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Abstract

This paper describes the SMT we built during the 2006 JHU

Summer Workshop for the IWSLT 2006 evaluation. Our ef-

fort focuses on two parts of the speech translation problem:

1) efficient decoding of word lattices and 2) novel applica-

tions of factored translation models to IWSLT-specific prob-

lems. In this paper, we present results from the open-track

Chinese-to-English condition. Improvements of 5-10% rel-

ative BLEU are obtained over a high performing baseline.

We introduce a new open-source decoder that implements

the state-of-the-art in statistical machine translation.

1. Introduction

With advances in both speech recognition and language

translation technologies, speech translation has become more

viable for real applications. It is still, however, the case that

both ASR and MT technologies are prone to high levels of er-

ror. Thus, robust techniques of combining these technologies

are needed to make speech translation viable for real appli-

cations. Empirically, we know that reduced error rates from

upstream ASR systems result in higher translation quality.

Our goal is to exploit multiple hypothesis to effictively lower

the error rate relative to the 1-best transcription.

In this paper, we introduce the notion of confusion net-

work MT decoding for ASR input and discuss novel applica-

tions of this technique. We also present a new application of

factored translation models for postprocessing MT output.

Both confusion network decoding and factored models

are implemented in a new, open-source MT decoder called

moses that was built as part of the 2006 JHU summer work-

shop. We introduce moses as a platform for MT research.

1.1. Confusion Networks

During decoding, ASR systems can typically generate multi-

ple alternatives in addition to a single-best transcription. It is

customary to represent these alternatives using a word graph

†This work is sponsored by the Air Force Research Laboratory under
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Figure 1: An Example ASR Word Lattice

or word lattice that contains information about the word se-

quences as well as start and end times. Figure 1 shows an

example of a typical word lattice for a sentence of 15 words.

Ideally, it would be possible to process such a word lat-

tice as input into a machine translation system so as to con-

sider all possible translation options, not just the single best

hypothesis. In practice, direct MT decoding without heavy

pruning of ASR word lattices can increase the computational

complexity of the decoding problem beyond current comput-

ing capabilities. Some efforts toward direct lattice decoding

have shown success [1] but require careful preprocessing of

input lattices or severe pruning during search.

To simplify the problem, it is useful to note that for ma-

chine translation tasks, time information (i.e. word start and

end times) is not needed and, in fact, this information greatly

increases the size of the search problem during decoding, es-
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Figure 2: An example ASR confusion network

Figure 3: ASR confusion network in tabular form

pecially when arbitrary reordering is allowed. Removing this

information, it is possible to then approximate a word lattice

using a confusion network [2].

The confusion network is a linearization of the word lat-

tice that combines (through a set of heuristics) paths with

different word start and end times while preserving all paths

through the word lattice. The confusion network forces word

alternatives into strict slots but allows NULL transitions (rep-

resented by ǫ). In each slot, word alternatives are labeled

with posterior probabilities computed from ASR acoustic

and language model features. Figures 2 and 3 shows a graph-

ical depiction of a typical confusion network.

In prior work [3], it was shown that the algorithm for

decoding of confusion networks is a direct generalization of

the standard phrase-based MT decoding strategy [4]. In the

moses decoder, we extend this algorithm using an efficient

prefix-tree representation of the phrase table. Details of this

are discussed in Section 3.

1.2. Factored Translation Models

Factored translation models extend standard phrase-based

translation models by incorporating multiple levels of lin-

gusitic representation, or factors. Factored models decom-

pose the translation process into multiple translation and gen-

eration subprocesses at different linguistic levels. Factored

models allow, for instance, the translation of part-of-speech

tags in addition to the surface form as shown graphically in

Figure 4. In this case, both source input and target trans-

Part of Speech

Surface

Generation

安

c3 c8

calm

Analysis

Figure 4: An example factored translation model

lations are represented using two factors: surface form and

POS. In this model, the translation process can be expressed

as:

log P (~e|~f) ∝
∑

∀r

λrhr(~f,~e)

∝
∑

∀r∈surface

λrhr(surface(~f), surface(~e))

+
∑

∀s∈POS

λshs(POS(~f), POS(~e))

+
∑

∀g∈Gen

λghg(surface(~e), POS(~e))

Using this decomposition we define translation processes

(e.g.
∑

∀s∈POS λshs(~f,~e)) and generation processes

(e.g.
∑

∀g∈Gen hg(surface(~e), POS(~e))) that mutually

constrain each other. In our current implementation of

moses, generation processes are limited to a single target

word context.

In this model the standard phrase-base approach can be

seen as a special case of more general factored models.

For the IWSLT 2006 evaluation we did not use deep lin-

guistic analysis for our submitted systems, but we did make

use of the factored translation facility within the moses de-

coder. In Section 4 we discuss novel applications of factored

translation models for the IWSLT 2006 translation task.

2. Model Training and Optimization

We used Chinese-to-English models trained by MIT Lin-

coln Laboratory (both phrase tables and language models)

and applied MIT-LL’s preprocessing to all development and

test data. Phrase tables were trained using only the provided

training sets. The training procedure is outlined below:

• Generate word and character segmented forms of the

training corpus

• Compute GIZA++ and Competitive Linking (CLA)

alignments for both word and character segmented

data [6] [7]

• Extract phrases for all variants of the training corpus

• Split word-segmented phrases into characters

• Combine phrase counts from all variants and normal-

ize
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• Train language models using target language side of

the training corpus

• Train TrueCase models

• Train source language repunctuation models

Features

P (f |e)
P (e|f)

LexW (f |e)
LexW (e|f)

Phrase Penalty

Word Penalty

Distortion

P (e) - 4-gram language model

Table 1: Features from training

Using the extracted phrase table we apply a minimum

error rate procedure based on [8]. We used either develop-

ment set 1 (the evaluation set from CSTAR-2003) or devel-

opment set 4 to optimize model scaling factors (λs) for each

of the features shown in Table 1. For our primary systems, no

rescoring features were added, though significant improve-

ments might be had through n-best list reranking features [5].

More details of the training procedures can be found

in [5].

2.1. ASR Lattice Preprocessing

For data in both read and spontaneous speech conditions,

we converted the provided word lattices into confusion net-

works using the SRI lattice-tool [9] without pruning.

Columns for source punctuation were inserted by aligning

the 1-best transcription with columns of the confusion net-

work and then introducing posterior probabilities for all pos-

sible punctuation marks.

For text condition data, we used two different forms of

preprocessing:

• Repunctuate the source string using the 1-best punctu-

ation hypothesis

• Create a confusion network of punctuation by inserting

all possible punctuation marks (and ǫ) between each

word.

Section 5 describes experiments we ran with these configu-

rations in detail.

3. Decoder Implementation

As part of the 2006 JHU Summer Workshop we extended the

moses decoder to process input confusion networks.

A key insight is that, due to their linear structure, confu-

sion network decoding is very similar to text decoding. Dur-

ing the decoding, we have to look up the translation options

of spans, with a span being a contiguous sequence of source

positions. The main difference between confusion network

and text decoding is that in text decoding there is exactly one

source phrase per span, whereas in confusion network decod-

ing there can be multiple source phrases per span. In fact, in

a confusion network the number of source phrases per span

is exponential in the span length. The exact number is the

product of the column depths over the positions in the span.

A naive approach to generate the translation options per span

is to enumerate the source phrases of the span and to look

up the translation options of each source phrase in the phrase

table. For obvious reasons this is inefficient.

A more efficient implementation can be achieved if we

use a prefix tree representation for the source phrases in

the phrase table and generate the translation options incre-

mentally over the span length. Thus, when looking up a

span (j1, j2), we can exploit our knowledge about the span

(j1, j2 − 1). Thus, we have to check only for the known pre-

fixes of (j1, j2 − 1) if there exists a successor prefix with a

word in column j2 of the confusion network. If all the word

sequences in the confusion network also occur in the phrase

table, this approach still enumerates an exponential number

of phrases. Though worst case complexity is still exponential

in the span length, this is unlikely to happen in practice. In

our experiments, we do not observe the exponential behav-

ior. What we observe is a constant overhead compared to text

input.

4. Novel Applications of Factored Models

As previously described, the moses decoder supports de-

coding of factored translation models. For this year’s IWSLT

evaluation we applied factored translation models to the

problem of TrueCasing MT output.

We apply a simple HMM model for truecasing [11] im-

plemented using the disambig tool developed by SRI [9].

Our model can be defined as follows:

w∗
1...j = arg max

w1...j

P (w1...j |s1...j)

where s1...j is the sequence of uncased input words and w∗
1...j

is the maximum-likelihood output truecased sentence. The

posterior distribution P (w1...j |s1...j , λ) can be decomposed

as:

P (w1...j |s1...j) =
P (s1...j |w1...j) ∗ P (w1...j)

P (s1...j)

arg max
w1...j

P (w1...j |s1...j) = arg max
w1...j

P (s1...j |w1...j)

∗P (w1...j)

where we approximate each distribution as:

P̂ (w1...j) ≈

j∏

k=1

P (wk|wk−1 . . . wk−n+1) (1)
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lowercased

Generate 
Mixed case

安

Ann

ann

Apply mixed-case LM

Figure 5: Integrated TrueCasing Model

Chinese English

sentences 40 K

running words 351 K 365 K

avg. sent. length 8.8 9.1

vocabulary entries 11 K 10 K

Table 2: Corpus statistics for the Chinese-English task.

and

P̂ (s1...j |w1...j) ≈

j∏

k=1

P (sk|wk) (2)

We noticed that this model could be represented using

a factored translation model in which mixed-case output is

generated from a latent lower-case factor. In this way, it is

possible to incorporate the TrueCasing process into trans-

lation decoding directly. The TrueCasing process can also

be represented as components of the log-linear translation

model. As such it is possible to to jointly optimize the true-

case and translation models. Figure 5 shows a schematic of

the integrated truecasing model we used for IWSLT-2006. In

this model lower-cased source text is translated into a lower-

cased target form. Then a TrueCased surface form is gen-

erated and constrained by a mixed-case language model. In

this way, our model implements equations 1 and 2 directly

into the decoding process. Specifically, equation 1 is imple-

mented as a surface language model, and the HMM transi-

tion distribution described in equation 2 is implemented as a

generation step.

5. Results

The experiments were carried out on the Basic Travel Ex-

pression Corpus (BTEC) task [10]. This is a multilingual

speech corpus which contains tourism-related sentences sim-

ilar to those that are found in phrase books. The corpus statis-

tics are shown in Table 2. For the supplied data track, 40 000

sentences of training corpus and three test sets were made

available for each language pair.

5.1. Chinese-to-English

In this section, we will present the experimental results for

the Chinese–English task. The statistics of the confusion

networks are summarized in Table 3. Note that the average

length of the sentences in the dev4 test set is about twice as

large as in the training data. We also present the depths of the

speech type

read spontaneous

avg. length 17.2 17.4

avg. / max. depth 2.2 / 92 2.9 / 82

avg. number of paths 1021 1032

Table 3: Confusion network statistics for the dev4 set (489

sentences).

speech type

read spontaneous

dev4 12.8% 21.9%

test 15.2% 20.6%

Table 4: 1-best character error rates (CER) for dev4 and

test sets (489 and 500 sentences respectively).

confusion networks. On average we have between two and

three alternatives per position. At some positions, however,

there are more than 90 alternatives.

In Table 5, we present the translation results for the

Chinese–English task for different input conditions on the

dev4 and the eval test sets. All scores reported here use

two-pass TrueCasing and source repunctutaion. Comparing

the translation results of 1-best and confusion network, we

observe a small but consistent improvement for read speech.

For spontaneous speech, the improvements are larger, e.g.

1.1% BLEU for the eval test set.

As described in Section 2.1, we did some experiments

on devset 4 using the confusion network decoder for repunc-

tuation. The results are presented in Table 6. We observe

a small improvement when using a confusion network for

the punctuations. Note that this system was not optimized,

so we might expect larger improvement when optimizing for

this type of input.

Similar experiments were carried out comparing inte-

grated TrueCasing to a standard 2-pass procedure. After op-

timization, the integrated model performs slightly better than

the baseline. These results are shown in Table 7.

speech type

test read spontaneous

set input BLEU [%] BLEU [%]

dev4 verbatim 21.4

1-best 19.0 17.2

full CN 19.3 17.8

eval verbatim 21.4

1-best 18.5 17.0

full CN 18.6 18.1

Table 5: Chinese–English: translation results for different

input types.
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punctuation input type BLEU [%]

1-best 20.8

confusion network 21.0

Table 6: Chinese–English: translation results for punctuation

insertion (devset 4).

TrueCase Method BLEU [%]

Standard Two-Pass: SMT + TrueCase 20.65

Integrated Factored Model (optimized) 21.08

Table 7: Chinese–English: translation results for different

TrueCasing configurations (devset 4).

6. Conclusions

For the official evaluation, our ASR and text input systems

achieved state-of-the-art performance. In this work we de-

scribed two novel, statistical approaches to the speech trans-

lation problem: 1) confusion network decoding and 2) a fac-

tored decomposition of standard phrase-based models. Con-

fusion network decoding of the ASR input provided the

largest gain (6.5% relative) on this task and we expect that

these gains will carry over to other languages and other

speech translation tasks.

Although our factored model did not show gain in prelim-

inary experiments, following results in [5], we suspect gains

are possible.
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