THE JET SCHEME OF A MONOMIAL SCHEME

Russell A. Goward, Jr.
Department of Mathematics, University of District of Columbia, Washington, DC, USA
Karen E. Smith
Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
We explicitly compute the equations and components of the jet schemes of a monomial subscheme of affine space from an algebraic perspective.

Key Words: Jet schemes; Monomials.

Mathematics Subject Classification: 13P99; 14Q99.

1. INTRODUCTION

Jet schemes have recently generated new interest in commutative algebra because of their appearance in Konstevich's theory of Motivic integration; see, for example, Kontsevich (1995), Blickle (2006), Denef and Loeser (2001), Looijenga (2002) and Mustaţă (2001). Still, little has been done in the way of explicit calculation of examples. In this note, we begin by explicitly calculating the very simple case of jet schemes of monomial schemes from an algebraic perspective, computing the components and the defining equations for the reduced subschemes of these jet schemes. Interestingly, although the jets schemes of a monomial ideal are not themselves monomial in a natural sense, their reduced subschemes are.

Let X be a scheme of finite type over a field k. Fix a non-negative integer m. An m-jet of X / k is a map of k-schemes

$$
\psi: \operatorname{Spec} k[t] /\left(t^{m+1}\right) \longrightarrow X
$$

The collection of all m-jets on X forms a scheme in a natural way, called the m th jet scheme of X, and denoted by $\mathscr{f}_{m}(X)$. For background on jet schemes, see for example, Mustaţă (2001) or Blickle (2006).

[^0]Let $X=\operatorname{Spec} k\left[x_{1}, \ldots, x_{n}\right] / I$ be an affine scheme. To explicitly compute the jet schemes $\mathscr{F}_{m}(X)$ of X, note that an m-jet is equivalent to a k-algebra homomorphism

$$
\phi: k\left[x_{1}, \ldots, x_{n}\right] / I \longrightarrow k[t] /\left(t^{m+1}\right) .
$$

Fixing a set of generators f_{1}, \ldots, f_{r} for the ideal I, the map ϕ is completely determined by where it sends the coordinates x_{i},

$$
\begin{gathered}
x_{1} \longmapsto x_{1}^{(0)}+x_{1}^{(1)} t+x_{1}^{(2)} t^{2}+\cdots+x_{1}^{(m)} t^{m} \\
x_{2} \longmapsto x_{2}^{(0)}+x_{2}^{(1)} t+x_{2}^{(2)} t^{2}+\cdots+x_{2}^{(m)} t^{m} \\
\vdots \\
x_{n} \longmapsto x_{n}^{(0)}+x_{n}^{(1)} t+x_{n}^{(2)} t^{2}+\cdots+x_{n}^{(m)} t^{m} .
\end{gathered}
$$

Of course, the relations

$$
\begin{equation*}
f_{i}\left(x_{1}^{(0)}+x_{1}^{(1)} t+\cdots+x_{1}^{(m)} t^{m}, \ldots, x_{n}^{(0)}+x_{n}^{(1)} t+\cdots+x_{n}^{(m)} t^{m}\right)=0 \tag{1}
\end{equation*}
$$

must hold for each f_{i} in our chosen set of generators. Write the polynomials (1) in the form

$$
f_{i}^{(0)}+f_{i}^{(1)} t+f_{i}^{(2)} t^{2}+\cdots+f_{i}^{(m)} t^{m},
$$

where the $f_{i}^{(j)}$ are polynomials in the $x_{i}^{(j)}$. Then the m th jet scheme $\mathscr{f}_{m}(X)$ is defined by the polynomials $f_{k}^{(l)}$ (where k ranges from 1 to r and l ranges from zero to m) in the coordinates $x_{i}^{(j)}$ (where i ranges from 1 to n and j ranges from zero to m). We will denote by $J_{m}(I)$ the ideal of this jet scheme, that is, $J_{m}(I)$ is the ideal generated by the $f_{k}^{(l)}$ in the polynomial ring $k\left[x_{i}^{(j)}\right]$.

Thus the question we ask is: What can be said about the ideal $J_{m}(I)$ when I is a monomial ideal?

Example 1. The first jet scheme of the scheme defined by the monomial $x y$ is defined by the two equations $x^{(0)} y^{(0)}$ and $x^{(0)} y^{(1)}+x^{(1)} y^{(0)}$. This ideal is not monomial in the coordinates $x^{(0)}, x^{(1)}, y^{(0)}, y^{(1)}$. However, it is easy to check that its minimal primes are $\left(x^{(0)}, x^{(1)}\right),\left(x^{(0)}, y^{(0)}\right)$, and $\left(y^{(0)}, y^{(1)}\right)$, and therefore its radical is the monomial ideal $\left(x^{(0)} y^{(0)}, x^{(0)} y^{(1)}, x^{(1)} y^{(0)}\right)$.

In this simple example, we can already see that the jet scheme of a monomial scheme is not defined by monomials (in the "obvious" coordinates). However, the corresponding reduced subscheme is monomial. Below we prove that this is a general phenomenon, computing the corresponding coordinate subspaces explicitly at least in simple cases. This suggests basic questions that we have not yet studied in detail: What are the multiplicities along the various components? Can one describe an explicit primary decomposition? We believe that these and other questions are worth investigating.

2. THE CASE OF A REDUCED MONOMIAL SCHEME

Although the arguments are similar, for the sake of clarity we treat first separately the case of a reduced monomial scheme. In this case, we also get a slightly sharper result.

Theorem 2.1. Let I be an ideal generated by square-free monomials in coordinates x_{1}, \ldots, x_{n}. Then $\sqrt{J_{m}(I)}$ is a square-free monomial ideal in the coordinates $x_{1}^{(0)}, \ldots, x_{1}^{(m)}, x_{2}^{(0)} \ldots x_{2}^{(m)}, \ldots, x_{n}^{(0)} \ldots x_{n}^{(m)}$. The generators can be described as follows: for each monomial minimal generator of I, say $x_{1} \ldots x_{r}$ after relabeling, the monomials

$$
x_{1}^{\left(i_{1}\right)} \ldots x_{r}^{\left(i_{r}\right)} \quad \text { where } \sum i_{j} \leq m
$$

are minimal monomial generators of $\sqrt{J_{m}(I)}$. The collection of all such monomials as we range through the minimal monomial generators of I is a generating set for the radical of $J_{m}(I)$.

The following lemma reduces the proof of Theorem 2.1 to the hypersurface case.
Lemma 2.1. If I and J are monomial ideals in a polynomial ring, then $\sqrt{(I+J)}=$ $\sqrt{I}+\sqrt{J}$.

Proof. Since $\sqrt{I}+\sqrt{J} \subset \sqrt{I+J}$ in general, it remains to check the reverse inclusion in the monomial case. But since $\sqrt{(I+J)}=\sqrt{(\sqrt{I}+\sqrt{J})}$ in general, it suffices to show that $\sqrt{(\sqrt{I}+\sqrt{J})}=\sqrt{I}+\sqrt{J}$ for monomial ideals. This follows because a monomial ideal is radical if and only if it is generated by square-free monomials.

Thus Theorem 2.1 follows from the following result.
Theorem 2.2. Let I be the principal monomial ideal generated by $x_{1} \ldots x_{r}$. Then:

1. The minimal primes P of $\sqrt{J_{m}(I)}$ are exactly the primes of the form

$$
\begin{equation*}
P=\left(x_{1}^{(0)}, x_{1}^{(1)}, \ldots, x_{1}^{\left(t_{1}\right)}, x_{2}^{(0)}, x_{2}^{(1)}, \ldots, x_{2}^{\left(t_{2}\right)}, \ldots, x_{r}^{(0)}, \ldots, x_{r}^{\left(t_{r}\right)}\right) \tag{2}
\end{equation*}
$$

where $-1 \leq t_{i} \leq m$ and $\sum_{i=1}^{r} t_{i}=m+1-r$. (Here, we adopt the convention that the value $t_{i}=-1$ means the variable x_{i} doesn't appear at all.)
2. The ideal $\sqrt{J_{m}(I)}$ is the monomial ideal generated by the monomials

$$
\begin{equation*}
x_{1}^{\left(i_{1}\right)} \ldots x_{r}^{\left(i_{r}\right)}, \quad \text { where } i_{j} \in \mathbf{N} \text { and } \quad \sum i_{j} \leq m . \tag{3}
\end{equation*}
$$

For future reference, we isolate the following simple calculation as a lemma.
Lemma 2.2. The polynomials defining the mth jet scheme of the scheme defined by the monomial $x_{1} \ldots x_{r}$ are

$$
g_{k}=\sum_{\sum i_{j}=k} x_{1}^{\left(i_{1}\right)} x_{2}^{\left(i_{2}\right)} \ldots x_{r}^{\left(i_{r}\right)}
$$

where $0 \leq i_{j} \leq m$ and $0 \leq k \leq m$.

Proof. This follows easily by expanding the products

$$
\left(x_{1}^{(0)}+x_{1}^{(1)} t+\cdots+x_{1}^{(m)} t^{m}\right) \cdots\left(x_{r}^{(0)}+x_{r}^{(1)} t+\cdots+x_{r}^{(m)} t^{m}\right)
$$

and examining the coefficient of t^{k} for each $k=0, \ldots, m$.
Proof of Theorem 2.2. To prove statement 1 , we induce on m. Suppose $m=0$. Then we have $J_{0}=\left(x_{1}^{(0)} x_{2}^{(0)} \ldots x_{r}^{(0)}\right)$ and so $\sqrt{J_{0}}=\bigcap_{i=1}^{N}\left(x_{i}^{(0)}\right)$.

Now suppose statement 1 is true for $m-1$. Then the minimal primes of $\sqrt{J_{m-1}}$ are of the form (2), where $-1 \leq t_{i} \leq m-1$ and $\sum t_{i}=m-r$. Let Q be a prime containing J_{m}. Since $J_{m-1} \subset J_{m}, Q$ must contain a minimal prime of J_{m-1}. By induction, then, Q contains at least one prime ideal P of the form (5) above where $-1 \leq t_{i} \leq m-1$ and $\sum t_{i}=m-r$. Fix the indices t_{1}, \ldots, t_{r} corresponding to this prime P.

With notation as in Lemma 2.2, the generators g_{0}, \ldots, g_{m-1} for J_{m-1} are in P and hence in Q. The only remaining generator for $J_{m}(I)$ is the polynomial $g_{m}=$ $\sum_{\sum_{i}=m} x_{1}^{\left(i_{1}\right)} x_{2}^{\left(i_{2}\right)} \ldots x_{r}^{\left(i_{r}\right)}$. If some term of g_{m} fails to be in P, then it is of the form $x_{1}^{\left(i_{1}\right)} x_{2}^{\left(i_{2}\right)} \ldots x_{r}^{\left(i_{r}\right)}$ where each $i_{j} \geq t_{j}+1$, for $1 \leq j \leq r$. This implies $m=\sum_{j=1}^{r} i_{j} \geq$ $\sum_{j=1}^{r}\left(t_{j}+1\right)=\sum_{j=1}^{r} t_{j}+r$, which is equal to m by our assumption above. The only way this can happen is that each i_{j} is equal to $t_{j}+1$, for $1 \leq j \leq r$. Therefore, every term of g_{m} is in P except the one term

$$
\begin{equation*}
x_{1}^{\left(t_{1}+1\right)} x_{2}^{\left(t_{2}+1\right)} \ldots x_{r}^{\left(t_{r}+1\right)} \tag{4}
\end{equation*}
$$

Since $g_{m} \in Q$ and $P \subset Q$, it follows that the term (4) is in the prime ideal Q. Therefore, Q must contain $x_{j}^{\left(t_{j}+1\right)}$ for some j between 1 and r. In particular, a minimal prime Q of J_{m} must therefore be of the form $P+\left(x_{j}^{\left(t_{j}+1\right)}\right)$ for some j. This shows that Q has the desired form and also that each of the ideals of this form is a minimal prime of $\sqrt{J_{m}(I)}$.

To prove statement 2, we first recall that the radical of any ideal is equal to the intersection of its minimal primes; thus statement 1 implies that $\sqrt{J_{m}(I)}$ is a monomial ideal. Now note that the monomials $x_{1}^{\left(i_{1}\right)} \cdots x_{r}^{\left(i_{r}\right)}$ such that $\sum i_{j} \leq m$ are precisely the terms of the generators g_{k} for $J_{m}(I)$. Since every monomial ideal containing g_{1}, \ldots, g_{k} must contain all these terms, it follows that the monomials of the form (3) are all contained in $\sqrt{\left(g_{1}, \ldots, g_{k}\right)}=\sqrt{J_{m}(I)}$. On the other hand, since these monomials are all square free, they generate a radical ideal containing $J_{m}(I)$. Thus this is the smallest radical ideal containing $J_{m}(I)$, and hence must be $\sqrt{J_{m}(I)}$ exactly. The theorem is proven.

It follows that the reduced subscheme of the m th jet scheme of a reduced monomial hypersurface defined by $x_{1} \cdots x_{r}$ in affine n-space is equidimensional of codimension $m+1$ in affine $n(m+1)$ space. One checks that the number of its components is

$$
\binom{m+r}{m+1}
$$

Indeed, the number of its components is the same as the number of ways to choose r numbers between 1 and $m+1$ whose sum is $m+1$. But because this is the same as the coefficient of x^{m+1} in $\left(1+x+x^{2}+\cdots\right)^{r}$, the desired formula follows from the (formal) binomial theorem after substituting the expression $\frac{1}{1-x}$ for the power series $1+x+x^{2}+\cdots$.

3. THE GENERAL CASE

Theorem 3.1. If I is generated by monomials in coordinates x_{1}, \ldots, x_{n}, then $\sqrt{J_{m}(I)}$ is a square-free monomial ideal in the coordinates $x_{i}^{(j)}$ where $1 \leq i \leq n$ and $0 \leq j \leq m$. The generators can be described as follows: for each monomial minimal generator of I, say $x_{1}^{a_{1}} \ldots x_{r}^{a_{r}}$ after relabeling, the monomials

$$
\sqrt{x_{1}^{\left(i_{1}\right)} x_{1}^{\left(i_{2}\right)} \ldots x_{1}^{\left(i_{a_{1}}\right)} x_{2}^{\left(i_{a_{1}+1}\right)} \ldots x_{2}^{\left(i_{a_{1}+a_{2}}\right)} x_{3}^{\left(i a_{1}+a_{2}+1\right)} \ldots x_{r}^{\left(i_{\left.a_{1}+\ldots+a_{r}\right)}\right.}} \quad \text { where } \sum i_{j} \leq m
$$

are monomial generators of $\sqrt{J_{m}(I)}$. The collection of all such monomials as we range through the minimal monomial generators of I is a generating set for $\sqrt{J_{m}(I)}$.

Remark. It is not true that $\sqrt{J}_{m}(I)=\sqrt{J}_{m}(\sqrt{I})$. See Example 2 below.
As in the square-free case, Theorem 3.1 follows from the following.
Theorem 3.2. Let I be a monomial ideal generated by $x_{1}^{a_{1}} \ldots x_{r}^{a_{r}}$. Then the minimal primes of $J_{m}(I)$ are precisely the minimal members of the set of ideals

$$
\begin{equation*}
\left(x_{1}^{(0)}, x_{1}^{(1)}, \ldots, x_{1}^{\left(t_{1}\right)}, x_{2}^{(0)}, \ldots, x_{2}^{\left(t_{2}\right)}, \ldots, x_{r}^{(0)}, \ldots, x_{r}^{\left(t_{r}\right)}\right) \tag{5}
\end{equation*}
$$

where $-1 \leq t_{i} \leq m$ (with the convention that $t_{i}=-1$ means that the variable x_{i} doesn't appear $)$, and $\sum a_{i}\left(t_{i}+1\right) \geq m+1$.

Proof. We again induce on m. The result being easy to verify when $m=0$, we assume it holds for $m-1$ and consider $J_{m}(I)$. Its generators are the polynomials $g_{0}, g_{1}, \ldots, g_{m}$, where

$$
g_{h}=\sum_{\sum i_{k}=h} x_{1}^{\left(i_{1}\right)} x_{1}^{\left(i_{2}\right)} \ldots x_{1}^{\left(i_{a_{1}}\right)} x_{2}^{\left(i_{a_{1}+1}\right)} \ldots x_{2}^{\left(i_{a_{1}+a_{2}}\right)} x_{3}^{\left(i_{a_{1}+a_{2}+1}\right)} \ldots x_{r}^{\left(i_{\left.a_{1}+\ldots+a_{r}\right)}\right.}
$$

here the sum is taken over all possible choices of the indices $\left(i_{1}, \ldots, i_{a_{1}+\cdots+a_{r}}\right)$ with each i_{k} non-negative and all the i_{k} summing to h. This is proven in exactly the same way as Lemma 2.2.

Fix a minimal prime Q containing $J_{m}(I)$. Since $J_{m-1}(I) \subset J_{m}(I)$, we know that some minimal prime P of $J_{m-1}(I)$ is contained in Q. By induction, this prime has the form

$$
\left(x_{1}^{(0)}, x_{1}^{(1)}, \ldots, x_{1}^{\left(t_{1}\right)}, x_{2}^{(0)}, \ldots, x_{2}^{\left(t_{2}\right)}, \ldots, x_{r}^{(0)}, \ldots, x_{r}^{\left(t_{r}\right)}\right)
$$

where $\quad-1 \leq t_{i} \leq m-1$ and $\sum a_{i}\left(t_{i}+1\right) \geq m$. Fix the indices t_{1}, \ldots, t_{r} corresponding to this prime P.

Since $J_{m-1}(I) \subset P$, we know that P already contains all the generators g_{i} for $J_{m}(I)$ except possibly g_{m}. Consider the polynomial g_{m}

$$
\begin{equation*}
\sum_{\sum i_{k}=m} x_{1}^{\left(i_{1}\right)} x_{1}^{\left(i_{2}\right)} \ldots x_{1}^{\left(i_{a_{1}}\right)} x_{2}^{\left(i_{a_{1}+1}\right)} \ldots x_{2}^{\left(i_{a_{1}+a_{2}}\right)} x_{3}^{\left(i_{a_{1}+a_{2}+1}\right)} \ldots x_{r}^{\left(i_{\left.a_{1}+\ldots+a_{r}\right)}\right)} \tag{6}
\end{equation*}
$$

If some term of g_{m} fails to be in P, then it is of the form

$$
\begin{equation*}
x_{1}^{\left(j_{1}\right)} x_{1}^{\left(j_{2}\right)} \ldots x_{1}^{\left(j_{a_{1}}\right)} x_{2}^{\left(j_{a_{1}+1}\right)} \ldots x_{2}^{\left(j_{a_{1}+a_{2}}\right)} x_{3}^{\left(j_{a_{1}+a_{2}+1}\right)} \ldots x_{r}^{\left(a_{\left.a_{1}+\ldots+a_{r}\right)}\right)} \tag{7}
\end{equation*}
$$

for some fixed indices $j_{1}, \ldots, j_{a_{1}+\cdots+a_{r}}$ summing to m. Permuting the factors if necessary, we may assume that each $j_{a_{k}}$ is minimal among the other superscripts on x_{k} in this expression. Then the failure of the term (7) to be in P is equivalent to each $j_{a_{k}} \geq t_{k}+1$, for $k=1, \ldots, r$. In this case we compute that

$$
m=\sum_{i=1}^{a_{1}+\cdots+a_{r}} j_{i} \geq \sum_{k=1}^{r} a_{k}\left(t_{k}+1\right)
$$

which is greater than or equal to m by our inductive assumption above. This can happen if and only if we have equality all along-that is, each superscript j_{i} attached to each x_{k} is equal to $j_{a_{k}}=t_{k}+1$. Therefore, every term of g_{m} is in P except possibly one term of the form

$$
\begin{equation*}
\left(x_{1}^{\left(t_{1}+1\right)}\right)^{a_{1}}\left(x_{2}^{\left(t_{2}+1\right)}\right)^{a_{2}} \cdots\left(x_{r}^{\left(t_{r}+1\right)}\right)^{a_{r}} ; \tag{8}
\end{equation*}
$$

Note that this monomial is a term of g_{m} if and only if $\sum a_{k}\left(t_{k}+1\right)=m$. Indeed, although certain monomials in the sum (6) appear more than once, a monomial of the form (8) appears at most once and hence does not cancel in any characteristic.

Now, if $\sum a_{k}\left(t_{k}+1\right)>m$, then no term of the form (8) appears in g_{m} and every term of g_{m} is in P; thus $Q=P$ is a minimal prime of $J_{m}(I)$ as well as $J_{m-1}(I)$. Clearly, then Q has the desired form (5). Conversely, in this case, such a P clearly contains all the terms of the generators of $J_{m}(I)$ and so is a prime containing $J_{m}(I)$.

Finally, if $\sum a_{k}\left(t_{k}+1\right)=m$, then the calculation above shows that ideal P already contains all the terms of all the generators of $J_{m}(I)$ except for $\left(x_{1}^{\left(t_{1}+1\right)}\right)^{a_{1}}\left(x_{2}^{\left(t_{2}+1\right)}\right)^{a_{2}} \cdots\left(x_{r}^{\left(t_{r}+1\right)}\right)^{a_{r}}$. Therefore Q must be of the form $P+\left(x_{k}^{\left(t_{k}+1\right)}\right)$ for some k between 1 and r, and so has the desired form. Conversely, every ideal of this form is a prime ideal containing $J_{m}(I)$. This completes the proof.

Example 2. Let $I=\left(x^{2} y\right)$. Then one computes that the first few defining equations of the jets schemes are

$$
\begin{aligned}
& g_{0}=x_{0}^{2} y_{0} \\
& g_{1}=x_{0}^{2} y_{1}+2 x_{0} x_{1} y_{0} \\
& g_{2}=x_{0}^{2} y_{2}+2 x_{0} x_{1} y_{1}+2 x_{0} x_{2} y_{0}+x_{1}^{2} y_{0} \\
& g_{3}=x_{0}^{2} y_{3}+2 x_{0} x_{1} y_{2}+x_{1}^{2} y_{1}+2 x_{0} x_{2} y_{1}+2 x_{1} x_{2} y_{0}+2 x_{0} x_{3} y_{0}
\end{aligned}
$$

where for the sake of sanity we have used subscripts instead of superscripts here, i.e,, $x_{i}=x^{(i)}$. Then

$$
\begin{aligned}
& \sqrt{J_{0}(I)}=\left(x_{0}\right) \cap\left(y_{0}\right) \\
& \sqrt{J_{1}(I)}=\left(x_{0}\right) \cap\left(y_{0}, y_{1}\right) \\
& \sqrt{J_{2}(I)}=\left(x_{0}, y_{0}\right) \cap\left(x_{0}, x_{1}\right) \cap\left(y_{0}, y_{1}, y_{2}\right) \\
& \sqrt{J_{3}(I)}=\left(x_{0}, y_{0}, y_{1}\right) \cap\left(x_{0}, x_{1}\right) \cap\left(y_{0}, y_{1}, y_{2}, y_{3}\right) .
\end{aligned}
$$

Note that unlike the case of a square-free monomial ideal, some coordinate subspaces can appear as components of the m th jet scheme for different m. Likewise, we see that the jet schemes of a nonreduced monomial scheme are not typically equidimensional. Finally, we can write down the defining equations of these reduced jet schemes:

$$
\begin{aligned}
& \sqrt{J_{0}(I)}=\left(x_{0} y_{0}\right) \\
& \sqrt{J_{1}(I)}=\left(x_{0} y_{0}, x_{0} y_{1}\right) \\
& \sqrt{J_{2}(I)}=\left(x_{0} y_{0}, x_{0} y_{1}, x_{1} y_{0}, x_{0} y_{2}\right) \\
& \sqrt{J_{3}(I)}=\left(x_{0} y_{0}, x_{0} y_{1}, x_{1} y_{0}, x_{0} y_{2}, x_{0} y_{3}, x_{1} y_{1}\right) .
\end{aligned}
$$

It is interesting to see explicitly that even in characteristic two, the generators for $\sqrt{J_{m}(I)}$ are simply the monomial terms of the generators for $J_{m}(I)$. This mystery is resolved by noticing that any term of g_{h} that cancels in characteristic two is a multiple of a (noncanceling) term in some earlier g_{i}.

Remark 3.3. One can also look at the irreducible components of the jet schemes of a monomial ideal from a more combinatorial point of view as follows. After extending scalars we may assume the field is algebraically closed. If one is interested only in the reduced scheme structure of the jet schemes, it is enough to understand when an m-jet on the ambient affine space lies in the m th jet scheme of the scheme defined by the monomial ideal I. Recall that the Newton polyhedron P_{I} of I is the convex hull of all those exponents u in $\mathbf{N}^{\mathbf{n}}$ such that X^{u} is in I. Denote by Q_{I} the polyhedron

$$
Q_{I}=\left\{w \in Q_{+}^{n} \mid \sum_{i} u_{i} w_{i} \geq 1 \text { for all } u \in P_{I}\right\}
$$

If an m-jet vanishes with order a_{i} along the hyperplane $X_{i}=0$, then the condition for that jet to lie over the m th jet scheme of I is as follows: for every monomial X^{u} in I, we have $\sum_{i} a_{i} u_{i} \geq m+1$. This shows that the set of m-jets γ on the affine space lying over the m th jet scheme of I is equal to $\bigcup_{a \in \mathbf{N}^{\mathrm{n}}} C_{a}$, where

$$
C_{a}=\left\{\gamma \mid \operatorname{ord} \gamma^{*}\left(X_{i}\right) \geq a_{i}\right\},
$$

and where the union is taken over all $a \in \mathbf{N}^{\mathbf{n}}$ such that a lies in $(m+1) Q_{I}$. Since every C_{a} is irreducible, and $C_{a} \subset C_{b}$ if and only if $b_{i} \leq a_{i}$ for every i, it follows that
the irreducible components of the m th jet scheme of I correspond precisely to those a such that a is in $(m+1) Q_{I}$ and a is minimal with respect to this property.

ACKNOWLEDGMENT

The authors express special thanks to the referee of this article, who contributed Remark 3.3. Thanks also to David Kausch for help with binomial coefficients. The first author was partial supported by an NSF VIGRE grant. The second author was partially supported by NSF grant 00-70722.

REFERENCES

Blickle, M. (2006). A Short Course on Geometric Motivic Integration. Notes available at www.mabli.org/jet.html. Website accessed March 14, 2006.
Denef, J., Loeser, F. (2001). Geometry on arc spaces of algebraic varieties. In: European Congress of Mathematics. Vol. I. (Barcelona, 2000). Progr. Math. 201. Basel: Birkhuser, pp. 327-348,
Kontsevich, M. (1995). Motivic Integration. Lecture at Orsay.
Looijenga, E. (2002). Motivic measures. Séminaire Bourbaki, Vol. 1999/2000. Astérisque 276:267-297.
Mustaţă, M. (2001). Jet schemes of locally complete intersection canonical singularities. Invent. Math. 145(3):397-424.

[^0]: Received November 29, 2004; Revised July 26, 2005. Communicated by I. Swanson.
 Address correspondence to Karen E. Smith, Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA; Fax: (734) 763-0937; E-mail: kesmith@umich.edu

