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Abstract.

Terrestrial biosphere models typically abstract the im-

mense diversity of vegetation forms and functioning into a

relatively small set of predefined semi-empirical plant func-

tional types (PFTs). There is growing evidence, however,

from the field ecology community as well as from modelling

studies that current PFT schemes may not adequately repre-

sent the observed variations in plant functional traits and their

effect on ecosystem functioning. In this paper, we introduce

the Jena Diversity-Dynamic Global Vegetation Model (JeDi-

DGVM) as a new approach to terrestrial biosphere modelling

with a richer representation of functional diversity than tra-

ditional modelling approaches based on a small number of

fixed PFTs.

JeDi-DGVM simulates the performance of a large number

of randomly generated plant growth strategies, each defined

by a set of 15 trait parameters which characterize various as-

pects of plant functioning including carbon allocation, eco-

physiology and phenology. Each trait parameter is involved

in one or more functional trade-offs. These trade-offs ulti-

mately determine whether a strategy is able to survive under

the climatic conditions in a given model grid cell and its per-

formance relative to the other strategies. The biogeochemical

fluxes and land surface properties of the individual strate-

gies are aggregated to the grid-cell scale using a mass-based

weighting scheme.

We evaluate the simulated global biogeochemical patterns

against a variety of field and satellite-based observations fol-

lowing a protocol established by the Carbon-Land Model In-

tercomparison Project. The land surface fluxes and vegeta-

tion structural properties are reasonably well simulated by

JeDi-DGVM, and compare favourably with other state-of-

the-art global vegetation models. We also evaluate the simu-

lated patterns of functional diversity and the sensitivity of the

JeDi-DGVM modelling approach to the number of sampled

strategies. Altogether, the results demonstrate the parsimo-

nious and flexible nature of a functional trade-off approach

to global vegetation modelling, i.e. it can provide more types

of testable outputs than standard PFT-based approaches and

with fewer inputs.

The approach implemented here in JeDi-DGVM sets the

foundation for future applications that will explore the im-

pacts of explicitly resolving diverse plant communities, al-

lowing for a more flexible temporal and spatial representa-

tion of the structure and function of the terrestrial biosphere.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Human activities are altering the terrestrial biosphere at a

large scale and an alarming rate (Millennium Ecosystem As-

sessment, 2005). The risks associated with these activities

have led to the development of terrestrial biosphere models

(TBMs; e.g. Foley et al., 1996; Friend et al., 1997; Woodward

et al., 1998; Cox, 2001; Sitch et al., 2003). These mechanis-

tic, process-based, numerical models simulate the large-scale

dynamics of terrestrial ecosystems and have proven useful

for testing hypotheses and making predictions regarding the

responses of ecosystem structure and functioning to past and

future environmental changes (Quillet et al., 2010). TBMs

have also been embedded within comprehensive earth system

models (ESMs) to capture biogeochemical and biogeophysi-

cal feedbacks between the terrestrial biosphere and the phys-

ical climate system (Levis , 2010). Intercomparison studies

(Friedlingstein et al., 2006; Sitch et al., 2008), however, have

revealed considerable divergence among the results of these

models with respect to the fate of the terrestrial biosphere and

its function as a driver of the global carbon cycle under pro-

jected scenarios of climate change. This divergence may be,

at least in part, due to their coarse and differing treatment of

plant functional diversity (Sitch et al., 2008; Harrison et al.,

2010; R. Fisher et al., 2010).

For reasons of computational efficiency as well as a lack

of sufficient data and theory, TBMs typically abstract the im-

mense functional diversity of the over 300 000 documented

plant species to a small number (typically between 4 and

20) of discrete plant functional types (PFTs; Kattge et al.,

2011) which are defined a priori before any simulations are

run. In the context of TBMs, PFTs represent broad bio-

geographical, morphological, and phenological aggregations

(e.g. tropical broadleaf evergreen forest or boreal needleleaf

deciduous forest) within which parameter values are held

spatially and temporally constant and responses to physical

and biotic factors are assumed to be similar (Prentice et al.,

2007). They have typically been classified subjectively us-

ing expert knowledge, and their occurrence within a given

model grid cell is based, either directly or indirectly, on semi-

empirical bioclimatic limits, such as minimum or maximum

annual temperature (e.g. Box, 1996; Bonan et al., 2002; Sitch

et al., 2003). Inductive approaches have also been proposed

wherein PFTs are objectively classified by applying statisti-

cal techniques to large datasets of vegetation traits and cli-

matic variables (e.g. Chapin et al., 1996; Wang and Price,

2007). Some TBMs known as dynamic global vegetation

models (DGVMs) allow the distribution of PFTs to evolve

dynamically in response to changes in climate. Regardless

of approach, the PFT schemes used by current TBMs, and

in particular those used by DGVMs, have been criticized as

ad hoc and as ignoring much of our growing knowledge of

comparative plant ecology (Harrison et al., 2010).

In fact, the field ecology community has shown that for

many plant traits there is a large amount of variation within

PFTs, and that for several important traits there is greater

variation within PFTs than between PFTs (Wright et al.,

2005; Reich et al., 2007; Kattge et al., 2011). This trait vari-

ation may play an important role for many ecosystem func-

tions (Dı́az and Cabido, 2001; Westoby et al., 2002; Ackerly

and Cornwell, 2007) and for ecosystem resilience to envi-

ronmental change (Dı́az et al., 2006). Recent model–data as-

similation studies using eddy covariance fluxes (Groenendijk

et al., 2011) as well as other field and satellite-based obser-

vations (Alton, 2011) provide confirmation that current PFT

schemes are insufficient for representing the full variability

of vegetation parameters necessary to accurately represent

carbon cycle processes. A more theoretical study by Klei-

don et al. (2007) demonstrated that using a small number of

discrete vegetation classes in a coupled climate–vegetation

model can lead to potentially unrealistic multiple steady-

states when compared with a more continuous representa-

tion of vegetation. Others have contended that DGVMs may

overestimate the negative effects of climate change by not

accounting for potential shifts in ecosystem compositions to-

wards species with traits more suited to the new conditions

(Purves and Pacala, 2008; Tilman et al., 2006). For exam-

ple, some coupled climate–vegetation models (e.g. Cox et al.,

2000) project an alarming dieback of the Amazon rainforest

under plausible scenarios of continuing anthropogenic green-

house gas emissions. The coarse representation of functional

diversity in these models provided by current PFT schemes

could be leading to an overestimation of the strength and

abruptness of this response (R. Fisher et al., 2010). Likewise,

DGVMs might underestimate the positive effects of environ-

mental changes on ecosystem performance, e.g. by ignor-

ing warm-adapted species in typically temperature-limited

regions (Loehle, 1998). Therefore, while PFTs have been and

will likely continue to be useful for many modelling applica-

tions, going forward we will need new approaches that allow

for a richer representation of functional diversity in DGVMs.

Many approaches have been proposed to meet the chal-

lenge of improving the representation of functional diver-

sity in DGVMs (e.g. Wright et al., 2005; Reich et al., 2007;

Kattge et al., 2009; Harrison et al., 2010; Verheijen et al.,

2012). However, so far, most of these have applied empir-

ical relationships between observed plant traits and envi-

ronmental (primarily climatic) factors. The utility of such

correlational approaches for predicting the effects of global

change on the terrestrial biosphere may be limited, as cli-

mate model projections point towards the possibility of novel

climates without modern or palaeo-analogues (Jackson and

Williams, 2004; Williams and Jackson, 2007). Other mod-

ellers have introduced schemes in which PFT parameters

adapt to environmental conditions, e.g. with adaptive param-

eters related to leaf nitrogen (Zaehle and Friend, 2010), allo-

cation (Friedlingstein et al., 1999) and phenology (Scheiter

and Higgins, 2009). However, despite some interesting pro-

posals (e.g. Falster et al., 2010; Van Bodegom et al., 2011),

so far no DGVM has sought to mechanistically represent the
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full range of functional trait diversity within plant commu-

nities (i.e. at the subgrid scale) using a trait-based trade-off

approach. Such approaches have enabled significant progress

in modelling the biogeographical and biogeochemical pat-

terns of global marine ecosystems (Bruggeman and Kooi-

jman, 2007; Litchman et al., 2007; Follows et al., 2007;

Dutkiewicz et al., 2009; Follows and Dutkiewicz, 2011).

Here, we introduce our prototype for a new class of vege-

tation models that mechanistically resolve subgrid-scale trait

variability using functional trade-offs, the Jena Diversity-

DGVM (hereafter JeDi-DGVM). Just as the first generation

of PFT-based DGVMs were built upon earlier PFT-based

equilibrium biogeography models, JeDi-DGVM builds upon

an equilibrium biogeography model (Kleidon and Mooney,

2000, hereafter KM2000) based on the concept of func-

tional trade-offs and environmental filtering. JeDi-DGVM

and KM2000 were inspired by the hypothesis “Everything

is everywhere, but the environment selects” (Baas-Becking,

1934; O’Malley, 2007). This nearly century-old idea from

marine microbiology postulates that all species (or in the

case of JeDi-DGVM, combinations of trait parameter val-

ues) are, at least latently, present in all places, and that the

relative abundances of those species are determined by the

local environment based on selection pressures. Rather than

simulating a handful of PFTs, JeDi-DGVM simulates the

performance of a large number of plant growth strategies,

which are defined by a vector of 15 functional trait param-

eters. The trait parameter values determine plant behaviour

in terms of carbon allocation, ecophysiology, and phenol-

ogy and are randomly selected from their complete theoreti-

cal or observed ranges. JeDi-DGVM is constructed such that

each trait parameter is involved in one or more functional

trade-offs (Bloom et al., 1985; Smith and Huston, 1989; Hall

et al., 1992; Westoby and Wright, 2006). These trade-offs

ultimately determine which growth strategies are able to sur-

vive under the climatic conditions in a given grid cell, as well

as their relative biomasses.

KM2000 demonstrated that this bottom-up plant func-

tional trade-off approach is capable of reproducing the broad

geographic distribution of plant species richness. More re-

cently, their trade-off approach has provided mechanistic in-

sight into other biogeographical phenomena including the

global patterns of present-day biomes (Reu et al., 2010),

community evenness and relative abundance distributions

(Kleidon et al., 2009), as well as possible mechanisms for

biome shifts and biodiversity changes under scenarios of

global warming (Reu et al., 2011). JeDi-DGVM extends the

KM2000 modelling approach to a population-based model

capable of representing the large-scale dynamics of terres-

trial vegetation and associated biogeochemical fluxes by ag-

gregating the fluxes from the many individual growth strate-

gies following the “biomass-ratio” hypothesis (Grime, 1998).

In the following section, we describe the novel features

of the JeDi-DGVM including mechanistic trait filtering via

environmental selection and how the resulting fluxes and

land surface properties associated with many plant growth

strategies are aggregated to the ecosystem scale. More de-

tailed descriptions of the model equations and parameters are

provided in Appendices A–C. Then, we evaluate the simu-

lated patterns of terrestrial biogeochemical fluxes and asso-

ciated land surface properties against a variety of field and

satellite-based observations. To highlight the unique capabil-

ities of JeDi-DGVM, we also evaluate the simulated patterns

of functional diversity and the sensitivity of the mechanis-

tic trait-filtering approach to the number of sampled plant

growth strategies. Finally, we discuss the current limitations

of the JeDi-DGVM, as well as some potential improvements

and applications, before we close with a summary and con-

clusion.

2 The Jena Diversity-Dynamic Global Vegetation

Model

JeDi-DGVM consists of a plant growth module that is tightly

coupled to a land surface module. Both components contain

parameterizations of ecophysiological and land surface pro-

cesses that are common to many current global vegetation

and land surface models. The main novelties in the vegetation

component are (i) an explicit representation of trade-offs that

are associated with a diverse set of plant growth strategies,

(ii) the inclusion of the whole trait space for testing their rel-

ative fitness, and (iii) the aggregation of properties and fluxes

from the individual growth strategies to grid-scale structure

and function based based on their relative abundances. The

following overview of the model focuses on describing the

novel combination of these components and how they are

implemented in the model, while the full description with

the detailed parameterizations is provided in Appendices A–

C. A schematic diagram of the JeDi-DGVM modelling ap-

proach is shown in Fig. 1.

2.1 Representation of trade-offs

When we speak of terrestrial vegetation, we speak of a large

number of plants of different species that differ to some

extent in how they grow and respond to the environment.

In fact, in a given environment there are potentially many

different strategies by which individual plant species could

grow and cope with the environment, with some ways be-

ing more beneficial to growth and reproductive success than

other ways. Some plant species, for instance, grow and re-

produce rapidly, such as grasses, while others, such as trees,

grow slowly and it takes them a long time to reproduce.

Some species allocate a greater fraction of their assimilates to

leaves, enhancing their ability to capture incoming sunlight,

while others allocate more to root growth, increasing their ac-

cess to soil moisture. Some species react quickly to changes

in environmental conditions, thereby potentially exploiting

more of the beneficial conditions for growth, while others

www.biogeosciences.net/10/4137/2013/ Biogeosciences, 10, 4137–4177, 2013
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Fig. 1. Schematic diagram of the JeDi-DGVM modelling approach. The model generates a large number of hypothetical plant growth

strategies, each defined by 15 functional trait parameters that characterize plant behaviour with regards to carbon allocation, phenology, and

ecophysiology. The trait parameter values are randomly sampled from their full observed or theoretical ranges. The plant growth module

simulates the development of the plant growth strategies (independently and in parallel) based on fundamental ecophysiological processes

(e.g. photosynthesis, respiration, allocation, phenology, and turnover). The environmental conditions of each strategy are provided by the

land surface module, which simulates canopy interception, infiltration, evaporation, root water uptake, and runoff using daily meteorological

forcings of downwelling shortwave and longwave radiation, air temperature and precipitation. Land surface parameters (e.g. leaf area index,

surface albedo, and rooting depth) derived from the carbon pools and trait parameters of each plant growth strategy affect its simulated land

surface hydrology and, consequently, its net primary productivity (NPP), i.e. its supply of assimilates. Functional trade-offs and the climatic

conditions in each grid cell constrain the range and relative fitness of the surviving growth strategies (i.e. those that are able to maintain a

positive balance of stored assimilates). The fluxes and properties of the surviving plant growth strategies are averaged, weighted by their

relative biomasses, at each time step and grid cell to produce aggregated ecosystem-scale output variables. The aggregated litter fluxes form

the input for an additional module (not shown) for simulating soil carbon dynamics and heterotrophic respiration.

are more conservative, thereby potentially avoiding damage

by a turn to less favourable conditions.

To represent this flexibility of how to grow and repro-

duce in the model, many different plant growth strategies

are simulated simultaneously using the same ecophysiolog-

ical parameterizations under the same atmospheric forcing.

The only part in which the plant growth strategies differ is in

their values for fifteen functional trait parameters (t1, . . . , t15;

Table C2). These parameters control the amount of carbon

allocated from photosynthesis and storage to six plant car-

bon pools, the response times to changes in environmental

conditions and turnover times of the various carbon pools

(i.e. phenology), and other aspects of ecophysiological func-

tioning (e.g. leaf nitrogen concentration, which determines

the balance between photosynthesis and respiration).

Each growth strategy is represented by six carbon pools

representing leaves, fine roots, aboveground and below-

ground wood (stems and coarse roots), storage, and repro-

duction (“seeds”). These compartments are linked to the

physical functioning of the land surface which is simulated

by the land surface module. For instance, leaf biomass is

linked to the amount of absorbed solar radiation, and fine

root biomass to the capability of a growth strategy to extract

soil moisture from the rooting zone. Both of these examples

have functional consequences: more absorbed radiation en-

hances the supply of energy for photosynthesis and evapo-

transpiration, and the amount of extracted soil water deter-

mines the water status of the plant and the supply of mois-

ture for evapotranspiration. This coupled plant–land surface

model is therefore capable of simulating the interaction be-

tween development of a plant growth strategy and land sur-

face functioning in a process-based manner.

Each trait parameter is associated with costs and benefits,

leading to functional trade-offs because no trait value (or set

of trait values) can be optimal for plant fitness in all environ-

ments. For example, a particular growth strategy may allo-

cate a relatively high fraction of carbon to fine roots, enhanc-

ing the rate at which it can extract moisture from the soil

matrix. This may be beneficial in terms of higher productiv-

ity. However, it also comes with both real and opportunity

costs. That growth strategy would incur the real metabolic

costs of growth and maintenance respiration for the addi-

tional fine root biomass. A higher fractional allocation to

fine roots also necessarily results in a lower fractional allo-

cation to the other carbon pools (e.g. a lower allocation to

the aboveground pools and thus a decreased opportunity to

Biogeosciences, 10, 4137–4177, 2013 www.biogeosciences.net/10/4137/2013/
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capture light). In a given environment, there will be some op-

timum allocation strategy that maximizes productivity. How-

ever, in environments with plentiful sunlight and soil mois-

ture, a wide range of allocation strategies will perform close

to the optimum. As the climate becomes harsher, the range

of well-performing strategies will decrease.

2.2 Environmental selection

In order to implement the notion that “Everything is ev-

erywhere, but the environment selects”, we test essentially

the complete range of potential values for each of the 15

trait parameters. For some trait parameters, we sample val-

ues from the full mathematically possible range. For exam-

ple, the trait parameters controlling the fractional allocation

of carbon to the different plant carbon pools are only con-

strained such that together they sum to one. For other trait

parameters (e.g. leaf nitrogen concentration), we sample val-

ues from observed ranges taken from literature. To effec-

tively implement environmental selection, the model gener-

ates a large number of plant growth strategies using a quasi-

random Latin hypercube sampling algorithm (McKay et al.,

1979). A 15-dimensional hypervolume representing the po-

tential trait space is first divided into many equal subvolumes.

A random point defining a plant growth strategy is then se-

lected from each subvolume.

Each grid cell is seeded with a small amount of initial seed

biomass for each plant growth strategy. The model mech-

anistically simulates the development of the plant growth

strategies and their interactions with the coupled land surface

module. Growth strategies which are able to maintain a pos-

itive balance of stored assimilates survive, passing through

what Webb et al. (2010) refers to as a “mechanistic per-

formance filter”. As environmental conditions change, dif-

ferent strategies will respond in different ways; some may

become more productive, others may no longer be able to

cope with new conditions and die out. Strategies which were

previously filtered out will again be given small amounts of

seed carbon and may persist under the new conditions. This

process allows the composition of the plant communities in

each grid cell to adapt through time, without relying on a pri-

ori bioclimatic limits relating the presence or absence of a

growth strategy to environmental variables. This mechanis-

tic trial-and-error approach seems potentially better suited to

simulate the response of the biosphere to climates without

present-day analogues because even under new conditions

fundamental functional trade-offs that all plants face are un-

likely to change.

2.3 Aggregation to ecosystem scale

Some mechanism is needed to aggregate the biogeochemical

fluxes and vegetation properties of the potentially many sur-

viving growth strategies within each grid cell. Most current

DGVMs calculate grid-cell fluxes and properties as weighted

averages across fractional coverages of PFTs. Of those mod-

els, the competition between PFTs for fractional area in a

grid cell is typically computed implicitly based on moving

averages of bioclimatic limits (Arora and Boer, 2006). This

approach is not suitable for JeDi-DGVM because its trade-

off-based framework does not rely on a priori bioclimatic

limits. A few DGVMs (e.g. Cox, 2001; Arora and Boer,

2006) calculate PFT fractional coverages using a form of the

Lotka–Volterra equations, in which the colonization rate of

each of N PFTs is linked through a N -by-N matrix of com-

petition coefficients. For JeDi-DGVM, this Lotka–Volterra

approach quickly becomes computationally burdensome as

the size of the necessary competition matrix increases with

the square of the potentially large number of tested growth

strategies. The necessary competition coefficients are also

difficult to determine theoretically (McGill et al., 2006).

Instead, JeDi-DGVM aggregates vegetation fluxes and

properties to the grid-cell scale following the “biomass-ratio”

hypothesis (Grime, 1998), which postulates that the imme-

diate effects of the functional traits of a species are closely

proportional to the relative contribution of that species to the

total biomass of the community. Recent work (e.g. Garnier

et al., 2004; Vile et al., 2006; Kazakou et al., 2006; Dı́az

et al., 2007; Quetier et al., 2007) supporting the “biomass-

ratio” hypothesis has shown strong statistical links between

community-aggregated functional traits (i.e. the mean trait

values of all species in a community, weighted by their mass-

based relative abundances) and observed ecosystem func-

tions (e.g. aboveground net primary productivity and lit-

ter decomposition). Others have combined the concept of

community-aggregated functional traits with the maximum

entropy (MaxEnt) formalism from statistical mechanics to

successfully make predictions, in the other direction, about

the relative abundances of individual species within commu-

nities (e.g. Shipley et al., 2006b; Sonnier et al., 2010; Laugh-

lin et al., 2011).

Here, rather than weighting the plant functional traits,

JeDi-DGVM calculates ecosystem-scale variables by di-

rectly averaging the fluxes and ecosystem properties across

all surviving growth strategies, weighting the contribution

of each strategy by its current biomass relative to the to-

tal biomass of all strategies within that grid cell. We refer

to these grid-cell-scale variables as community-aggregated

fluxes (or properties). As an example, the net primary pro-

ductivity (NPP) of each growth strategy i at a grid cell j ,

NPPij , is a function of its trait parameter values T i and the

environmental forcing variables Xj at that grid cell. The

community-aggregated NPP1, 〈NPPj 〉, for that grid cell is

the sum of the NPP fluxes of all growth strategies S at that

grid cell, weighting the contribution of each growth strategy

1We adopt chevron notation (e.g. 〈NPPj 〉) to denote community-

aggregated fluxes and properties.

www.biogeosciences.net/10/4137/2013/ Biogeosciences, 10, 4137–4177, 2013
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by its mass-based relative abundance pij :

〈NPPj 〉 =

S
∑

i=1

pi,j NPPij =

S
∑

i=1

pij f
(

T i,Xj

)

. (1)

The relative abundance pij of each surviving growth strategy

i in a given grid cell j is proportional to its living biomass

BMij at that grid cell relative to the sum of the living biomass

of all surviving growth strategies S in that grid cell:

pij =
BMij

∑S
k=1 BMkj

. (2)

The living biomass of a growth strategy being the sum of

its leaf, fine root, aboveground and belowground wood, and

storage carbon pools. Thus, the relative abundances within a

plant community range between zero and one and the sum

of the abundances is one. More details on the aggregation

scheme are provided in Appendix A9.

The resulting community-aggregated fluxes are for the

most part diagnostic and do not influence the development

of the individual growth strategies or their environmental

conditions. However, the community-aggregated litter fluxes

do form the input for a relatively simple soil carbon mod-

ule, which then provides simulated estimates of heterotrophic

respiration (see Appendix A10). This implementation of

the “biomass-ratio” hypothesis assumes that interactions be-

tween plants, both competitive and facilitative, are weak and

do not significantly alter plant survival or relative fitness.

The potential implications of this assumption are discussed

in Sect. 5.3.

3 Methods

The Jena Diversity-DGVM described in this paper presents

a new approach to terrestrial biogeochemical modelling, in

which the functional properties of the vegetation emerge as

a result of mechanistic trait filtering via environmental selec-

tion. This contrasts with the standard approach to global veg-

etation modelling which utilizes a small set of PFTs whose

predetermined properties are specified by parameter values

often determined from databases of observed plant trait val-

ues. In an effort to understand if this more diverse represen-

tation of the terrestrial biosphere can reasonably capture ob-

served biogeochemical patterns, we contrast the performance

of the less constrained JeDi-DGVM approach with the per-

formance of two previously evaluated land surface models

based on the PFT paradigm. To do this, we followed an ex-

isting systematic protocol established by the Carbon-Land

Model Intercomparison Project (C-LAMP; Randerson et al.,

2009). The implementation of this protocol here is described

below in the following subsection. In Sect. 2.2, we describe

the evaluation of the simulated biodiversity patterns. This

biodiversity evaluation serves to highlight the parsimonious

nature of JeDi-DGVM, i.e. the model produces more testable

outputs with fewer a priori inputs than PFT-based models. Fi-

nally, in Sect. 3.3, we describe a series of simulation ensem-

bles performed to test the sensitivity of the biogeochemical

and biodiversity evaluation results to the number of sampled

plant growth strategies.

3.1 Evaluation of biogeochemical patterns

JeDi-DGVM was run with 2000 randomly sampled plant

growth strategies on a global grid at a spatial resolution

of approximately 2.8◦ × 2.8◦, covering all land areas ex-

cept Antarctica. The model was forced at a daily time step

with downward shortwave and longwave radiation, precip-

itation, and near-surface air temperature from an improved

NCEP/NCAR atmospheric reanalysis dataset (Qian et al.,

2006). We looped the first 25 yr of the reanalysis dataset

(1948–1972) with a fixed, preindustrial atmospheric CO2

concentration until the vegetation and soil carbon pools

reached a quasi-steady state (∼ 3500 yr). After this spin-up

simulation, a transient simulation was run for years 1798–

2004 using prescribed global atmospheric CO2 concentra-

tions from the C4MIP reconstruction of Friedlingstein et al.

(2006). This transient simulation was forced by the same cli-

mate forcing as the spin-up run for years 1798–1947 and by

the full reanalysis dataset for years 1948–2004. We ran an ad-

ditional experiment to compare the response of JeDi-DGVM

to a sudden increase in atmospheric CO2 with results from

the Free-Air CO2 Enrichment (FACE) experiments (Norby

et al., 2005). This FACE experiment simulation was similar

to the transient simulation described above but with the atmo-

spheric CO2 concentration set to 550 ppm for years 1997–

2004. We deviated from the C-LAMP experimental proto-

col by allowing the vegetation to evolve dynamically through

the simulations, rather than prescribing the preindustrial land

cover dataset. The aspects of the C-LAMP protocol related

to N deposition were not considered, as a nitrogen cycle has

not yet been implemented in JeDi-DGVM.

We evaluate the modelled biogeochemical patterns from

the transient simulation against multiple observational

datasets using a set of systematic metrics. As computed, each

C-LAMP metric falls somewhere between zero and one and

is then scaled by a numerical weight to produce a score. The

weights are based on subjective estimates of a metric’s un-

certainty, considering both the measurement precision of the

observations and the scaling mismatch between the model

and observations. Further details about each metric and the

justifications behind their particular numerical weighting are

described in Randerson et al. (2009). More information about

the datasets and scoring methods used in the C-LAMP eval-

uation is also provided in Appendix D. The metrics, their

weights, along with the resulting scores for JeDi-DGVM are

summarized in Table 1.

The scores for two terrestrial biosphere models based on

the PFT concept, CLM-CN (Thornton et al., 2007) and CLM-

CASA′ (Fung et al., 2005; Doney et al., 2006), are also

Biogeosciences, 10, 4137–4177, 2013 www.biogeosciences.net/10/4137/2013/



R. Pavlick et al.: The Jena Diversity-Dynamic Global Vegetation Model 4143

Table 1. Summary of the evaluation metrics and scores. Each metric (column 1) is associated with a possible score (column 3) based on a

subjective assessment of its level of uncertainty and model–data scale mismatch. Each metric is broken into metric components (column 2)

with associated subscores (column 4). Scores are presented for JeDi-DGVM (this paper) and, for comparison, CLM-CN and CLM-CASA′

(previouly evaluated in Randerson et al., 2009). The total score for each model (out of a possible score of 100) is presented at the bottom.

MODIS, MODerate Resolution Imaging Spectroradiometer; EMDI, Ecosystem Model–Data Intercomparison.

Metric Metric components Score Subscore JeDi-DGVM CLM-CASA′ CLM-CN

Leaf area index 15 13.4 13.5 12.0

MODIS phase 6 5.0 5.1 4.2

MODIS maximum 5 4.7 4.6 4.3

MODIS mean 4 3.7 3.8 3.5

Net primary productivity 10 8.4 8.0 8.2

EMDI observations 2 1.5 1.5 1.6

EMDI histogram 4 3.4 3.0 3.4

MODIS spatial pattern 2 1.6 1.6 1.4

MODIS zonal means 2 1.9 1.9 1.8

CO2 seasonal cycle 15 11.8 10.4 7.7

comparison with GLOBALVIEW 60–90◦ N 6 4.9 4.1 2.8

phase and amplitude 30–60◦ N 6 4.5 4.2 3.2

0–30◦ N 3 2.5 2.1 1.7

Carbon and energy 30 18.3 17.2 16.6

fluxes from Ameriflux Net ecosystem exchange 6 2.6 2.5 2.1

Gross primary productivity 6 3.5 3.4 3.5

Latent heat 9 6.6 6.4 6.4

Sensible heat 9 5.6 4.9 4.7

Carbon stocks 30 16.3 16.7 13.8

and transient dynamics Aboveground biomass 10 6.7 5.3 5.0

in the Amazon Basin

NPP stimulation 10 6.9 7.9 4.1

from elevated CO2

Interannual variability 5 2.7 3.6 3.0

of terrestrial carbon fluxes

Fire variability 5 0.0 0.0 1.7

Total 100 68.2 65.7 58.4

shown for comparison (both were previously evaluated in

Randerson et al., 2009). Unlike JeDi-DGVM, these two mod-

els were not run with dynamic vegetation, i.e. they were run

with static predefined PFT maps throughout the C-LAMP

simulations. However, as the simulations for all three mod-

els were run with the same climatic forcing dataset and

only evaluated for present-day conditions, comparing their

C-LAMP metric scores is still valid.

3.2 Evaluation of biodiversity patterns

In contrast to standard DGVMs, its broad sampling across a

multidimensional trait space allows JeDi-DGVM to provide

insight into potential plant biodiversity through an examina-

tion of the simulated functional richness and evenness.

Here, we define functional richness (FR) as simply the

number of surviving growth strategies at each grid cell nor-

malized by the maximum number of surviving growth strate-

gies in any of the grid cells. Survival for a growth strategy

is defined as maintaining a positive balance of stored assim-

ilates. Thus, FR varies between zero for grid cells with no

surviving strategies and one at the grid cell (or grid cells)

with the maximum number of growth strategies. Following

Kleidon et al. (2009), we evaluated the simulated FR against

a map of plant species richness derived from observations

(Kreft and Jetz, 2007) using a simple linear regression.

Functional evenness (FE) at each grid cell is calculated

following the Pielou index (Pielou, 1966), which is the Shan-

non entropy of the relative abundances pi of the S surviv-

ing growth strategies within that grid cell, normalized by the

maximum possible Shannon entropy for that community:

FE =

∑S
i=1 pi lnpi

lnS
. (3)
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FE approaches one when all growth strategies are nearly

equal in abundance. FE approaches zero as more and more

plant biomass is found in only one or a few growth strate-

gies. FE is set to zero when there is one or no surviving

growth strategies. The Shannon entropy of a given commu-

nity is basically a measure of uncertainty in predicting the

relative abundances of the growth strategies that compose

the relative abundance vector p = (p1,p2, . . . ,pS). While no

global dataset of plant functional evenness is available, we

are able to contrast the simulated patterns of FE with quali-

tative trends from literature. To do this, relative abundance

distributions are averaged over all grid points falling into

four classes of functional richness: grid points with low FR

(Q1; 0 < FR ≤ 0.25), medium (Q2; 0.25 < FR ≤ 0.50), high

(Q3; 0.50 < FR ≤ 0.75), and very high FR (Q4; 0.75 < FR ≤

1.00).

3.3 Evaluating the sensitivity to the number of sampled

growth strategies

The primary underlying hypothesis behind the JeDi-DGVM

is that given a sufficiently large number of randomly as-

sembled growth strategies, its mechanistic trait filtering ap-

proach will produce reasonable biogeochemical and biodi-

versity patterns. The questions remains what is a sufficiently

large number of growth strategies. To test this, we performed

a set of ensemble simulations to explore the sensitivity of the

biogeochemical and biodiversity results to the number of ran-

domly sampled growth strategies. We ran 8 diversity ensem-

bles with differing numbers of sampled strategies (S = 10, 20,

50, 100, 200, 500, 1000, and 2000). Each ensemble contains

20 members. Each ensemble member was initialized with

different random numbers when sampling the growth strat-

egy trait parameters from their full ranges. The only differ-

ence between the various ensemble simulations is the number

and identity of their growth strategies. The underlying model

equations and all other parameter values are constant across

simulations.

Ideally, we would have run these ensemble simulations

following the C-LAMP simulation protocol. We could have

then compared the mean C-LAMP metric scores across en-

sembles. Due to the number of simulations involved and

length of the spin-up period, this was not computationally

feasible. Instead, we ran the ensemble simulations for only

400 yr, using the temporal mean values from the last 100 yr

for analysis. We focus our analysis on the convergence of the

patterns of NPP and functional richness as examples of bio-

geochemical and biodiversity output variables. We hypothe-

size that diversity ensembles with higher numbers of sampled

growth strategies will show less variation in these variables

between their ensemble members.

To provide insight into the mechanisms driving this con-

vergence, we also analysed the global patterns of several

community-weighted mean (CWM) trait parameters. These

CWM trait parameters are calculated in a similar fashion as

the community-aggregated fluxes described earlier:

〈tkj 〉 =

S
∑

i=1

pij tijk, (4)

where tijk is the value of trait k for growth strategy i at grid

cell j , and pij is the relative abundance of that particular

growth in that grid cell.

4 Results

The results of the biogeochemical evaluation, the biodiver-

sity evaluation, and the sensitivity ensembles are described

in Sects. 4.1, 4.2, and 4.3, respectively.

4.1 Results of the biogeochemical evaluation

Overall, JeDi-DGVM received a score of 68.2 out of 100 pos-

sible points in the evaluation of the simulated biogeochem-

ical patterns following the C-LAMP protocol. This exceeds

the scores of the two PFT-based models (CLM-CASA′, 65.7,

and CLM-CN, 58.4) evaluated in Randerson et al. (2009).

Despite having fewer a priori inputs (e.g. no predefined PFT

map), JeDi-DGVM matched or exceeded the performance of

at least one of the other models on almost every metric. The

scores for the individual metrics are summarized in Table 1.

We describe the evaluation results for the individual metrics

in more detail below in Sect. 4.1.1 through Sect. 4.1.10.

4.1.1 Phenology

Figure 2 shows a comparison between the simulated month

of maximum leaf area index (LAI) and remote sensing obser-

vations (Myneni et al., 2002; Zhao et al., 2005) of the same.

The simulated timing of peak LAI matched observations

quite well in the moisture-limited grassland and savannah re-

gions of South America, Africa, and Australia. Elsewhere,

there were two clear patterns of bias. First, JeDi-DGVM sim-

ulated maximum LAI occurring about one month later than

the observations across much of the Northern Hemisphere.

Second, in the observation dataset, leaf area follows the sea-

sonality of incident solar radiation across large parts of the

Amazon Basin, peaking during the early to mid part of the

dry season when radiation levels are high and deep-rooted

vegetation still has access to sufficient moisture (Myneni

et al., 2007). JeDi-DGVM did not capture this opportunistic

behaviour; simulated peak LAI in the tropical moist forests

of Amazonia, central Africa, and Southeast Asia occurs dur-

ing the rainy season. However, the issue of whether or not

tropical forests green-up during dry periods is still not set-

tled (Samanta et al., 2010; Asner and Alencar, 2010).

Comparisons of simulated and observed maximum and

mean LAI are shown in Figs. S1 and S2. Overall, JeDi-

DGVM matched the observed values reasonably well. The

simulated mean LAI values were generally low relative to
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Fig. 2. Mean month of maximum leaf area index for years 2000–

2004 from (a) MODIS MOD15A2 Collection 4 LAI product (My-

neni et al., 2002; Zhao et al., 2005), (b) as simulated by JeDi-

DGVM, and (c) the lag in months between the occurrence of max-

imum LAI in the MODIS observations and the JeDi-DGVM model

output.

the observations across the boreal forest region. Also, both

the simulated mean and maximum LAI were higher than

observed values in several regions, particularly southeast

Brazil, northeast India, the central United States, much of

Europe, and eastern China. This may simply be due to the

fact that human land use was not accounted for in the simu-

lation set-up and these regions are used extensively for agri-

cultural purposes. These disparities may also indicate a need

to re-evaluate the trade-off costs associated with root water

uptake, i.e. the construction and maintenance costs of coarse

and fine roots.

Overall, the performance of JeDi-DGVM in capturing ob-

served global phenological patterns shows great promise for

less constrained modelling approaches that allow the dynam-

ics of the land surface to emerge from climatic constraints.

4.1.2 Global carbon stocks

JeDi-DGVM simulated global stocks of vegetation, soil, and

litter carbon of 637 Pg C, 1904 Pg C, and 208 Pg C, respec-

tively. These values are averages over the simulation pe-

riod 1980–2004. The vegetation carbon stock simulated by

JeDi-DGVM falls within the range of reported values from

several PFT-based DGVM studies (500–950 Pg C; Cramer

et al., 2001; Sitch et al., 2003; Krinner et al., 2005; Za-

ehle et al., 2010) and estimates from global carbon in-

ventories (385–650 Pg C; Houghton et al., 2009). Likewise,

the modelled estimate for litter carbon is close to the es-

timate based on carbon inventories (300 Pg C) reported in

Houghton et al. (2009). The simulated soil carbon stock also

falls within the range of previous inventory-based estimates

(1200–3000 Pg C; Houghton et al., 2009).

4.1.3 Gross primary productivity

JeDi-DGVM simulated a mean global terrestrial gross pri-

mary productivity (GPP) of 138 Pg C yr−1, which is higher

than the empirical model estimate of 123 ± 8 Pg C yr−1 from

Beer et al. (2010), but within the range of uncertainty

(118 ± 26 Pg C yr−1) of a recent estimate from a process-

based model forced with remote sensing observations (Ryu

et al., 2011). The zonally averaged simulated GPP shows

close agreement (r2 = 0.89) with the median estimate from

Beer et al. (2010), falling within or near the range of un-

certainty across most latitudes (Fig. 3a). JeDi-DGVM per-

formed comparably with five PFT-based terrestrial biosphere

models evaluated in that study in reproducing the latitudi-

nal pattern of GPP. Averaging zonally hides some offsetting

regional biases, however. For instance, simulated productiv-

ity in Amazonia is about 25 % lower than data-driven esti-

mates, but productivity is overestimated throughout most of

the Asian tropics (Fig. S3). Overall though, the broad spatial

pattern of GPP is reasonably well captured by JeDi-DGVM

(r2 = 0.85) when compared to the map of data-driven esti-

mates from Beer et al. (2010).

4.1.4 Net primary productivity

JeDi-DGVM simulated a mean global terrestrial NPP of

79 Pg C yr−1, which is more than one standard deviation

greater than the mean estimate from a recent meta-analysis

of global NPP studies (56±14 Pg C yr−1; Ito, 2011). We hy-

pothesize that this overestimation stems, in part, from the

lack of nitrogen limitation within the model. Global analyses

of nutrient limitation studies (Elser et al., 2007; LeBauer and
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Fig. 3. Comparison of mean annual zonally averaged fluxes as simu-

lated by JeDi-DGVM with (a) data-driven model estimates of gross

primary productivity (Beer et al., 2010), (b) net primary productiv-

ity from the MODIS MOD17A3 Collection 4.5 product (Heinsch

et al., 2006; Zhao et al., 2005, 2006), and (c) data-driven model es-

timates of evapotranspiration (Jung et al., 2010). The blue-shaded

region in (a) represents the median absolute deviation of the five di-

agnostic models used in producing the data-driven model estimate.

Treseder, 2008) suggest that soil nitrogen availability and the

energetic cost of nitrogen fixation and active ion uptake limit

terrestrial productivity by about 20 %. Adding a mechanistic

representation of plant nitrogen acquisition based on plant

energetic trade-offs (e.g. J. Fisher et al., 2010) to future ver-

sions of JeDi-DGVM is critical, as it is thought that nitro-

gen availability will likely constrain the capacity of terres-

trial ecosystems to continue taking up a large part of anthro-

pogenic carbon emissions (Reich et al., 2006).

In a site-by-site comparison (Fig. 4a), JeDi-DGVM per-

formed relatively well in capturing the variability in NPP

across the field-based EMDI observation network (Olson

et al., 2001). Although, the model tends to overestimate NPP,

particularly at intermediately productive sites. JeDi-DGVM

also performed reasonably well and comparably with PFT-

based models when the simulated NPP was binned by pre-

cipitation class (Fig. 4b). JeDi-DGVM underestimated NPP

Fig. 4. Comparison of net primary productivity between JeDi-

DGVM model output (mean over years 1975–2000) and 933 site

observations from the Ecosystem Model–Data Intercomparison

(EMDI) initiative class B dataset (Olson et al., 2001). Shown as

(a) scatter plot where the red dots represent matched pairs of model

grid cells and observation sites and the black line is a 1 : 1 line,

and (b) the same but normalized by precipitation (binned into 400

mm yr−1 increments).

at the driest sites (< 400 mm yr−1) and overestimated NPP at

wetter sites.

A comparison with remote sensing NPP estimates

(MODIS MOD17A3; Myneni et al., 2002; Zhao et al., 2005)

reveals that JeDi-DGVM is able to capture the broad spa-

tial patterns of NPP (Fig. S4). JeDi-DGVM prominently
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overestimates productivity, though, in the grassland regions

of South America and the Sahel as well as the forested re-

gions of the eastern United States, eastern China, and north-

ern Eurasia. This high bias also emerges in the comparison

with the zonally averaged MODIS NPP (Fig. 3b).

4.1.5 Evapotranspiration

JeDi-DGVM simulated a mean global terrestrial evapotran-

spiration (ET) flux of 82 × 103 km3 yr−1, which is higher

than the data-driven model estimate of 65±3×103 km3 yr−1

of Jung et al. (2010) but within the range of process-

based model estimates (60–85×103 km3 yr−1) from the Wa-

ter Model Intercomparison Project (WaterMIP; Haddeland

et al., 2011). Figure S5 shows a spatial comparison of simu-

lated mean annual ET and the data-driven estimates of Jung

et al. (2010). Overall, the model performed reasonably well

(r2 = 0.78) in reproducing the global pattern of ET. The

zonal averages, however, show a strong positive bias in the

equatorial tropics (Fig. 3c; r2 = 0.80). Further analysis re-

vealed that some of this model bias is attributable to an

overestimation of canopy interception, especially in tropical

forests. Adjusting the parameterizations related to canopy in-

terception and canopy storage capacity has improved model

performance for other terrestrial biosphere models (Bonan

and Levis, 2006; Liang and Xie, 2008).

4.1.6 Seasonal cycle of atmospheric CO2

JeDi-DGVM captured the general temporal pattern (r =

0.84 ± 0.04, 0.83 ± 0.08, 0.80 ± 0.15) of a spring drawdown

of atmospheric CO2 in the Northern Hemisphere followed

by an autumnal rise. However, there is a phase offset at

many locations with the simulated spring drawdown occur-

ring about one to two months later than observations. This

offset may be due to the late leaf expansion mentioned above

(Fig. 2) or to limitations stemming from the simple nature

of the heterotrophic respiration scheme. JeDi-DGVM over-

estimated the seasonal amplitude of atmospheric CO2 in the

Northern Hemisphere, particularly in the middle and high

latitude bands. The ratios of simulated to observed ampli-

tudes were 1.23 ± 0.08, 1.33 ± 0.26, and 1.10 ± 0.16 for the

high, middle, and equatorial latitude bands, respectively. This

overestimation in seasonal amplitude is directly attributable

to the overestimation of NPP in those regions. Figure 5 il-

lustrates the reasonably good agreement between the simu-

lated seasonal CO2 cycle and GLOBALVIEW measurements

(Masarie and Tans, 1995) at a high-latitude (Point Barrow,

Alaska, United States), a mid-latitude (Niwot Ridge, Col-

orado, United States), and a low-latitude station (Mauna Loa,

Hawaii, United States). The results for all GLOBALVIEW

stations considered here are summarized in a Taylor diagram

(Taylor, 2001) in Fig. S6.
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Fig. 5. Mean seasonal cycle of atmospheric CO2 at (a) Bar-

row, Alaska (71◦ N), (b) Niwot Ridge, Colorado (40◦ N), and (c)

Mauna Loa, Hawaii (20◦ N), for years 1991–2000. The dashed blue

lines represent the observations from the GLOBALVIEW dataset

(Masarie and Tans, 1995). The JeDi-DGVM estimates were ob-

tained by combining the simulated net ecosystem exchange (NEE)

fluxes with the monthly impulse response functions (Gurney et al.,

2004) of the 13 TRANSCOM atmospheric tracer transport models.

The red line represents the mean of the model estimates. The light

red shaded region represents one standard deviation around the mul-

timodel mean.

4.1.7 Net terrestrial carbon exchange

The net terrestrial carbon sink simulated by JeDi-DGVM is

compatible with decadal budgets of the global carbon cy-

cle given the uncertainties regarding the oceanic and an-

thropogenic fluxes. For the 1980s, JeDi-DGVM simulated

a global terrestrial carbon flux of −2.89 Pg C yr−1 (negative

values indicate a net uptake of carbon by the terrestrial bio-

sphere), which lies within the range of uncertainty from the

IPCC (−3.8 to 0.3 Pg C yr−1; Denman et al., 2007). In agree-

ment with the IPCC carbon budgets, JeDi-DGVM simulated

a larger carbon sink in the 1990s (−3.35 Pg C yr−1), which

also lies within the IPCC range of −4.3 to −1.0 Pg C yr−1

(Denman et al., 2007). The model estimates presented here

suggest a stronger land carbon sink than previous DGVM

studies (1.2–2.75 Pg C; Sitch et al., 2008; Randerson et al.,

2009).

JeDi-DGVM captured the magnitude of interannual vari-

ability of terrestrial net ecosystem exchange (NEE) quite
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well (σ = 0.94 Pg C yr−1; Fig. 6) when compared to the

TRANSCOM-derived estimates (σ = 1.04 Pg C yr−1; Baker

et al., 2006) for the period 1988–2004. The model results

are also moderately correlated (r = 0.42; p < 0.05) with the

year-to-year TRANSCOM anomalies. The simulated anoma-

lies fell within one standard deviation of the multimodel

TRANSCOM mean in 12 of the 17 yr.

JeDi-DGVM captured the strong positive anomaly asso-

ciated with the 1998 El Niño event, but not the similarly

strong anomaly in 1997. The rapid growth rate of atmo-

spheric CO2 in 1997 has been linked with large peat and

forest fires in the Asian tropics (Page et al., 2002; van der

Werf et al., 2008). Incorporating mechanistic representations

of fire (e.g. Thonicke et al., 2008) and peat dynamics (e.g.

Kleinen et al., 2011) in JeDi-DGVM may improve perfor-

mance on this metric.

JeDi-DGVM was also not able to capture the negative

anomaly in 1992–1993. This drawdown has been associated

with climate impacts of elevated stratospheric aerosols fol-

lowing the Mount Pinatubo eruption. Some authors (e.g. Gu

et al., 2003; Mercado et al., 2009) have linked this anomaly

with an increase in NPP due to enhanced diffuse radia-

tion. In this case, a more detailed canopy radiation transfer

model (e.g. Drewry et al., 2010) may be required to to ap-

propriately capture the effects of diffuse light on vegetation

productivity. Angert et al. (2004), however, argues that the

1992–1993 CO2 drawdown can be better explained by un-

usually strong oceanic uptake, reduced heterotrophic respi-

ration due to a cooling and drying of the upper soil layers,

and a reduction in biomass burning, in which case a mecha-

nistic representation of fire and more sophisticated soil car-

bon scheme (e.g. Braakhekke et al., 2011) may be neces-

sary. When the two years strongly affected by the Pinatubo

eruption (1992–1993) are excluded, the model time series is

highly correlated (r = 0.63; p < 0.01) with the interannual

TRANSCOM anomalies.

4.1.8 Comparison with eddy covariance measurements

JeDi-DGVM performed reasonably well overall in a compar-

ison with eddy covariance observations of terrestrial carbon

and energy fluxes (Falge et al., 2002; Heinsch et al., 2006;

Stoeckli et al., 2008). Seasonal variation in NEE was of-

ten lower in the JeDi-DGVM results than in the flux tower

observations. And, although not always present, many sites

showed a phase offset of one to two months delay. This is

consistent with the model biases described above for the sea-

sonal CO2 cycle and phenology. At many of the temper-

ate forest sites, JeDi-DGVM overestimated the length of the

growing season (i.e. GPP was higher than observed in the

spring and autumn) and underestimated GPP during the sum-

mer peak. JeDi-DGVM captured the seasonal pattern of la-

tent heat fluxes more accurately than that of sensible heat. In

fact, the model significantly overestimated the sensible heat

fluxes at many sites, indicating the need for a more sophis-

Fig. 6. Comparison of the interannual variability in the global

land net ecosystem exchange fluxes from the JeDi-DGVM to the

TRANSCOM atmospheric model inversion estimates (Baker et al.,

2006) for years 1988–2004. The red line represents the JeDi-

DGVM flux anomalies from the long-term mean. The blue line

represents the mean of the 13 models from the TRANSCOM ex-

periment after removing the seasonal cycle and the long-term mean

for each model. The light blue shaded region represents 1 standard

deviation around the TRANSCOM multimodel mean.

ticated treatment of the canopy energy balance (e.g. Drewry

et al., 2010).

4.1.9 Carbon stocks and flows in Amazonia

JeDi-DGVM performed reasonably well in matching the spa-

tial pattern of aboveground living biomass density in South

America (Fig. S7, r = 0.83). Within the Amazon Basin,

JeDi-DGVM simulated a total aboveground biomass of

59 Pg C, slightly lower than the total of 69±7 Pg C estimated

from observations by Saatchi et al. (2007). We attribute some

of the overestimation of biomass around the perimeter of the

Amazon Basin and further south in the Paraná Basin to a

lack of human land use and fire as model processes/drivers.

The underestimation of aboveground biomass in the central

Amazon Basin may be related to the lack of competitive in-

teractions between plant growth strategies. More specifically,

the direct competition for light, if incorporated in the model,

might favour plant growth strategies that invest proportion-

ally more carbon towards growing woody stems. The impli-

cations of the current “biomass-ratio” aggregation scheme

and the current lack of resource competition within JeDi-

DGVM are discussed further in Sect. 5.3.

The simulated Amazonian biomass pattern exhibits bet-

ter agreement with a newer dataset (Saatchi et al., 2011),

which has lower biomass values in the central Amazon Basin

and higher biomass values in the western parts of the basin

along the Andes. Here, however, we show only the compar-

ison results with Saatchi et al. (2007) to maintain consis-

tency with the C-LAMP evaluation protocol. Future studies

will evaluate JeDi-DGVM against newer datasets, e.g. as part

of the the International Land Model Benchmarking project

(I-LAMB; Luo et al., 2012).
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The carbon allocation and storage scheme in JeDi-

DGVM provides a basis for contrasting model estimates

of carbon pools against carbon budget observations from

three mature forest ecosystems in Amazonia synthesized

by Malhi et al. (2009). This comparison is summarized

in Fig. 7. Despite differences between GPP simulated

by JeDi-DGVM (2474 g C m−2 yr−1) and observed values

(3330 ± 420 g C m−2 yr−1; Figueira et al., 2008; Malhi et al.,

2009), we find that JeDi-DGVM performs well when con-

trasting Amazon carbon pool and allocation flux estimates.

The simulated ratio of autotrophic respiration to GPP (52 %)

was slightly less than the range of the observations (65 ±

10 %). The fractions of NPP allocated to each plant car-

bon pool correspond quite well with the observed allocation

patterns. The simulated turnover times for the woody pools

(37 yr) closely match the mean of the observations (40±4 yr)

from Malhi et al. (2009). Other studies, however, have sug-

gested much longer wood turnover times (∼ 90 yr) (Vieira

et al., 2004; Figueira et al., 2008). The simulated stock of

coarse woody debris (2373 g C m−2) closely matches the

range of observed values (2421 ± 560 g C m−2). The mean

simulated soil carbon stock (23 460 g C m−2) for this region

is significantly greater than the mean of the observations to

2 m depth (14 260±2728 g C m−2; Malhi et al., 2009). How-

ever, Quesada et al. (2011) presents evidence for substan-

tial carbon storage below that depth, including a soil carbon

stock of 22 000 g C m−2 to 3 m depth at the Tapajós site.

4.1.10 Sensitivity to elevated atmospheric CO2

Globally, simulated NPP increased by 18 % during the first

five years of simulated CO2 enrichment at 550 ppm, exhibit-

ing a large step change in the first year. Not surprisingly,

simulated net terrestrial carbon uptake also quickly rose to

15.03 Pg C yr−1 during that time. These values are similar to

those exhibited by the PFT-based model CLM-CASA′ (17 %

and 12.5 Pg C yr−1). During the same time period (1997–

2001), mean NPP increased by 15 ± 1 % at the model grid

cells corresponding to the four temperate forest FACE exper-

iments reported in Norby et al. (2005). The observed increase

at those sites was higher, 27±2 %. The geographic variation

of NPP enhancement (Fig. S8) is broadly similar to the pat-

tern simulated by the global vegetation model LPJ-GUESS

(Hickler et al., 2008), with the strongest enhancement occur-

ring in tropical forest regions.

4.2 Biodiversity patterns

The geographic pattern of simulated functional richness

(Fig. 8a) is highly and significantly (r2 = 0.71) correlated

with a map of vascular plant species richness derived from

observations (Kreft and Jetz, 2007). Out of the 2000 ran-

domly assembled plant growth strategies, 1411 growth strate-

gies survived in at least one grid cell, and the maximum

value for a single grid cell was 1322 in western Amazo-

nia. These fractions of surviving growth strategies are much

higher than those reported by KM2000. This is likely at-

tributable to the difference in the survival criterion. In the ear-

lier model of KM2000, the criterion for survival was whether

or not a growth strategy was able to produce more “seed”

carbon over its lifetime than its initial amount of seed car-

bon. Here, the criterion for survival was simply whether or

not a growth strategy was able to maintain a positive carbon

balance. Nonetheless, JeDi-DGVM is still able to reproduce

the observed broad global pattern of plant diversity through

mechanistic environmental filtering due to functional trade-

offs, and without invoking historical, competitive, or other

factors.

The mean relative abundance distributions for four rich-

ness classes (Fig. 9a) are similar in shape to left-skewed

log-normal distributions commonly observed throughout na-

ture (McGill et al., 2007). The left-skewness means that rare

strategies (species) are greater in number than abundant ones,

another commonly observed attribute, especially in tropical

rainforests (Hubbell, 1997). With increasing levels of func-

tional richness, the mean as well as the variance of the rela-

tive abundance distribution shifts successively to lower val-

ues. We also see that there is not necessarily one optimal

combination of trait parameters for obtaining high biomass

in an environment, but often many differing growth strate-

gies can reach similarly high levels of fitness (cf. Marks and

Lechowicz, 2006; Marks, 2007). As the climate becomes

less constraining, in terms of increasing availability of light

and precipitation, the range of feasible plant growth strate-

gies increases. The ranked abundances of growth strategies

(Fig. 9b) clearly show that the simulated relative abundances

become increasingly even with higher richness. This pat-

tern is also evident when visually comparing the maps of

simulated function richness (Fig. 8a) and community even-

ness (Fig. 8b). This simulated trend towards greater evenness

in more productive regions qualitatively reproduces the ob-

served trend in rank-abundance plots of forests, which show

a much steeper decline in abundance in boreal forests than in

tropical rainforests (Hubbell, 1979, 1997).

4.3 Sensitivity to the number of sampled strategies

In Fig. 10, we show that the simulated pattern of func-

tional richness is robust when a sufficiently large number of

growth strategies is sampled. Each set of box and whiskers

in Fig. 10a represents the geographic variation in the mean

percent of surviving strategies for a diversity ensemble. The

percentages of surviving strategies are fairly stable across all

of the diversity ensembles. In Fig. 10b, however, we see a

dramatic convergence in the fraction of surviving strategies

at the local grid-cell scale. Here, each set of box and whiskers

represents the geographic variation in the standard devia-

tion of the surviving percentage of growth strategies within

a diversity ensemble. Across the 20 simulations in the high-

est diversity ensemble (S = 2000), the standard deviation of
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Fig. 7. Carbon pools and fluxes in Amazonia from (a) synthesis of observations (Malhi et al., 2009) and (b) as simulated by JeDi-DGVM for

years 1980–2004. GPP, gross primary productivity; Ra, autotrophic respiration; NPP, net primary productivity; CWD, coarse woody debris.

the percent of surviving strategies is less than 1 % for more

than 90 % of the vegetated grid cells. This means that their

maps of functional richness look nearly identical. Figure 10c

shows that not only does the percentage of surviving strate-

gies converge as the number of sampled strategies increases,

but that the surviving strategies also have similar trait values.

All fifteen traits show significant convergence in their CWM

values, as shown by a decrease in the global means of the

CWM ensemble standard deviations with increasing sample

diversity.

The convergence in the number and identity of the surviv-

ing strategies leads to a similar convergence in the simulated

biogeochemical patterns. As an example, Fig. 11a shows a

scatter plot of the global mean terrestrial NPP values from

each ensemble simulation. The diversity ensembles with few

sampled strategies, on the left side of the plot, exhibit tremen-

dous variation in global mean NPP. In the diversity ensem-

ble containing 20 simulations with 10 randomly sampled

strategies (S = 10), global mean NPP varies between 29 to

57 Pg C. As one goes from left to right across the plot, diver-

sity ensembles with increasing numbers of sampled strate-

gies show progressively smaller variation in global mean

NPP. At the right side of the plot, the diversity ensemble

containing simulations with 2000 randomly sampled strate-

gies (S = 2000) has a range of only 1.3 Pg C. Another strik-

ing feature of Fig. 11a is that the ensemble mean NPP also

increases as you move towards higher diversity ensembles.

This is suggestive of positive biodiversity–ecosystem func-

tioning effects (Cardinale et al., 2012), which, while highly

intriguing, are beyond the scope of this paper. We discuss the

possibility of using JeDi-DGVM to follow up on this topic in

Sect. 5.5.

Figure 11b illustrates that the convergence of simulated

NPP in higher diversity ensembles also holds true at the lo-

cal grid-cell scale. Each set of box and whiskers in Fig. 12b

represents the geographic variation in the coefficient of vari-

ation (CV) of mean annual NPP within a diversity ensemble.

The median ensemble CV for the lowest diversity ensem-

ble (S = 10) is 0.72. This implies that the standard deviation

in NPP across the 20 simulations in that ensemble is nearly

equal to or above the mean NPP values for at least half of

all vegetated grid cells. In other words, with only 10 ran-

domly sampled strategies, it is not possible to constrain mod-

elled NPP using the JeDi-DGVM mechanistic trait filtering

approach. Moving left across the plot, as the number of sam-

pled strategies increases, the median ensemble CV decreases.

The highest diversity ensemble (S = 2000) has a median en-

semble CV of 0.03 and the ensemble CV 90th percentile is

0.05, i.e. the ensemble standard deviation of NPP is less than

5 % of the ensemble mean NPP for 90 % of all vegetated grid

cells.
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Fig. 8. Geographic patterns of (a) functional richness (FR) and (b)

functional evenness (FE) as simulated by JeDi-DGVM.

The geographic pattern of the ensemble NPP CV for the

highest diversity ensemble (S = 2000) is shown as a map

in Fig. 12. Overall, the pattern of the ensemble NPP CV is

very similar to the geographic pattern of trait parameter con-

vergence (not shown). The ensemble NPP CV is very low

(< 0.02) throughout most of the vegetated areas in the tropics

and subtropics, meaning that the results are highly robust and

not dependent on any particular random set of growth strate-

gies. The ensemble CV values are higher (∼ 0.02 to 0.06) but

still reasonably low throughout most of the temperate and

boreal forest regions in the midlatitudes. Higher values of

ensemble CV (> 0.06) are present in desert regions, particu-

larly in central Asia, western Australia, the southwest USA,

the edges of the Sahara, and the polar tundra. Future JeDi-

DGVM studies may be able to further constrain the uncer-

tainty in these regions by sampling more growth strategies.

Several test runs with 50 000 sampled strategies showed high

levels of convergence in all but the most extreme environ-

ments. Running JeDi-DGVM with so many strategies, how-

ever, is computationally burdensome. Alternative solutions

might involve using more sophisticated search algorithms or

more carefully choosing the ranges and prior distributions of

the sampled trait parameter values. The white regions cov-

ering large parts of the Sahara, the Tibetan plateau, Green-

land, the Arabian Peninsula, and the high Arctic had too few

Fig. 9. (a) Simulated relative abundance distributions of plant

growth strategies for four richness quartiles. (b) Simulated relative

abundance versus growth strategy rank for four richness quartiles

(Q1–Q4). On the x-axis, growth strategies are ranked according to

their abundances, which in turn are plotted on the y-axis.

surviving growth strategies for analysis. In reality, these re-

gions are sparsely vegetated, if not completely barren, and

contribute little to the global exchange fluxes of water and

carbon.

To provide further insight into the mechanism driving the

convergence of both the biogeochemical and biodiversity

patterns, we show three scatter plots containing CWMs of a

functional trait parameter with respect to some environmen-

tal condition (Fig. 13). In each scatter plot, the red line rep-

resents the mean of the uniform prior distribution used in the

random sampling of that particular trait parameter. When the

values of a particular trait parameter have little influence on

the distribution of growth strategy abundances in a grid cell,

the grey circle representing that grid cell will fall on or near

the red line. Each trait parameterization, however, has been

designed such that, at least in some environments, functional

trade-offs will cause some range of trait values to be more

beneficial than other parts of the trait spectrum. If the mech-

anism driving the convergence is environmental selection via

functional trade-offs, we would expect to see some CWM
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Fig. 10. (a) Box plots showing the geographic variation of the en-

semble mean of the percent of surviving strategies. (b) Box plots

showing decreasing ensemble standard deviation of the percent of

surviving strategies with increasing number of sampled strategies,

S. Each ensemble contains 20 JeDi-DGVM simulations with the

same number of randomly sampled growth strategies (S =10, 20,

50, 100, 200, 500, 1000 or 2000). Central boxes show the interquar-

tile range and median across all (a) non-glaciated and (b) vegetated

land grid cells; vertical lines indicate the range; horizontal whiskers

indicate the 10th and 90th percentiles. (c) Line plots showing de-

creasing ensemble variation of the abundance-weighted trait values

with increasing number of sampled strategies (S). Each circle rep-

resents the area-weighted spatial mean of the ensemble standard de-

viation of the community-weighted mean trait values for one of the

15 functional trait parameters.

.

trait parameters skewed away from the mean of the uniform

prior distribution, i.e. grey circles shifted off of the red line.

In the first scatter plot (Fig. 13a), we show the CWMs of

trait parameter t3 (denoted as 〈t3〉) with respect to mean an-

nual temperature. Nearly all of the CWMs from grid cells

with mean annual temperatures greater than 10 ◦C lie on or

near the red line. This indicates that in warm regions, trait
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Fig. 11. (a) Scatter plot showing higher values of global terrestrial

net primary productivity (NPP) and lower within-ensemble varia-

tion with increasing number of sampled strategies. Each red cross

represents the terrestrial NPP from a JeDi-DGVM simulation with

S randomly sampled strategies. Each diversity ensemble contains

20 simulations with the same number of sampled strategies (S =10,

20, 50, 100, 200, 500, 1000 or 2000). The white circles represent

the ensemble means. (b) Box plots showing decreasing ensemble

coefficient of variation of NPP with increasing number of sampled

strategies. Central boxes show the interquartile range and median

across all vegetated land grid cells; vertical whiskers indicate the

range; horizontal whiskers indicate the 10th and 90th percentiles.

parameter t3 has little to no influence on the survival or abun-

dance of growth strategies, because there are few, if any, peri-

ods of the year in which low temperatures constrain produc-

tivity. As you move right across the plot, however, towards

colder temperatures, the values of 〈t3〉 generally increase.

This is because trait parameter t3 determines the critical tem-

perature for the onset of plant growth in a linear function

between −5 ◦C and 10 ◦C (see Appendix A3 for more de-

tails). In cooler regions, the timing of the onset of the grow-

ing season strongly influences plant survival and abundance,

resulting in 〈t3〉 values skewed significantly away from the

expected prior value of 0.5.

Figure 13b shows a similar scatter plot of 〈t7〉 with respect

to the intra-annual precipitation variability. The intra-annual

precipitation variability (IPV) of each grid cell is calculated

as the coefficient of variation of the climatic monthly means

of the precipitation forcing dataset. Trait parameter t7 de-

termines the fractional allocation of carbon to belowground

growth (see Appendix A5 for more details). In regions with

low values of IPV, i.e. where precipitation falls relatively
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Fig. 12. Geographic pattern of the coefficient of variation of net

primary productivity (NPP) across an ensemble of 20 JeDi-DGVM

simulations, each with 2000 randomly sampled species (S = 2000).

evenly throughout the year, the values of 〈t7〉 generally fall

below the expected prior value of 0.25. In aseasonal regions,

allocation of carbon to aboveground growth, and thus in-

creased access to light, seems to outweigh the benefits of

belowground growth. As you move left across the plot, how-

ever, towards higher IPV values, the values of 〈t7〉 generally

increase. This illustrates the selective pressure of seasonally

dry environments towards growth strategies which prioritize

root growth. Additional root biomass allows these growth

strategies to sustain productivity throughout dry seasons by

taking up water from deeper parts of the soil column.

The last scatter plot shows CWM leaf N concentrations,

〈[NL]〉, with respect to mean annual temperature (Fig. 13c).

In the model, the leaf N concentration, [NL], of each growth

strategy is calculated as a linear function of its trait parameter

t15 (see Appendix A8 for more details). [NL], in turn, directly

affects both the productivity of a growth strategy via photo-

synthetic capacity and its maintenance respiration rate. Pho-

tosynthetic capacity has a unimodal distribution, the shape of

which is influenced by air temperature and the ambient CO2

concentration. Leaf maintenance respiration increases mono-

tonically with higher air temperature. Due to this trade-off,

for every climatic environment there will be some range of

[NL] values that maximize NPP. Because the relative abun-

dance of a growth strategy is strongly linked to NPP, 〈[NL]〉

should be skewed towards these more productive trait val-

ues. Looking again at the scatter plot, we see the 〈[NL]〉

values are indeed skewed away from the expected prior of

0.055 gC gN−1, and they generally decrease with increasing

mean annual temperature. This pattern is consistent with the

broad global pattern of observed leaf C : N ratios (Reich and

Oleksyn, 2004).

Whether or not the simulated relationship of leaf C : N and

mean annual temperatures match the observed global pattern

for the correct reasons is still an open question and beyond

the scope of this paper. Rather, we have simply shown the

three scatter plots in Fig. 13 to provide insight into the mech-

anistic trait-filtering process driving the convergence of the

(a)(a)

C
W

M
 o

f 
T

ra
it
 3

0

0.5

1.0

Mean Annual Temperature (oC)

−20 −10 0 10 20 30

(a)(b)

C
W

M
 o

f 
T

ra
it
 7

0

0.1

0.2

0.3

0.4

0.5

Intraannual precipitation variability

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

(c)

C
W

M
 o

f 
L

e
a

f 
N

 (
g

N
 g

C
-1

)

0.02

0.04

0.06

0.08

Mean Annual Temperature (oC)

−20 −10 0 10 20 30

Fig. 13. (a) Scatter plot of the community-weighted means (CWMs)

of trait parameter t3 with respect to mean annual temperature. Trait

parameter t3 determines the critical temperature for the onset of

plant growth in a linear function between −5 ◦C and 10 ◦C. (b)

Scatter plot of the CWMs of trait parameter t7 with respect to intra-

annual precipitation variability. Trait parameter t7 determines the

fractional allocation of carbon to belowground growth. Intra-annual

precipitation variability is calculated as the coefficient of variation

of the climatic monthly means of the precipitation forcing dataset.

(c) Scatter plot of the CWMs of leaf N concentration with respect to

mean annual temperature. Leaf N concentrations are calculated di-

rectly as a linear function of trait parameter t15. Each grey point rep-

resents the CWM across 2000 randomly sampled strategies within

a grid cell. The red lines represent the means of the uniform prior

distribution used in the random sampling of that particular trait pa-

rameter. (a = 0.50,b = 0.25,c = 0.055).

biogeochemical and biodiversity patterns among the high-

est diversity ensemble simulations. They are also great ex-

amples of the many newly testable mechanistic predictions

made possible by JeDi-DGVM’s unique and parsimonious
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functional trade-off approach. Future studies should evaluate

the simulated geographic distributions of CWM trait param-

eters against observed trait patterns. This possibility is dis-

cussed further in Sect. 5.4.

5 Discussion

JeDi-DGVM introduces several novel elements to dynamic

vegetation modelling, allowing for an explicit representation

of functional diversity that can evolve temporally. As the

current implementation represents an initial prototype from

which refinements and added functionality will be made, we

discuss below several key concepts that underlie the formula-

tion of JeDi-DGVM, and which will likely result in the great-

est impact on model improvement in future efforts.

5.1 Representation of trade-offs

JeDi-DGVM is a prototype meant to explore the potential

utility of a trait-based functional trade-off approach for tran-

sitioning the state of the art of global vegetation modelling

beyond the limitations of a set of fixed PFTs. One of the

greatest potential advantages of this approach is that it does

not constrain the vegetated land surface to be represented by

a small set of functional types, but instead allows for a more

continuous representation of vegetation types that can evolve

as a function of climatic suitability. We demonstrate in this

work that from this trade-off-based approach a realistic rep-

resentation of land surface biophysical form and function can

emerge.

For this approach to be successful, several key require-

ments must be met, particularly (1) identification of the key

trade-offs that determine the ability of a plant to survive in

a given environment, and (2) proper parameterization of the

costs and benefits of the traits associated with those trade-

offs. In this current implementation, JeDi-DGVM utilizes

15 functional parameters that characterize the behaviour of

a growth strategy in terms of its carbon allocation strat-

egy, phenological dynamics, tissue turnover and the balance

between respiration and photosynthesis. The positive per-

formance of JeDi-DGVM in the C-LAMP evaluation lends

credibility to this approach, and will motivate further evalu-

ation of the critical plant traits and trade-offs that determine

the performance of the vegetated land surface. New informa-

tion sources linking costs and benefits with observed traits,

such as the TRY database (Kattge et al., 2011), will provide

important constraints on future refinements of this approach.

5.2 Is everything everywhere?

JeDi-DGVM assumes that the distribution of plant growth

strategies is able to adjust quickly to climatic changes, al-

lowing all of the sampled plant growth strategies to emerge

when a given climate anywhere on the globe becomes suit-

able. This can be stated through the ecological hypothesis

of “Everything is everywhere, but the environment selects”

While this ecological hypothesis was originally formulated

with respect to the biogeography of marine microbes, ter-

restrial plant species face considerable barriers to migra-

tion (e.g. mountain ranges, deserts, oceans). The timescales

of terrestrial plant growth and dispersal also differ greatly

from those of fast-lived marine microbes transported along

ocean currents. Model-based studies (Malcolm et al., 2002;

Loarie et al., 2009) show that the preferred ranges of many

plant species could shift tens to hundreds of kilometres over

the next century due to anthropogenic greenhouse warming,

making the issue of estimating migration rates and the extent

to which everything is truly everywhere key to predicting fu-

ture vegetation composition.

Despite the importance of this issue to the vegetation mod-

elling community (Neilson et al., 2005), only one modelling

group (Lee, 2011) has introduced mechanistic migration pro-

cesses in a DGVM. Lee (2011) attributes this partially to the

difficulties associated with the considerable variation in seed

dispersal rates within the PFTs used by the current generation

of DGVMs. Incorporating aspects of seed dispersal in a func-

tional trade-off framework, through additional traits such as

seed size, could help to constrain plant migration rates in cli-

mate change simulation experiments. Seed dispersal range,

and consequently the rate of plant migration, is closely linked

to seed size. Smaller seeds are more easily transported by

the wind and animals than larger seeds (Ezoe, 1998). On the

other hand, larger seeds allow establishing plants to persist

through longer periods of stress. Parameterizing the trade-off

between seed size and dispersal rates will be challenging, but

possibly less so than modelling migration with a PFT-based

scheme.

5.3 Aggregation scheme and competition

The aggregation of vegetation states and fluxes across the di-

versity represented in each computational grid cell is based

on the “biomass-ratio” hypothesis. This scheme determines

the grid cell flux or state as an average across all surviv-

ing plant growth strategies in the grid cell, weighted by

their respective biomass, imposing the implicit assumption

that interaction between plant growth strategies is weak. For

example, JeDi-DGVM does not currently account for the

shading of plant growth strategies that resemble understory

plants by those that resemble dominant canopy trees. Like-

wise, the hydrologic conditions that a plant growth strat-

egy experiences are not influenced by the other surviving

plant growth strategies in its grid cell. Thus, understory plant

growth strategies do not stand to benefit during periods of

drought from the observed phenomena of hydraulic redis-

tribution, wherein deep-rooted plants redistribute soil wa-

ter from lower soil layers (Lee et al., 2005; Prieto et al.,

2012). These types of competitive and facilitative interac-

tions are known to influence community-assembly processes

at the local scale (Cavender-Bares et al., 2009), leading to
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trait divergence. However, at larger scales, including the spa-

tial resolution of the simulation results presented here, trait

selection and trait convergence due to environmental filtering

have been shown to be the dominant community-assembly

processes (Kraft et al., 2008; Swenson and Weiser, 2010;

Freschet et al., 2011; Kraft et al., 2011).

The “biomass-ratio” aggregation scheme was chosen for

its simplicity and its demonstrated effectiveness for mak-

ing statistical predictions about community fluxes from trait

abundance information at the field scale (Garnier et al.,

2004; Vile et al., 2006; Kazakou et al., 2006; Dı́az et al.,

2007; Quetier et al., 2007). However, the mechanistic trade-

off-based trait filtering framework of JeDi-DGVM does not

preclude the integration of more sophisticated aggregation

schemes. For example, Bohn et al. (2011) recently used JeDi-

DGVM model output together with the simple population

dynamics model DIVE (Dynamics and Interactions of VEg-

etation) to explore how seed competition, resource compe-

tition and environmental disturbances might influence com-

munity structure. In the future, the trade-off-based modelling

approach of JeDi-DGVM could be directly integrated with

the representation of population dynamics from the DIVE

model or from other recent models (e.g. the Ecosystem De-

mography model; Moorcroft et al., 2001; Medvigy et al.,

2009; R. Fisher et al., 2010) which explicitly account for

canopy height structure and age classes.

With these more explicit competition schemes, growth

strategies would directly compete for resources such as light.

Currently with the “biomass-ratio” approach, the develop-

ment of each growth strategy is simulated completely inde-

pendently of the others, much like if they were potted plants

grown in greenhouses. The contribution of each growth strat-

egy to the grid-cell fluxes is weighted by its relative biomass

only. This implicitly assumes that larger strategies will win

out of over smaller strategies. There is no explicit consid-

eration of plant height or disturbance processes that act dif-

ferently upon different strategies. With a more explicit com-

petition scheme, the strategies would constantly interact; as

one strategy grew higher than its competitors, it would have

preferential access to light, thus reducing the amount of light

available for the other strategies. This would likely reduce the

number of surviving strategies and may even alter the iden-

tity of the most abundant strategy (cf. Franklin et al., 2012).

Also, the current version of JeDi-DGVM may have diffi-

culties representing savannah-like ecosystems. If you imag-

ine a grid cell with just two successful growth strategies, a

grass-like strategy and a tree-like strategy, in the current ver-

sion of JeDi-DGVM the much higher biomass density of

the tree-like strategy will dominate in the mass-weighting

scheme. This will cause the grid-cell to have forest-like

fluxes and physical characteristics. In reality, environmental

heterogeneity and disturbance processes, such as fire and her-

bivory, might prevent the tree-like strategy from dominating

the grid cell. JeDi-DGVM could be improved by explicitly

modelling these processes. This could also alter the timescale

of simulated shifts in vegetated composition.

5.4 Further evaluation

Here, we evaluated the feasibility of using the JeDi-DGVM

modelling approach to simulate broad-scale patterns of ter-

restrial biogeochemistry and ecosystem properties. However,

another key and unique test for this approach would be to

directly compare the emergent patterns of simulated func-

tional trait parameters with our growing knowledge about

the geographic distribution of plant traits and their environ-

mental co-variates. This information could come from trait

databases (e.g. TRY; Kattge et al., 2011) or remote sensing

products (e.g. canopy nitrogen observations; Ollinger et al.,

2008). A further test would be to compare simulated shifts

in functional trait parameters and allocation patterns with

observed shifts in trait abundances from ecosystem manip-

ulation experiments, e.g. irrigation (Axelsson and Axelsson,

1986), CO2 enhancement (Ainsworth and Long, 2004), or

throughfall exclusion (Fisher et al., 2007). These fine-scale

comparisons would help further refine various aspects of

the biogeochemical formulations and trade-offs incorporated

into JeDi-DGVM, and give greater confidence in projections

regarding the future fate of the terrestrial biosphere.

In Sect. 4.1.9, we briefly compared the simulated alloca-

tion of NPP to different plant carbon pools with carbon bud-

get observations (Malhi et al., 2009) from three Amazonian

forest ecosystems. This analysis should be expanded globally

by comparing the the simulated patterns of carbon flows and

stocks with observations from other existing datasets based

on carbon inventories (Cannell, 1982; Litton et al., 2007;

Luyssaert et al., 2007; Malhi et al., 2011). More specifi-

cally, one could look at how the simulated allocation pat-

terns vary along environmental gradients (cf. Litton and Gi-

ardina, 2008; Cornwell and Ackerly, 2009). In this study, we

only examined the community-aggregated allocation fluxes.

It would be equally interesting to explore how the simulated

partitioning of NPP varies among surviving plant growth

strategies within grid cells (cf. Ackerly and Cornwell, 2007).

For instance, Wolf et al. (2011) and Malhi et al. (2011)

found evidence that the strongest allocation trade-off was not

between root and shoots, as has been commonly thought, but

rather more specifically between allocation to fine roots and

aboveground wood. This relationship is likely mediated be-

tween sites by hydrological conditions and within sites by

the competitive dynamics between faster and slower grow-

ing trees. In principle, the functional trade-off modelling ap-

proach of JeDi-DGVM should be able to capture both of

these phenomena. However, this might require the introduc-

tion of further trade-off constraints, e.g. related to distur-

bances, wood economics, and plant hydraulics (cf. Hickler

et al., 2006; Chave et al., 2009; Falster et al., 2010).

The evaluation of JeDi-DGVM presented here has almost

entirely ignored the effects of human land use. These land
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use processes are known to be dramatically altering large

portions of the terrestrial biosphere (cf. Foley et al., 2005).

Future model evaluations could account for these processes

by excluding grid cells known to be heavily modified by

humans. Ideally, however, future versions of JeDi-DGVM

would model human land use processes directly.

5.5 Potential applications

The “bottom-up” functional trade-off-based modelling

framework presented here represents a step forward in the de-

velopment of a comprehensive and predictive representation

of the terrestrial biosphere for use in earth system models. By

mechanistically simulating the full range and continuous na-

ture of plant functional diversity, it will be possible to explore

new areas of research.

1. JeDi-DGVM could be used to investigate the relation-

ships between plant biodiversity and ecosystem func-

tioning. Experimental and theoretical ecologists have

debated the magnitude and direction of these relation-

ships for decades (McCann, 2000; Loreau, 2001; Reiss

et al., 2009). Results from biodiversity manipulation ex-

periments at the field scale, however, generally agree

that diversity promotes ecosystem stability (France and

Duffy, 2006; Tilman et al., 2006; Ives and Carpen-

ter, 2007; Proulx et al., 2010). This implies that PFT-

based vegetation models, by under-representing func-

tional diversity, might overestimate the response of ter-

restrial ecosystems to climatic variability and change.

With JeDi-DGVM, it is now possible to make numeri-

cal estimates of these biodiversity–ecosystem function-

ing relationships at the global scale and their signifi-

cance for modelling the fate of the terrestrial biosphere

in the twenty-first century. This could be accomplished

by running a diverse JeDi-DGVM simulation with many

plant growth strategies and another simulation wherein

the functional diversity is artificially reduced (e.g. recre-

ating something like PFTs by simulating only a sin-

gle plant growth strategy at each grid cell character-

ized by the community-aggregated functional trait pa-

rameters from the first simulation). It would be interest-

ing to compare the temporal variability in the simulated

ecosystem fluxes of both approaches, as well as the abil-

ity of the two simulated ecosystems to adapt to changing

environmental forcings.

2. By coupling the JeDi-DGVM trade-off-based approach

with an optimization algorithm, it is possible to seek out

those functional trait combinations that maximize a par-

ticular ecosystem service. JeDi-DGVM could be used,

for example, to investigate the optimal set of functional

trait parameters which maximize the allocation to seed

biomass under the present-day climate of each model

grid cell, allowing for estimates of the upper bound of

realizable yields as a function of climatic constraint.

3. Climate model projections point towards the possibility

of novel climates without modern or palaeo-analogues

(Jackson and Williams, 2004; Williams and Jackson,

2007). This causes difficulties for PFT-based DGVM

modelling approaches because they often rely so heav-

ily on bioclimatic relationships based on present-day

empirical observations. Because JeDi-DGVM samples

functional trait parameters from their full theoretical

ranges, it may produce surviving growth strategies

or compositions of growth strategies without present-

day analogues (Reu et al., 2013). Coupling JeDi-

DGVM directly within an earth system model would

allow for the exciting possibility of exploring how

these no-analogue vegetation compositions influence

atmosphere–biosphere interactions.

6 Conclusions

In this paper, we introduced the JeDi-DGVM, which rep-

resents a new class of dynamic global vegetation models

that simulates many randomly assembled hypothetical plant

growth strategies, rather than the traditional approach of us-

ing a small number of PFTs defined a priori. In a systematic

evaluation, we have shown that its bottom-up plant functional

trade-off approach, together with a simple mass-based aggre-

gation mechanism, is able to capture the broad patterns of

terrestrial biogeochemical fluxes and associated land surface

properties reasonably well. The evaluation results compare

favourably with two other state-of-the-art TBMs based on

the older PFT paradigm. Additionally, we have shown that

unlike PFT-based models, JeDi-DGVM is able to mechanis-

tically reproduce the global-scale biogeographical patterns

of plant species richness and community evenness. Finally,

these biogeochemical and biodiversity patterns were shown

to be robust when the number of randomly sampled growth

strategies simulated was sufficiently large. This robustness is

the result of a mechanistic trait filtering process made possi-

ble by the careful formulations of functional trade-offs within

the model structure, and not simply due to averaging of many

unbiased random variables.

Because it is more closely based on first principles, JeDi-

DGVM requires less input data and is able to produce a

wider range of testable outputs than earlier DGVMs based

on the PFT concept. This new approach sets the foundation

for future applications in which the simulated vegetation re-

sponse to global change has a greater ability to adapt through

changes in ecosystem composition, having potentially wide-

ranging implications for biosphere–atmosphere interactions

under global change.
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Appendix A

Jena Diversity-Dynamic Global Vegetation

Model (JeDi-DGVM) description

JeDi-DGVM builds upon the plant diversity model of

KM2000, which itself took many model formulations from

earlier land surface (Roeckner et al., 1996) and terres-

trial biosphere models (e.g. Potter et al., 1993; Knorr and

Heimann, 1995; Kaduk and Heimann, 1996). Here, the eco-

physiological parameterizations have been kept relatively

simple to keep the computational requirements manageable.

This makes it possible to simulate the development of many

plant growth strategies in parallel across a global grid over

long simulation periods within a reasonable time frame on

a single Linux workstation. That said, several of the for-

mulations and parameter values, particularly with respect to

the calculation of productivity and respiration, have been

changed to improve the realism of the simulated fluxes. Also,

whereas the KM2000 model simulated the life cycle of indi-

vidual generic plants from germination to death, the JeDi-

DGVM introduces tissue turnover and thus simulates some-

thing closer to the mean of a population for each plant growth

strategy. Finally, the most important new feature is the intro-

duction of a scaling mechanism to aggregate the exchange

fluxes and land surface properties of many plant growth

strategies to the community level based on the “biomass-

ratio” hypothesis.

A1 Plant module overview

The plant module simulates the development of plant growth

strategies based on the fundamental ecophysiological pro-

cesses of photosynthesis, respiration, allocation, phenology,

and reproduction. Plant development is coupled in a process-

based manner to a land surface hydrology module which sim-

ulates canopy interception, throughfall, infiltration, evapora-

tion, root water uptake, and surface runoff, using daily me-

teorological forcing of downwelling shortwave and net long-

wave radiation, precipitation, and near-surface air tempera-

ture. The variables and parameters involved in the develop-

ment of the plant growth strategies are summarized in Ta-

ble B4. The details of the land surface module are described

in Appendix B.

Each plant growth strategy is represented by six carbon tis-

sue pools defined per unit area: stored assimilates CA, leaves

CL, fine roots CR, aboveground wood (branches and stems)

CWL, belowground wood (coarse roots) CWR, and a repro-

ductive (or “seed”) pool CS. When growing conditions are

favourable, carbon germinates from the “seed” pool to the

storage pool. The plant then begins to grow by allocating

carbon from the storage pool to the various tissue pools. The

tissue pools are also subject to turnover and senescence. The

litter fluxes from these two processes serve as input to the soil

carbon module. The sizes of the tissue pools influence the pa-

rameter values of the land surface module, affecting both the

absorption of solar radiation and the land surface hydrology.

For example, the absorption of solar radiation, which sup-

plies the energy for photosynthesis and evapotranspiration, is

proportional to leaf area index (LAI), which is derived from

leaf biomass. Fine root biomass affects the maximum rate of

water uptake from the rooting zone, influencing the plant’s

water status and the supply of moisture for evapotranspira-

tion. Likewise, the coarse root biomass of a plant determines

the hydrologic depth of its rooting zone. The land surface

conditions in turn affect the net primary productivity (NPP),

which forms the input to the storage pool. A plant growth

strategy is considered to be alive as long as the carbon in

the storage pool is greater than zero (CA > 0). The details of

these processes are described in the following subsections.

The particular functioning of a plant growth strategy is de-

fined by a set of 15 functional trait parameters (t1, . . ., t15).

These functional trait parameters control the allocation of

carbon from the storage pool to the other tissue pools, the

tissue turnover rates, the phenological response to environ-

mental conditions, and the ecophysiological balance between

photosynthesis and respiration. All of the functional trait pa-

rameters range between zero and one. However, these ranges

are often extended by using the functional trait parameters

as either exponents or coefficients. Each functional trait pa-

rameter is associated with one or more functional trade-offs.

For instance, a higher allocation to fine roots enhances the

rate at which a plant can extract moisture from the soil ma-

trix, but this comes at the expense of allocation to the above-

ground pools and thus a decreased ability to capture light for

photosynthesis, as well as the metabolic cost of maintaining

that biomass. The implementation of these trade-offs are ex-

plained in further detail below. The descriptions of the func-

tional trait parameters are summarized in Table C2.

A2 Vegetation carbon pool dynamics

The following differential equations describe the dynamics

of the vegetation carbon pools.

dCA

dt
= NPP + GERM −

∑

CAAtissue(1 − cRES,tissue)

dCS

dt
= CAAS(1 − cRES,S) − GERM −

CS

τS

dCL

dt
= CAAL(1 − cRES,L) −

CL

τL
(A1)

dCR

dt
= CAAR(1 − cRES,R) −

CR

τR

dCWL

dt
= CAAWL(1 − cRES,WL) −

CWL

τWL

dCWR

dt
= CAAWR(1 − cRES,WR) −

CWR

τWR

The details of the various terms are described below in the

following subsections.
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A3 Growing conditions

The timing of plant growth and germination is controlled by

environmental conditions, specifically, soil wetness fW and

near-surface air temperature T . Soil wetness fW is defined

as the ratio of moisture W stored in the rooting zone relative

to the maximum storage capacity of the rooting zone WMAX.

Functional trait parameters t1 and t2 and time constants τW

and τT determine how quickly a plant responds to changes in

the environmental conditions.

fGROW,T (t) =
T + τTfGROW,T (t − 1t)

1 + τT

with τT = 104t1−2

fGROW,W (t) =
fW + τWfGROW,W (t − 1t)

1 + τW

with fW =
W

WMAX
and τW = 104t2−2 (A2)

fGROW,G(t) =
fW,bare + τWfGROW,G(t − 1t)

1 + τW

with fW,bare =
Wbare

WMAX,0

Values of functional trait parameters t1 and t2 near zero rep-

resent a short memory and thus a quick response to change,

while larger values represent a longer memory and a slower

response. For example, a plant with a low value of τT would

react almost immediately to a warm day in early spring,

whereas a plant with a larger value would react only after

several days or weeks of spring warmth. Likewise, a high

value of τW would lead a plant to continue to allocate carbon

despite persisting drought conditions.

For germination, only the soil wetness of the top 50 mm

Wtop (see Eq. B16) relative to the storage capacity of bare

non-vegetated soil is considered. Germination and growth

only occur when both the temperature function fGROW,T is

above a critical temperature Tcrit and the relevant soil wetness

condition, fGROW,W or fGROW,G, is greater than a critical

value of 0.5. The critical temperature Tcrit is a linear function

of functional trait parameter t3 between −5 ◦C and 10 ◦C.

fGROW=

{

0 fGROW,W<0.5 and fGROW,T <Tcrit

1 fGROW,W≥0.5 or fGROW,T ≥Tcrit

(A3)

fGERM =

{

0 fGROW,G<0.5 and fGROW,T <Tcrit

1 fGROW,G≥0.5 or fGROW,T ≥Tcrit

A4 Germination

Germination of carbon from the “seed” pool CS to the storage

pool CA occurs when germination conditions are favourable

(fGERM = 1) and the “seed” pool is not empty (CS > 0):

GERM = fGERMγGERM
CS

max(p,kGERM)
(A4)

with γGERM = 104t4−4.

Functional trait parameter t4 modulates the germination frac-

tion γGERM, the fraction of “seed” carbon CS which can ger-

minate to the storage pool CA in a single daily time step

(Cohen, 1968; Alvarado and Bradford, 2002). Values of t4
near zero result in a conservative strategy with only a small

fraction of “seed” carbon germinating to the storage pool

per day when germination conditions are met (fGERM = 1).

Higher values yield increasingly more opportunistic strate-

gies. When germination conditions are favourable (fGERM =

1) and the “seed” pool is CS = 0, a small amount of initial

carbon is added to the “seed” pool to allow a growth strategy

to begin growth. When this occurs, an equivalent amount of

carbon is added to the community-aggregated gross primary

productivity (see Appendix A9) to maintain the conservation

of mass in the grid-cell variables.

A5 Carbon allocation

Plants allocate carbon from the storage pool to growth when

the growing conditions are favourable (fGROW = 1). Alloca-

tion to the “seed” pool occurs when net primary productivity

is greater then zero (fSEED = 1 when NPP > 0). The amount

of carbon allocated to each tissue pool is proportional to the

size of the storage pool CA and to the set of functional trait

parameters, t5, . . . , t10, which together form the plant’s car-

bon allocation strategy:

AS = fSEED
t5

t5 + t6 + t7 + t8

AL = fGROW(1 − t9)
t6

t5 + t6 + t7 + t8

AR = fGROW(1 − t10)
t7

t5 + t6 + t7 + t8
(A5)

AWL = fGROWfVEGt9
t6

t5 + t6 + t7 + t8

AWR = fGROWfVEGt10
t7

t5 + t6 + t7 + t8
.

The allocation fractions are mathematically constrained such

that they sum to less than one (
∑

Atissue < 1). The unallo-

cated fraction (1−
∑

Atissue) remains in the storage pool CA

for future growth or maintenance respiration.
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A6 Turnover and senescence

The turnover times τWL and τWR of the woody tissue pools

are defined as functions of functional trait parameter t11:

τWL = τWR = 365(79 t11 + 1). (A6)

Eq. (A6) yields a range of turnover times between 1 and

80 yr. The base turnover time, τL,0, for the leaf and fine root

pools is defined as a function of functional trait parameter

t12:

τL,0 =
365

12
102.0t12 . (A7)

Equation (A7) yields a range of turnover times log-

distributed between 1 and 100 months, which covers the

range of observations in the TRY database (Kattge et al.,

2011). The turnover times for the “seed” and storage pools

are assumed constant across all plant growth strategies (see

Table B4).

Senescence is triggered when both NPP and the time-

averaged net primary productivity fNPP are negative, where

fNPP(t) =
NPP + τNPPfNPP(t − 1t)

1 + τNPP
(A8)

with τNPP = 105t13−2.

fSEN =

{

0 fNPP ≥ 0 or NPP ≥ 0

1 fNPP < 0 and NPP < 0
(A9)

Functional trait parameter t13 in time constant τNPP describes

the memory of past NPP conditions. Values of t13 near zero

represent a short persistence during periods of negative NPP,

while values closer to one represent longer persistence. Dur-

ing periods of senescence, the turnover rates of the leaf and

fine root pools increase proportional to a constant factor,

τSEN. The relative magnitude of this increase is determined

by functional trait parameter t14:

τL =

(

1

τL,0
+

1

τSEN
fSENt14

)−1

(A10)

τR =

(

1

τL,0
+

1

τSEN
fSEN(1 − t14)

)−1

.

A7 Land surface parameters

The land surface parameters (maximum plant available wa-

ter storage in the rooting zone WMAX, leaf area index LAI,

potential supply rate for transpiration S, fractional vegetative

cover fVEG, fractional forest cover fFOR, snow-free surface

albedo ans, and the storage capacity of the canopy WLMAX)

relate the development of a plant growth strategy to the cou-

pled land surface module, which simulates its environmental

conditions. The module itself is based on the land surface

component of the ECHAM4 atmospheric general circulation

model (Roeckner et al., 1996) along with modifications intro-

duced by KM2000, and is described in detail in Appendix B.

These parameters are computed for each plant growth strat-

egy from its carbon tissue pools and functional trait parame-

ters.

LAI = CLSLA

fVEG = 1 − e−kLAI

fFOR = 1 − e−cFORCWL

WLMAX = cWLMAXLAI (A11)

ans = fVEGaVEG + (1 − fVEG)aSOIL

Wmax = max
[

Wmax,0,cPAW

√

cSRLCWR

]

S = cSRUCRfW

The land surface parameters and their conversion constants

are summarized in Table C3.

The leaf area index, LAI, of a plant growth strategy is cal-

culated as the product of its leaf biomass CL and its specific

leaf area SLA. The SLA of a plant growth strategy is esti-

mated as a function of leaf lifespan using an empirical rela-

tionship derived by Reich et al. (1997), where τL0
is the base

leaf turnover rate from Eq. (A7).

SLA = 0.030

(

365

τL0

)−0.46

(A12)

This establishes a trade-off such that a plant growth strategy

falls along a spectrum between an evergreen strategy with

thicker, long-lived leaves and a deciduous strategy with thin-

ner, short-lived leaves (Reich et al., 1998; Westoby et al.,

2002; Shipley et al., 2006a).

The leaf area index LAI is then used to determine both the

fractional vegetation cover fVEG according to the Lambert–

Beer law (Monsi and Saeki, 1953) and the water storage ca-

pacity of the canopy WLMAX. The parameterization of the

fractional forest cover fFOR is taken as an analogy of the

formulation used for vegetative cover fVEG. The snow-free

surface albedo ans is calculated as the mean of the canopy

albedo aVEG and the bare soil albedo aSOIL (constant for all

plant growth strategies), weighted by the fractional vegeta-

tion cover fVEG. The canopy albedo aVEG of a plant growth

strategy is a linear function of the canopy nitrogen concen-

tration [NL] (Hollinger et al., 2010).

aVEG = 3.216[NL] + 0.02 (A13)

The formulations regarding root properties (WMAX and

S) are obtained from first principles. The motivation for us-

ing a square-root relationship for the maximum plant avail-

able water storage in the rooting zone comes from the Shi-

nozaki et al. (1964) pipe model. From the pipe model per-

spective, the root system is viewed as an assemblage of pipes

which connect the root ends (the organs responsible for wa-

ter absorption from the soil) with the leaves. If we assume a
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uniform density of root ends within the rooting zone, we ob-

tain a square root relationship between the depth of the root-

ing zone and the total length of the coarse roots (given by

the product of the coarse root biomass CWR and an assumed

constant specific root length parameter cSRL). The maximum

plant available soil water storage WMAX is then given by the

product of this rooting zone depth and the unit plant available

water capacity cPAW (i.e. the difference between field capac-

ity and permanent wilting point per unit depth) taken from a

global dataset (Dunne and Willmott, 1996). Finally, we as-

sume the potential supply rate for transpiration S is related to

the fine root biomass CR and soil wetness fW via a constant

specific root water uptake parameter cSRU.

A8 Net primary productivity

The net primary productivity NPP of each plant growth strat-

egy is computed as the difference between its gross primary

productivity GPP and its autotrophic respiration flux RESa.

NPP = GPP − RESa (A14)

The parameters and variables involved in the calculation of

these fluxes are summarized in Table C4.

GPP is estimated using a big-leaf non-rectangular hy-

perbola approach (Johnson and Thornley, 1984; Franklin,

2007):

GPP =
h

2θ
[(φIa + Pmax) (A15)

−

√

(φIa + Pmax)2 − 4θφIaPmax

]

αH2O.

While more sophisticated and likely more accurate photo-

synthesis schemes are abundant, we chose to use this rela-

tively simple approach for its computational expediency and

to keep the number of necessary parameters low. Absorbed

photosynthetically active radiation Ia is derived, following

the Lambert–Beer law of light extinction, from the photosyn-

thetically active radiation (assumed to be half of downward

shortwave radiation) above the canopy I0 and the fractional

coverage of vegetation (Monsi and Saeki, 1953):

Ia = I0fVEG. (A16)

The light-saturated canopy photosynthetic capacity Pmax of

a plant growth strategy is estimated as a linear function of

the canopy nitrogen concentration [NL] following an empir-

ical relationship proposed by Ollinger et al. (2008) assum-

ing a foliar carbon content of 0.48 gC gDM−1. Similar rela-

tionships between N content and photosynthetic capacity are

well-documented at the leaf scale (Field and Mooney, 1986;

Reich et al., 1997; Wright et al., 2004).

Pmax = (59.2 · 10−4[NL] + 1.1 · 10−4) αT (A17)

[NL] = 0.01 + 0.08 · t15

The canopy nitrogen concentration [NL] itself is a linear

function of functional trait parameter t15, leading to a range

of values between 0.01 and 0.09 gN gC−1. The supply of

nitrogen is not considered as a limiting factor. The curva-

ture parameter θ is assumed constant across all plant growth

strategies. Day length h is computed from the cosine of the

solar zenith angle, which varies with season and latitude

(Hartmann, 1994). The quantum efficiency φ and the factor

αT modifying the light-saturated photosynthetic capacity are

computed as functions of both air temperature and ambient

CO2 concentrations following Cannell and Thornley (1998).

The moisture stress factor αH2O is a function of the ratio

between the potential supply rate for transpiration (S) and

the atmospheric demand for transpiration (D; further details

in Appendix B).

αH2O = 1 − exp(−S/D) (A18)

The autotrophic respiration RESa of a plant growth strat-

egy is calculated as the sum of its growth respiration, RESg,

and maintenance respiration, RESm, fluxes (McCree, 1970;

Thornley, 1970). Growth respiration consumes a fixed frac-

tion, cRES,tissue, of the carbon allocated from the storage pool

CA to the tissue pool. These fractions are assumed to be con-

stant across all plant growth strategies.

RESg = CA

∑

(AtissuecRES,tissue) (A19)

Following Ryan (1991), maintenance respiration RESm is

calculated based on the nitrogen content of each tissue, a spe-

cific respiration rate, cRES,N, at 20 ◦C and a Q10 temperature

function.

RESm = cRES,NQ10,a
( T −20

10 )[NL] (A20)

[(CL + CR) + csapwood(CWL + CWR)]

The fine root nitrogen concentration [NR] is assumed to be

equal to the leaf nitrogen concentration [NL] for all plant

growth strategies. The fractions of sapwood carbon to woody

carbon (0.05) and sapwood nitrogen to leaf nitrogen (0.10)

are similarly assumed constant across all plant growth strate-

gies and are accounted for by parameter csapwood. The “seed”

and storage carbon pools are not subject to maintenance res-

piration within the model; however, they do decay at a con-

stant rate as described in Sect. A6.

A9 Scaling from plant growth strategies to

community-aggregated fluxes

JeDi-DGVM calculates community-aggregated fluxes and

properties assuming the “biomass-ratio” hypothesis (Grime,

1998), i.e. as the mean over the individual plant growth

strategies weighted by their mass-based relative abundances.

The instantaneous relative abundance p∗
(i,j) of a plant growth

strategy i in a grid cell j is assumed to be proportional to its

living biomass at that grid cell relative to the sum of the liv-

ing biomass of all surviving growth strategies S in that grid

Biogeosciences, 10, 4137–4177, 2013 www.biogeosciences.net/10/4137/2013/



R. Pavlick et al.: The Jena Diversity-Dynamic Global Vegetation Model 4161

cell. The living biomass, Ctot(i,j), of a growth strategy is the

sum of its leaf, fine root, woody and storage carbon pools

(Ctot(i,j) = CA(i,j) +CL(i,j) +CR(i,j) +CWL(i,j) +CWR(i,j)).

p∗
(i,j) =

Ctot(i,j)
∑S

k=1 Ctot(k,j)

dp(i,j)

dt
=

p∗
(i,j) − p(i,j)

τp

(A21)

The relative abundance p(i,j) used for the calculation of

community-aggregated fluxes and properties relaxes towards

the instantaneous relative abundance p∗
(i,j) at timescale τp

(= 365 days). This relaxation mechanism was introduced to

alleviate numerical issues. This mass-weighted aggregation

scheme conserves water and carbon quantities at the grid-

cell scale. Equations A24 and A25 reconcile the fact that the

prognostic variables are defined per unit area but weighted

by mass. Energy is not fully conserved due to the empiri-

cal nature of the snowmelt parameterization and the lack of

ground heat storage. The mass-weighted scheme itself, how-

ever, does not preclude the conservation of energy.

In the previous subsections describing the development of

individual plant growth strategies, we omitted subscript no-

tation to improve readability. Throughout the remainder of

this appendix, we adopt chevron (angled bracket) notation to

denote community-aggregated fluxes and properties. As an

example, the community-aggregated net primary productiv-

ity 〈NPPj 〉 for a given grid cell j is equal to the sum of the

NPP fluxes of all the plant growth strategies S in that grid cell

weighted by their respective mass-based relative abundances.

〈NPPj 〉 =

S
∑

i=1

p(i,j)NPP(i,j) (A22)

A10 Soil carbon

The soil carbon module in JeDi-DGVM is loosely based

on the soil carbon component of the JSBACH land surface

model (Raddatz et al., 2007; Thum et al., 2011). The param-

eters and variables of the soil carbon module are summarized

in Table C5. The following differential equations describe the

dynamics of the three detritus carbon pools, fine litter carbon

CLIT, woody litter carbon CCWD, and soil carbon CSOIL.

dCLIT

dt
= 〈LITL〉 + 〈LITR〉 + 〈LITA〉 + 〈LITS〉 − DECLIT

dCCWD

dt
= 〈LITWL〉 + 〈LITWR〉 − DECCWD (A23)

dCSOIL

dt
= (1 − clit⊲atm)DECLIT + (1 − ccwd⊲atm)DECCWD

− DECSOIL

The soil carbon dynamics are not computed separately for

each plant growth strategy. Instead, carbon enters the two

common litter pools through the community-aggregated litter

fluxes 〈LITtissue〉 from the turnover of the various vegetation

tissue pools.

〈LITtissue〉 =

n
∑

k=1

(

p(k)

Ctissue(k)

τtissue(k)

)

+

n
∑

k=1

(Ctissue(k) max(0,−1p(k))) (A24)

〈LITS〉 =

n
∑

k=1

CS(k)

τA(k)

The second term in the calculation of 〈LITtissue〉 is neces-

sary to maintain the conservation of carbon when the relative

abundance of a plant growth strategy decreases during the

current time step. Likewise, the vegetation carbon pools (ex-

cept the “seed” pool CS) are scaled down when the relative

abundance of a growth strategy increases during the current

time step.

Ctissue(t) = Ctissue(t−1t)

p(t−1t)

p(t−1t) + max(0,1p)
(A25)

The decomposition fluxes DECx out of the detritus carbon

pools are computed from the amount of carbon in that pool, a

Q10 temperature response function, and a fixed turnover time

for that pool at reference temperature 20 ◦C. The value of 1.4

for the sensitivity of heterotrophic respiration to air tempera-

ture Q10,h is taken from a recent global study of FLUXNET

sites (Mahecha et al., 2010). Fixed fractions of the decom-

position fluxes from the litter pools enter the common soil

carbon pool.

DECx = Q10,h
( T −20

10 ) Cx

τx

(A26)

The heterotrophic respiration flux RESh to the atmosphere is

estimated as the sum of the fractions of the decomposition

fluxes from the litter pools not entering the soil carbon pool

and the decomposition flux out of the soil carbon pool.

RESh = clit⊲atmDECLIT + ccwd⊲atmDECCWD + DECSOIL (A27)

Finally, the community-aggregated net ecosystem exchange

NEE is calculated as the difference between the heterotrophic

respiration and the community-aggregated net primary pro-

ductivity fluxes.

NEE = RESh − 〈NPP〉 (A28)
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Appendix B

Land surface module

The land surface hydrology module of JeDi-DGVM is

largely based on the land surface component of the ECHAM4

atmospheric general circulation model (Roeckner et al.,

1996) along with modifications introduced by KM2000. It

consists of four budget equations for water stored in the veg-

etation canopy WL, in the snow cover WS, in the rooting zone

W , and below the rooting zone WSUB.

dWL

dt
= Prain − Ecan − Fthfall (B1)

dWS

dt
= Psnow − Fmelt − Esnow

dW

dt
= Fthfall + Fmelt − Frunoff − Ebare − Etrans

− Fdrain − F1Wmax

dWSUB

dt
= Fdrain − Fsubdrain + F1Wmax

The variables and parameters of the land surface module are

summarized in Tables C6 and C7. The module runs on a

daily time step using forcing variables: precipitation flux (P ),

near-surface air temperature (T ), and downward shortwave

and longwave radiation fluxes (Rsw↓ and Rlw↓). The vari-

ous flux terms of the budget equations are described below.

A schematic diagram of the land surface module is shown in

Fig. B1.

B1 Water storage and runoff generation

The partitioning of precipitation between snow Psnow and

rain Prain depends on near-surface air temperature T follow-

ing Wigmosta et al. (1994).

Psnow =











P T ≤ −1.1

P 3.3−T
4.4

−1.1 < T < 3.3

0 T ≥ 3.3

(B2)

Prain = P − Psnow

Rainfall is first intercepted in the canopy reservoir WL up to

a maximum storage capacity WLmax, which depends on LAI

(see Eq. A11). If a precipitation event causes the water in the

canopy reservoir to exceed its storage capacity, the excess

water flows from the canopy reservoir to the rooting zone as

throughfall Fthfall.

Fthfall = max(0,WL + Prain − WLmax) (B3)

Snowmelt Fmelt is computed according to a day-degree for-

mula using a melt rate of 3.22 mm d−1 ◦C−1 (Hagemann and

Dümenil, 1997).

Fmelt =

{

0 T < 0

min(3.22T ,Psnow + WS) T ≥ 0
(B4)

Surface runoff Frunoff occurs when the throughfall or

snowmelt fluxes cause the rooting zone reservoir to exceed

its maximum capacity WMAX (see Eq. A11).

Frunoff=

{

Fthfall T ≤0

max(0,W+Fthfall+Fmelt−Wmax) T >0
(B5)

When the air temperature drops below 0 ◦C, the soil is as-

sumed to be frozen, inhibiting infiltration, and the entire

throughfall flux becomes surface runoff.
Drainage from the rooting zone Fdrain supplies water to

the subrooting zone and depends on the soil wetness (fW =

W / WMAX).

Fdrain=















0 fW≤0.05

dminfW 0.05<fW<0.9

dminfW+(dmax − dmin)
(

fW−0.9
1−0.9

)d
fW≥0.9

(B6)

When the rooting zone is between 5 % and 90 % of field ca-

pacity, it drains slowly (dmin = 0.24 mm d−1) with a linear

dependence on soil wetness. When the rooting zone nears

saturation (fW ≥ 0.9), the drainage rate quickly increases

with increasing wetness towards its maximum drainage

rate (dmax = 2.40 mm d−1). Drainage from the rooting zone

ceases when the soil wetness falls below 5 %.

When the incoming drainage from the overlying rooting

zone Fdrain causes the subrooting zone to exceed its maxi-

mum capacity (WSUB,max), the excess flows out as subrooting

zone drainage Fsubdrain:

Fsubdrain = max(0,WSUB + Fdrain − (WSUB,max − Wmax)),

(B7)

where WSUB,max is maximum storage capacity of the entire

soil column.

The flux term F1Wmax accounts for changes in the depth

of the rooting zone WMAX (see Eq. A11) due to the balance

between carbon allocation to coarse root growth and the loss

of coarse root biomass via turnover.

F1Wmax =

{

1Wmax ·
WSUB

WSUB,max−Wmax
1Wmax < 0

1Wmax · W
Wmax

1Wmax > 0
(B8)

Coarse root growth (i.e. an increase in the depth of the root-

ing zone WMAX) leads to a virtual flow of water from the

subrooting zone to the rooting zone. Likewise, a decrease in

the depth of the rooting zone due to coarse root turnover leads

to a virtual flow of water from the rooting zone to the sub-

rooting zone.
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Fig. B1. Schematic diagram of the land surface module. For symbols, see Tables C4, C3, C6, and C7.

B2 Potential evapotranspiration

The fractional snow area fSNOW depends on the amount of

water in the snow cover WS:

fSNOW = min(1,
WS

WScrit
), (B9)

where WS,crit is the critical snow depth (water equivalent).

Following Robock (1980), the albedo of snow as depends on

air temperature T and the fractional forest cover fFOR (see

Eq. A11).

as,min = 0.3fFOR + 0.4(1 − fFOR)

as,max = 0.4fFOR + 0.8(1 − fFOR)

as =











0 T ≥0

as,max−(as,max−as,min)T +10
10

−10<T <0

1 T ≤ − 10

(B10)

The potential evapotranspiration fluxes for the snow-

covered and snow-free fractions are estimated using the

Priestley–Taylor equation (Priestley and Taylor, 1972) from

the net radiation fluxes described below, the slope of the sat-
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uration vapour pressure curve ǫ at air temperature T , the psy-

chrometric constant Ŵ, the latent heat of vaporization λ, and

the Priestley–Taylor coefficient αp.

Ds = αp
ǫ(T )

ǫ(T ) + Ŵ

Rnet,s

λ

Dns = αp
ǫ(T )

ǫ(T ) + Ŵ

Rnet,ns

λ
(B11)

The net radiative energy available for evaporative processes

Rnet is calculated separately for the snow-covered and snow-

free fractions from the downward shortwave, Rsw↓, and net

longwave, Rlw, radiation fluxes, day length h, and the albedo

of the respective fraction (as and ans).

Rnet,s = fSNOW86 400

(

Rsw↓(1 − as) +
h

86 400
Rlw

)

Rnet,ns = (1 − fSNOW) (B12)

86 400

(

Rsw↓(1 − ans) +
h

86 400
Rlw

)

Net longwave radiation Rlw is the sum of the downward long-

wave radiation forcing Rlw↓ and upward longwave radia-

tion, Rlw↑, estimated from the near-surface air temperature in

Kelvin (TK = T +273.16) using the Stefan–Boltzmann equa-

tion:

Rlw↑ = ǫσTK
4, (B13)

where ǫ is the average emissivity of land surfaces (Brutsaert,

1982) and σ is the Stefan–Boltzmann constant.

B3 Actual evapotranspiration

B3.1 Sublimation from snow cover

Sublimation from snow Esnow is taken as the minimum of

the potential evaporation rate for the snow-covered fraction

Ds and the supply of water in the snow cover WS.

Fsublim = min(Ds,WS) (B14)

B3.2 Evaporation from canopy interception reservoir

Similarly, evaporation from the canopy reservoir Ecan is

taken as the minimum of the potential evapotranspiration

rate for the snow-free fraction and the supply of water in the

canopy WL.

Ecan = min(Dns,WL) (B15)

B3.3 Bare soil evaporation

Bare soil evaporation Ebare occurs in the fraction of the snow-

free area not covered by vegetation (1 − fVEG) and declines

linearly with decreasing soil moisture.

Ebare = min

{

b(1 − fVEG)(Dns − Ecan)

W
(B16)

b=

{

0.5
[

1−cos
(

π
W−(Wmax−Wtop)

Wtop

)]

W≥Wmax−Wtop

0 W<Wmax−Wtop

(B17)

The factor b limits soil evaporation to the water in the top

50 mm of the rooting zone (Wtop).

B3.4 Transpiration

Transpiration Etrans is reduced by the factor αH2O from

Eq. (A18), which is a saturating function of the available

supply for transpiration S and the atmospheric demand for

transpiration (Dns − Ecan).

Etrans = min

{

αH2OfVEG(Dns − Ecan)

W − Ebare

(B18)

B4 Approximation of latent and sensible heat fluxes

The total evapotranspiration flux ET is calculated as the sum

of evaporation from the canopy reservoir and bare soil, sub-

limation from snow, and transpiration by the vegetation.

ET = Ecan + Ebare + Esnow + Etrans

L = λET (B19)

Rnet = fSNOWRnet,s + (1 − fSNOW)Rnet,ns

H = Rnet − L

The latent heat flux L is estimated by multiplying the evapo-

transpiration flux by the latent heat of vaporization for water

λ. Total net radiation Rnet is computed as the weighted com-

bination of the net radiation over snow-covered and snow-

free areas. Sensible heat H is assumed to make up the differ-

ence between the net radiation and latent heat fluxes.
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Appendix C

Model parameters and variables

Table C1. State variables and parameters of the plant growth module.

Symbol Description Value/units

Vegetation carbon pools

CA Assimilates/storage carbon pool gC m−2

CL Leaves carbon pool gC m−2

CR Fine roots carbon pool gC m−2

CWL Woody stem carbon pool gC m−2

CWR Coarse roots carbon pool gC m−2

CS Reproduction carbon pool gC m−2

Growing conditions

fGROW,T Time-weighted temperature conditions ◦C

fGROW,W Time-weighted soil moisture conditions 0 to 1

fGERM,W Time-weighted soil moisture conditions for germination 0 to 1

fGERM 0: no germination, 1: germination

fGROW 0: no growth, 1: growth

τT Response time to temperature conditions days

τW Response time to moisture conditions days

Allocation and germination

AL Allocation from storage to leaves 0 to 1

AR Allocation from storage to fine roots 0 to 1

AWL Allocation from storage to stem 0 to 1

AWR Allocation from storage to coarse roots 0 to 1

AS Allocation from storage to reproduction 0 to 1

γGERM Germination fraction days−1

Turnover and senescence

τtissue Turnover times of vegetation carbon pools days

fNPP Time-weighted productivity conditions gC m−2 d−1

τNPP Response time to productivity conditions days

fSEN 0: no senescence, 1: senescence

Carbon fluxes

GERM Germination gC m−2 d−1

GPP Gross primary productivity gC m−2 d−1

RESa Autotrophic respiration gC m−2 d−1

NPP Net primary productivity gC m−2 d−1
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Table C2. Summary of the functional trait parameters. This table summarizes the parameters in the model description which define a plant

growth strategy. Column 2 gives a brief description of the effect of this parameter on the plant behaviour and column 3 gives the equation in

which the parameter occurs. All of these parameters range between zero and one.

Parameter Description Equation

t1 Growth response time to moisture conditions (A2)

t2 Growth response time to temperature conditions (A2)

t3 Critical temperature for growth (A3)

t4 Germination fraction (A4)

t5 Allocation to reproduction (A5)

t6 Allocation to aboveground growth (A5)

t7 Allocation to belowground growth (A5)

t8 Allocation to storage (A5)

t9 Relative allocation to aboveground structure (A5)

t10 Relative allocation to belowground structure (A5)

t11 Turnover time of structural pools (A6)

t12 Turnover time of leaf and fine root pools (A7)

t13 Senescence response time to productivity conditions (A8)

t14 Relative senescence aboveground (A9)

t15 Plant nitrogen status (A17)

Table C3. Parameters and state variables of the interface between the land surface module and the plant growth module.

Symbol Description Value/units

Land surface parameters needed by land surface module

LAI Leaf area index, depends on CL m2 m−2

fVEG Fractional vegetation cover 0 to 1

fFOR Fractional forest cover 0 to 1

ans Snow-free surface albedo 0 to 1

WMAX Maximum plant available soil water storage, depending on CWR mm

S Potential supply rate for transpiration, depending on CR mm d−1

Conversion parameters

SLA Specific leaf area, depends on τL, converts CL to LAI m2 gC−1

cWLMAX Conversion factor for CL to WLMAX 0.2 mm m−2

cFOR Conversion factor for CWL to fFOR 0.002 m2 gC−1

aVEG Canopy albedo 0 to 1

aSOIL Bare soil albedo 0.2

WMAX,0 Minimum value of WMAX 50 mm

cPAW Unit plant available water capacity mm H2O mm−1 soil

k Light extinction coefficient 0.5

cSRL Specific coarse root length, relates CR to WMAX 2250 mm gC−1

cSRU Specific root water uptake, relates CR to S 0.5 mm gC−1 d−1
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Table C4. Variables and parameters used in net primary productivity calculations.

Symbol Description Value/units

h Day length s

θ Convexity of photosynthesis–radiation curve 0.9

φ Photosynthetic quantum efficiency 2.73 µgC J−1

Ia Absorbed photosynthetically active radiation W m−2

Pmax Light-saturated photosynthetic rate gC m−2 s−1

[NL] Canopy nitrogen concentration gN gC−1

αT Temperature limitation on productivity 0 to 1

αH2O Water limitation on productivity 0 to 1

cRES,tissue Growth respiration coefficient gC gC−1

cRES,N Maintenance respiration coefficient gC gN−1

Q10,AR Temperature sensitivity of autotrophic respiration 1.6

Table C5. State variables, fluxes, and parameters of the soil carbon module.

Symbol Description Value/units

Detritus carbon pools

CLIT Fine litter carbon pool gC m−2

CCWD Woody litter carbon pool gC m−2

CSOIL Soil carbon pool gC m−2

Carbon fluxes

〈LITtissue〉 Community-aggregated litter fluxes gC m−2 d−1

DECx Decomposition fluxes from the detritus carbon pools gC m−2 d−1

〈GPP〉 Community-aggregated gross primary productivity gC m−2 d−1

〈RESa〉 Community-aggregated autotrophic respiration gC m−2 d−1

RESh Heterotrophic respiration gC m−2 d−1

NEE Net ecosystem exchange gC m−2 d−1

Parameters

clit⊲atm Fraction of fine litter decomposition to atmosphere 0.77

ccwd⊲atm Fraction of woody litter decomposition to atmosphere 0.2

τLIT Turnover time of fine litter at 20 ◦C 2.05 yr

τCWD Turnover time of woody litter at 20 ◦C 60 yr

τSOIL Turnover time of soil carbon at 20 ◦C 100 yr

Q10,HR Heterotrophic respiration coefficient 1.4
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Table C6. Forcing, state, and flux variables of the land surface module.

Symbol Description Value/units

Forcing variables

P Precipitation mm d−1

Rsw↓ Downwelling shortwave radiation W m−2

Rlw↓ Downward longwave radiation W m−2

T 2 m air temperature ◦C

Water pools

WS Water stored in snow cover mm

WL Water intercepted in canopy mm

W Water stored in rooting zone mm

WSUB Water stored below rooting zone mm

Water fluxes

Psnow Snowfall mm d−1

Prain Rainfall mm d−1

Fmelt Snowmelt mm d−1

Fthfall Throughfall mm d−1

Frunoff Runoff mm d−1

Fdrain Drainage from rooting zone mm d−1

F1Wmax Flux due to change in rooting zone depth mm d−1

Fsubdrain Drainage from subrooting zone mm d−1

Ebare Bare soil evaporation mm d−1

Ecan Evaporation from the canopy reservoir mm d−1

Esnow Sublimation from snow cover mm d−1

Etrans Transpiration mm d−1

Table C7. Other parameters and variables of the land surface module.

Symbol Description Value/units

Drainage parameters

dmin Slow drainage rate 0.24 mm d−1

dmax Fast drainage rate 2.4 mm d−1

d Drainage exponent 1.5

WSUBmax Maximum storage capacity of the entire soil column 1500 mm

Snow cover parameters

as,min Minimum snow albedo 0.4 to 0.8

as,max Maximum snow albedo 0.3 to 0.4

as Snow albedo 0.3 to 0.8

WS,crit Critical snow depth 10 mm

fSNOW Fractional snow area 0 to 1

Evapotranspiration parameters and variables

ǫ Average emissivity of land surfaces 0.97

σ Stefan–Boltzmann constant 5.6703 × 10−8 W m−2 K−4

αp Priestley–Taylor coefficient 1.26

ǫ(T ) Slope of the saturation vapour pressure curve Pa K−1

Ŵ Psychrometric constant 65 Pa K−1

λ Latent heat of vaporization for water 2500 J kg−1

Rnet,s Net radiation on snow-covered areas J d−2

Rnet,ns Net radiation on snow-free areas J d−2

Ds Potential evapotranspiration from snow-covered areas mm d−1

Dns Potential evapotranspiration from snow-free areas mm d−1

Wtop Bare soil evaporation depth 50 mm

Biogeosciences, 10, 4137–4177, 2013 www.biogeosciences.net/10/4137/2013/



R. Pavlick et al.: The Jena Diversity-Dynamic Global Vegetation Model 4169

Appendix D

C-LAMP evaluation protocol

D1 Phenology

Simulated leaf area index (LAI) values were evaluated

against remote sensing observations from the MODerate res-

olution Imaging Spectroradiometer (MODIS) (Myneni et al.,

2002; Zhao et al., 2005; MOD15A2 Collection 4). Specifi-

cally, three phenology metrics were considered; the timing of

maximum LAI, the maximum monthly LAI, and the annual

mean LAI. All three metrics used monthly mean LAI obser-

vations and modelled estimates from years 2000 to 2004. The

LAI phase metric was computed at each grid cell as the off-

set in months between the observed and simulated maximum

LAI values, normalized by the maximum possible offset (6

months), and finally, averaged across biomes. The maximum

and annual mean LAI metrics M were computed using the

equation

M = 1 −

n
∑

i=1

|mi−oi |
mi+oi

n
, (D1)

where mi is the simulated LAI at the grid cell corresponding

to the satellite observation (oi) and n is the number of model

grid cells in each biome. Global means for these metrics were

computed by averaging M across different biome types.

D2 Global patterns of productivity and

evapotranspiration

Modelled estimates of net primary productivity (NPP) were

compared with a compilation of field-based observations

from the Ecosystem Model–Data Intercomparison (EMDI)

(Olson et al., 2001) and remote sensing estimates extracted

from the MODIS MOD17A3 Collection 4.5 product (Hein-

sch et al., 2006; Zhao et al., 2005, 2006). We compared the

mean annual NPP as simulated by JeDi-DGVM for years

1975–2000 with the EMDI observations on a point-by-point

basis for each observation site to the corresponding model

grid cell using Eq. (D1) described above. As a second NPP

metric, we used Eq. (D1) again with the modelled and ob-

served values averaged into discrete precipitation bins of

400 mm yr−1. For the third and fourth NPP metrics, we com-

puted the coefficient of determination (r2) between the mean

annual MODIS and modelled NPP (for years 2000–2004) for

all non-glaciated land grid cells and for the zonal means.

In addition to the NPP metrics from the C-LAMP pro-

tocol, we also evaluated JeDi-DGVM against spatially ex-

plicit, data-driven model estimates of evapotranspiration

(ET; Jung et al., 2010) and gross primary productivity (GPP;

Beer et al., 2010). The estimate of ET (Jung et al., 2010)

was compiled by upscaling FLUXNET site measurements

with geospatial information from remote sensing and surface

meteorological data using a model tree ensemble algorithm

(Jung et al., 2009). It covers years 1982–2008, although here

we only used model years 1982–2004 for the comparison due

to the limitation of the meteorological forcing dataset. The

estimate of GPP (Beer et al., 2010) was derived from five em-

pirical models calibrated against FLUXNET observations. It

covers years 1998–2005, although here we only used model

years 1998–2004 for the comparison.

D3 Seasonal cycle of atmospheric CO2

The annual cycle of atmospheric CO2 was simulated by ap-

plying atmospheric impulse response functions from the At-

mospheric Tracer Transport Model Intercomparison Project

(TRANSCOM) Phase 3 Level 2 experiments (Gurney et al.,

2004) to the JeDi-DGVM net ecosystem exchange (NEE)

fluxes. The monthly JeDi-DGVM NEE fluxes for years

1991–2000 were aggregated into 11 TRANSCOM land basis

regions. These aggregated NEE fluxes were then multiplied

by monthly response functions from Baker et al. (2006),

yielding simulated atmospheric CO2 time series for 57 obser-

vation stations around the globe. This process was repeated

for all 13 TRANSCOM atmospheric transport models and

the multimodel mean annual cycle was compared with obser-

vations from the GLOBALVIEW dataset (Masarie and Tans,

1995). We computed the coefficient of determination (r2) as

a measure of phase and the ratio of modelled annual ampli-

tude AM to observed amplitude AO as a measure of magni-

tude (see Eq. D2).

M = 1 −

∣

∣

∣

∣

AM

AO
− 1

∣

∣

∣

∣

(D2)

These two metrics were computed for three latitude bands

in the Northern Hemisphere (0–30◦ N, 30–60◦ N, 60–90◦ N).

All stations within each band were weighted equally. The

scores from the mid and high latitude bands were given more

weight due to their stronger annual signal and the relatively

smaller contributions of oceanic and anthropogenic fluxes in

those regions.

D4 Interannual variability in CO2 fluxes

The same TRANSCOM response functions

(Baker et al., 2006) and the GLOBALVIEW CO2 mea-

surements (Masarie and Tans, 1995) described above were

combined to obtain estimates of the interannual variability

in global terrestrial NEE fluxes for years 1988–2004. We

compared these inversion estimates with JeDi-DGVM, again

incorporating information about the phase and magnitude.

The phase agreement was evaluated by the coefficient of

determination (r2) between the simulated global annual

mean NEE fluxes and the TRANSCOM-based estimates.

The magnitude of interannual variability was calculated

using the standard deviation of the simulated and observed

values as AM and AO in Eq. (D2). The phase and magnitude

metrics were then averaged together with equal weighting.
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In their C-LAMP evaluation, Randerson et al. (2009) eval-

uated the magnitude and pattern of simulated fire emissions

against observations in the Global Fire Emissions Database

version 2 (GFEDv2; van der Werf et al., 2006). Here, we set

the score for this metric to zero because JeDi-DGVM does

not simulate fire emissions.

D5 Eddy covariance measurements of energy and

carbon

Simulated monthly mean surface energy and carbon fluxes

were evaluated against gap-filled L4 Ameriflux data (Falge

et al., 2002; Heinsch et al., 2006; Stoeckli et al., 2008). For

each Ameriflux data month, we sampled the corresponding

model grid output. Then, we constructed an annual cycle of

monthly means, and using Eq. (D1) computed metrics for

NEE, GPP, and the fluxes of sensible and latent heat. All 74

tower sites were weighted equally.

D6 Carbon stocks and flows in Amazonia

Simulated aboveground living biomass in Amazonia was

evaluated against the LBA-ECO LC-15 Amazon Basin

Aboveground Live Biomass Distribution Map compiled by

Saatchi et al. (2007). We used Eq. (D1) to calculate the

model–data agreement between the simulated aboveground

live biomass and the observed biomass values at each grid

cell within the Amazon Basin. The model output used for

comparison was the sum of the simulated aboveground wood

and leaf carbon pools for the year 2000. Although, not part

of the metric calculation, we also compared the JeDi-DGVM

results with carbon budget observations from three mature

forest ecosystems in Amazonia (Malhi et al., 2009).

D7 Sensitivity of NPP to elevated CO2 concentrations

To evaluate the sensitivity of simulated NPP to elevated CO2

concentrations, we performed a model experiment (described

in Sect. 3.1) to mimic the treatment plots in FACE experi-

ments. We calculated the mean percentage increase in NPP

between the control and elevated CO2 simulations for years

1997–2001. Using Eq. (D1), we compared the simulated in-

creases at four temperate forest grid cells with corresponding

site-level average increases reported by Norby et al. (2005).

We also report a global map of the simulated NPP response

to a step change in CO2 concentrations from ambient to

550 ppm.

Supplementary material related to this article is

available online at: http://www.biogeosciences.net/10/

4137/2013/bg-10-4137-2013-supplement.pdf.
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