Corrigendum

"The Join of the Pseudovarieties of Idempotent Semigroups and Locally Trivial Semigroups"

M. Zeitoun

Communicated by J.-E. Pin

This note corrects Theorem 3.1 of [2]. It has to be stated as follows:
Theorem 3.1 The pseudovariety LIVB is determined by

$$
\mathbf{L I} \vee \mathbf{B}=\llbracket\left(x^{\omega} y\right)=\left(x^{\omega} y\right)^{2}, \quad\left(y x^{\omega}\right)=\left(y x^{\omega}\right)^{2}, \quad x^{\omega} y z^{\omega}=x^{\omega} y^{2} z^{\omega} \rrbracket
$$

Indeed, LI $\vee \mathbf{B}$ obviously satisfies the pseudoidentity $x^{\omega} y z^{\omega}=x^{\omega} y^{2} z^{\omega}$ which fails in \mathbf{B} : $/ \mathbf{N}=\llbracket\left(x^{\omega} y\right)=\left(x^{\omega} y\right)^{2}, \quad\left(y x^{\omega}\right)=\left(y x^{\omega}\right)^{2} \rrbracket$. To see this, consider the free 3 -generated semigroup F in the semigroup variety defined by $x y=(x y)^{2}$. Gerhard proved in [1] that it is finite; therefore, it clearly lies in $\mathbf{B} \infty \mathbf{N}$. The word problem in F was also solved in [1]. Gerhard's algorithm easily shows that the words $x^{2} y z^{2}$ and $x^{2} y^{2} z^{2}$ are different in F .

The mistake comes from Lemma 3.7, which uses Lemma 3.6 under wrong hypotheses. The other results of the paper remain true.

Acknowledgments

I thank M. Volkov for pointing this mistake out and giving the example.

References

[1] J.A. Gerhard, Semigroups with an idempotent power I. Word problems, Semigroup Forum 14 (1977), 137-141.
[2] M. Zeitoun, The join of the pseudovarieties of idempotent semigroups and locally trivial semigroups, Semigroup Forum 50 (1995), 367-382.

LITP
Institut Blaise Pascal
4 Place Jussieu
75252 Paris Cedex 05 - France
e-mail: mz@litp.ibp.fr

