    Jacobian modifies probability density, guaranties that             

            P( y(x1)< y < y(x2) )  =  P(x1 < x < x2 ), i.e., that 

    Probabilities are invariant under change of variable x. 

– Mode of probability density is not invariant (so, e.g., 
criterion of maximum probability density is ill-defined). 

– Likelihood ratio is invariant under change of variable x. 
(Jacobian in denominator cancels that in numerator). 

• For likelihood L(θ) and reparametrization from θ to u(θ): 

          L(θ)  =  L(u(θ))   (!). 

– Likelihood L (θ) is invariant under reparametrization of 
parameter θ (reinforcing fact that L is not a pdf in θ). 
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Neyman’s Confidence Interval construction 

Given p(x|µ ) from a model: 

For each value of µ, one draws a 

horizontal acceptance interval 

[x1,x2] such that p(x ∈ [x1,x2] | µ ) 

=  1 - α.  (Ordering principle 

needed to well-define.) 

Upon performing an experiment 

to measure x and obtaining the 

value x0, one draws the vertical 

line through x0.   

The vertical confidence interval 

[µ1, µ2] with Confidence Level  

C.L. = 1 - α is the union of all 

values of µ for which the 

corresponding acceptance 

interval is intercepted by the 

vertical line. 

Note: x and µ need not have the same 

range, units, or (in generalization to higher 

dimensions) dimensionaliity! 
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Figure from G. Feldman, R Cousins, Phys Rev D57 3873 (1998)  



Aside  on the note regarding x and µ  

I actually think it is much easier to avoid confusion when x and 
µ are qualitatively different.  
Louis Lyons give the example where x is the flux of solar 
neutrinos and µ is the temperature at the center of the sun;  
I like examples where x and µ have different dimensions. 
 
After studying examples such as those, one learns that in the 
Gaussian “measurement” of a mass µ which obtains the value 
x, it is crucial to distinguish between the data x, which can be 
negative, and the mass µ, for which negative values do not 

exist in the model.  (I.e., for which P(x|µ) does not exist) 

Note: x and µ need not have the same 

range, units, or (in generalization to higher 

dimensions) dimensionaliity! 
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Coverage: The experiments in the ensemble do 
not have to be the same. 
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Neyman pointed this out in his 1937 paper (in which his 
α is the modern 1 - α):  



Classical Hypothesis Testing: Neyman-Pearson Lemma 

Bob Cousins, S. Carolina, 4/2014 49 

If Type I error probability α is specified in a test of  
simple hypothesis H0 against simple hypothesis H1 ,  
then the Type II error probability β is minimized by using 
as the test statistic the likelihood ratio  
λ =  L(x| H0) /L(x| H1),  and rejecting H0 if λ ≤ kα 

Conceptual proof in Second lecture of Kyle Cranmer, February 2009 
http://indico.cern.ch/categoryDisplay.py?categId=72  . See also Stuart 1999, p. 176 

Phil. Transactions of the 

Royal Society of London. Vol. 

231, (1933), pp. 289-337 

The “lemma” applies only to a very special case: no nuisance 
parameters, not even undetermined parameters of interest! 
But it has inspired many generalizations, and likelihood ratios are 
a oft-used component of both frequentist and Bayesian methods. 

http://indico.cern.ch/categoryDisplay.py?categId=72
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