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We explicitly compute the equations and components of the jet schemes of a monomial
subscheme of affine space from an algebraic perspective.
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1. INTRODUCTION

Jet schemes have recently generated new interest in commutative algebra
because of their appearance in Konstevich’s theory of Motivic integration; see, for
example, Kontsevich (1995), Blickle (2006), Denef and Loeser (2001), Looijenga
(2002) and Mustaţǎ (2001). Still, little has been done in the way of explicit
calculation of examples. In this note, we begin by explicitly calculating the very
simple case of jet schemes of monomial schemes from an algebraic perspective,
computing the components and the defining equations for the reduced subschemes
of these jet schemes. Interestingly, although the jets schemes of a monomial ideal
are not themselves monomial in a natural sense, their reduced subschemes are.

Let X be a scheme of finite type over a field k. Fix a non-negative integer m.
An m-jet of X/k is a map of k-schemes

! " Spec k#t$/
(
tm+1

)
−→ X%

The collection of all m-jets on X forms a scheme in a natural way, called the mth
jet scheme of X, and denoted by !m&X'. For background on jet schemes, see for
example, Mustaţǎ (2001) or Blickle (2006).
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Let X = Spec k#x1( % % % ( xn$/I be an affine scheme. To explicitly compute the jet
schemes !m&X' of X, note that an m-jet is equivalent to a k-algebra homomorphism

) " k#x1( % % % ( xn$/I −→ k#t$/
(
tm+1

)
%

Fixing a set of generators f1( % % % ( fr for the ideal I , the map ) is completely
determined by where it sends the coordinates xi,

x1 #−→ x&0'
1 + x&1'

1 t + x&2'
1 t2 + · · · + x&m'

1 tm

x2 #−→ x&0'
2 + x&1'

2 t + x&2'
2 t2 + · · · + x&m'

2 tm

%%%

xn #−→ x&0'
n + x&1'

n t + x&2'
n t2 + · · · + x&m'

n tm%

Of course, the relations

fi&x
&0'
1 + x&1'

1 t + · · · + x&m'
1 tm( % % % ( x&0'

n + x&1'
n t + · · · + x&m'

n tm' = 0 (1)

must hold for each fi in our chosen set of generators. Write the polynomials (1) in
the form

f &0'
i + f &1'

i t + f &2'
i t2 + · · · + f &m'

i tm(

where the f &j'
i are polynomials in the x&j'

i . Then the mth jet scheme !m&X' is defined
by the polynomials f &l'

k (where k ranges from 1 to r and l ranges from zero to m) in
the coordinates x&j'

i (where i ranges from 1 to n and j ranges from zero to m). We
will denote by Jm&I' the ideal of this jet scheme, that is, Jm&I' is the ideal generated
by the f &l'

k in the polynomial ring k#x&j'
i $.

Thus the question we ask is: What can be said about the ideal Jm&I' when I is
a monomial ideal?

Example 1. The first jet scheme of the scheme defined by the monomial xy
is defined by the two equations x&0'y&0' and x&0'y&1' + x&1'y&0'% This ideal is not
monomial in the coordinates x&0'( x&1'( y&0'( y&1'. However, it is easy to check that its
minimal primes are &x&0'( x&1'', &x&0'( y&0'', and &y&0'( y&1'', and therefore its radical is
the monomial ideal &x&0'y&0'( x&0'y&1'( x&1'y&0''.

In this simple example, we can already see that the jet scheme of a monomial
scheme is not defined by monomials (in the “obvious” coordinates). However, the
corresponding reduced subscheme is monomial. Below we prove that this is a
general phenomenon, computing the corresponding coordinate subspaces explicitly
at least in simple cases. This suggests basic questions that we have not yet studied in
detail: What are the multiplicities along the various components? Can one describe
an explicit primary decomposition? We believe that these and other questions are
worth investigating.
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2. THE CASE OF A REDUCED MONOMIAL SCHEME

Although the arguments are similar, for the sake of clarity we treat first
separately the case of a reduced monomial scheme. In this case, we also get a slightly
sharper result.

Theorem 2.1. Let I be an ideal generated by square-free monomials in coordinates
x1( % % % ( xn. Then

√
Jm&I' is a square-free monomial ideal in the coordinates

x&0'
1 ( % % % ( x&m'

1 ( x&0'
2 % % % x&m'

2 ( % % % ( x&0'
n % % % x&m'

n . The generators can be described as follows:
for each monomial minimal generator of I , say x1 % % % xr after relabeling, the monomials

x&i1'
1 % % % x&ir '

r where
∑

ij ≤ m

are minimal monomial generators of
√
Jm&I'. The collection of all such monomials as we

range through the minimal monomial generators of I is a generating set for the radical
of Jm&I'.

The following lemma reduces the proof of Theorem 2.1 to the hypersurface case.

Lemma 2.1. If I and J are monomial ideals in a polynomial ring, then
√

&I + J' =√
I +

√
J .

Proof. Since
√
I +

√
J ⊂√

I + J in general, it remains to check the reverse inclusion

in the monomial case. But since
√

&I + J'=
√

&
√
I +

√
J' in general, it suffices to show

that
√

&
√
I +

√
J' =

√
I +

√
J formonomial ideals. This follows because a monomial

ideal is radical if and only if it is generated by square-free monomials. !

Thus Theorem 2.1 follows from the following result.

Theorem 2.2. Let I be the principal monomial ideal generated by x1 % % % xr . Then:

1. The minimal primes P of
√
Jm&I' are exactly the primes of the form

P =
(
x&0'
1 ( x&1'

1 ( % % % ( x&t1'
1 ( x&0'

2 ( x&1'
2 ( % % % ( x&t2'

2 ( % % % ( x&0'
r ( % % % ( x&tr '

r

)
( (2)

where −1 ≤ ti ≤ m and
∑r

i=1 ti = m+ 1− r. (Here, we adopt the convention that
the value ti = −1 means the variable xi doesn’t appear at all.)

2. The ideal
√
Jm&I' is the monomial ideal generated by the monomials

x&i1'
1 % % % x&ir '

r ( where ij ∈ N and
∑

ij ≤ m% (3)

For future reference, we isolate the following simple calculation as a lemma.

Lemma 2.2. The polynomials defining the mth jet scheme of the scheme defined by
the monomial x1 % % % xr are

gk =
∑

∑
ij=k

x&i1'
1 x&i2'

2 % % % x&ir '
r

where 0 ≤ ij ≤ m and 0 ≤ k ≤ m.
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Proof. This follows easily by expanding the products

&x&0'
1 + x&1'

1 t + · · · + x&m'
1 tm' · · · &x&0'

r + x&1'
r t + · · · + x&m'

r tm'

and examining the coefficient of tk for each k = 0( % % % ( m. !

Proof of Theorem 2.2. To prove statement 1, we induce on m. Suppose m = 0.
Then we have J0 = &x&0'

1 x&0'
2 % % % x&0'

r ' and so
√
J0 =

⋂N
i=1&x

&0'
i '.

Now suppose statement 1 is true for m− 1. Then the minimal primes of√
Jm−1 are of the form (2), where −1 ≤ ti ≤ m− 1 and

∑
ti = m− r. Let Q be a

prime containing Jm. Since Jm−1 ⊂ Jm, Q must contain a minimal prime of Jm−1. By
induction, then, Q contains at least one prime ideal P of the form (5) above where
−1 ≤ ti ≤ m− 1 and

∑
ti = m− r. Fix the indices t1( % % % ( tr corresponding to this

prime P.
With notation as in Lemma 2.2, the generators g0( % % % ( gm−1 for Jm−1 are in P

and hence in Q. The only remaining generator for Jm&I' is the polynomial gm =∑
∑

ij=m x&i1'
1 x&i2'

2 % % % x&ir '
r . If some term of gm fails to be in P, then it is of the form

x&i1'
1 x&i2'

2 % % % x&ir '
r where each ij ≥ tj + 1, for 1 ≤ j ≤ r. This implies m = ∑r

j=1 ij ≥∑r
j=1&tj + 1' = ∑r

j=1 tj + r, which is equal to m by our assumption above. The only
way this can happen is that each ij is equal to tj + 1, for 1 ≤ j ≤ r. Therefore, every
term of gm is in P except the one term

x&t1+1'
1 x&t2+1'

2 % % % x&tr+1'
r % (4)

Since gm ∈ Q and P ⊂ Q, it follows that the term (4) is in the prime ideal Q.
Therefore, Q must contain x

&tj+1'
j for some j between 1 and r. In particular, a

minimal prime Q of Jm must therefore be of the form P + &x
&tj+1'
j ' for some j. This

shows that Q has the desired form and also that each of the ideals of this form is a
minimal prime of

√
Jm&I'.

To prove statement 2, we first recall that the radical of any ideal is equal
to the intersection of its minimal primes; thus statement 1 implies that

√
Jm&I' is

a monomial ideal. Now note that the monomials x&i1'
1 · · · x&ir '

r such that
∑

ij ≤ m
are precisely the terms of the generators gk for Jm&I'. Since every monomial ideal
containing g1( % % % ( gk must contain all these terms, it follows that the monomials of
the form (3) are all contained in

√
&g1( % % % ( gk' =

√
Jm&I'. On the other hand, since

these monomials are all square free, they generate a radical ideal containing Jm&I'.
Thus this is the smallest radical ideal containing Jm&I', and hence must be

√
Jm&I'

exactly. The theorem is proven. !

It follows that the reduced subscheme of the mth jet scheme of a reduced
monomial hypersurface defined by x1 · · · xr in affine n-space is equidimensional of
codimension m+ 1 in affine n&m+ 1' space. One checks that the number of its
components is

(
m+ r

m+ 1

)
%
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Indeed, the number of its components is the same as the number of ways to choose
r numbers between 1 and m+ 1 whose sum is m+ 1. But because this is the same as
the coefficient of xm+1 in &1+ x + x2 + · · · 'r , the desired formula follows from the
(formal) binomial theorem after substituting the expression 1

1−x
for the power series

1+ x + x2 + · · · .

3. THE GENERAL CASE

Theorem 3.1. If I is generated by monomials in coordinates x1( % % % ( xn, then
√
Jm&I'

is a square-free monomial ideal in the coordinates x&j'
i where 1 ≤ i ≤ n and 0 ≤ j ≤ m.

The generators can be described as follows: for each monomial minimal generator of I ,
say xa11 % % % xarr after relabeling, the monomials

√
x&i1'
1 x&i2'

1 % % % x
&ia1 '

1 x
&ia1+1'

2 % % % x
&ia1+a2

'

2 x
&ia1+a2+1'

3 % % % x
&ia1+···+ar

'
r where

∑
ij ≤ m

are monomial generators of
√
Jm&I'. The collection of all such monomials as we range

through the minimal monomial generators of I is a generating set for
√
Jm&I'.

Remark. It is not true that
√
Jm&I' =

√
Jm&

√
I'. See Example 2 below.

As in the square-free case, Theorem 3.1 follows from the following.

Theorem 3.2. Let I be a monomial ideal generated by xa11 % % % xarr . Then the minimal
primes of Jm&I' are precisely the minimal members of the set of ideals

(
x&0'
1 ( x&1'

1 ( % % % ( x&t1'
1 ( x&0'

2 ( % % % ( x&t2'
2 ( % % % ( x&0'

r ( % % % ( x&tr '
r

)
( (5)

where −1 ≤ ti ≤ m (with the convention that ti = −1 means that the variable xi doesn’t
appear), and

∑
ai&ti + 1' ≥ m+ 1%

Proof. We again induce on m. The result being easy to verify when m = 0, we
assume it holds for m− 1 and consider Jm&I'. Its generators are the polynomials
g0( g1( % % % ( gm, where

gh =
∑

∑
ik=h

x&i1'
1 x&i2'

1 % % % x
&ia1 '

1 x
&ia1+1'

2 % % % x
&ia1+a2

'

2 x
&ia1+a2+1'

3 % % % x
&ia1+···+ar

'
r *

here the sum is taken over all possible choices of the indices &i1( % % % ( ia1+···+ar
' with

each ik non-negative and all the ik summing to h. This is proven in exactly the same
way as Lemma 2.2.

Fix a minimal prime Q containing Jm&I'. Since Jm−1&I' ⊂ Jm&I', we know that
some minimal prime P of Jm−1&I' is contained in Q. By induction, this prime has the
form

(
x&0'
1 ( x&1'

1 ( % % % ( x&t1'
1 ( x&0'

2 ( % % % ( x&t2'
2 ( % % % ( x&0'

r ( % % % ( x&tr '
r

)
(

where −1 ≤ ti ≤ m− 1 and
∑

ai&ti + 1' ≥ m% Fix the indices t1( % % % ( tr
corresponding to this prime P.
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Since Jm−1&I' ⊂ P, we know that P already contains all the generators gi for
Jm&I' except possibly gm. Consider the polynomial gm

∑
∑

ik=m

x&i1'
1 x&i2'

1 % % % x
&ia1 '

1 x
&ia1+1'

2 % % % x
&ia1+a2

'

2 x
&ia1+a2+1'

3 % % % x
&ia1+···+ar

'
r % (6)

If some term of gm fails to be in P, then it is of the form

x&j1'
1 x&j2'

1 % % % x
&ja1'

1 x
&ja1+1'

2 % % % x
&ja1+a2

'

2 x
&ja1+a2+1'

3 % % % x
&ja1+···+ar

'
r (7)

for some fixed indices j1( % % % ( ja1+···+ar
summing to m. Permuting the factors if

necessary, we may assume that each jak is minimal among the other superscripts on
xk in this expression. Then the failure of the term (7) to be in P is equivalent to each
jak ≥ tk + 1, for k = 1( % % % ( r. In this case we compute that

m =
a1+···+ar∑

i=1

ji ≥
r∑

k=1

ak&tk + 1'

which is greater than or equal to m by our inductive assumption above. This can
happen if and only if we have equality all along—that is, each superscript ji attached
to each xk is equal to jak = tk + 1. Therefore, every term of gm is in P except possibly
one term of the form

(
x&t1+1'
1

)a1(x&t2+1'
2

)a2 · · · &x&tr+1'
r 'ar * (8)

Note that this monomial is a term of gm if and only if
∑

ak&tk + 1' = m. Indeed,
although certain monomials in the sum (6) appear more than once, a monomial of
the form (8) appears at most once and hence does not cancel in any characteristic.

Now, if
∑

ak&tk + 1' > m, then no term of the form (8) appears in gm and
every term of gm is in P; thus Q = P is a minimal prime of Jm&I' as well as Jm−1&I'.
Clearly, then Q has the desired form (5). Conversely, in this case, such a P clearly
contains all the terms of the generators of Jm&I' and so is a prime containing Jm&I'.

Finally, if
∑

ak&tk + 1' = m, then the calculation above shows that ideal
P already contains all the terms of all the generators of Jm&I' except for
&x&t1+1'

1 'a1&x&t2+1'
2 'a2 · · · &x&tr+1'

r 'ar . Therefore Q must be of the form P + &x&tk+1'
k ' for

some k between 1 and r, and so has the desired form. Conversely, every ideal of this
form is a prime ideal containing Jm&I'. This completes the proof. !

Example 2. Let I = &x2y'. Then one computes that the first few defining equations
of the jets schemes are

g0 = x20y0

g1 = x20y1 + 2x0x1y0

g2 = x20y2 + 2x0x1y1 + 2x0x2y0 + x21y0

g3 = x20y3 + 2x0x1y2 + x21y1 + 2x0x2y1 + 2x1x2y0 + 2x0x3y0(
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where for the sake of sanity we have used subscripts instead of superscripts here,
i.e„ xi = x&i'. Then

√
J0&I' = &x0' ∩ &y0'

√
J1&I' = &x0' ∩ &y0( y1'

√
J2&I' = &x0( y0' ∩ &x0( x1' ∩ &y0( y1( y2'

√
J3&I' = &x0( y0( y1' ∩ &x0( x1' ∩ &y0( y1( y2( y3'%

Note that unlike the case of a square-free monomial ideal, some coordinate
subspaces can appear as components of the mth jet scheme for different m. Likewise,
we see that the jet schemes of a nonreduced monomial scheme are not typically
equidimensional. Finally, we can write down the defining equations of these reduced
jet schemes:

√
J0&I' = &x0y0'

√
J1&I' = &x0y0( x0y1'

√
J2&I' = &x0y0( x0y1( x1y0( x0y2'

√
J3&I' = &x0y0( x0y1( x1y0( x0y2( x0y3( x1y1'%

It is interesting to see explicitly that even in characteristic two, the generators for√
Jm&I' are simply the monomial terms of the generators for Jm&I'. This mystery

is resolved by noticing that any term of gh that cancels in characteristic two is a
multiple of a (noncanceling) term in some earlier gi.

Remark 3.3. One can also look at the irreducible components of the jet schemes
of a monomial ideal from a more combinatorial point of view as follows. After
extending scalars we may assume the field is algebraically closed. If one is interested
only in the reduced scheme structure of the jet schemes, it is enough to understand
when an m-jet on the ambient affine space lies in the mth jet scheme of the scheme
defined by the monomial ideal I . Recall that the Newton polyhedron PI of I is the
convex hull of all those exponents u in Nn such that Xu is in I . Denote by QI the
polyhedron

QI =
{
w ∈ Qn

+ *
∑

i

uiwi ≥ 1 for all u ∈ PI

}
%

If an m-jet vanishes with order ai along the hyperplane Xi = 0, then the condition
for that jet to lie over the mth jet scheme of I is as follows: for every monomial Xu

in I , we have
∑

i aiui ≥ m+ 1. This shows that the set of m-jets + on the affine space
lying over the mth jet scheme of I is equal to

⋃
a∈Nn Ca, where

Ca = ,+ * ord +∗&Xi' ≥ ai-(

and where the union is taken over all a ∈ Nn such that a lies in &m+ 1'QI . Since
every Ca is irreducible, and Ca ⊂ Cb if and only if bi ≤ ai for every i, it follows that
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the irreducible components of the mth jet scheme of I correspond precisely to those
a such that a is in &m+ 1'QI and a is minimal with respect to this property.
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