
The Jikes Research Virtual
Machine project: Building an
open-source research
community

&B. Alpern

S. Augart

S. M. Blackburn

M. Butrico

A. Cocchi

P. Cheng

J. Dolby

S. Fink

D. Grove

M. Hind

K. S. McKinley

M. Mergen

J. E. B. Moss

T. Ngo

V. Sarkar

M. Trapp

This paper describes the evolution of the Jikese Research Virtual Machine project from
an IBM internal research project, called Jalapeño, into an open-source project. After
summarizing the original goals of the project, we discuss the motivation for releasing it
as an open-source project and the activities performed to ensure the success of the
project. Throughout, we highlight the unique challenges of developing and
maintaining an open-source project designed specifically to support a research
community.

On October 15, 2001, IBM Research launched the

Jikes* RVM (Research Virtual Machine) open-source

project. Jikes RVM provides a novel virtual-machine

software infrastructure, suitable for research on

modern programming language design and imple-

mentation techniques. Over the past three years, the

project has grown and made a significant impact on

the programming-language research community.

This paper describes the evolution of Jikes RVM

from an IBM internal research project, called

Jalapeño, into a full-fledged open-source project.

The story provides an instructive case study on how

a small systems research project can grow into a

shared project used by hundreds of researchers. The

paper discusses a variety of challenges that arose in

this process, including the technical enhancements

and software-engineering practices needed to ensure

the project’s success; dealing with intellectual

property, corporate process, and licensing issues;

promoting the system in the research community;

and developing a community to maintain and

enhance the system in the future.

The primary focus of the Jikes RVM project was the

development of a software platform designed to be a

research testbed for the prototyping of new tech-

nologies. In contrast, most open-source projects

develop software products for use by the general

public. We focus on the implications of this

distinction throughout the paper.

The remainder of this paper is as follows. The next

section begins with a general discussion of issues

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ALPERN ET AL. 399



pertaining to a research-oriented open-source proj-

ect. The section ‘‘Motivation and history of the

Jalapeño project’’ discusses the Jalapeño project’s

& The majority of Jikes RVM
users modify the system
to produce interesting research
results &

origin as an IBM internal project. The sections ‘‘The

university releases’’ and ‘‘University activities’’ re-

view an intermediate phase, during which the

software was made available to a small number of

universities under a restricted license. ‘‘Preparing

for open source’’ and ‘‘Project evolution’’ discuss the

preparation for, emergence, and first few years of

Jikes RVM as a full-fledged, mature open-source

project. ‘‘Measuring impact’’ presents some metrics

that document the system’s impact, and the paper

concludes with some lessons learned from this case

study.

OPEN SOURCE FOR RESEARCH
The majority of open-source projects develop soft-

ware that is used primarily as a ‘‘black box,’’ that is,

a system used solely for its functionality, whose

internal design is not of interest. Community

members adopt the software as a tool to perform

some function, and most users often do not care

about the internal design and implementation of the

software. Examples of such software tools include

most of the best known open-source projects,

including operating system,
1,2

word processors,
3,4

integrated development environments,
5
compilers,

6

and graphical desktop environments.
7,8

In contrast,

the Jikes RVM project developed software that is

intended to be used as a ‘‘white box,’’ a system

whose internal design is of interest and enables

research. The overwhelming majority of Jikes RVM

users modify the system in a nontrivial way to

produce interesting research results. This research

focus has major implications on the character of the

open-source project as follows:

1. Most of our community members are professors

and graduate students, who use the system to

advance an individual research agenda. This

community has different motivations than most

open-source software contributors; they are

primarily driven by the desire to produce

publications and technical results, not produc-

tion-quality software. However, it is desirable for

the research infrastructure to be as close to

production quality as possible to strengthen the

credibility of the research.

A related consequence is that our user commun-

ity has less motivation to add functionality. We

believe that many open-source developers are

initially motivated to contribute to a project by a

desire to resolve some irritating deficiency with

the system. For example, a user may want to use

a favorite digital camera with an open-source

photo editor; this could motivate the user to write

and contribute a device driver. In contrast, our

user community generally seems content with the

functionality provided by the system, which is

sufficient for producing high-quality research

results on common benchmark programs. If

particular functionality is missing or broken,

most users can work around the problem and still

achieve their individual goals.

2. Open-source license requirements, including

source-code availability, do not apply to research

results. Many open-source projects effectively

enforce community sharing by means of their

licenses, such as the GPL (General Public

License) and CPL (Common Public License).

These licenses, in differing ways, require that

recipients who create and distribute derivative

works of open-source software must make the

source code of their derivative works available to

their recipients. However, these licenses do not

require source code to be made available when a

paper is published about a system because no

distribution of the derived system is involved.

Furthermore, many academics tend to keep

research infrastructure private as a competitive

advantage. The majority of researchers using the

Jikes RVM choose not to make their code

available. We present an argument against this

approach in the section on conclusions and

lessons learned.

3. The research community tends to accept less

polished software than the general public. The

Jikes RVM provides for many academic groups a

critical element of infrastructure that is crucial to

their project’s success. Because of its perceived

importance, the community will generally toler-

ate a great deal of difficulty in learning and

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005400



installing the system in exchange for a system

that is easier to change and modify. Although the

Jikes RVM is fairly robust and well-tested

compared to the software of most research

projects, the initial user experience is, for various

reasons, less pleasant than that encountered

when using commercial proprietary software

such as a product Java** virtual machine.

4. Our user community requires extensive docu-

mentation on the inner workings of the system,

not just the exposed command line or application

programming interfaces (APIs). Documentation

and explanations of the inner workings of the

system are crucial and constitute a key part of the

project’s products. Changes in internal structures

can cause disruption in the user community and

must be managed carefully.

MOTIVATION AND HISTORY OF THE JALAPEÑO
PROJECT

Sun Microsystems introduced the Java** program-

ming language in May 1995. It offered some

significant technical advantages over previous

commercial programming languages, including a

portable program representation and some safety

guarantees. To support these features, the language

runs on a virtual machine (VM), that is, a software

execution engine that provides a managed runtime

environment for executing Java programs. The

language quickly gained popularity and was widely

endorsed by many industry players, including IBM.

To improve performance, the industry, in general,

and IBM, in particular, began making significant

investments in virtual machine technology.

In November 1997, a small group of researchers at

the IBM Thomas J. Watson Research Center began

the Jalapeño project, whose goal was to develop an

internal research infrastructure for VM technologies.

The virtual machine, known as Jalapeño, was

targeted as a flexible, extensible testbed for re-

searching, prototyping, and evaluating VM imple-

mentation techniques. In contrast to other IBM Java

virtual machines, Jalapeño was not part of any

product, and so was unencumbered by the full

preproduction process and quality requirements.

Many papers document various technical aspects of

the system.
9–13

Some technical highlights of Jalape-

ño include the implementation of the VM mostly in

the Java programming language, an m-to-n quasi-

preemptive thread system
14

targeting server appli-

cations, an aggressive optimizing compiler, a state-

of-the-art adaptive optimization system, and a

family of high-performance garbage collectors. The

initial implementation ran on PowerPC* processors

running the AIX* operating system.

Early on, Jalapeño researchers decided to develop

the system in a ‘‘clean room’’ manner, such that the

developers would not have access to any non-IBM

source code for the Java virtual machine and

libraries. The Jalapeño virtual machine was written

entirely with new code and used libraries developed

by IBM at the OTI (Object Technology International)

laboratory. This decision maximized flexibility for

the future evolution of the project by avoiding

potential intellectual property and copyright issues.

During 1998, the project team grew into two

separate research groups: the runtime group and the

optimizing-compiler group. The runtime group

focused on core VM functionality, such as threading,

the baseline compiler, the garbage collectors, JNI

(Java Native Interface), and the library interface.

The optimizing compiler group focused on the

optimizing compiler and adaptive optimization

system. At its peak the project included approx-

imately 15 fulltime employees, plus a large number

of academic visitors and Ph.D. candidates.

Most early Jalapeño researchers joined the project

because it seemed an interesting or useful vehicle

for pursuing a particular research idea. In some

ways, the Jalapeño team resembled an open-source

community, in that volunteerism was the main

driver behind work assignments and milestones.

The initial focus of the project was to simply

improve the state of the art in virtual-machine

technology. The main products of the early Jalapeño

project were research papers. Much of the initial

research was performed on private versions of the

system that were never merged back into the main

repository. When the project started, the researchers

did not foresee that this system would be widely

used, let alone distributed as open-source software,

and this influenced the initial development practices

and methodologies.

Initially, the team shared source code with a

centralized RCS
15

(Revision Control System) repos-

itory and some homegrown scripts that provided

higher-level functionality. The project consciously

adopted a ‘‘prototype first’’ development method-

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ALPERN ET AL. 401



ology. Much code was written in a throwaway style

under pressure of impending paper deadlines, with

the intention of complete revision at the earliest

opportunity. Some of this throwaway code persists

in the system to this day.

Like many research projects, the software-engi-

neering practices applied to the early Jalapeño code

base were haphazard when compared to a mature

& The system is mostly written
in Java, and thus a good
portion of it is platform
independent &

product-quality development process. Source-code

formatting practices were nonstandard, and the

volume and quality of comments varied from

acceptable to nonexistent, depending on the incli-

nation of individual coders. Initially, there were no

project-wide code reviews, little official documen-

tation, no formal bug-tracking system, no unit

tests, no quality assurance process, and no regular

regression testing. Most Jalapeño team members

recognized the value of these processes, and some

teams followed some of these processes by agree-

ing on small sets of test cases and using CMVC

(Configuration Management Version Control) for

bug tracking. However, these processes were only

introduced on a project-wide basis after the

problems caused by their omission became intol-

erable.

Between 1997 and 1999, the number of implemen-

tors, that is, committers to the code base, increased

from a small handful to nearly 20. Regressions in

function due to code modifications became increas-

ingly problematic, and in the summer of 1999, the

project instituted automated nightly regression test-

ing. This procedure consisted of running several

benchmarks and tests on several configurations of

the system, varying policies for garbage collection,

optimization, and assertion checking. Regression in

performance was also tracked using the same

system. Results were archived and sent to a project

mailing list. As the project evolved, the position of

‘‘night sanity guru’’ was created. This position

rotated among the persons on the team on a weekly

basis and was responsible for diagnosing and

summarizing the regression results for the rest of the

team. Combined with RCS ‘‘check-in’’ logs, project

members were able to reconstruct when and why a

configuration of the system was first broken. Over

time, the frequency of nightly regressions gradually

decreased, as the system matured and the social

taboo against causing failure of the overnight tests

took root.

THE UNIVERSITY RELEASES

During the course of the Jalapeño project, its

members published results in various research

forums. This publicity raised awareness of the

system in the academic community, and some

university professors inquired about the system’s

availability as a research infrastructure for their

own projects. The first inquiry came from re-

searchers at the University of Massachusetts at

Amherst.

Although the original project goals did not include

distribution to the academic community, the

project team members were excited about the

potential for other researchers to use the system.

Thus, in early 2000, the team agreed to pursue

making the system available to universities under a

source license agreement. (Although a ‘‘binary-

only’’ version of the system was made available to

one university around this time, it was not a useful

solution to most researchers because the source

code was not available.) This decision necessitated

significant bureaucratic and technical efforts.

The bureaucratic tasks included securing approval

from upper management to release the code,

deciding on an appropriate legal agreement and

licensing structure, documenting the origins of all

code to be released, and resolving issues regarding

IBM intellectual property embodied in the code.

Although these tasks consumed some time, the

team leaders resolved these issues relatively

quickly with appropriate support from the contract

and legal departments.

The first technical activity was to port the Jalapeño

system to the Linux**/PowerPC platform, the

platform that the initial university users would use.

This was performed by two collaborators at the

University of Massachusetts at Amherst and the

Australian National University, working as part-

time IBM employees, and was completed in the

first half of 2000.

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005402



The other major technical issue for the university

release concerned developing a process for releas-

ing tagged versions of the code base to our

university partners. Previously, all code had

resided in an RCS repository, and the current

system consisted of the head of the RCS tree.

Making releases available to universities required

dealing with the problem of development continu-

ing on the main trunk of this tree, while

maintaining branches to identify bugs in tagged

releases and merging changes back to the main

trunk when appropriate. The extant homegrown

RCS scripts did not support these activities well.

To address these issues, the project committed to

migrate to a CVS
16

(Concurrent Versions System)

source-code repository, which better supports

branching and merging. Many team members had

not previously used CVS, so their education was

handled by a few team members with relevant

expertise. Using RCS, the project had relied on

pessimistic concurrency control of source code

(i.e., a concurrency-control strategy that explicitly

forbids concurrent writes) using RCS locks. In

contrast, optimistic concurrency control assumes

there will not be contention and requires remedia-

tion should contention arise. There was some

concern that the CVS optimistic concurrency

control would lead to excessive merge conflicts; in

retrospect, this was not a serious problem, and in

fact, occasional merge conflicts were a small price

to pay in exchange for eliminating e-mail and

telephone negotiations over RCS locks. Another

issue concerned the discontinuity of the ‘‘history’’

in the source-code system; team members were

forced to consult a frozen copy of the old

repository in order to access old file histories.

The actual migration was performed over a few

days by a small set of team members during an

enforced code freeze. During the migration, the

source-code directory structure was reorganized.

Other important technical activities included im-

proving the documentation of the system. A small

set of team members wrote an initial user’s guide,

which was particularly important because of this

system’s complexity and nonstandard build pro-

cess. Some team members endeavored to introduce

Javadoc** tags for all methods and to specify and

conform to uniform coding conventions. These last

two activities were particularly difficult to perform

on a large code base. We employed tools to help

with these activities and made significant im-

provements in large segments of the system;

however, coverage varied considerably across

subsystems.

The university release also motivated a long-over-

due general code cleanup. In particular, the code

base had been successful in serving as a research

vehicle for several projects at the Watson Research

Center,
17–20

which had nevertheless not graduated

to ‘‘first class’’ support in the Jalapeño implemen-

tation. To enable sharing at Watson, these projects

had incorporated their code into the main RCS tree.

Since development on these projects was not

actively tested, the corresponding code was re-

moved before the university release.

The first university release was made on January

23, 2001 to the following universities: the Univer-

sity of Massachusetts at Amherst, the University of

Colorado, Kent University, Purdue University, the

University of Wisconsin, and Rutgers University.

During the subsequent ten months, several other

universities expressed interest in the system. Each

university had to sign a licensing/nondisclosure

agreement. By Oct 15, 2001, 16 universities had

completed the license, 6 others were in process,

and 10 other universities had inquired about

obtaining a license.

UNIVERSITY ACTIVITIES

The growing enthusiasm of university researchers

quickly led to the first contributions to Jalapeño

from outside IBM. These contributions tended to fit

into two broad categories: extending Jalapeño’s

reach through ports to other platforms, and ex-

tending its utility as a research platform. The desire

to port Jalapeño has been driven by both the

practical concern of utilizing commonly available

platforms and the research motivation of exploring

novel platforms. It was the first of these that

motivated the initial port to the Linux/PowerPC

platform and more recently, a port to the

Mac OS** X operating system by a developer at the

University of Massachusetts. This also drove the

port to the Linux/IA32 system by the team at IBM,

which is described in more detail in the section

‘‘Preparing for open source.’’ The desire for a 64-bit

research platform encouraged researchers at a

number of universities to pursue a port to the 64-bit

PowerPC platform, resulting in a functional 64-bit

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ALPERN ET AL. 403



port for both Linux and AIX. Among other things,

this port is the basis for research on memory

management in large address spaces.

In the spirit of a community project, the univer-

sities took a major role in maintaining and testing a

growing set of ports. The initial port to the Linux/

PowerPC platform was maintained and tested at

the University of Massachusetts each time a

university release was made. This distribution of

effort was originally due to the lack of a Linux/

PowerPC platform within the IBM team, but

subsequently became a way of dealing with the

expanding set of platforms. Over time, testing

moved to a system of distributed nightly regression

tests, with different sites taking responsibility for

certain platforms and results being sent to the

jikesrvm_regression mailing list. This was an important

step in the evolution to an open-source project, as

responsibility was distributed, and developers were

more immediately aware of the impact of their

changes on a diverse user base.

The other major source of contributions was in the

area of extending the utility of Jalapeño as a

research platform. Researchers at the University of

Massachusetts were particularly interested in using

Jalapeño as a vehicle for memory-management

research. The performance of the optimizing

compiler, the robustness of the system, and

Jalapeño’s growing credibility within the program-

ming-language community were all important.

Although the system came with a number of high-

performance, highly scalable garbage collectors,
13

their monolithic implementation made them unat-

tractive as the basis for memory-management

research.

In October 2000, researchers at the University of

Massachusetts set about developing GCTk, a

Garbage Collection Toolkit. Because this work was

commenced prior to (but in anticipation of) the

university release of Jalapeño, the implementation

was performed by a University of Massachusetts

researcher working as an IBM employee. GCTk was

developed from scratch as a flexible toolkit for

research on garbage collection and was a plug-in

replacement for the collectors that shipped with

Jalapeño. From the outset, the toolkit was intended

to be open, and once Jalapeño was licensed and

available, GCTk was used by a number of other

universities. The project provided insight into some

of the more subtle and complex issues associated

with user contributions that would arise later as

Jalapeño became open-source software. For exam-

ple, in the absence of write access to the IBM

repository, there was a constant problem of keep-

ing GCTk up to date with respect to the IBM

repository and vice versa.

After GCTk was functional, it became the basis for

projects at other institutions. These generated a

series of publications, including one of the first

Jalapeño publications based entirely on research

done outside of IBM. This began a pattern of

Jalapeño-based research at universities that con-

tinues (discussed further in the section ‘‘Measuring

impact’’) and is increasingly productive.

GCTk had a number of shortcomings, including a

lack of support for noncopying collectors and free

list allocators. An effort to address these concerns

eventually led to a collaboration between IBM and

two universities to develop a comprehensive

replacement for GCTk and the collectors that

originally shipped with Jalapeño. The result was

MMTk, the Memory Management Toolkit,
21,22

which is discussed in more detail in the section

‘‘Enhancing the system.’’

PREPARING FOR OPEN SOURCE

The university releases enjoyed considerable suc-

cess (leading to 16 university licenses and 16 more

requests in just ten months), but the costs of

sharing the code grew to a considerable expense.

One reason was the complexity of the process

required to obtain the system. Under the university

license, a specialized version of the license agree-

ment was created for each university, which

needed to be approved by the university’s contract

office. This typically took one to two months.

Another significant issue was the limitations of the

university agreement. Several professors expressed

interest in using the system to teach courses. With

most software, professors ask their students to

download the software from a specified Web

address. However, this was not possible with the

university agreement.

It became obvious that a true open-source release

would eliminate these problems and make the

system much more accessible to a larger audience.

This was reinforced by one of the recommenda-

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005404



tions from an internal study conducted by the IBM

Academy of Technology on future directions for

virtual-machine technology at IBM. Additionally,

team members began to advocate making the

system open source to promote research in virtual-

machine technologies. Specifically, by providing a

common high-performing research infrastructure

that would allow comparisons among research

projects, we would help to ensure credible baseline

results, and enable researchers to focus on inno-

vation rather than on building infrastructure.

For these reasons, the project began to investigate

the ramifications of an open-source release in early

2001. Many questions were raised, including:

� Would there be objections by IBM’s product

divisions to an open-source release?
� Would IBM commit the necessary resources

needed for supporting an open-source release?
� Would IBM’s internal open-source steering com-

mittee approve of the release?
� How would the libraries be handled?
� What kind of infrastructure was available for

supporting open-source projects?

In addition to these strategic and process issues, the

project also faced a large technical limitation that

threatened its viability as open-source software. At

that time, the system ran on the AIX/PowerPC

platform, and, in a more limited form, on the Linux/

PowerPC platform. Although our university licens-

ees acquired PowerPC-based systems, it was clear

that the Linux/IA32
**

platform would be much more

attractive to a larger audience. To make open source

a reality, we would have to commit to porting the

system to the Linux/IA32 platform, which required a

substantial investment of time and effort. With little

difficulty, the team reached consensus on a decision

to make this investment and began porting the

system in early 2001.

Although the system is mostly written in the Java

programming language, and thus, a good portion of

it is platform-independent, the system does utilize

two dynamic compilers (baseline and optimizing)

that produce native code. Thus, both compilers had

to be retargeted for the IA32 architecture. The

baseline compiler would provide functionality, and

the optimizing compiler would provide perfor-

mance. By August 2001, the baseline compiler was

almost complete, resulting in a functioning system

on the Linux/IA32 platform. Over the following

five months, work on the optimizing compiler

resulted in a doubling of performance and reached

95 percent of the performance of the IBM produc-

tion system (IBM Developer Kit [DK] Version

1.3.0).
23

Further details on this activity, including

& The Memory Management
Toolkit project was very
successful, meeting both its
performance and flexibility
objectives &

additional performance information, can be found

in Reference 23.

While a large subset of the team ported the system

to the Linux/IA32 platform, the project managers

investigated the strategic and process issues raised

above. The first two issues, product-division

approval and commitment of resources, are often

major obstacles to open-source activity from

corporations. By early 2001, IBM had invested over

three years worth of fulltime activity of a team of

up to 15 members in the project (a research and

development expense of over $10 million). Would

many business executives find it wise to give away

the result of this investment? Furthermore, we

required not only permission to donate a past

investment, but also a significant future investment

to maintain, steer, and promote the open-source

project.

Fortunately, IBM had developed a history of

contributing to the open-source community, start-

ing with the open-source release of the Jikes

Java source-code-to-byte-code compiler,
24

and in-

cluding several other projects, many of which

are described in papers in this issue. This

environment made it easier to consider further

contributions to the open-source community.

Additionally, IBM already had two high-quality

commercial systems, the IBM DK for Java
25

and

the J9 VM,
26

so Jalapeño was not a vital

proprietary asset, even with its differentiating

technologies. IBM Research management saw the

greater benefits of impacting the research com-

munity and supported the commitment of the

additional resources required.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ALPERN ET AL. 405



Although the project secured support from all

necessary management chains, several obstacles

remained. One important issue was the release of

the libraries. The university releases, made under

an agreement of confidentiality with each univer-

sity, included libraries from OTI. Because it was

not possible to make these libraries open source,

we needed approval to release them under a

separate non-open-source license. Working with

the IBM legal team, we eventually developed a

‘‘click-through’’ license that allowed the use of the

libraries in noncommercial settings. Although this

was not a perfect solution, it did serve our primary

audience, the research community, who focused on

research involving the VM and not the libraries.

To ensure that new open-source projects are

successful, IBM provides significant guidance and

requirements. Each open-source project must

present a plan for the maintenance and evolution

of the project. Many successful research projects

create open-source versions of their code base, but

do not contribute the resources required to foster

an open-source community and maintain the

system. By requiring the project to address these

issues before the open-source release, its chances

for success were increased. Thus, in addition to

resources required to produce the code base (from

1997 to 2000) and the commitment required to

make the code base open source (in 2001), there

was an additional resource commitment required to

maintain the code base for a significant period of

time. Once again, research management had the

foresight to support this activity, despite the fact

that the ‘‘product’’ would not generate any rev-

enue.

With the approvals in place, the focus now turned

to the pragmatic details of transferring the system

to an open-source project. This required another

source-code repository migration to IBM’s publicly

available developerWorks CVS site (www.ibm.-

com/developerworks), creating mailing lists for the

projects, and creating a project Web page and other

tools. We migrated all appropriate defects from our

internal repository to the developerWorks bug-

tracking database.

We decided to announce the release of that system

at the OOPSLA (Object-oriented Programming

Languages and Applications) conference on Octo-

ber 15, 2001. Working with the IBM communica-

tions department, we prepared an official press

release announcement. We also held a ‘‘Birds of a

Feather’’
27

session at the conference to announce

the release. Although things mostly went smoothly,

one significant obstacle arose late in the process.

Approximately three weeks before the release date,

we learned that we should not release a system

named ‘‘Jalapeño,’’ as another company had

claimed trademark rights in the term. After a flurry

of meetings, we decided to use the name Jikes

Research Virtual Machine or Jikes RVM for short.

IBM already had several open-source systems using

the Jikes name, the most popular of which was the

Jikes Java source-to-byte-code compiler, so we

leveraged this association. However, we did realize

the potential confusion that might arise between

source-to-bytecode Jikes RVM and the Jikes com-

piler. Although both were developed by the

Software Technology Department at IBM Research,

their developers and code were independent.

We also needed to be clear in our documentation

that the system we were releasing was not a

‘‘JVM.’’ Although researchers often use this term to

mean a system that executes some Java programs,

it is in fact a trademark of Sun Microsystems that

can only be used by systems that pass the official

Java Test Compatibility Kit (TCK). Because we had

not run these tests, we could not use this term.

Thus, on October 15, 2001, Jikes RVM came into

existence. The initial open-source release was

called Release 2.0 to distinguish it from the

university releases, which were numbered 1.0, 1.1,

and so forth.

PROJECT EVOLUTION

As mentioned in previous sections, it required

considerable effort to transform the Jalapeño

internal research infrastructure into the Jikes RVM

open-source project. Although the technology in

the system was already a research success, as

measured by the number and quality of publica-

tions relating to the system, this did little to ensure

that the project would be an open-source success.

The following three sections describe the strategic

decisions and efforts that contributed to making the

Jikes RVM an open-source success. These sections

address the steps taken to (1) enhance the

technology, (2) advance the project, and (3)

promote the project.

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005406



Enhancing the system

In the three years following the Jikes open-source

release of October 15, 2001, thirteen subsequent

releases of the system were created. These releases

included significant performance improvements for

the Linux/IA32 platform, new functionality, and

bug fixes. Enhancements were made to the VM

(including a pluggable object model), garbage

collection (including the memory-management

toolkit) and compilers (including a new imple-

mentation of the linear scan register allocator).
28

System-wide, enhancements included the migration

to the GNU Classpath libraries, a bytecode verifier,

on-stack replacement, and increased platform sup-

port for the Linux/PowerPC, Mac OS X, and 64-bit

PowerPC on both AIX and Linux. Interested readers

can find more details in the release notes for each

release at the Jikes RVM Web site.
24

As mentioned earlier, although Jikes RVM often

displayed performance which was competitive with

production Java virtual machines, it could not run

arbitrary Java programs due to unimplemented

features in the VM and the libraries. However, it

was able to run the benchmarks that were of

interest to the research community, such as

SPECjvm98**
29

and SPECjbb2000**.
30

The open-

source release of the Eclipse IDE,
5
a large program

written in the Java programming language, pro-

vided a significant test for any Java virtual

machine. There were several reasons why getting

Jikes RVM to run Eclipse was attractive:

1. It provided the research community with a

much larger benchmark to use for their research

experiments.

2. Because of its interactive nature, in contrast to

the SPEC (Standard Performance Evaluation

Corporation) benchmarks, it would test a VM’s

general responsiveness and, in particular, its

startup performance. Although Eclipse was

open-source software, some open-source Linux

distributors would not distribute Eclipse because

it required a VM to run, and there were no

open-source VMs before Jikes that could run

Eclipse.

3. In addition, the ability to run Eclipse on Jikes

RVM might help promote the use of Eclipse

among the research community.

Thus, in spring 2002, it was decided that it would

be desirable for Jikes RVM to run Eclipse. To

accomplish this task, an Extreme Blue project was

initiated in the summer of 2002 in Cambridge,

Massachusetts. Extreme Blue is an IBM internship

program in which a team of four interns work in an

& An effort has begun to
create the boot image with
an open-source VM &

intense environment on a common focused project.

The team is composed of three technical students

and one M.B.A student. The program is extremely

competitive. Technical and business mentors are

assigned to the project, and work closely with the

team. The ‘‘Eclipse on Jikes RVM’’ project ran from

June through August of 2002. The project mostly

consisted of trying various Eclipse functionality on

top of Jikes RVM, diagnosing failures, and fixing

them in either the VM or the libraries. More

concretely, the technical work was done by the

Extreme Blue team in the summer of 2002 and by

Jikes RVM team members in the months both

before and after that summer. There were four

major categories of work:

1. Several large pieces of core VM functionality

were needed to run Eclipse that essentially did

not exist. The largest of these related to class

loader functionality: before the work on Eclipse,

the Jikes RVM used one class loader, and the

class loader APIs were minimally supported. An

implementation of class loaders was made, with

invasive changes to the core structures. Missing

pieces of JNI functionality were also added.

2. The standard libraries that Jikes RVM used until

then were really just core system classes, which

were woefully insufficient. Rather than write

large chunks of library code, the Extreme Blue

team started using portions of the libraries from

the GNU Classpath project. For instance, large

pieces of GNU Classpath library code were used

to support the various protocols for the Web-

based help system integrated into Eclipse. The

GNU Classpath code was also used to replace

portions of existing libraries, notably portions of

the I/O libraries and security code.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ALPERN ET AL. 407



3. The Extreme Blue team also wrote code that was

needed to integrate Jikes RVM and Eclipse. The

largest piece of this work was code to enable

Eclipse to use Jikes RVM as a subprocess to run

Java programs. This required writing a spe-

cialized Eclipse plug-in, which was essentially

an adapter that allowed Eclipse to understand

how to invoke Jikes RVM.

4. A good portion of the Extreme Blue team’s time

was spent tracking down and fixing problems in

Jikes RVM. The number of actual bugs in Jikes

RVM was smaller than we expected but was

substantial nonetheless. The largest single

source of such bugs was the interaction of the

baseline compiler and the garbage collection

system; these bugs were especially problematic

because they manifested themselves as obscure

crashes due to corrupted memory.

In the end, the project was a huge success; Jikes

RVM was able to run Eclipse. To achieve the goals

mentioned above, the modifications made by the

team, performed on an internal branch of the

system, needed to be merged back into the main

CVS source tree. This was done over the last part

of 2002. However, there still remained one signifi-

cant technical hurdle. As mentioned in the section

‘‘Preparing for open source,’’ Jikes RVM was

distributed with non-open-source libraries.

Although this might not be a problem for research

users, it posed a significant problem for open-

source Linux distributors.

Fortunately, there was an existing open-source

project, GNU Classpath, whose goal was to develop

a complete set of Java libraries.
31

Shortly after the

open-source release of Jikes RVM, suggestions

were posted on the Jikes RVM mailing list to switch

to these libraries. An open-source developer, John

Leuner, started the effort to make this transition and

contributed his work to the project. Using the

experience of this work, the Extreme Blue team used

some of the non-core Classpath libraries to run

Eclipse. In the Version 2.2.1 release of April 2003, the

project completely switched to the Classpath libra-

ries, and for the first time, both the system and

libraries were completely open source.

Coincidentally, around the same time, Classpath

developers were interested in demonstrating that

their libraries were functional enough to run Eclipse

and encouraged the several VMs that use their

libraries to take up this challenge. Jikes RVM was

one of a few systems that were able to run Eclipse.

The memory-management subsystem was also the

focus of major enhancements. In the first half of

2002, a major overhaul of the Jalapeño garbage

collectors was commenced at IBM. Simultaneously,

a new successor to GCTk was being planned at the

Australian National University and the University

of Texas. When these two groups discovered their

mutual goal, they held a meeting at the ACM

conference on Programming Language Design and

Implementation (PLDI) in June 2002, and decided

to collaborate. The result was an ambitious project

to build a new toolkit for memory management

from scratch. Ideally, the new toolkit would

perform as well as, or better than, the highly tuned

existing collectors, and be at least as flexible as

GCTk, while accommodating a broader range of

memory-management algorithms. Within three

months, JMTk (the Java Memory Management

Toolkit) was functional. As portability to other

runtimes and other languages became a focus,

JMTk was renamed MMTk (the Memory Manage-

ment Toolkit).

The project was very successful, meeting both its

performance and flexibility objectives. It is now

widely used within the memory-management

community and has been ported to other non-Java

runtime systems. MMTk represents a success in the

areas of both software engineering
21

and research,

where it became the platform for the first com-

prehensive ‘‘apples to apples’’ study of key

memory-management algorithms,
22

as well as the

basis for new algorithms.
32

Above all, MMTk is a

strong example of the value of collaboration

between industry and academia in developing a

research infrastructure.

Building the community

A key ingredient of a successful open-source

project is evolving participation from the initial

developers to a self-sustaining community of

volunteers that is not necessarily dependent on the

initial developers. When Jikes RVM was initially

released, the project depended heavily on support

from IBM developers. However, even before

releasing the system, plans were made regarding

how the project could evolve to ensure its long-

term success, even if IBM employees were no

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005408



longer active participants. This strategy encouraged

users of the system to become experts in one or

more areas of the system, putting them in a

position to help others and potentially to maintain

the system in the future.

The mechanics of achieving this were put in place

over time. For example, nine months after the

initial open-source release, a process was devel-

oped for accepting user contributions to the code

base and documentation. This process, developed

with the IBM legal department, is simple enough to

encourage contributions, but still satisfies the legal

department’s concerns about contribution original-

ity. (Details are on the Jikes RVM Web site.)

Perhaps the most significant user contribution has

been the port of the system to the 64-bit PowerPC

platform. This port was coordinated and assisted

by several IBM core team members, but the bulk of

the work was performed by university researchers

at Ghent, the University of Massachusetts, and the

University of New Mexico. In addition to the 64-bit

port, in the period of over two years since we have

been accepting contributions, we have received 35

nontrivial contributions from 26 individuals. Just

under half of these were enhancements to MMTk,

the memory management component of Jikes RVM.

Other contributions included ports to Mac OS X and a

partial implementation of bytecode verification.

In June 2003, the structure of the project was

formalized with the formation of a steering

committee and a core team. The steering commit-

tee is responsible for the strategic direction and

success of the project. It is expected to ensure the

project’s welfare and guide its overall direction.

The core team is responsible for virtually all of the

daily technical decisions associated with the

project. Core team members have write access to

the source-code repository. They decide what new

code is added to the system and process contribu-

tions from the user community. Active participa-

tion on the mailing lists is a responsibility of all

core team members and is critical to the success of

the project. Becoming a core team member is a

privilege that is earned by contributing to the

project.

As expected, the initial core team was a subset of

the initial IBM implementers. However, over time,

it has evolved to include several people from

outside of IBM. As of November 2004, there are 11

members on the core team, six of whom are IBM

employees. The core team will continue to evolve

as new volunteers present themselves and current

members move on to other activities.

There are several important elements for the

acceptance of an open-source project by open-

source developers. First, one must release the code

under a license approved by the Open Source

Initiative
33

(OSI). Jikes RVM uses the CPL license,

which is approved by the OSI. The GNU Classpath

libraries use a variant of the GPL, which is also

OSI-approved. Second, the project must be run in

an open manner; that is, discussion about the

project’s evolution should be open to all potential

participants and publicly archived. Jikes RVM

strives to achieve this by using the jikesrvm_core

mailing list for these discussions, refraining as

much as possible from ‘‘hallway’’ discussions at

IBM.

Some open-source software developers—often fol-

lowers of the Free Software Foundation philoso-

phy—are ideologically committed to free software.

For this community, there is a third requirement:

that all software tools used to build and run the

system should also be free software. (This is the

same community that requires an open-source VM

in order to run Eclipse.) Thus, despite the huge

success of Jikes RVM with the university research-

ers, free software developers have been reluctant to

use or contribute to the system because of its

reliance on proprietary software in building its boot

image file. To explain this reliance, we present an

overview of the Jikes RVM build process. Further

details are provided in Reference 10.

As mentioned earlier, Jikes RVM is mostly written

in the Java programming language. It runs on itself

without the need for a second virtual machine. To

start its execution it reads a boot image file that

contains a frozen instance of an initial VM. The

program that creates this image is also written in

the Java programming language. The program

basically takes all of the core classes in the Jikes

RVM, compiles them to native code, and then

writes them to the boot image file. Because this

program compiles a large number of classes, it is a

useful stress test for any Java virtual machine. As

of mid-2004, no open-source VM was robust

enough to run this boot image writer program.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ALPERN ET AL. 409



Thus, Jikes RVM required the use of a non-open-

source Java virtual machine for creating its boot

image.

An effort has begun to create the boot image with an

open-source VM. Ultimately, we expect Jikes RVM

to be that VM, but because of complications

involving class loading, this is not as straightforward

as it might seem. The VM will be running a Java

program that is trying to load and natively compile

another version of itself. Thus, we are initially trying

to create the boot image with another open-source

VM. As of Version 2.3.2 (April, 2004), the Kaffe

virtual machine
34

was able to build a version of the

Jikes RVM boot image that utilizes the baseline

compiler. Although the time to build the image was

about six times longer than using a proprietary Java

virtual machine, it does satisfy the wish of those

who want to use only open-source tools when

developing the Jikes RVM. Because of this accom-

plishment, a Debian** package containing the Jikes

RVM is now available, and we are working on

getting it into the Debian distribution. Work also

continues on being able to ‘‘self build’’ with Jikes

RVM.

Promoting the system
Creating a successful open-source project requires

much more than useful technology. Complex

technology, like a virtual machine, requires not

only promotion of the availability of the system,

but also a considerable amount of education on

how the system works. From the first day the

system was released as open source, the project

has treated promotion of the system as an

important goal. This has taken a number of forms,

as described next.

Birds of a Feather Sessions. We held these sessions

at the premier conferences for programming

languages, when the university release was avail-

able (at PLDI’01), and when the open-source

release was available (at OOPSLA’01 and PLDI’02).

The sessions were organized as information ses-

sions, where a project member would take about

20 minutes to explain what the system was (at a

high level) and then existing users would discuss

how they are using the system. Attendance varied

from 20 to 100 people.

Tutorials. To help provide a more detailed expla-

nation of the system, we conducted a number of

technical tutorials about the system. In September

2001, we presented an eight-hour tutorial on the

complete system at the PACT (Parallel Computing

Technologies) conference in Barcelona. In June and

October 2002, we presented tutorials on the details

of the optimizing compiler and adaptive optimiza-

tion system at PLDI and OOPSLA, respectively. In

October 2004, we presented a tutorial on the

MMTk garbage collection toolkit at ISMM (Inter-

national Symposium on Memory Management).

Online Information. The Jikes RVM home page
24

provides a large amount of information for the

prospective user. It includes the slides from all

tutorials, a list of publications that use the system

(96 as of November 2004), a list of courses that

have been taught using the system (20 as of

November 2004), including links to the courses

with lots of helpful information, and a list of

current users of the system. There are also details

about the code base, such as the user’s guide, a

CVS repository supporting browsing, the complete

Jikes RVM API, mailing list archives, and the bug/

feature database.

Mailing Lists. There are four mailing lists associ-

ated with the project geared toward (1) general

announcements, (2) the results of nightly regres-

sion tests, (3) general questions, and (4) more

detailed (core team) questions. From the begin-

ning, the mailing lists have received a significant

amount of questions. As expected, in the early days

almost all questions were answered by the initial

IBM implementers of the system. However, as

outside expertise with the system has grown over

time, more and more questions are being answered

by the user community.

MEASURING IMPACT

This section presents some quantitative informa-

tion that measures activity related to the Jikes RVM

project. Because no one metric sufficiently quanti-

fies success, we explore several metrics.

Jikes RVM can be obtained in two ways: by direct

access from the CVS repository or by downloading

it as a release, which is a packaged snapshot of the

system. Figure 1 presents the number of down-

loaded snapshots per month since November 2002.

(We do not have download data for the first year of

the project.) The drop in downloads in March 2004

resulted from the project Web site being unavail-

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005410



able for two weeks. The figure shows an average of

300 downloads per month, with significant

monthly variations. On the x axis, months when a

new release was made appear in bold font, such as

December 2002. Not surprisingly, the figure shows

an apparent trend, wherein the month following a

release has a large number of downloads, with

smaller numbers in subsequent months until a new

release is issued (for example, consider January–

April 2004, and May–July 2004).

Although this metric seems straightforward, it is

not clear how appropriate it is for a research user

community that performs its research on a locally

modified version of the system. For such users,

downloading a new release and then porting

modifications is not always desirable, despite the

improvements in functionality and robustness.

Thus, some users may derive great benefit from the

system for several years, but download it only

once. Furthermore, other users frequently get

copies of the system using CVS directly, and thus,

they are not counted in the download metric.

Another way to measure user activity is to monitor

the main mailing list, jikesrvm_researchers. Figure 2

Figure 2
Mailing-list subscribers

0

50

100

150

200

N
ov

 1
, 2

00
1

D
ec

 1
, 2

00
1

Ja
n 

1,
 2

00
2

Fe
b 

1,
 2

00
2

M
ar

 1
, 2

00
2

Ap
r 1

, 2
00

2
M

ay
 1

, 2
00

2
Ju

n 
1,

 2
00

2
Ju

l 1
, 2

00
2

Au
g 

1,
 2

00
2

Se
p 

1,
 2

00
2

O
ct

 1
, 2

00
2

N
ov

 1
, 2

00
2

D
ec

 1
, 2

00
2

Ja
n 

1,
 2

00
3

Fe
b 

1,
 2

00
3

M
ar

 1
, 2

00
3

Ap
r 1

, 2
00

3
M

ay
 1

, 2
00

3
Ju

n 
1,

 2
00

3
Ju

l 1
, 2

00
3

Au
g 

1,
 2

00
3

Se
p 

1,
 2

00
3

O
ct

 1
, 2

00
3

N
ov

 1
, 2

00
3

D
ec

 1
, 2

00
3

Ja
n 

1,
 2

00
4

Fe
b 

1,
 2

00
4

M
ar

 1
, 2

00
4

Ap
r 1

, 2
00

4
M

ay
 1

, 2
00

4
Ju

n 
1,

 2
00

4
Ju

l 1
, 2

00
4

Au
g 

1,
 2

00
4

Se
p 

1,
 2

00
4

O
ct

 1
, 2

00
4

N
ov

 1
, 2

00
4

N
U

M
BE

R 
O

F 
SU

BS
C

RI
BE

RS

Figure 1
Downloads per month

N
U

M
BE

R 
O

F 
D

O
W

N
LO

AD
S

0

100

200

300

400

500

N
ov

 2
00

2

D
ec

 2
00

2

Ja
n 

20
03

Fe
b 

20
03

M
ar

 2
00

3

Ap
r 

20
03

M
ay

 2
00

3

Ju
n 

20
03

Ju
l 2

00
3

Au
g 

20
03

Se
p 

20
03

O
ct

 2
00

3

N
ov

 2
00

3

D
ec

 2
00

3

Ja
n 

20
04

Fe
b 

20
04

M
ar

 2
00

4

Ap
r 

20
04

M
ay

 2
00

4

Ju
n 

20
04

Ju
l 2

00
4

Au
g 

20
04

Se
p 

20
04

O
ct

 2
00

4

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ALPERN ET AL. 411



presents the number of people subscribing to this

list on the first day of each month since the

project’s inception. The figure illustrates a steady

increase of interest in the project’s activities, about

50 new subscribers per year. The number of IBM

employees subscribed to this list has varied from

17–19 people over the time period displayed. It is

reasonable to assume that someone who subscribes

to the list is interested in discussions about the

system, and thus it is a reasonable metric of a

project’s success. However, as all mailing list

discussions are archived on the project Web page,

one does not need to subscribe to benefit from the

information contained on the list, making this

metric useful but not perfect.

Another interesting metric is the amount of traffic

that is received on the main mailing list. Figure 3

presents this value on a monthly basis since the

project’s inception. The figure illustrates a steady

flow of mail activity, averaging about 100 messages

per month. Typical traffic usually involves a user

posting a question about the system, which is then

answered by someone with familiarity in the area

being queried. In the early days of the project

almost all answers came from the IBM developers.

However, over time this has changed so that the

majority of questions are now answered by the

larger community.

The primary goal of the Jikes RVM project is to

enable users to advance the state of the art in

virtual-machine technologies. Thus, the most re-

sult-oriented metric of the success of the project is

how well the users of the system are succeeding in

this effort. Clearly, this depends as much on the

quality of the user community as on that of the

system. Figure 4 presents the number of publica-

tions describing research that used Jikes

RVM/Jalapeño per year starting in 1999, the year

of the first Jalapeño publication. It includes

publications by Jikes RVM developers, other

researchers at IBM, and the user community. To

help understand how the system has impacted

researchers outside of its initial developers and

Figure 4
Publications using Jikes RVM

0

10

20

30

19
99

20
00

20
01

20
02

20
03

20
04

Papers with at least 
one IBM co-author
Papers without 
any IBM co-author

N
U

M
BE

R 
O

F 
M

AI
LI

N
G

S

Figure 3
Mailing-list traffic

0

50

100

150

200

O
ct

 2
00

1
N

ov
 2

00
1

D
ec

 2
00

1
Ja

n 
20

02
Fe

b 
20

02
M

ar
 2

00
2

Ap
r 2

00
2

M
ay

 2
00

2
Ju

n 
20

02
Ju

l 2
00

2
Au

g 
20

02
Se

p 
20

02
O

ct
 2

00
2

N
ov

 2
00

2
D

ec
 2

00
2

Ja
n 

20
03

Fe
b 

20
03

M
ar

 2
00

3
Ap

r 2
00

3
M

ay
 2

00
3

Ju
n 

20
03

Ju
l 2

00
3

Au
g 

20
03

Se
p 

20
03

O
ct

 2
00

3
N

ov
 2

00
3

D
ec

 2
00

3
Ja

n 
20

04
Fe

b 
20

04
M

ar
 2

00
4

Ap
r 2

00
4

M
ay

 2
00

4
Ju

n 
20

04
Ju

l 2
00

4
Au

g 
20

04
Se

p 
20

04
O

ct
 2

00
4

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005412



other IBM employees, the figure partitions pub-

lications into two categories: publications with at

least one author affiliated with IBM, and publica-

tions with no IBM authors. This is not a perfect

partition because some papers in the former

category are written predominantly by non-IBM-

related researchers. Thus, the latter category

represents a conservative underestimate of publi-

cations by non-IBM-related researchers.

The figure illustrates that, as the system has

become available outside of IBM, more researchers

have successfully published their work. As of

November 2004, 96 papers (that we are aware of)

have been published describing research that used

the system. A complete list of these publications,

including links to the papers in most cases, is

available at the project Web site.

In addition to publications, the system has been used

to teach at least 20 courses at 12 different univer-

sities. Furthermore, researchers at over 60 univer-

sities have used the system for their research.

Finally, Figure 5 presents the number of CVS

‘‘commits’’ to the system since March 2003, when

this data became available. Commits are made by

core team members and are predominately bug

fixes and new feature additions to the code base. A

small minority of commits are improvements to the

supporting infrastructure, such as the documenta-

tion, building tools, and regression testing. This

metric is a good indication of the activity of the

project over time.

As mentioned in the section ‘‘Preparing for open

source,’’ an expected benefit to IBM of the making

the system available as an open-source project was

an improved awareness of IBM’s technology,

leading to improved Ph.D. candidate recruiting.

The project has seen evidence of this phenomenon.

In particular, the existence of the project has

attracted dozens of graduate students interested in

internships, and resulted in at least four new Ph.D.

hires over the past three years.

CONCLUSIONS AND LESSONS LEARNED

This paper has described the evolution of the Jikes

RVM project from internal research infrastructure,

to university releases, to successful open-source

project. We conclude with an attempt to summa-

rize some lessons learned during this experience.

Success with the open-source research community

demands much more than just source code. The

research community has a voracious appetite for

information on a system’s inner workings. To

provide this information, project maintainers must

provide extensive documentation, tutorials, and

access to experts via a mailing list.

Open source can serve as an invaluable catalyst for

productive research collaboration. The successful

development of MMTk provides an outstanding

Figure 5
CVS commits

N
U

M
BE

R 
O

F 
CO

M
M

IT
S

0

500

1000

1500

M
ar

 2
00

3

Ap
r 2

00
3

M
ay

 2
00

3

Ju
n 

20
03

Ju
l 2

00
3

Au
g 

20
03

Se
p 

20
03

O
ct

 2
00

3

N
ov

 2
00

3

D
ec

 2
00

3

Ja
n 

20
04

Fe
b 

20
04

M
ar

 2
00

4

Ap
r 2

00
4

M
ay

 2
00

4

Ju
n 

20
04

Ju
l 2

00
4

Au
g 

20
04

Se
p 

20
04

O
ct

 2
00

4

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ALPERN ET AL. 413



example of cooperative development among re-

searchers on different continents, with different

backgrounds, spanning industry and academia.

MMTk has resulted in numerous high-quality

research results, dozens of publications, and an

immensely stimulating collaboration. Furthermore,

it has advanced the science of memory-manage-

ment research by providing a high-quality infra-

structure with which researchers the world over

can reproduce and improve on published results.

Open-source sharing makes all this possible.

The trade-offs between flexibility and maintain-

ability present difficult problems. Software designed

for research use should be flexible enough, and

provide a feature set rich enough, to support a wide

variety of implementation options. However, soft-

ware used for production should be easily main-

tained and thus benefits from a minimal feature set

to reduce testing requirements. An open-source

research project constantly faces the tension be-

tween these forces and must carefully manage a

system’s evolution to strike a judicious balance.

When a systems software research project is

started, it is prudent to assume that the infra-

structure will be adopted by a large community

and to manage the software development accord-

ingly. One should assume from the beginning that

the project will have a significant impact and raise

significant interest in the infrastructure. If the

project will not have a significant impact, it may

not be worth pursuing.

Finally, we close this section with a commentary

on the practice of systems software research. For

science to advance, researchers must be able to

reproduce past results and ultimately improve on

them. In systems software research, results often

depend on a myriad of implementation details that

cannot be conveyed in a research paper. Although

many systems research papers include information

on algorithms, benchmarks, and experimental

methodology, this information ultimately fails to

facilitate reproducible results.

We hoped, and still hope, that widely adopted

open-source research infrastructures such as Jikes

RVM will change this, allowing researchers to

publish source code used in studies, and allowing

other researchers to build on the results. However,

in our experience, the vast majority of researchers

choose not to make their implementations publicly

available. We suspect that the main issue is that

the research community, as represented by pro-

gram committees and tenure committees, does not

explicitly value producing open software. Thus,

most researchers do not have a strong incentive to

devote time and energy into publishing software

for research.

We hope that, as more open-source research

infrastructure is built, the community mind-set will

gradually change, until open software for repro-

ducible systems research becomes the rule rather

than the exception. We believe that such a sea

change would dramatically advance the discipline

of systems software as a science.

ACKNOWLEDGMENTS
Many people have contributed to the success of the

Jalapeño project and the Jikes RVM open-source

project. We thank Dick Attanasio, Stephen Smith,

Derek Lieber, Janice Shepherd, Arvin Shepherd,

Matthew Arnold, David Bacon, Peter F. Sweeney, Igor

Pechtchanski, Harini Srinivasan, JongDeok Choi,

Mauricio Serrano, and John Whaley for their

contributions to the initial Jalapeño system and the

Jikes RVM release. We thank Jim Russell, John

Barton, MarkWegman, Dan Yellin, and Alfred Spector

for their support of this project. We thank Julianne

Young, Sergiy Kyrylkov, Jeff Palm, and Dave

Hovemeyer for their efforts in the Eclipse on Jikes

RVM Extreme Blue project. We thank the GNU

Classpath developers for providing the libraries that

are used in Jikes RVM. We thank David R. Hanson,

ChristoperW. Fraser, and Todd Proebsting for making

available the ‘‘iburg’’ tool, which we have enhanced

for use in Jikes RVM. We thank John Leuner for

contributing the initial port to the Classpath libraries.

We also thank Feng Qian, Martin Hirzel, and Kim

Hazelwood Cettei for performing night sanity guru

duties during their summer internships. Finally, we

thank fellow core team members Feng Qian, Peter F.

Sweeney, and Chris Hoffman for their support of the

system and Laureen Treacy for feedback on earlier

drafts of this paper.

*Trademark or registered trademark of International Busi-
ness Machines Corporation.

**Trademark or registered trademark of Linus Torvalds, Sun
Microsystems, Inc., Apple Computer, Inc., The Standard
Performance Evaluation Corporation, or Software in the
Public Interest, Incorporated.

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005414



CITED REFERENCES AND NOTES
1. The Linux Kernel Archives, http://www.kernel.org.

2. The FreeBSD Project, http://www.freebsd.org.

3. OpenOffice.org: Home Page, http://www.openoffice.org.

4. LaTeX project: LaTeX—A document preparation system,
http://www.latex–project.org.

5. Eclipse.org Main Page, http://www.eclipse.org.

6. GCC Home Page—GNU Project—Free Software Foun-
dation (FSF), http://gcc.gnu.org.

7. KDE Home Page—Conquer your Desktop! http://
www.kde.org.

8. GNOME: The Free Software Desktop Project, http://
www.gnome.org.

9. B. Alpern, C. R. Attanasio and J. J. Barton, M. G. Burke,
P. Cheng, J. D. Choi, A. Cocchi, S. J. Fink, D. Grove, M.
Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H.
Srinivasan, and J. Whaley, ‘‘The Jalapeño Virtual
Machine,’’ IBM Systems Journal 39, No. 1, 211–238
(2000).

10. B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S.
Smith, T. Ngo, J. J. Barton, S. F. Hummel, J. C. Sheperd,
and M. Mergen, ‘‘Implementing Jalapeño in Java,’’
Proceedings of the 1999 ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages &
Applications (OOPSLA’99), ACM SIGPLAN Notices 34,
No. 10, 314–324, ACM, New York (1999).

11. M. G. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V.
Sarkar, M. J. Serrano, V. C. Sreedhar, H. Srinivasan, and
J. Whaley, ‘‘The Jalapeño Dynamic Optimizing Compiler
for Java,’’ Proceedings of the ACM 1999 Java Grande
Conference, 129–141, ACM, New York (1999).

12. M. Arnold, S. Fink, D. Grove, M. Hind, and P. F.
Sweeney, ‘‘Adaptive Optimization in the Jalapeño JVM,’’
Proceedings of the 2000 ACM SIGPLAN Conference on
Object Oriented Programming, Systems, Languages and
Applications (OOPSLA’00), ACM SIGPLAN Notices 35,
No. 10, 47–65, ACM, New York (2000).

13. C. R. Attanasio, D. F. Bacon, A. Cocchi, and S. Smith,
‘‘A Comparative Evaluation of Parallel Garbage Collector
Implementations,’’ Proceedings of the 14th International
Workshop on Languages and Compilers for Parallel
Computing, Lecture Notes in Computer Science 2624,
177–192, Springer-Verlag, Germany (2001).

14. A system that maps m Java threads to n operating-
system threads by inserting potential yield points during
the compilation of methods. When an external event,
such as a timer interrupt or a garbage collection request,
occurs, an executing thread will call the scheduler upon
execution of the next yield point.

15. W. F. Tichy, ‘‘RCS: A System for Version Control,’’
Software—Practice and Experience 15, No. 7, 637–654
(July 1985).

16. Concurrent Versions System (CVS) Domain Home Page,
http://www.cvshome.org.

17. J. Choi and H. Srinivasan, ‘‘Deterministic Replay of Java
Multithreaded Applications,’’ Proceedings of the SIG-
METRICS Symposium on Parallel and Distributed Tools,
48–59, ACM, New York (1998).

18. M. Serrano, R. Bordawekar, S. Midkiff, and M. Gupta,
‘‘Quicksilver: A Quasistatic Compiler for Java,’’ Pro-
ceedings of the 2000 ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages and Appli-

cations (OOPSLA’00), ACM SIGPLAN Notices 35, No. 10.
66–82 (October 2000).

19. V. C. Sreedhar, M. Burke, and J. Choi, ‘‘A Framework
for Interprocedural Optimization in the Presence of
Dynamic Class Loading,’’ Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language
Design and Implementation (PLDI), ACM SIGPLAN
Notices 35, No. 5, 196–207 (May 2000).

20. B. Alpern, A. Cocchi, and D. Grove, ‘‘Dynamic Type
Checking in Jalapeño,’’ Proceedings of the USENIX Java
Virtual Machine Research and Technology Symposium
(JVM’01), 41–52, USENIX Advanced Computing Sys-
tems Association, Berkeley, CA (April 2001).

21. S. Blackburn, P. Cheng, and K. McKinley, ‘‘Oil and
Water? High Performance Garbage Collection in Java
with JMTk,’’ Proceedings of the Twenty-Sixth Interna-
tional Conference on Software Engineering, 137–146,
IEEE Computer Society, Washington, D.C. (May 2004).

22. S. Blackburn, P. Cheng, and K. McKinley, ‘‘Myths and
Reality: The Performance Impact of Garbage Collection,’’
Proceedings of the Joint International Conference on
Measurement and Modeling of Computer Systems, ACM
SIGMETRICS Performance Evaluation Review 32, No. 1,
25–36, ACM, New York (June 2004).

23. B. Alpern, M. Butrico, A. Cocchi, J. Dolby, S. Fink, D.
Grove, and T. Ngo, ‘‘Experiences Porting the Jikes RVM
to Linux/IA32,’’ Proceedings of the Second USENIX Java
Virtual Machine Research and Technology Symposium
(JVM’02), 51–64, USENIX Advanced Computing Sys-
tems Association, Berkeley, CA August 2002.

24. Jikes RVM Home Page, http://jikesrvm.sourceforge.net.

25. T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M.
Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani,
‘‘Overview of the IBM Java Just-in-Time Compiler,’’ IBM
Systems Journal 39, No. 1, 175–193 (2000).

26. N. Grcevski, A. Kilstra, K. Stoodley, M. Stoodley, and V.
Sundaresan, ‘‘Java Just-in-Time Compiler and Virtual
Machine Improvements for Server and Middleware
Applications,’’ Proceedings of the Third USENIX Java
Virtual Machine Research and Technology Symposium
(JVM’04), 151–162, USENIX Advanced Computing
Systems Association, Berkeley, CA (May 2004).

27. An informal meeting at a conference where people with
similar interests gather. This is in contrast with the
regular conference program which is much more formal
and of general interest.

28. M. Poletto and V. Sarkar, ‘‘Linear Scan Register
Allocation,’’ ACM Transactions on Programming Lan-
guages and Systems 21, No. 5, 895–913 (September
1999).

29. SPECjvm98 Benchmarks, Standard Performance Evalua-
tion Corporation, http://www.spec.org/jvm98.

30. SPECjbb2000—Java Business Benchmark 2000, Standard
Performance Evaluation Corporation., http://www.
spec.org/jbb2000.

31. GNU Classpath—GNU Project—Free Software Founda-
tion, http://www.gnu.org/software/classpath.

32. S. M. Blackburn and K. S. McKinley, ‘‘Ulterior Reference
Counting: Fast Garbage Collection without a Long
Wait,’’ ACM SIGPLAN Notices 38, No. 11, 344–358
(November 2003).

33. OpenSource Initiative (OSI), http://www.opensource.org.

34. Kaffe.org. Home Page, http://www.kaffe.org.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ALPERN ET AL. 415



Accepted for publication November 30, 2004.

Bowen Alpern
IBM Research Division, Thomas J. Watson Research Center,
19 Skyline Drive, Hawthorne, New York 10532 (alpernb@
us.ibm.com). Dr. Alpern received a B.S. degree from the
University of Michigan in 1974 and a Ph.D. degree from
Cornell University in 1986. In that year, he became a
research staff member at the IBM Thomas J. Watson
Research Center. His research interests include virtual
machine implementation and application virtualization.

Steven Augart
16 Brooks Street, Winchester, Massachusetts, 01890.
(saugart@yahoo.com). Mr. Augart is a freelance software
engineer. He first did free software work for the GNU project
in 1983. He received a Bachelor’s degree from Harvard
University in 1989 and an M.S. degree from the University of
California at Irvine in 1992. After a varied career including
seven years at the University of Southern California
Information Sciences Institute (networking division), he
became involved in the Jikes RVM project in 2003, and is a
member of the core team. His interests are in operating
systems, real-time programming (especially networking
protocols), and free software.

Stephen M. Blackburn
Department of Computer Science, Australian National
University, Canberra, ACT 0200, Australia
(Steve.Blackburn@anu.edu.au). Dr. Blackburn is a research
fellow at the Department of Computer Science at the
Australian National University. He received his B.Sc. and
B.E. degrees from the University of New South Wales in 1990
and 1992, and his Ph.D. degree from the Australian National
University in 1997. During postdoctoral work at the
University of Massachusetts, he became involved in the Jikes
RVM project, and is a member of the core team and steering
committee. His interests include memory performance,
memory management, and architecture.

Maria Butrico
IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598
(butrico@us.ibm.com). Ms. Butrico joined IBM in 1984 and
is currently a senior software engineer. She received a B.S.
degree in computer science from Pace University in 1984 and
an M.S. degree in computer science from Columbia
University in 1990. Her interests include operating systems,
database systems, distributed systems, and middleware. She
received an Outstanding Technical Achievement Award for
her work on the Virtual Shared Disk.

Anthony Cocchi
Department of Mathematics and Computer Science, Lehman
College, The City University of New York, 250 Bedford Park
Boulevard West, Bronx, New York 10468 (acocchi@lehman.
cuny.edu). Mr. Cocchi is a Distinguished Lecturer at Lehman
College (a division of the City University of New York). He
has a Bachelor’s and a Master’s degree in electrical
engineering from Pratt Institute (in Brooklyn, New York) and
a Master’s degree in computer science from New York
Polytechnic Institute. On the Jikes RVM project, he worked
on the garbage collector, the runtime, and the basic
compilers, and did performance measurements and analysis.

Perry Cheng
IBM Research Division, Thomas J. Watson Research Center,
19 Skyline Drive, Hawthorne, New York 10532 (perryche@us.
ibm.com). Dr. Cheng is a research staff member in the
Software Technology Department at the IBM Watson

Research Center. He received his B.S. degree from Rice
University in 1994, and his M.S. and Ph.D. degrees from
Carnegie Mellon University in 1998 and 2001, respectively.
He subsequently joined IBM, where he is a member of
the Jikes RVM core team and helped develop its garbage
collector framework. His research interests include
programming language design and implementation, virtual
machines, and runtime systems. He is a member of the
ACM.

Julian Dolby
IBM Research Division, Thomas J. Watson Research Center,
19 Skyline Drive, Hawthorne, New York 10532
(dolby@us.ibm.com). Mr. Dolby is a research staff member
in the Software Technology Department at the IBM Watson
Research Center. He attended the University of Wisconsin at
Madison and the University of Illinois at Urbana-Champaign.
He was a member of the team that developed the Jikes RVM
and was a mentor on the Extreme Blue project in 2002. He
now works primarily on advanced program analysis
techniques, focusing on demanding analysis applications for
programming tools.

Stephen Fink
IBM Research Division, Thomas J. Watson Research Center,
19 Skyline Drive, Hawthorne, New York 10532 (sjfink@us.
ibm.com). Dr. Fink is a research staff member in the
Software Technology Department at the IBM. Watson
Research Center. He received a B.S. degree from Duke
University in 1992 and M.S. and Ph.D. degrees from the
University of California, San Diego in 1994 and 1998,
respectively. He subsequently joined IBM, where he was a
member of the team that produced the Jikes Research Virtual
Machine, and is currently investigating the application of
static program analysis to Enterprise JavaBeans. His research
interests include programming-language implementation
techniques, program analysis, and parallel and scientific
computation. He is a member of the ACM.

David Grove
IBM Research Division, Thomas J. Watson Research Center,
19 Skyline Drive, Hawthorne, New York 10532 (groved@
us.ibm.com). Dr. Grove is a research staff member in the
Software Technology Department at the IBM Watson
Research Center. He received a B.S. degree from Yale College
in 1992, and M.S. and Ph.D. degrees from the University of
Washington in 1994 and 1998, respectively. He subsequently
joined IBM, where he is a member of the Jikes RVM core
team and helped develop its adaptive optimization system,
optimizing compiler, and runtime system. His research
interests include programming language design and
implementation, virtual machines, and adaptive
optimization. He is a member of the ACM.

Michael Hind
IBM Research Division, Thomas J. Watson Research Center,
19 Skyline Drive, Hawthorne, New York 10532 (hindm@
us.ibm.com). Dr. Hind is a research staff member and
manager in the Software Technology Department at the IBM
Watson Research Center. He received a B.A. degree from the
State University of New York at New Paltz in 1985 and M.S.
and Ph.D. degrees from New York University in 1987 and
1991. From 1992 to 1998, Dr. Hind was a professor of
computer science at the State University of New York at New
Paltz. In 1998, he joined IBM to work on the Jalapeño
project, particularly the adaptive optimization system and
the optimizing compiler. In 2000, he became the manager of
the Dynamic Optimization Group at IBM Research. His
research interests include program analysis, adaptive
optimization, and memory latency issues. He is a member of
the ACM.

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005416

Published online April 13, 2005.



Kathryn S. McKinley
Department of Computer Sciences, The University of Texas at
Austin, 1 University Station #C0500, Austin, Texas 78712
(mckinley@cs.utexas.edu). Dr. McKinley is an associate
professor at the University of Texas at Austin. She received
her Ph.D. degree in 1992, Master’s degree in 1990, and
Bachelor’s degree in 1985, all from Rice University. Her
research interests include compilers, memory management,
and architecture. She has received two IBM Faculty Awards
(2003, 2004) and an NSF CAREER Award (1996, 2000); she
is an IEEE Senior Member; she was awarded a Texas
Institute for Computation and Applied Mathematics (TICAM)
Visitor Fellowship (1999) and a Chateaubriand Scholarship
for the Exact Sciences, Engineering, and Medicine (1992).
She was the program chair for the ACM conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS) 2004, and is the program chair
for the International conference on Parallel Architectures and
Compilation Techniques (PACT) 2005.

Mark Mergen
IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598
(mergen@us.ibm.com). Dr. Mergen managed the group
responsible for the non-optimizing compilers, virtual
machine, and garbage collection in Jikes RVM, and
previously managed the research effort leading to the High-
Performance Compiler for Java (HPCJ) product. He is
currently working on the K42 open-source, scalable,
customizable operating-system kernel project, and previously
managed the research prototype leading to the first 64-bit
AIX product release. He has also worked on PowerPC
architecture and virtual memory software. He has a B.S.
degree in mathematics and an M.D. degree from the
University of Wisconsin at Madison.

J. Eliot B. Moss
Department of Computer Science, University of Massachusetts,
140 Governor’s Drive, Amherst, MA 01003-9264 (moss@cs.
umass.edu). Dr. Moss is an associate professor and has been
a member of the computer science faculty at the University
of Massachusetts at Amherst since 1985. His work focuses on
the efficient implementation of modern programming
language and runtime systems on modern architectures. He
participated in the designs of the Clu and Argus
programming languages while a graduate student, and
contributed the nested transaction model in his dissertation.
Since then he has explored persistent object storage and
persistent programming-language implementation, and more
recently helped advance the state of the art in automatic
storage management (garbage collection). He also pursues
interests in hardware support for language features and in
application of machine learning techniques to systems
problems, especially in compiler optimization. His
interactions with IBM Research led to the first academic
source license for Jikes RVM (Jalapeño at the time). Dr.
Moss received a Ph.D. degree in 1981, an M.S. degree in
1978, and a B.S. degree in 1975, all in computer science from
the Massachusetts Institute of Technology.

Ton Ngo
IBM Almaden Research Division, 650 Harry Road, San Jose,
California 95120 (ton@us.ibm.com). Dr. Ngo received his
Ph.D. and M.S. degrees in computer science from the
University of Washington, an M.S. degree in electrical
engineering from the Florida Institute of Technology, and a
B.S. degree in electrical engineering from the Georgia
Institute of Technology. He joined the IBM Systems Product
Division in 1982, the IBM Watson Research Center in 1987,
and finally the Almaden Research Center in 2001. In the
Jikes RVM project, he developed the debugger and the Java
Native Interface and contributed to the Record/Replay tool.

Currently he is with the WebFountaine project, working on
a cluster of several hundred/Linux machine for Web-scale
data mining.

Vivek Sarkar
IBM Research Division, Thomas J. Watson Research Center,
19 Skyline Drive, Hawthorne, New York 10532 (vsarkar@us.
ibm.com). Dr. Sarkar is a research staff member and Senior
Manager of Programming Technologies in the Software
Technology Department at the IBM Watson Research Center,
where he oversees research projects in the areas of
programming models, programming tools, code optimization,
and virtualized runtime systems. He received a B.Tech.
degree from the Indian Institute of Technology in Kanpur in
1981, an M.S. degree from the University of Wisconsin at
Madison in 1982, and a Ph.D. degree from Stanford
University in 1987. From 1998 to 2000, he was manager of
the Dynamic Optimization group, which was responsible for
the dynamic optimizing compiler and adaptive optimization
system in Jalapeño. After becoming Senior Manager in 2000,
he led the team that evolved the Jalapeño research project
into the Jikes RVM open-source release in 2001. Dr. Sarkar’s
primary research interests are in optimizing and parallelizing
compilers, static and dynamic program analysis, and parallel-
programming models. He has been a member of the IBM
Academy of Technology since 1995.

Martin Trapp
100world AG, Vordere Cramergasse 11, D90478 Nuremberg,
Germany (martin.trapp@100world.de). Dr. Trapp is a Chief
Developer at 100world AG, working in the Middleware
Services group. He received his diploma and doctoral degrees
from the University of Karlsruhe in 1999. At Karlsruhe, he
worked on the translation and optimization of object-
oriented programs. From 2000 to 2002, he was a member of
the Dynamic Optimization Group in the Software Technology
Department at the IBM Watson Research Center. His main
interests are the reliability of software systems and
improvements in software engineering. &

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ALPERN ET AL. 417


