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Abstract

Magnetic fields lines are trapped in black hole event horizons by accreting plasma. If the trapped field lines are
lightly loaded with plasma, then their motion is controlled by their footpoints on the horizon and thus by the spin of
the black hole. In this paper, we investigate the boundary layer between lightly loaded polar field lines and a dense,
equatorial accretion flow. We present an analytic model for aligned prograde and retrograde accretion systems and
argue that there is significant shear across this jet–disk boundary at most radii for all black hole spins. Specializing
to retrograde aligned accretion, where the model predicts the strongest shear, we show numerically that the jet–disk
boundary is unstable. The resulting mixing layer episodically loads plasma onto trapped field lines where it is
heated, forced to rotate with the hole, and permitted to escape outward into the jet. In one case we follow the mass
loading in detail using Lagrangian tracer particles and find a time-averaged mass-loading rate ~ M0.01 .

Unified Astronomy Thesaurus concepts: Accretion (14); Magnetohydrodynamics (1964); Plasma
astrophysics (1261)

1. Introduction

According to Alfvén’s theorem, magnetic fields lines are
frozen into highly conducting plasmas and are advected with
the plasmas as they move under the influence of external
forces. This freeze-in effect operates near black holes when the
accreting plasma falls onto the hole, and thus it is natural for a
black hole to have field lines that thread its event horizon. If the
horizon-threading field lines are open and lightly loaded with
plasma so that the local magnetization5 is much larger than
unity
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in the region close to the horizon, then their motion is

controlled by gravity, and they are forced to rotate if the black

hole has nonzero spin.
Forced rotation of field lines was first studied by Blandford

& Znajek 1977, hereafter BZ, who solved a force-free
magnetosphere model in the limit that the black hole
dimensionless spin aå≡ Jc G−1M−2

= 1 (here J≡ spin angu-
lar momentum and M≡mass). BZ found that the field behaves
as if it were anchored in a star rotating with frequency
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Here, ΩH is the rotation frequency of the event horizon. Field

line rotation produces an outward-directed energy current at the

horizon. In the force-free limit this is known as the BZ effect,

whereas if the field lines are more heavily loaded it is also

sometimes called the magnetohydrodynamic (MHD) Penrose

process (Takahashi et al. 1990). The BZ effect is a favored

mechanism for powering extragalactic radio jets.
In recent decades, numerical general relativistic magnetohy-

drodynamics (GRMHD) simulations have been used to study
black hole accretion and the BZ mechanism (see Davis &
Tchekhovskoy (2020) and Komissarov & Porth (2021) for
reviews). In GRMHD models with a trapped magnetic flux Φ, a
low-density region forms around an axis parallel to the
accretion flow angular momentum vector as plasma falls down
the field lines into the hole or is expelled to larger radius. This
low-density region, with σ? 1, contains horizon-threading
field lines moving with rotation frequency ΩF and an
associated, outward-directed energy current (Poynting flux;
McKinney & Gammie 2004). In what follows we will refer to
this region as the jet. It is difficult for numerical codes to
robustly evolve parts of the simulation domain with low
density and high σ, like in the jet, so semi-analytic magneto-
sphere models are often invoked to study these regions (see,
e.g., Ogihara et al. 2021).
The jet is bounded by an accretion flow that pins magnetic

flux in the hole. We will refer to the accretion flow as a disk,
although it may have sub-Keplerian rotation. At the boundary
layer between the jet and the disk, the density contrast is large.
The plasma velocity can also change dramatically, with
maximal shear occurring when the black hole and disk rotate
in opposite directions (a retrograde disk).
The jet–disk boundary layer has large shear and strong

currents. It can suffer instabilities that lead to mass loading onto
the jet’s open field lines. It may also be an important particle
acceleration site (see the reviews of Ostrowski et al. 1999;
Rieger 2019 for particle acceleration in relativistic shear
layers). This paper considers the jet–disk boundary layer
in the relativistic regime, within∼20GM c−2 of the event
horizon.
In Section 2, we provide simple estimates for shear at the

jet–disk boundary layer. In Section 3, we describe the GRMHD
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Here, B is the strength of the magnetic field, ρ is the rest-mass density of the

plasma, and c is the speed of light. In this paper, we use Lorentz–Heaviside
units for electromagnetic quantities.
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simulations we use to study the jet–disk boundary layer, and in
Section 4, we explore the dynamics of the boundary layer by

using tracer particles to both analyze the flow of matter through
state space and investigate mass loading into the jet. Along the
way we discuss the disk structure for retrograde accretion. In

Section 5, we consider model limitations, convergence, and
possible extensions. Section 6 provides a summary and a guide

to the main results.

2. Scaling and Estimates

We now define the physical parameters that describe

accretion systems, identify their ranges for the systems we
consider, and provide an analytic estimate for flow dynamics at

the jet–disk boundary layer.

2.1. Parameters

We consider radiatively inefficient accretion flows
(RIAFs; Reynolds et al. 1996) where radiative cooling is

negligible, motivated by Event Horizon Telescope (EHT)

observations of M87* and Sgr A*, which have accretion rate

   ºm M M 1Edd ( MEdd is the Eddington accretion rate) and
are therefore near or in this regime. RIAFs are geometrically

thick disks, with ratio of scale height H to local radius R of
order 1.

In general, the angular momentum of accreting matter far

from the horizon may be tilted with respect to the black hole’s
spin angular momentum. Although there are plausible

scenarios that produce zero tilt, there is at present no way of
rejecting models with strong or even maximal (180°) tilt. In this

paper we restrict attention to systems where the orbital angular
momentum of the accreting plasma is parallel or antiparallel to

the black hole spin vector (prograde or zero tilt and retrograde
or maximal tilt, respectively). Disks with intermediate tilt are a

subject of ongoing study (Blaes et al. 2007; McKinney et al.
2013; Morales Teixeira et al. 2014; Liska et al. 2018; White
et al. 2019).

In addition to aå, m, and tilt, black hole accretion flows are
characterized by Φ, the trapped magnetic flux measured

through the contour formed by the black hole’s equator.
Accretion of flux with a consistent sign eventually increases |Φ|
until the accumulated magnetic flux is large enough that
magnetic pressure ( ( ) )~ F -B GM c2 2 2 2 balances accretion

ram pressure ρc2. Since ( ) r~ -M c GM c 2 2, when the

dimensionless flux f º F -G M M c2 2 3 approaches a critical

value fc∼ 15 (Tchekhovskoy et al. 2011, but we use the
normalization of Porth et al. 2019), the field can push aside
infalling plasma and escape.

The unstable equilibrium with f∼ fc is known as a
magnetically arrested disk (MAD; see Bisnovatyi-Kogan &

Ruzmaikin 1974; Igumenshchev et al. 2003; Narayan et al.
2003), in contrast to accretion flows with f= fc, which are

said to follow standard and normal evolution (SANE; see
Narayan et al. 2012; Saḑowski et al. 2013). Notice that f is
determined by the nonlinear evolution of the flow and is not

trivially related to the initial conditions, although initial
conditions have been identified that lead to SANE or MAD

outcomes over finite integration times. We will consider both
SANE and MAD accretion flows.

2.2. Shear at the Jet–disk Boundary

Changes in velocity across the jet–disk boundary may drive
the Kelvin–Helmholtz instability. What is the expected velocity
difference? The jet and disk are unsteady and strongly
nonaxisymmetric in the numerical GRMHD models that
motivate this calculation. In the interest of producing a model
that can be studied analytically, we nevertheless treat the
system as axisymmetric and steady, and because this is already
a drastic approximation, we use a nonrelativistic fluid model
for simplicity.
The jet can be idealized as a steady flow anchored in an

object rotating with angular velocity ΩF. For a steady,
axisymmetric, nonrelativistic MHD wind with plasma angular
velocity Ω and generalized specific angular momentum L,
angular velocity changes with cylindrical radius R like

( )W = W
+

+
+M

L

R

M

M

1

1 1
3F

A
2 2

A
2

A
2

(e.g., Ogilvie 2016), where ºM v vpA
2 2

A
2 is the Alfvén Mach

number, defined as the ratio of the poloidal plasma velocity to

the Alfvén velocity r=v BA . Since σ? 1, vA; c.
Particles flow inward at the horizon and outward at large

radius, and therefore a steady state can be achieved only if
plasma is loaded onto field lines at intermediate radius. We
assume this occurs, perhaps through turbulent diffusion or
through pair production (in numerical GRMHD models plasma
is added via numerical floors; see Wong et al. 2021 for a study
of drizzle pair production in this region), and that there is a
stagnation point at r∼ few×GM c−2 between an inner, inflow
Alfvén point ( =M 1A

2 ) and an outer, outflow Alfvén point. The
outer Alfvén point is close to the light cylinder q = Wr csinl F .

Equation (3) implies that for M 1A
2 , Ω∼ΩF, and for

M 1A
2 the specific angular momentum of the wind is

conserved. Inside of the light cylinder, in the limit that
a
å
= 1, rotation is controlled by the rotation frequency of the

hole ΩH, like ΩF≈ΩH/2≈ aå/8, so

⎧
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The jet–disk boundary is at θJD, so the outer light cylinder radius

is ( )( ) ( ) ( )q= +-  r a GM c a8 sinl
2

JD . Taking qsin JD

1 2 , then rl; (11/a)(GMc−2).
The disk rotates with approximately constant angular velocity

Ω= sΩK on spherical surfaces; here, ΩK= (GM)
1/2r−3/2 is the

Keplerian angular velocity and 0< s< 1 measures how sub-
Keplerian the accretion flow is. Numerical simulations suggest
s 1/2 for MADs (e.g., Narayan et al. 2012) and ∼1 for SANEs.
The toroidal component of the velocity difference across the

jet–disk boundary is thus

( ) ( ) qD W - Wfv r ssin . 5F KJD

Without a model for flow along the field lines it is not possible

to constrain the other components of the velocity difference.

For retrograde accretion with aå< 0, the two angular

frequencies in Equation (5) have the same sign and the

magnitude of the velocity jump is at least of order the orbital

2
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speed. The velocity difference is approximately c at r= rl. For

prograde accretion with aå> 0, the shear vanishes at

( ) ( )= -
r s a GM c4 2 3 2 , and as in the retrograde case, the

velocity difference is∼ c at r= rl.

2.3. Stability of the Jet–disk Boundary

The jet–disk boundary is associated with sharp changes in
density and magnetic field. The jet contains a laminar σ> 1
plasma, analogous to a pulsar wind, that rotates with the black
hole. The disk contains a turbulent Pgas/B

2
∼ 1 plasma whose

angular momentum need not be related to the spin of the central
hole. The relative orientation of the shear, jet magnetic field,
and disk magnetic field may vary as turbulence in the disk
produces varying conditions at the boundary.

Is the jet–disk boundary linearly stable? If we model the
boundary layer as an infinitely thin current-vortex sheet, then
we expect to capture the main features of the linear theory;
finite thickness H tends to suppress instability for modes with
wavelength smaller than or of order H and the fastest growth is
at wavelength∼H. The current-vortex sheet can be subject to
Kelvin–Helmholtz instability (KHI) as well as the plasmoid
instability (Loureiro et al. 2007). High-resolution axisymmetric
models of black hole accretion flows (Nathanail et al. 2020,
Ripperda et al. 2020) see evidence for plasmoid instability at
the jet–disk boundary, but we do not, perhaps due to
inadequate resolution. We therefore focus on KHI. It is well
known that magnetic fields weaken the KHI because they resist
corrugation of the vortex sheet. Do magnetic fields stabilize the
jet–disk boundary?

A general linear theory of the plane-parallel, relativistic,
ideal current-vortex sheet does not exist. Osmanov et al. (2008)
consider the special case where magnetic field is oriented
parallel to the velocity shear and the density, pressure, and field
strength are continuous across the sheet. They do not consider
the large density contrast that is an important feature of the jet–
disk boundary problem.

The linear theory of the plane-parallel, compressible,
nonrelativistic, ideal current-vortex sheet is better understood.
The general (arbitrary field orientation on either side of the
sheet) incompressible case was considered by Axford (1960);
Shivamoggi (1981) considers aligned and transverse fields; and
Sen (1964) and Fejer (1964) consider a general, arbitrarily
oriented field on either side of the sheet. The stability of a
finite-width layer has been considered in a well-known analysis
by Miura & Pritchett (1982), but an analytic dispersion relation
is not available. Since the general, nonrelativistic problem is
relatively tractable we provide a brief discussion and use it to
obtain a qualitative understanding of stability of the jet–disk
boundary.

Consider a plane-parallel, nonrelativistic, current-vortex
sheet. The flow velocity and magnetic field are constant away
from the sheet, which we position at z= 0. Let i= J denote the
low-density (jet) side and i=D the high-density (disk) side. In
equilibrium, v zA vanishes and total pressure is continuous
across z= 0.

Now consider a perturbation of the form ( ) ( +f z ik xexp x

)w+ik y i ty with ( ) ( )k=f z zexp , where κ is in general
complex. The general dispersion relation is

( )l l+ =m m 0, 6J D D J

[( · ) ( · ) ] ( )l r w= - -k v v k , 7i i i i
2

A
2

( · )

( · ) ( · )
( )

w
w

= +
-
- -
k v

v k k v
m k

c c
8i

i

si i si i

2
4

2
A

2 2 2

(Sen 1964; Fejer 1964). Here, cs≡ sound speed, º +c v cm s
2

A
2 2

is the magnetosonic speed, and v is the plasma velocity. The

exponential factor κ can be mi or−mi (see Equation (8)),

depending on the boundary condition and whether z> 0

or z< 0.
The general dispersion relation cannot be solved analytically.

In the case of interest to us, however, ρJ= ρD, ~c vsD DA , and
~c csJ sD. Furthermore, physics provides a hint to the

mathematical solution: the field in the jet is stiff (the
Alfvén speed is large due to the low density), motivating us
to look for instability in modes with · =k v 0JA . This is
enough to make analytic progress. Taking ρJ/ρD∼ ò

2
= 1 and

assuming that · ~ k v DA , we can solve the dispersion relation
to lowest order in ò. The relevant mode has

( · ) [ · ( )] ( )w
r
r

= - -k v k v v , 9D
J

D

J D
2

A
2 2

which suggests that the current-vortex sheet is unstable when

·k v DA is sufficiently small, which we have confirmed by

numerically solving the full dispersion relation.
In Equation (9) the nonrelativistic current-vortex sheet is

unstable for small ρJ. This is precisely the limit where one
might worry about relativistic corrections: if r >B 1J J

2 , then
the inertia of the jet is dominated by the magnetic field. In a
fully relativistic analysis (Y. Du et al., in preparation) the
current-vortex sheet has a near-identical dispersion relation in
the limit ρJ→ 0, except that ρJ/ρD in the above dispersion

relation is replaced by rBJ D
2 .

Evidently the current-vortex sheet is not generically unstable
at large density contrast: a particular configuration of magnetic
fields is needed for instability. The disk contains a turbulent
magnetic field that is constantly changing strength and
orientation, while the jet has a steadier field. This suggests a
picture in which turbulent mixing driven by the KHI is episodic
and occurs when jet and disk magnetic fields are aligned or
anti-aligned. Mixing as a result of nonlinear development of the
KHI will then only occur when there exist modes with growth
times that are small compared to the correlation time of the
turbulent eddies.

2.4. Dissipation at the Jet–disk Boundary

The jet–disk boundary would appear to be a fertile setting for
particle acceleration: particles that cross the boundary from the
disk plasma frame to the jet plasma frame gain energy in a
process akin to Fermi acceleration. This has been investigated
by, e.g., Berezhko & Krymskii (1981); Jokipii & Morfill
(1990); Ostrowski (1990) (see Rieger 2019 for a review),
usually in the context of extragalactic radio jets kiloparsecs
from the central source. Sironi et al. (2021) performed 2D
particle-in-cell simulations of the shear layer between a
relativistic, magnetically dominated electron–positron jet and
a weakly magnetized ion–electron plasma and showed that the
nonlinear evolution of KHIs leads to magnetic reconnection,
which can in turn drive particle acceleration. The formation of
magnetic islands at the jet–disk boundary (see, e.g., Nathanail
et al. 2020; Ripperda et al. 2020) can also lead to particle
acceleration; this process has been extensively investigated in
kinetic simulations of current sheets.

3
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To schematically address this question, we adopt a turbulent
resistivity model for dissipation in the jet–disk boundary with
magnetic diffusivity η; αWΔv, where α is the inverse of the
magnetic Reynolds number, the width of the boundary layer is
W∼ fR ( f< 1; here, R≡ cylindrical radius), and Δv∼ c, so
that η; αfcR. Next, we assume that the boundary is steady,
axisymmetric, and follows ( )= bR R z z0 0 , with the jet
intersecting the horizon at (R0, z0). We assume that the
magnetic flux in the jet Φ; πBR2 approximately independent
of R and thus take ( ) ( ) pF b-B z z R0

2
0
2 .

If the magnetic field in the disk is similar in magnitude to
that in the jet but randomly oriented, the dissipation rate per
unit volume in the boundary layer is Λ∼ αB2

(c/( fR)), and the
total dissipated power per unit height z is independent of f,

⎜ ⎟
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2
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Notice that this scales asymptotically as z−1−2β for β� 1, so

nearly all dissipation occurs close to the black hole. Integrating

over z, the dissipated power is

( )
( ) ( )

a
p

b=
F

P
c

GM
F z R, , 11

5 2

2 0 0

where F is a dimensionless function of order unity. The power

differs only by a factor of aa
2 from the Blandford–Znajek

power (e.g., Tchekhovskoy et al. 2011). In summary, a fraction

a~ a
2 of the jet power can be dissipated in the jet–disk

boundary close to the black hole; this provides additional

motivation for a numerical study.

3. Simulating Black Hole Accretion

We now study the jet–disk boundary layer using GRMHD
simulations.

3.1. Numerical Setup

We integrate the equations of GRMHD using the iharm3D
code, a descendant of the second order conservative shock
capturing scheme harm (Gammie et al. 2003). Written in a
coordinate basis, the governing equations of GRMHD are

( ) ( ) ( )r r¶ - = -¶ -g u g u , 12t
t

i
i

0 0

( ) ( ) ( )¶ - = -¶ - + - Gn n
k
l
l
nkg T gT gT , 13t

t
i

i

( ) [ ( )] ( )¶ - = -¶ - -gB g b u b u , 14t
i

j
j i i j

( ) ( )¶ - =gB 0, 15i
i

where the plasma is defined by its rest-mass density ρ0, its four

velocity uμ, and bμ is the magnetic field four-vector following

McKinney & Gammie (2004). Here, ( )º mng gdet is the

determinant of the covariant metric, Γ is a Christoffel symbol,

and i and j denote spatial coordinates. In Equations (14) and

(15), we express components of the electromagnetic field tensor

F
μ ν as B

i
≡

å

F
it for notational simplicity. The stress–energy

tensor m
nT contains contributions from both the fluid and the

electromagnetic field:

⎜ ⎟⎛
⎝

⎞
⎠

( )

( )

r= + + +

+ + -

n
m l

l
m
n

l
l

n
m m

n

T u P b b u u

P
b b

g b b
2

, 16

0

where u is the internal energy of the fluid and the fluid pressure

P is related to its internal energy through an adiabatic index ĝ
with ( ˆ )gº -P u1 . The iharm3D code has been extensively

tested and converges at second order on smooth flows

(Gammie et al. 2003). A comparison of contemporary

GRMHD codes can be found in Porth et al. (2019).
Our model has several limitations. First, we treat the

accreting plasma as a nonradiating ideal fluid of protons and
electrons. We do not consider effects due to anisotropy and
conduction (Sharma et al. (2006); Johnson & Quataert (2007),
but see Foucart et al. (2017) for an evaluation of the limits of
this approximation). We also neglect radiation. This approx-
imation may be inappropriate in systems with high mass
accretion rates, like M87 (Dibi et al. 2012; Ryan et al. 2017),
but it is sensible in systems with low m like Sgr A*

(but see
Yoon et al. 2020, who show a different result under the
assumption that the ions and electrons are perfectly coupled).
The equations of nonradiative GRMHD are invariant under
rescalings of both length and density, so our numerical results
can be scaled to the desired M and M .
The iharm3D code evolves plasma on a logically Cartesian

grid. For these simulations, we use FMKS coordinates, which
are a modified version of the conventional horizon-penetrating
Kerr–Schild (KS) coordinates. We provide a detailed descrip-
tion of FMKS in the Appendix. We use outflow boundary
conditions for the radial direction, and we use a reflecting
boundary condition at poles that mirrors the elevation
components of the magnetic field and fluid velocity across
the one-dimensional border.
We have added a passive tracer particle capability to

iharm3D to track mass loading into the jet. Each tracer
particle is introduced with probability proportional to the
coordinate particle density r-g ut, where ρ is the rest-mass
density, g is the determinant of the covariant metric, and u t is
the time component of the four velocity. Initial positions are
uniformly distributed in the coordinate basis in each zone.
Particles are advected with the fluid according to

( )=
dx

dt

u

u
, 17

i i

t

where x i are the spatial components of the tracer particle’s

position and uμ is the fluid four velocity.
The computational cost of evolving the tracer particles

alongside the fluid scales linearly with the number of particles;
we use≈ 225 particles, and this noticeably increases simulation
cost. We therefore use completed GRMHD simulations to
identify an epoch of interest, restart the fluid simulation at the
beginning of the epoch, initialize the particles, and re-evolve
the fluid to the end of the epoch.
The iharm3D code has several limitations. It is not robust

when σ? 1 (e.g., in the strong cylindrical explosion test in
Komissarov 1999) or when the ratio of the gas pressure to the
magnetic pressure β≡ 2Pgas/B

2
= 1. Numerical stability is

ensured by imposing artificial ceilings on σ and 1/β in each
zone at each time step, which are enforced by resetting the
density or internal energy density to a floor value that depends

4
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on position but not on time. This has a minimal effect on the
flow (as can be checked by varying the ceilings), but it does
inject matter in the nearly evacuated funnel region, where σ is
large and β is small.

The fluid sector is initialized with a perturbed Fishbone–
Moncrief torus solution (Fishbone & Moncrief 1976), which is
parameterized by the inner disk edge radius rin and pressure
maximum radius rmax. The thermal energy is perturbed to seed
the instabilities that jump start accretion (including the
magnetorotational instability). The SANE models have
rin= 6 and =r 12max in a domain that extends from within
the horizon to rout= 50M. The MAD models have rin= 20M
and =r M41max in a domain that extends to rout= 1000M.
Our MAD disks are larger than our SANE disks. Figure 1
shows the initial conditions for plasma and magnetic field in
representative SANE and MAD simulations.

The initial magnetic field is described by the toroidal
component of the vector four-potential Af(r, θ). For SANE
disks

⎡
⎣⎢

⎤
⎦⎥

( )
r
r

= -fA max 0.2, 0 , 18
max

where rmax is the maximum initial plasma density. For MAD

disks the initial field is concentrated toward the inner edge of

the disk and forced to taper at large r according to

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )
r
r

q= -f
-A

r

r
emax sin 0.2, 0 , 19r

max 0

3

400

where r0 is chosen to be the inner boundary of the simulation

domain (B.R. Ryan, private communication)

3.2. Simulations

Table 1 provides a summary of the models we consider. Our
simulations are similar to the retrograde ones generated for the
EHT simulation library in Event Horizon Telescope Collaboration
et al. (2019), hereafter EHTC V, except that: our simulations are
evolved twice as long to mitigate natural stochasticity in matter
entrainment; and a subset of our simulations are rerun at multiple
resolutions.
We focus on four retrograde simulations with aå=−0.5 or

−0.94. By convention, negative spins means that the black hole
spin is antiparallel to the angular momentum of the accretion
flow (i.e., tilt is 180°). For each spin, we consider MAD and

Figure 1. Initial distribution of plasma and magnetic field for representative retrograde SANE (left) and MAD (right) simulations. Both black holes have a
å
= −0.94.

The initial plasma density and magnetic field are axisymmetric. The central black hole is plotted at the center left of each panel. Color encodes log10 of plasma density,
and magnetic field lines, which are purely poloidal, are overplotted in black. Notice that the domain of the MAD plot is 10× larger than the SANE simulation domain.

Table 1

GRMHD Simulation Parameters

ID Flux aå rin rmax
rout Resolution Notes

Sa-0.5 SANE −0.5 6 12 50 288 × 128 × 128 Medium disk

Sa-0.94 SANE −0.94 6 12 50 288 × 128 × 128 Medium disk

Ma-0.5 MAD −0.5 20 41 1000 384 × 192 × 192 Large disk

Ma-0.94_192 MAD −0.94 20 41 1000 192 × 96 × 96 Large disk

Ma-0.94_288 MAD −0.94 20 41 1000 288 × 128 × 128 Large disk

Ma-0.94† MAD −0.94 20 41 1000 384 × 192 × 192 Large disk, multiple realizations, tracer particles

Ma-0.94_448 MAD −0.94 20 41 1000 448 × 224 × 224 Large disk

Note. Retrograde GRMHD fluid simulations parameters. Flux labels the relative strength of the magnetic flux at the horizon, aå describes the spin of the black hole, rin
and rmax are parameters for the initial Fishbone–Moncrief torus, rout is the outer edge of the simulation domain, and resolution gives the Nr × Nθ × Nf number of grid

zones in the simulation. † The 384 × 192 × 192 MAD aå = −0.94 simulation was run using a different perturbed initial condition, and passive tracer particles were

tracked for a part of its evolution.
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SANE models. We set the magnetic flux (and thus MAD or
SANE state) by varying the field structure in the initial
conditions.

Each simulation was run for at least 20,000 GM c−3 and has
an initial transient phase during which the initial torus relaxes,
and magnetic winding and the Rayleigh–Taylor instability and
the KHI operate. The transient phase is followed at each radius
by a turbulent quasi-equilibrium, with equilibrium radius,
defined as the largest radius where  dM dr 0, increasing as
req∼ t2/3 (see, e.g., Penna et al. 2010; Dexter et al. 2020 for a
discussion). Beyond req, the flow is strongly dependent on
initial conditions, so we consider information only from r< req.
GRMHD models may be in equilibrium at large radii near the

poles if there are strong outflows and the outflow structure is
independent of the structure of the surrounding unequili-
brated disk.
Our MAD simulations are run with bulk fluid adiabatic index

Γ= 13/9, and our SANE simulations are run with Γ= 4/3 to
be in agreement with EHTC V and Porth et al. (2019).

4. Results

We begin by discussing characteristic differences between
MAD and SANE accretion flows before considering each of
our simulations in detail. We explore the properties of fluid
flow at small radii and within the jet, and then we relate
outbursts in the MAD flows to magnetic flux ejection events.
We explore qualitative features of the jet–disk boundary layer,
including the development of the KHI. Finally, we use tracer
particles to study mass entrainment across the jet–disk
boundary layer.

4.1. Overview

It is convenient to divide low-luminosity black hole
accretion flows into three regions: (1) the matter-dominated
disk of plasma near the midplane, which on average flows
inward, (2) the magnetically dominated, polar Poynting jet, and
(3) the virial temperature intermediate region, which contains
the jet–disk boundary layer and the corona (here defined as the
region with β∼ 1). In a region extending from the event
horizon out to somewhat beyond the innermost stable circular
orbit (ISCO), the inflow plunges supersonically onto the hole
and fluctuates strongly. Notice that the jet we consider here (at
horizon scales) is dynamically distinct from the jet at large
radius.
SANE and MAD accretion flows exhibit qualitatively

different behavior. SANE models are relatively tame: plasma
falls uniformly from the ISCO to the event horizon, the
boundary of the accretion disk remains well defined, and the
time-averaged accretion state is a fair approximation of an
individual time slice. In contrast, MAD accretion is choppy and
tends to proceed in isolated, thin plasma streams that begin far
from the hole and plunge onto it. MAD accretion is punctuated
by violent eruptions that release excess trapped magnetic flux.
Although the flux ejection events are not understood in detail,
their structure suggests a Rayleigh–Taylor interaction between
the disk and hole (see, e.g., Marshall et al. 2018). For MAD
flows, the time average is often not a good approximation to a
single time slice. These differences are particularly apparent in
Figure 2, which shows log density for sample SANE and MAD
models and compares the time-averaged solution (left) to
representative time slices (right). In SANE models it is easy to
separate the high-density disk from the low-density jet region.
In contrast, in MAD models, identifying the location of the jet–
disk boundary is a challenge.
In Figure 3, we show a typical time slice on a poloidal slice

of an aå=−0.94 MAD model, where the strength of the
magnetic flux near the horizon prevents steady disk accretion.
Here, accretion occurs when plasma streams break from the
bulk disk at large radius and plunge onto the hole. These
streams are not confined to the midplane as they fall. Figure 4
shows the projected locations of tracer particles in the same
MAD aå=−0.94 flow of Figure 3 but viewed from above. The
color of each particle corresponds to the linear density of
particles in a three-dimensional voxel of space centered at the

Figure 2. Logarithmic plots over three decades of density in the poloidal plane
for a

å
= −0.5 MAD and SANE models. Each image shows time- and azimuth-

averaged density (left panels) and time slices at azimuth f = 0 (right panels).
The density is particularly variable in the MAD models, where the time slice is
not well approximated by the average state. The density is less variable in the
SANE models, where the time slice and average state are comparatively
similar.
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particle and is used to visualize the complicated vertical

structure of the flow. The figure shows one accretion stream
connecting the disk and the hole in the bottom right and the

launch of two new streams in the upper right.

4.2. Counterrotation and the Disk

As the black hole rotates, trapped magnetic field lines wind
around the polar axis and produce a Poynting jet via the BZ
mechanism. In the jet–disk boundary layer, however, the jet
field lines (that rotate with the hole) are mixed with disk field
lines (that rotate against the hole in retrograde models). This
interaction leads to an exchange of angular momentum via
magnetic and fluid stresses. Some of the infalling plasma then
acquires negative uf, i.e., its specific angular momentum aligns
with the black hole spin.
Exchange of angular momentum in the jet–disk boundary

layer is more noticeable in MAD models, where accretion
occurs in streams and where the magnetic field tends to be
stronger. In MAD models, the inhomogeneous flow magnifies
the effects of magnetic torques, since some equator-crossing
field lines are lightly loaded (in contrast to SANE models, in
which the equator-crossing field lines pass through a dense
disk). Moreover, the more concentrated magnetic flux tubes in
the MAD models can result in stronger torques (see Porth et al.
2021): when matter in the accretion stream with uf> 0
interacts with a flux tube with uf< 0, the plasma is rapidly
braked and its angular momentum is reversed. Figure 5 shows
an example of this interaction as counterrotating field lines
collide with the corotating field lines near the horizon. During
these events, the front edge of an accretion stream commonly
erodes and accelerates radially outwards.
The stronger angular momentum transfer in MAD flows

produces more disorder in the inner region of the accretion
flows. This difference between MAD and SANE models can be
seen in Figure 6, which plots the time-integrated distributions
of rest mass over uf, r and v r, r. The infalling matter
accelerates within the plunging region (close to the ISCO) in
both MAD and SANE flows, but the widths of the distribution

Figure 3. Azimuthal slice from an individual time slice of the aå = −0.94 retrograde MAD simulation. Left panel: log density of plasma near the black hole. Center
panel: log internal energy of the plasma u = ρT. Right panel: plasma magnetization σ = b2/ρ. The high σ, low-density conical regions around the poles are the jet
funnel. The disk is the low σ, high-density region near the midplane. The intermediate region between the funnel and the disk and with σ ≈ 1 is the corona. The
disordered accretion near the horizon is accentuated by streams of infalling plasma that are characteristic of MAD accretion.

Figure 4. Tracer particle position in the MAD, aå = −0.94 model, projected
onto the equatorial plane. Particle color varies linearly with local rest-mass
density. The event horizon is a gray sphere. The inner region of the accretion
flow is chaotic and characterized by plasma streams that break off the main disk
at large radius. Plasma streams experience large magnetic torques (uf may
change sign) as they plunge toward the horizon.
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of uf and vr at a given radius differ sharply: the MAD models
have larger width because they experience larger fluctuations.

4.3. Jet Wall Shape

In general, it is challenging to identify the jet–disk boundary
since there is no clear criterion that distinguishes matter in the
jet from matter in the disk (although proxy surfaces derived
from magnetization or the Bernoulli parameter have been used
in the past). Nevertheless, it is straightforward to find the
surface where uf= 0. Since uf has a definite sign in the jet, this
surface may be a reasonable tracer of the boundary.

Figure 7 shows an azimuthal time slice of plasma density
and angular momentum in the MAD a

å
=−0.94 simulation

and overplots the flow of the plasma. The lines change color at
the uf= 0 surface, which broadly separates outgoing matter
from infalling matter. The extended jet–disk boundary is
turbulent and mixes mass, angular momentum, and energy
between the two regions. Figure 8 plots time- and azimuth-
averaged uf for each of six models. We fit the uf= 0 surface
(within r< 30GM c

−2
) to z= ax

b and plot it as a dashed line.
Recall that the boundary produced from the (f, t)-averaged data
may not be a good approximation to the boundary at fixed f, t,
especially for MAD models. The parameters of the fit are
reported in Table 2.

In Figure 9, we plot 〈uf〉, where the brackets indicate an
average over time and azimuth versus elevation at four radii in
each of the simulations. In MAD flows, we see that the average
uf of matter in the midplane at θ= π/2 decreases with radius;
this makes sense since horizon-scale accretion flow is much
choppier in MADs. The average uf of the plasma tends to
increase with radius in both the disk and in the funnel. The
point where uf changes sign corresponds to the location of the
jet–disk boundary layer and roughly tracks the shape of the jet.
In our SANE simulations, the boundary layer is resolved by
16 zones at all radii, and the jet spans approximately 10 zones
at r= 20GM c−2 and approximately 40 zones at r= 2GM c−2.

The boundary layer in our MAD simulations spans approxi-
mately 30 zones at all radii, and the jet is resolved by between
20 and 60 zones at r= 20GM c

−2 and r= 2GM c
−2

respectively.

4.4. Mass Entrainment

The shear layer at the jet–disk boundary is episodically
unstable in our models. As instabilities develop, plasma from
the disk is transported across the boundary, reverses direction,
and is entrained into the jet. We use tracer particles to study
mass entrainment and track matter that passes through the
mixing region. The computational cost of tracking tracer
particles in the global flow over the course of the entire
simulation makes a full study prohibitively expensive. We
instead perform a single high-resolution, high-cadence study
that focuses on the evolution of approximately 3.2× 106

particles within the inner region of the accretion flow over a
500GM c−3 interval. We chose to consider a range of time in
the MAD a

å
=−0.94 model because it corresponded to an

active period when multiple KHI knots were easily visible.
Entrained particles satisfy two criteria: they begin with

v r< 0 and uf> 0, and they leave the simulation at the outer
boundary with uf< 0. In the mixing layer tracer particles may
repeatedly transition between the disk and jet; we define
entrainment to have happened for a tracer particle when its uf
and v r change sign for the last time. Because this definition of
entrainment depends on the worldline of a fluid parcel, it is not
immediately analogous to any quantity that can be directly
computed from the raw fluid data.
Figure 10 shows the computed mass entrainment rate over

time. We find that entrainment events occur in bursts
lasting∼100GM c−3. Mass loading occurs at an average rate

~ - M10 2 . Note that our definition produces a measurement
that does not count mass that has been injected by the
numerical floor prescription in the funnel: the tracer particles
are initialized once, so the application of floors during the

Figure 5. Interaction between disk and jet magnetic field lines. Magnetic field lines that intersect the disk at small radii are shown for two sequential time slices of the
plasma evolution. Field lines are sampled according to magnetization in the midplane. The colored surface shows the logarithm over two decades of density in the
midplane of the simulation, and the event horizon is plotted as a black circle in the center of the plane. Left panel: the same time slice as shown in Figure 4, rotated 45°
counterclockwise. Magnetic field lines emanating from the high-density region toward the left of the figure trace an accretion stream and are disk dominated. Magnetic
field lines that wind in the opposite direction make up a flux tube and are being pulled clockwise with the hole as it spins. The two sets of field lines are about to
collide. Right panel: same simulation approximately 50 GM c

−3 later. Disk-threading and funnel-threading magnetic field lines have interacted, and a much stronger
flux tube passes through the midplane in the low-density region to the right of the hole.
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subsequent evolution does not increase the number of the tracer

particles. We discard the beginning epoch of tracer data to

avoid including the floors’ effect on the transient tracer particle

initial condition.
In both the SANE and MAD models, mass entrainment is

driven by instabilities in the boundary between the accreting

plasma and the matter in the jet. Figure 11 plots log plasma

density on shells of constant radius over time and shows the

development of an instability: as the high-density midplane

disk region moves to the right, it interacts with the low-density

funnel plasma moving to the left and forms Kelvin–Helmholtz

(KH) rolls. Figure 12 plots density and specific angular

momentum in the central frame of Figure 11 in the θ− f plane
at three different radii. Evidently, the KH roll is well resolved.

We observe that KH rolls develop in all simulations

regardless of the accretion flow parameters; however, it is

especially apparent in the MAD flows, which have a more
turbulent boundary layer. Mass entrainment thus proceeds in

part through the KHI at the jet–disk boundary. Still, the full

structure of the jet–disk boundary layer is complicated, and

braked accretion streams near the event horizon also contribute

to mass loading.
We also use the tracer particles to visualize the flow of

matter through phase space. Figure 13 shows the time-averaged

flow of tracer particles in the radius/specific angular

momentum plane. Plasma density is represented by the density

and thickness of the white flow lines. Color denotes particle

speed in phase space and helps differentiate between the disk/
plunging region and the jet.
The flow at r< 20 can be divided into the three triangular

regions shown in Figure 13. Region A contains particles that

are falling toward the event horizon and gradually losing

angular momentum. It contains the plunging region (where the

figure is brightest), the disk, and the characteristic MAD

Figure 6. Distribution of matter in the angular momentum and radial velocity
vs. radius (uf − r and v

r
− r) planes for the four fiducial simulations. The gray

vertical line marks the ISCO. The color scale is linear and shows the
distribution of matter at each radius. In the SANE models the plasma lies on a
well-defined curve associated with Keplerian rotation as it accretes. In the
MAD models plasma is perturbed away from the disk even before it enters the
plunging region. Figure 7. Time slice of a MAD, a

å
= −0.94 model. Brightness shows plasma

density, color saturation encodes value of uf, and flow lines describe the
poloidal motion of the plasma. The jet–disk boundary is visible as the surface
where uf changes sign. Eddies tend to form at the jet–disk boundary as
infalling, positive uf matter interacts with outflowing, negative uf matter. The
sign of uf in the funnel is set by the sign of black hole spin.
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accretion streams seen in Figure 4. Region B is the disk wind.
Region C is the jet. Particles enter the jet from Region A, are
torqued until their angular momentum has the same sign as the
black hole, and then are accelerated outward. Particles gain
angular momentum as they accelerate away from the hole, as
expected in a sub-Alfvénic wind.

5. Discussion

We have studied a set of retrograde MAD and SANE black
hole accretion models. We found that the angular momentum
of plasma in both the jet and parts of the jet–disk boundary
layer is aligned with the spin of the hole. We also found that the
boundary layer region, in which uf transitions between its
value in the midplane and its value in the jet, was wider in
MAD models than in SANE models. This is unsurprising, since
MAD flows tend to be more chaotic near the horizon where
much of the jet–disk interaction occurs, so the time-averaged
boundary location is spread out. The existence of a shear layer
is not restricted to retrograde models, as noted in Section 2.2,

but we have focused on retrograde models because the shear is

strongest there.
As noted in Section 4.4, the jet–disk boundary is sufficiently

resolved to see the development of KH rolls; this strongly

suggests that numerical diffusion does not control the

entrainment rate. Nevertheless increasing the simulation

resolution may expose new structures, such as the plasmoids

seen in recent high-resolution axisymmetric models (Nathanail

et al. 2020; Ripperda et al. 2020).
To assess the effect of resolution we studied five different

realizations of a MAD aå=−0.94 model at four resolutions: one

at 192 radial zones, one at 288, two at 384, and one at 448

(resolution in other coordinates is scaled proportionately). We

include multiple realizations at the same resolution to assess the

error bars on measurements associated with turbulent fluctua-

tions. We consider convergence in two time-averaged quantities:

Figure 8. Density-weighted poloidal profile of uf for each of the four fiducial
models after time and azimuthal averaging. The black circle at the origin marks
the extent of the event horizon. All simulations have a similar structure: a
parabolic jet (boundary defined by uf = 0) and a peak in uf away from
the pole.

Table 2

Funnel Wall (uf = 0 surface) Fit Parameters

ID a b

Sa-0.5 0.22 1.8

Sa-0.94 0.18 1.8

Ma-0.5 0.07 2

Ma-0.94 0.1 2

Note. Best fit parameters of the z = Ax b model for the location of the zero

angular momentum surface in the GRMHD models.

Figure 9. Profile of uf vs. elevation at r = 2, 5, 10, and 20 GM c−2 for each of
the models in Figure 8. Notice that uf < 0 implies angular momentum aligned
with the black hole. The average uf of plasma at small radii is smaller in MAD
models than SANE models. The latitude of the shear layer within which uf
changes sign increases with radius, corresponding to a narrowing jet. The
(average) shear layer is wider for MAD models because their jet–disk
boundaries fluctuate over a wider range in latitude. As matter flows out in the
jet, magnetic torques increase uf.
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the profiles of uf presented in Figure 9 and the total mass in the
jet near the hole as measured from the GRMHD.

The time-averaged specific angular momentum profile
( )qá ñfu r, is remarkably consistent across all resolutions

everywhere except in the zones adjacent to the polar boundary,
where we do not necessarily expect agreement because of our

treatment of the boundary condition. In the shear region, the
profiles are consistent to 5% and exhibit no discernible trend
with resolution.
We compute the total mass in the jet near the hole by

integrating the GRMHD density variable within a volume V

( ) ( )ò r q fº -M t g dr d d , 20
V

j

where we have chosen V to be the region with uf< 0 and

v r> 0 at 2< r< r*= 20. Note that Mj(t) has contributions

from both mass entrainment and numerical floors. The time-

dependent variation in the entrainment rate (see Figure 10)

causes Mj(t) to fluctuate, so evaluations of the time-averaged

〈Mj(t)〉t are subject to noise. We find that Mj(t) has a correlation

time≈200GM c−3 in the MAD aå=−0.94 model. The full

model duration is 20,000GM c−3, but the first 5,000GM c−3 is

an unequilibrated transient, so we have N∼ 80 independent

samples over the full model; therefore, we expect fractional

errors of order N−1/2
∼10%. We find that 〈Mj(t)〉= 140, 130,

160, and 130 for simulations with radial resolution 192, 288,

384, and 448 respectively, which is consistent with the

expected error. We also note that the widths of the jet and

boundary-layer regions (in zones) reported in Section 4.3 scales

linearly with the simulation resolution.
There may be additional mixing processes that occur on

unresolved scales, so the consistency of Mj across resolutions
does not prove that we have accurately accounted for mass
mixing between the jet and disk. Future convergence studies
should probe not only longer timescales to reduce the
fluctuation noise but also higher resolution.

Figure 10. Histogram showing when tracer particles are entrained into the jet over a brief interval in the MAD a
å
= −0.94 model. Entrainment is conservatively

defined to only include particles that begin in the disk region and end at large radius with positive v r. This definition discounts particles that spend time in the mixing
region but ultimately fall onto the hole. In this MAD model and by these criteria, entrainment is evidently a stochastic process that is characterized by periods of
increased entrainment corresponding to times when instabilities form and break at horizon scales.

Figure 11. Logarithm over two decades of density on r ≈ 1.5 M slices for the MAD aå = −0.94 model at five times separated byΔt = 25 M. Matter in the jet near the
poles flows clockwise from above (left on the page), and matter in the midplane flows counterclockwise (right on the page). The boundary between the funnel and the
midplane results in the development of an unstable shear layer. A KH roll develops in the shear layer over the sequence of panels.

Figure 12. Left panels: log over two decades of density in the θ − f plane for
shells at r = 1.5, 3, and 40 GM c

−2. Right panels: same shells as left showing
logarithm over two decades of uf with uf > 0 blue and red otherwise. These
plots are from the central time slice of Figure 11, for the MAD aå = −0.94
model. The flow becomes increasingly chaotic at smaller radii; however, the
shear layer between the disk and funnel persists, and the funnel region
consistently has uf < 0, indicating corotation with the hole.
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We also note that since the equilibration time increases with

radius, the long-term average jet–disk interaction may be

poorly represented at large radii where the disk is still strongly

dependent on initial conditions. We have chosen to overstep

this issue by only reporting fits and statistics from equilibrated

parts of our simulations. Chatterjee et al. (2019) also studied

mass loading in their study of black hole jet launching. They

performed multiple long-time, large-scale ( -r GM c10max
5 2)

2D GRMHD simulations and found that additional mass

entrainment occurred at large radii. As noted above, the details

of the jet–disk interaction at such large radii may be influenced

by the choice of initial condition.

6. Summary

We have studied a set of three-dimensional GRMHD

simulations of retrograde SANE and MAD black hole accretion

disks at a
å
=−0.5 and −0.94, with a focus on the jet–disk

boundary near the horizon. We have found that:

1. Plasma in the jet rotates with the hole and not the disk.

This generates a jet–disk boundary with strong currents

and vorticity.
2. In MAD models, accretion occurs through narrow plasma

streams near the horizon. These streams erode as they

interact with the counterrotating jet, loading the jet with

plasma.
3. In both MAD and SANE models, disk plasma is

entrained in the jet in well-resolved KH rolls.
4. The entrainment rate is ~ M0.01 for the MAD,

aå=−0.94 model that we study in detail.
5. The entrainment rate and boundary-layer structure are

insensitive to resolution over the range in resolution we

are able to study.

6. In retrograde MAD models accretion near the horizon
fluctuates strongly: individual time slices do not look like
time- and azimuth-averaged data. Relatedly, the jet in
MAD models wobbles significantly. The fluctuations
produce a complicated interface between jet and disk.

This study has considered a limited range of models and
could be extended by comparing a broader range of black hole
spins and tilts between the hole and the accretion flow.
Understanding the behavior of jet plasma and the jet–disk
boundary layer may be crucial in developing a robust model of
the connection between black hole spin and motion in the jet,
which can now be resolved in time and space by the EHT.
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Figure 13. Time-averaged flow of tracer particles through the r − uf state space. The gray hatched region at the left of the figure lies within the horizon. The
background shows a false-color representation of the average speed of the particles through the two-dimensional state space and helps to visually differentiate the disk
(region A), disk wind (region B), and jet (region C). The density of white lines is proportional to the density of particles in state space; for the purposes of
visualization, the density is capped for regions in the disk that have large density. Average particle flow follows the thin white lines. As particles are entrained in the jet
they cross uf = 0 and are then torqued and accelerate outwards.
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Software:NumPy (Oliphant 2015), OpenCV (Bradski 2000),
Matplotlib (Hunter 2007).

Appendix
FMKS Coordinates

The simulations in this paper were performed in funky modified
Kerr–Schild (FMKS) coordinates ( )=mx x x x x, , ,0 1 2 3 , which are
an extension to the modified Kerr–Schild (MKS) coordinates
introduced in Gammie et al. (2003). Positive integer superscripts in
this section should be interpreted as indices, not exponents. MKS
coordinates are themselves a modification of the horizon-
penetrating KS ( )q f=mx t r, , , . Modifications were chosen to
both reduce computational cost and increase effective resolution by
concentrating zones in regions of the domain where more
interesting physics occurs (like the midplane and near the horizon
at small radii) and derefining unnecessary small zones. Each of
FMKS, MKS, and KS is axisymmetric in f.

Both MKS and FMKS coordinates use an exponential radial
coordinate ( )ºx rlog1 , which increases the number of zones at
small radii where both the relevant dynamical timescale is
shorter and it is more important to recover the detailed
dynamics of the flow.

FMKS makes two modifications to the elevation coordinate
x2. The first reproduces MKS and increases the number of
zones near the midplane by introducing a sinusoidally varying
dependence of Δθ on x2 on , as

( ) ( ) ( )q p pº + -x h x
1

2
1 sin 2 , A1g

2 2

where h is the midplane finification parameter, which we set

to h= 0.3.
FMKS also introduces a cylindrification in θ whereby zones

that are near the poles but are at small radii have larger
elevational extent. This choice is meant to increase the required
numerical time step, which is set by the minimum of the signal-
crossing time over all zones. The signal-crossing time in zones
near the funnel often approaches the speed of light, and thus
this fact combined with the structure of spherical geometry
(which keeps the number of azimuthal zones constant
regardless of θ) results in many small zones with fast signal
speeds. Thus, through cylindrification, we increase the size of
the smallest zones and similarly gain an increase in time step.
The cylindrification is achieved by defining
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is a normalization term. Finally, the elevation coordinate is

[ ]( ) ( )q q q q= + - D -s xexp , A4g j g
1

where [ ]D = -x x rlog1 1
in measures the FMKS distance from

the inner edge of the simulation. In our simulations, we take

s= 0.5, B= 0.82, and α= 14.
We do not believe that the above coordinate definition is

analytically invertible for ( )m mx x . This is not a problem for

codes that compute quantities numerically; however, for codes
that require analytic forms of, e.g., the connection coefficients,
these must either be computed beforehand otherwise a
nonlinear root finding step may be required to map KS
locations into FMKS locations (e.g., if ray tracing).
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