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Abstract In order to collaborate effectively in group discourse on a topic like mathematical
patterns, group participants must organize their activities in ways that share the significance
of their utterances, inscriptions, and behaviors. Here, we report the results of a
ethnomethodological case study of collaborative math problem-solving activities mediated
by a synchronous multimodal online environment. We investigate the moment-by-moment
details of the interaction practices through which participants organize their chat utterances
and whiteboard actions as a coherent whole. This approach to analysis foregrounds the
sequentiality of action and the implicit referencing of meaning making—fundamental
features of interaction. In particular, we observe that the sequential construction of shared
drawings and the deictic references that link chat messages to features of those drawings
and to prior chat content are instrumental in the achievement of intersubjectivity among
group members’ understandings. We characterize this precondition of collaboration as the
co-construction of an indexical field that functions as a common ground for group
cognition. Our analysis reveals methods by which the group co-constructs meaningful
inscriptions in the dual-interaction spaces of its CSCL environment. The integration of
graphical, narrative, and symbolic semiotic modalities in this manner also facilitates joint
problem solving. It allows group members to invoke and operate with multiple realizations
of their mathematical artifacts, a characteristic of deep learning of mathematics.
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Computer-supported collaborative learning is centrally concerned with the joint organiza-
tion of interaction by small groups of students in online environments. The term
“collaborative learning” is a gloss for interaction that is organized for the joint achievement
of knowledge-building tasks such as problem solving in domains like school mathematics.
Rather than using the term “collaborative learning,” which carries vague and contradictory
connotations, we coined the term “group cognition” to refer to activities where several
students organize their joint interaction to achieve such collective cognitive accomplish-
ments as planning, deducing, designing, describing, problem solving, explaining, defining,
generalizing, representing, remembering, and reflecting as a group.

We have argued in Group Cognition (Stahl 2006) that CSCL interactions should be
analyzed at the group level of description, not just at the individual or the community
levels, as is done in other theoretical approaches influential in CSCL research. During the
past six years, we have conducted the Virtual Math Teams (VMT) Project to explore group
cognition in a prototypical CSCL setting and to analyze it at the group level. We have used
our analyses of interaction to drive the design of the technology.

In this paper, we present a case study of an 18-minute-long excerpt from the VMT
Project. We look at some ways in which the students organized their joint efforts. Our
observations here are consistent with our impressions from more than a hundred student-
hours of interaction in the VMT data corpus. Many of the broader theoretical and
practical issues surrounding the analysis here are addressed by CSCL researchers in a
new edited volume on Studying Virtual Math Teams (Stahl 2009b) in the Springer CSCL
book series.

The issue that we address in the following pages is: How do the students in our case
study organize their activity so they can define and accomplish their tasks as a group within
their online environment? This is necessarily a pivotal question for a science of CSCL
(Stahl 2009a). It involves issues of meaning making, shared understanding and common
ground that have long been controversial in CSCL.

The problem of coordination is particularly salient in the VMTsoftware environment, which
is an instance of a dual-interaction space (Dillenbourg 2005; Mühlpfordt and Stahl 2007),
requiring organization across multiple media, each with their own affordances. We have
found that the key to joint coordination of knowledge building is sequential organization of a
network of indexical and semantic references within the group discourse (Stahl 2007). We
therefore analyze sequential interaction at the group level of description, using ethno-
methodologically inspired chat interaction analysis rather than quantitative coding, in order
to maintain and study this sequential organization. Thereby, we arrive at a view of
mathematical knowledge building as the coordinated production and use of visual, narrative,
and symbolic inscriptions as multiple realizations of co-constructed mathematical objects.

While we have elsewhere presented theoretical motivations for focusing on group
discourse organization as fundamental for CSCL, in this paper we foreground our analysis
of empirical data from a VMT session. We derive a number of characteristics of the joint
organization of interaction from the details of the case study. The characteristics we
describe are to some extent specific to the technological affordances of the VMT
environment, to the pedagogical framing of the chat session, and even to the unique
trajectory of this particular group interaction. Nevertheless, the characteristics are indicative
of what takes place—with variations—in similar settings. After the analytic centerpiece of
the paper, we discuss methodological implications for CSCL analysis, including what it
means to take the group as the unit of analysis. We then contrast our approach to leading
alternative approaches in CSCL. This discussion focuses particularly on multimodal
interaction in a dual-interaction space and on related conceptions of common ground,
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concluding with summary remarks on sequential analysis. The paper proceeds through the
following topics:

& The problem of group organization in CSCL
& A case study of a virtual math team
& Implications for CSCL chat interaction analysis
& The group as the unit of analysis
& Other approaches in CSCL to analyzing multimodal interaction
& Grounding through interactional organization
& Sequential analysis of the joint organization of interaction

The problem of group organization in CSCL

A central issue in the theory of collaborative learning is how students can solve problems, build
knowledge, accomplish educational tasks, and achieve other cognitive accomplishments
together. How do they share ideas and talk about the same things? How do they know that
they are talking about, thinking about, understanding, and working on things in the same
way? Within CSCL, this has been referred to as the problem of the “attempt to construct and
maintain a shared conception of a problem” (Roschelle and Teasley 1995), “building common
ground” (Baker et al. 1999; Clark and Brennan 1991) or “the practices of meaning making”
(Koschmann 2002). We have been interested in this issue for some time. Group Cognition
(Stahl 2006) documents a decade of background to the VMT research reported here: Its
Chapter 10 (written in 2001) argued the need for a new approach and its Chapter 17 (written
in 2002) proposed the current VMT Project, which includes this case study. Since 2002, we
have been collecting and analyzing data on how groups of students in a synchronous
collaborative online environment organize their interaction to achieve intersubjectivity and
shared cognitive accomplishments in the domain of school mathematics.

Knowledge building in CSCL has traditionally been supported primarily with asynchronous
technologies (Scardamalia and Bereiter 1996). Within appropriate educational cultures, this can
be effective for long-term refinement of ideas by learning communities. However, in small
groups and in many classrooms, asynchronous media encourage mere exchange of individual
opinions more than co-construction of progressive trains of joint thought. We have found
informally that synchronous interaction can more effectively promote group cognition—the
accomplishment of “higher order” cognitive tasks through the coordination of contributions by
individuals within the discourse of a small group. We believe that the case study in this paper
demonstrates the power of group interaction in a largely synchronous environment; the
coordination of interaction in an asynchronous interaction would be quite different in nature as
a result of very different interactional constraints.

In CSCL settings, interaction is mediated by a computer environment. Students working
in such a setting must enact, adapt, or invent ways of coordinating their understandings by
means of the technological affordances that they find at hand (see Dohn, this issue). The
development and deployment of these methods is not usually an explicit, rational process
that is easily articulated by either the participants or analysts. It occurs tacitly, unnoticed,
taken-for-granted. In order to make it more visible to us as analysts, we have developed an
environment that makes the coordination of interaction more salient and captures a
complete record of the group interaction for detailed analysis. In trying to support online
math problem solving by small groups, we have found it important to provide media for
both linguistic and graphical expression. This resulted in what is known within CSCL as a
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dual-interaction space. In our environment, students must coordinate their text chat
postings with their whiteboard drawings. A careful analysis of how they do this reveals as
well their more general methods of group organization.

The analysis of our case study focuses on episodes of interaction through which an online
group of students co-constructs mathematical artifacts across dual-interaction spaces. It looks
closely at how group members put the multiple modalities into use, how they make their chat
postings and drawing actions intelligible to each other, and how they achieve a sense of
coherence among actions taking place across the modalities to which they have access. We
base our discussion, analysis, and design of the affordances of the online environment on the
methodical ways the features of the software are put into use by the students.

In another VMT case study (Sarmiento and Stahl 2008), we have seen how the problem-
solving work of a virtual math team is accomplished through the co-construction and
maintenance of a joint problem space (Teasley and Roschelle 1993). This figurative space—
that supports group interaction and the shared understanding of that interaction by the
participants—not only grounds the content of the team’s discourse and work, but also ties
together the social fabric of the relations among the team members as actors. In addition, we
saw that the joint problem space has a third essential dimension: time or sequence. The
construction of the joint problem space constitutes a shared temporality through bridging
moves that span and thereby order discontinuous events as past, present, and future
(Sarmiento-Klapper 2009). This can be seen, for instance, in the use of tenses in group-
remembering discourses. More generally, the joint problem space provides a framework of
sequential orderings, within which temporal deictic references, for example, can be resolved.

In this paper, we further investigate how a virtual math team achieves a group
organization of its activities such that the group can proceed with a sense of everyone
understanding each other and of working collaboratively as a group. We do this through a
fine-grained analysis of the group’s interaction in a VMT session in which they formulate,
explore, and solve a geometry problem. Their work takes place in graphical, narrative, and
symbolic media—supported technologically by the shared whiteboard, text chat, and wiki
pages of the VMT environment. We pay particular attention to how graphical inscriptions,
textual postings, and symbolic expressions in the different media are closely coordinated by
the group members, despite the differences of the media.

We pursue a micro-ethnographic approach to analyzing the activities of the group members
in their own terms. They set themselves a task, propose how to proceed step by step, and
explain to each other how to understand their actions.We try to follow the explanations, which
are available in the inscriptions, postings, and expressions—particularly when the
sequentiality of these allows the complex references among them to be followed.

The establishment of group order in small-group interaction is always strongly dependent
upon the media, which mediate interaction. In the case of VMTchats, there is an intricate set of
technological media, including text chat, a shared whiteboard, a community wiki, and graphical
references from chat to whiteboard. The central part of this paper explores the different
characteristics of the VMTmedia by observing how the students use them. Of particular interest
are the ways in which a group coordinates activities in the different graphical and textual media.
From a math-education perspective, it is also insightful to see how the visual and narrative
understandings feed into the development and understanding of symbolic expressions.

By the end of the paper, we will see how the group organization of graphical, narrative,
and symbolic resources in interaction continuously produce and reproduce the joint problem
space of the group’s effort. This coordination is revealed through sequential analysis, in
which the consequence of one action in one medium following another in another medium is
seen as mutually constitutive of the meaning of those actions. The sequential web of activity
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across the VMT media—woven by semantic and indexical references among them—forms
the joint problem space within which problem content, participant relationships, and temporal
progress are all defined in a way that is shared by the group. We can see the “indexical field”
(Hanks 1992) formed by the group activities as the source of grounding that supports the
intersubjectivity of the group effort. In contrast to psychological or psycholinguistic models
of common ground, the fact that team members believe they have understandings in
common about what each other is saying and doing is not a result of exchanging individual
mental opinions, but is a function of the indexical organization of the group interaction.

The joint problem space—as the foundation of group cognition—is not a mental
construct of a set of individuals who achieve cognitive convergence or common (identical)
ground through comparing mental models anymore than it is a figment of some form of
group mind. Rather, it is a system of interconnected meanings formed by a weaving of
references in the group discourse itself (Stahl 2007). In this paper, we analyze the methods
the students used to co-construct this indexical field.

In our case study, the organization of group meaning making takes place across media—in
accordance with the specific affordances of the different media. Furthermore, the grounding
of the students’ symbolic mathematical understanding can be seen as related to their visual
and narrative understandings—or, rather, the various understandings are intricately
interwoven and support each other. We trace this interweaving through our approach to the
interactional analysis of sequential coordination at the group unit of analysis.

A case study of a virtual math team

The excerpts we present in this paper are obtained from a problem-solving session of a team
of three students who participated in the VMT Spring Fest 2006. This event brought together
several teams from the US, Scotland, and Singapore to collaborate on an open-ended math
task on geometric patterns. Students were recruited anonymously through their teachers.
Members of the teams generally did not know each other before the first session. Neither they
nor we knew anything about each other (e.g., age or gender) except chat handle and
information that may have been communicated during the sessions. Each group participated
in four sessions during a two-week period, and each session lasted over an hour. An adult
from the research project moderated each session; the facilitators’ task was to help the teams
when they experienced technical difficulties, not to participate in the problem-solving work.

During their first session, all the teams were asked to work online on a particular pattern
of squares made up of sticks (see Fig. 1). For the remaining three sessions the teams were
asked to come up with their own shapes, describe the patterns they observed as
mathematical formulas, and share their observations with other teams through a wiki page.
This task was chosen because of the possibilities it afforded for many different solution
approaches ranging from simple counting procedures to more advanced methods involving
the use of recursive functions and exploring the properties of various number sequences.
Moreover, the task had both algebraic and geometric aspects, to allow us to observe how
participants put many features of the VMT software system into use. The open-ended nature
of the activity stemmed from the need to agree upon a new shape made by sticks. This
required groups to engage in an open-ended problem-solving activity, as compared to
traditional situations where questions are given in advance and there is a single “correct”
answer—presumably already known by a teacher. We used a traditional pattern problem
(Moss and Beatty 2006; Watson and Mason 2005) to seed the activity and then left it up to
each group to decide the kinds of shapes they found interesting and worth exploring further.
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All the problem-solving sessions were conducted in the VMT environment. The VMT
online system has two main interactive components that conform to the typical layout of
systems with dual-interaction spaces: a shared drawing board that provides basic drawing
features on the left, and a chat window on the right (Fig. 2). The online environment has
features specifically designed to help users relate the actions happening across dual-
interaction spaces (Stahl 2009b, chap.15). One of the unique features of this chat system is
the referencing support mechanism (Mühlpfordt and Wessner 2005) that allows users to
visually connect their chat postings to previous postings or objects on the whiteboard via
arrows (see the last posting in Fig. 2 for an example of a message-to-whiteboard reference).
The referential links attached to a message are displayed until a new message is posted.
Messages with referential links are indicated by an arrow icon in the chat window, and a
user can see where such a message is pointing by clicking on it at any time.

In addition to the explicit referencing feature, the system displays small boxes in the chat
window to indicate actions performed on the whiteboard. This awareness mechanism allows
users to observe how actions performed in both interaction spaces are sequenced with respect to
each other. Moreover, users can click on these boxes to move the whiteboard back and forth
from its current state to the specific point in its history when that action was performed. Chat
messages and activity markers are color coded to help users to keep track of who is doing what

(1) 4 sticks, 1 square

 
(2) 10 sticks, 3 squares

(3) 18 sticks, 6 squares

N Sticks Squares

1 4 1

2 10 3

3 18 6

4 ? ?

5 ? ?

6 ? ?

... ... ...

N ? ? 

 

Session I

1. Draw the pattern for N=4, N=5,
and N=6 in the whiteboard. Discuss
as a group: How does the graphic
pattern grow?  

2. Fill in the cells of the table for
sticks and squares in rows N=4,
N=5, and N=6. Once you agree on
these results, post them on the
VMT Wiki

3. Can your group see a pattern of
growth for the number of sticks and
squares? When you are ready, post
your ideas about the pattern of
growth on the VMT Wiki.

Sessions II and III

1. Discuss the feedback that you received about your previous session.  
2. WHAT IF? Mathematicians do not just solve other people's problems - they also explore little

worlds of patterns that they define and find interesting. Think about other mathematical problems
related to the problem with the sticks. For instance, consider other arrangements of squares in
addition to the triangle arrangement (diamond, cross, etc.). What if instead of squares you use other
polygons like triangles, hexagons, etc.? Which polygons work well for building patterns like this?
How about 3-D figures, like cubes with edges, sides and cubes? What are the different methods
(induction, series, recursion, graphing, tables, etc.) you can use to analyze these different patterns?

3. Go to the VMT Wiki and share the most interesting math problems that your group chose to work
on. 

Fig. 1 Task description

120 M.P. Çakır, et al.



in the online environment. In addition to standard awareness markers that display who is
present in the room and who is currently typing, the system also displays textual descriptions of
whiteboard actions in tool-tip messages that can be observed by holding the mouse either on the
object in the whiteboard or on the corresponding square in the chat window.

Studying the meaning-making practices enacted by the users of CSCL systems inevitably
requires a close analysis of the process of collaboration itself (Dillenbourg et al. 1996; Stahl et
al. 2006). In an effort to investigate the organization of interactions across the dual-interaction
spaces of the VMT environment, we consider the small group as the unit of analysis (Stahl
2006), and we appropriate methods of ethnomethodology and conversation analysis to
conduct sequential analysis of group interactions at a microlevel (Psathas 1995; Sacks 1962/
1995; ten Have 1999). Our work is informed by studies of interaction mediated by online text
chat with similar methods (Garcia and Jacobs 1998, 1999; O’Neill and Martin 2003),
although the availability of a shared drawing area and explicit support for deictic references in
our online environment substantially differentiate our study from theirs.

The goal of this line of analytic work is to discover the commonsense understandings and
procedures group members use to organize their conduct in particular interactional settings
(Coulon 1995). Commonsense understandings and procedures are subjected to analytical
scrutiny because they are what “enable actors to recognize and act on their real world
circumstances, grasp the intentions and motivations of others, and achieve mutual
understandings” (Goodwin and Heritage 1990, p. 285). Group members’ shared competencies
in organizing their conduct not only allow them to produce their own actions, but also to
interpret the actions of others (Garfinkel and Sacks 1970). Because group members enact
these understandings visibly in their situated actions, researchers can discover them through
detailed analysis of the members’ sequentially organized conduct (Schegloff and Sacks 1973).

Fig. 2 A screen-shot of the VMT environment
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We conducted numerous VMT Project data sessions, where we subjected our analysis of the
excerpts below to intersubjective agreement (Psathas 1995). This paper presents the outcome
of this group effort together with the actual transcripts so that the analysis can be subjected to
external scrutiny. During the data sessions we used the VMT Replayer tool, which allows us
to replay a VMT chat session as it unfolded in real time based on the time stamps of actions
recorded in the log file. The order of actions—chat postings, whiteboard actions, awareness
messages—we observe with the Replayer as researchers exactly matches the order of actions
originally observed by the users. This property of the Replayer allowed us to study the
sequential unfolding of events during the entire chat session, which is crucial in making sense
of the complex interactions mediated by a CSCL environment (Koschmann et al. 2007).

In this case study, we focus on a sequence of excerpts obtained from a single problem-solving
session of a virtual math team. We are concerned with how the actors contribute to the group
meaning making as they proceed. This example involves the use and coordination of actions
involving both the whiteboard and chat environment. It therefore served as a useful site for seeing
how actors, in this local setting, were able to engage in meaningful coordinated interaction.

The team has three members: Jason, 137 and Qwertyuiop, who are upper-middle-school
students (roughly 14 years old) in the US. In the following subsections, we will present how this
team co-constructed a mathematical artifact they referred to as the “hexagonal array” through a
coordinated sequence of actions distributed between the chat and whiteboard spaces, and how
they subsequently explored its properties by referring to and annotating shared drawings on the
whiteboard. In particular, we will highlight how whiteboard objects and previous chat postings
were used as semiotic resources during the collaborative problem-solving activity. This will
show how chat and whiteboard differ in terms of their affordances for supporting group
interaction. We will see how these differences are enacted and used in complementary ways by
teammembers to achieve mutual intelligibility of their actions across multiple interaction spaces.

Availability of production processes

Log 1 is taken from the beginning of the team’s third session. The team has already
explored similar patterns of sticks and become familiar with the features of the VMT online
environment during their prior sessions. The drawing actions at the beginning of this
excerpt were the first moves of the session related to math problem solving.

Log 1

Line Time Chat handle Chat message or <whiteboard action>

7:07:52–7:11:00 137 <137 draws a hexagon shape and then splits it up into
regions by adding lines. Figure 3 shows some of the key
steps in 137’s drawing performance>

1 7:11:16 137 Great. Can anyone m ake a diagram of a bunch of triangles?

7:11:16–7:11:49 137 <137 deletes the set of lines he has just drawn>

2 7:11:51 Qwertyuiop just a grid?….

7:11:54–7:12:01 137 <137 moves some of the older drawings away>

3 7:12:07 137 Yeah...

4 7:12:17 Qwertyuiop ok…

7:12:23–7:14:07 Qwertyuiop <Qwertyuiop draws a grid of triangles in the space
opened up by 137. Figure 4 shows some of the steps in
Qwertyuiop’s drawing actions>
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At the beginning of this excerpt, 137 performs a series of drawing actions. 137’s actions
on the whiteboard include the drawing of a hexagon first, then three diagonal lines and
finally lines parallel to the diagonals and to the sides of the hexagon whose intersections
eventually introduce some triangular and diamond-shaped regions. Moreover, 137 also
performs some adjustment moves—for instance between the 4th and 5th snapshots in
Fig. 3—to ensure that three non-parallel lines intersect at a single point, and the edges of
the hexagon are parallel to the lines introduced later as much as possible. Hence, this
sequence of drawing actions suggests a particular organization of lines for constructing a
hexagonal shape. (Fig. 3 shows six snapshots corresponding to intermediary stages of 137’s
drawing actions: 137 initiates his drawing actions with six lines that form the hexagon in
stage 1. Then he adds three diagonal lines in step 2. The 3rd snapshot shows the additional
two lines drawn parallel to one of the diagonals. The 4th snapshot shows a similar set of two
parallel lines added with respect to another diagonal. The 5th snapshot shows slight
modifications performed on the new set of parallel lines to ensure intersections at certain
places. The 6th snapshot shows the final stage of 137’s drawing.)

137’s chat posting in line 1 that follows his drawing effort (which can be read as a self-
critical, sarcastic “great”) suggests that he considers his illustration inadequate in some way.
He makes this explicit by soliciting help from other members to produce “a diagram of a
bunch of triangles” on the whiteboard, and then removing the diagram he has just produced
(the boxes following this posting in Fig. 5 correspond to deletion actions on the whiteboard).
By removing his diagram, 137 makes that space available to other members for the projected
drawing activity. Qwertyuiop responds to 137’s query with a request for clarification
regarding the projected organization of the drawing (“just a grid?”). After 137’s
acknowledgement, Qwertyuiop performs a series of drawing actions that resemble the latter
stages of 137’s drawing actions, namely starting with the parallel lines tipped to the right

            7:09:00 7:09:18        7:09:23 

           7:09:49 7:09:57      7:11:00 

Fig. 3 Six stages of 137’s drawing actions obtained from the Replayer tool. The time stamp of each stage is
displayed under the corresponding image. Snapshots focus on a particular region on the whiteboard where
the relevant drawing activity is taking place

Computer-Supported Collaborative Learning 123



first, then drawing a few parallel lines tipped to the left, and finally adding horizontal lines at
the intersection points of earlier lines that are parallel to each other (see Figs. 4 and 5). Having
witnessed 137’s earlier actions, the similarity in the organizations of both drawing actions
suggest that Qwertyuiop has appropriated some key aspects of 137’s drawing strategy, but
modified/reordered the steps (e.g., he did not start with the hexagon at the beginning) in a
way that allowed him to produce a grid of triangles as a response to 137’s request.

The key point we would like to highlight in this episode is that the availability of the
sequencing of the drawing actions that produces a diagram on the shared whiteboard can
serve as a vital resource for collaborative sense-making. As seen in Log 1, 137 did not
provide any explanation in chat about his drawing actions or about the shape he was trying

     7:12:32 7:12:44 7:12:54

     7:12:59 7:13:08 7:13:13 

     7:13:19 7:13:23 7:13:36 

     7:13:51 7:14:07 7:14:12 

Fig. 4 The evolution of Qwertyuiop’s drawing in response to 137’s request

124 M.P. Çakır, et al.



to draw. Yet, as we have observed in the similarity of Figs. 3 and 4, the orderliness of 137’s
actions has informed Qwertyuiop’s subsequent performance. The methodical use of
intersecting parallel lines to produce triangular objects is common to both drawing
performances. Moreover, Qwertyuiop does not repeat the same set of drawing actions, but
selectively uses 137’s steps to produce the relevant object (i.e., a grid of triangles) on the
whiteboard. Qwertyuiop does not initially constrain his representational development by
constructing a hexagon first, but allows a hexagon (or other shapes made with triangles) to
emerge from the collection of shapes implied by the intersecting lines. Thus, Qwertyuiop’s
performance shows us that he is able to notice a particular organization in 137’s drawing
actions, and he has selectively appropriated and built upon some key aspects of 137’s
drawing practice. As we will see in the following logs,1 the group’s subsequent use of this
drawing will provide us additional evidence that Qwertyuiop’s diagram serves as an
adequate response to 137’s request.

This excerpt highlights a fundamental difference between the two interaction spaces:
whiteboard and chat contributions differ in terms of the availability of their production
process. As far as chat messages are concerned, participants can only see who is currently
typing,2 but not what is being typed until the author decides to send the message. A similar

1 For instance, after Qwertyuiop declares the completion of the grid in line 11, 137 anchors Qwertyuiop’s
drawing to the background at 7:15:47 (see Log 3). Because such a move preserves the positions of the
selected objects and the objects affected by the move include only the lines recently added by Qwertyuiop,
137’s anchoring move seems to give a particular significance to Qwertyuiop’s recent drawing. Hence, 137’s
anchoring move can be treated as an (implicit) endorsement of Qwertyuiop’s drawing effort in response to his
previous request.
2 While a participant is typing, a social awareness message appears under the chat entry box on everyone
else’s screen stating that the person “is typing” (see Fig. 5). When the typist posts the message, the entire
message appears suddenly as an atomic action in everyone’s chat window.

Fig. 5 The interface at the 12th stage of Fig. 4
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situation applies to atomic whiteboard actions such as drawing an individual line or a
rectangle. Such actions make a single object appear in the shared drawing area when the user
releases the left mouse button; in the case of editable objects such as textboxes, the object
appears on the screens of the computers of all chat participants when the editor clicks outside
the textbox. However, the construction of most shared diagrams includes the production of
multiple atomic shapes (e.g., many lines), and hence the sequencing of actions that produce
these diagrams is available to other members. As we have observed in this excerpt, the
availability of the drawing process can have interactionally significant consequences for math-
problem-solving chats due to its instructionally informative nature. In short, the whiteboard
affords an animated evolution of the shared space, which makes the visual reasoning process
manifest in drawing actions publicly available for other members’ inspection. For instance,
in Fig. 4, transitions from stages 1 to 2 and 7 to 8 show modifications performed to achieve a
peculiar geometric organization on the shared workspace.

Mutability of chat and whiteboard contents

Another interactionally significant difference between the chat and the whiteboard
interaction spaces, which is evidenced in the excerpt above, is the difference in terms
of the mutability of their contents. Once a chat posting is contributed, it cannot be
changed or edited. Moreover, the sequential position of a chat posting cannot be
altered later on. If the content or the sequential placement of a chat posting turns out
to be interactionally problematic, then a new posting needs to be composed to repair
that. On the other hand, the object-oriented design of the whiteboard allows users to
reorganize its content by adding new objects and by moving, annotating, deleting, and
reproducing existing ones. For instance, the way 137 and Qwertyuiop repaired their
drawings in the excerpt above by repositioning some of the lines they drew earlier to
make sure that they intersect at certain points and/or that they are parallel to the edges
of the hexagon illustrates this difference. Such demonstrable tweaks make the
mathematical details of the construction work visible and relevant to observers, and
hence, serve as a vital resource for joint mathematical sense making. By seeing that
Qwertyuiop successively and intentionally adjusts lines in his whiteboard drawing to
appear more parallel or to intersect more precisely, the other group members take note
of the significance of the arrangement of lines as parallel and intersecting in specific
patterns.

While both chat and whiteboard in VMT support persistence, visibility, and
mutability, they do so in different ways. A chat posting scrolls away only slowly and
one can always scroll back to it, whereas a drawing may be erased by anyone at any
time. Chat conventions allow one to replace (i.e., follow) a mistyped posting with a new
one, and conversational conventions allow utterances to be retracted, repaired, or refined.
The mechanisms of the two mediational technologies are different and the characteristics
of their persistence, visibility, and mutability differ accordingly. Collaborative interaction
in the dual-space environment is sensitively attuned to these intricate and subtle
differences.

Monitoring joint attention

The excerpt in Log 2 immediately follows the one in Log 1, where the team is oriented
to the construction of a triangular grid after a failed attempt to embed a grid of triangles
inside a hexagon. As Qwertyuiop is adding more lines to the grid, the facilitator (Nan)
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posts two questions addressed to the whole team in line 5. The question not only
queries about what is happening now and whether everybody knows what others are
currently doing, but the placement of the question at this point in interaction also
problematizes the relevance of what has been happening so far. 137’s response in lines
6 and 8 treat the facilitator’s question as a problematic intervention. Qwertyuiop’s
response indicates he is busy with making triangles, and hence may not know what
others are doing. Jason acknowledges that he is following what has been going on in
line 9. These responses indicate that the team members have been following (perhaps
better than the facilitator) what has been happening on the whiteboard so far as
something relevant to their task at hand.

In this excerpt, the facilitator calls on each participant to report on his/her understanding
of the activities of other participants. There was an extended duration in which no chat
postings were published while whiteboard actions were being performed by Qwertyuiop.
Because it is not possible for any participant to observe other participants directly, it is not
possible to monitor a class of actions others may perform that (1) are important for how we
understand ongoing action but (2) do not involve explicit manipulation of the VMT
environment, actions like watching the screen, reading text, inspecting whiteboard
constructs, and so forth. The only way to determine if those kinds of actions are occurring
is to explicitly inquire about them using a chat posting.

Past and future relevancies implied by shared drawings

Following Qwertyuiop’s announcement in line 11 of Log 2 that the drawing work is
complete, 137 proposes that the team calculate “the number of triangles” in a “hexagonal
array” as a possible question to be pursued next. Although a hexagon was previously
produced as part of the failed drawing, this is the first time someone explicitly mentions
the term “hexagonal array” in this session. What makes 137’s proposal potentially
intelligible to others is the availability of referable resources such as whiteboard objects,
and the immediate history of the production of those objects such that the proposal can
be seen to be embedded in a sequence of displayed actions. 137’s use of “So” to

Log 2

5 7:14:09 nan so what’s up now? does everyone know what other people
are doing?

7:14:12 Qwertyuiop < Qwertyuiop adds a line to the grid of triangles>

6 7:14:25 137 Yes?

7 7:14:25 Qwertyuiop no-just making triangles

7:14:32 Qwertyuiop < Qwertyuiop adds a line to the grid of triangles>

8 7:14:33 137 I think... [REF to line 6]

9 7:14:34 Jason Yeah

7:14:36 Qwertyuiop < Qwertyuiop adds a line to the grid of triangles>

10 7:14:46 nan good :-)

11 7:14:51 Qwertyuiop Triangles are done

12 7:15:08 137 So do you want to first calculate the number of triangles
in a hexagonal array?
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introduce his proposal presents it as a consequence of, or a making explicit of, what
preceded. His suggestion of it as a “first” (next) move implies that the drawings opened
up multiple mathematical tasks that the group could pursue, and that the proposed
suggestion would be a candidate for a next move. In other words, the objects on the
whiteboard and their visually shared production index a horizon of past and future
activities. The indexical terms in 137’s proposal (like “hexagonal array”) not only rely on
the availability of the whiteboard objects to propose a relevant activity to pursue next, but
also modify their sense by using linguistic and semantic resources in the production to
label or gloss the whiteboard object and its production. This allows actors to orient in
particular ways to the whiteboard object and the procedures of its co-construction—
providing a basis for coordinated joint activity. The joint activity acquires a temporal
structure that is defined by the details of chat wording, the animation of graphical
construction, and the sequentiality of proposing.

Methods for referencing relevant objects in the shared visual field

Bringing relevant mathematical objects to other members’ attention often requires a
coordinated sequence of actions performed in both the chat and whiteboard interaction
spaces. The episode following 137’s proposal (Log 3) provides us with an appropriate
setting to illustrate how participants achieve this in interaction. Following 137’s proposal in
line 12, both Qwertyuiop and Jason post queries for clarification in lines 13 and 16,
respectively, which indicate that the available referential resources were insufficient for
them to locate what 137 is referring to with the term “hexagonal array.” Jason’s query in the
chat is particularly important here because it explicitly calls for a response to be performed
on the shared diagram, that is, in a particular field of relevance in the other interaction
space. Following Jason’s query, 137 begins to perform a sequence of drawing actions on the
shared diagram. He adds a few lines that gradually begin to enclose a region on the
triangular grid3 (see Fig. 6).

7:16:52       7:17:03 7:17:19         7:17:28 

7:17:32      7:18:03  7:19:07        7:19:38 

Fig. 6 Snapshots from the sequence of drawing actions performed by 137

3 In the meantime, Qwertyuiop also performs a few drawing actions near the shared drawing, but his actions
do not introduce anything noticeably different because he quickly erases what he draws each time.
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When the shared diagram reaches the stage illustrated by the 4th frame in Fig. 6,
Jason posts the message “hmmm… okay” in line 17, which can be read as an
acknowledgement of 137’s performance on the whiteboard as a response to his recent
chat query. Because no chat message was posted after Jason’s request in line 16, and the
only shared actions were 137’s work on the whiteboard, Jason’s chat posting can be read
as a response to the ongoing drawing activity on the whiteboard. As it is made evident in
his posting, Jason is treating the evolving drawing on the shared diagram as a response to
his earlier query for highlighting the hexagonal array on the whiteboard: The question/
answer adjacency pair is spread across the two interaction spaces in an unproblematic
way.

Following provisional acknowledgement of 137’s drawing actions on the whiteboard,
Jason posts a claim in line 19. This posting is built as a declarative: “so it has at least 6
triangles,” with a question mark appended to the end. The use of “so” in this posting
invites readers to treat what follows in the posting as a consequence of the prior actions
of 137. In this way, Jason is (a) proposing a defeasible extension of his understanding

Log 3

11 7:14:51 Qwertyuiop Triangles are done

12 7:15:08 137 So do you want to first calculate the number of triangles
in a hexagonal array?

13 7:15:45 Qwertyuiop What’s the shape of the array? a hexagon? <REF to 12>

7:15:47 137 <137 locks the triangular grid that Qwertyuiop has just drawn>

14 7:16:02 137 Ya <REF to line 13>

15 7:16:15 Qwertyuiop ok….

7:16:18–7:16:35 137 <137 performs a few drawing actions and then erases them>

16 7:16:41 Jason wait– can someone highlight the hexagonal array on the
diagram? i don’t really see what you mean...

7:16:45–7:17:28 137 <137 adds new lines to the grid on the whiteboard which
gradually forms a contour on top of the grid. Figure 6 shows
some of the steps performed by 137>

17 7:17:30 Jason Hmm.. okay

18 7:17:43 Qwertyuiop Oops <REF to Whiteboard>

19 7:17:44 Jason so it has at least 6 triangles?

20 7:17:58 Jason in this, for instance <REF to Whiteboard>

7:18:03–7:18:17 137 <137 completes the contour by adding more lines, which
forms a hexagon>

21 7:18:53 137 How do you color lines?

22 7:19:06 Jason There’s a little paintbrush icon up at the top

23 7:19:12 Jason it’s the fifth one from the right

7:19:13–7:19:20 137 137 begins to change the color of the lines that form the
contour to blue>

24 7:19:20 137 Thanks.

25 7:19:21 Jason There ya go :-)

7:19:25–7:19:48 137 <137 finishes the coloring. Now the contour is
highlighted in blue>

26 7:19:48 137 Er... That hexagon.

27 7:20:02 Jason so... should we try to find a formula i guess
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of the sense of 137’s actions and (b) inviting others to endorse or correct this
provisional claim about the hexagonal array by presenting this as a query using the
question mark.

In line 20, Jason provides further specificity to what he is indexing with the term “it” in
line 19 by highlighting a region on the grid with the referencing tool of the VMT system.
The textual part of the posting makes it evident that the highlighted region is an instance of
the object mentioned in line 19. Moreover, the six triangles highlighted by the explicit
reference recognizably make up a hexagon shape altogether. Hence, Jason’s explicit
reference seems to be pointing to a particular stage (indexed by “at least”) of the hexagonal
array to which the team is oriented (see Fig. 7).

In other words, having witnessed the production of the hexagonal shape on the
whiteboard as a response to his earlier query, Jason displays his competence by
demonstrating his recognition of the hexagonal pattern implicated in 137’s graphical
illustration. 137’s drawing actions highlight a particular stage of a growing pattern
made of triangles—stage N=3, as we will see in Fig. 9. However, recognizing the stick-
pattern implicated in 137’s highlighting actions requires other members to project how
the displayed example can be grown and/or shrunk to produce other stages of the
hexagonal array. Thus, Jason’s description of the shape of the “hexagonal array” at a
different stage—N=1—is a public display of his newly achieved comprehension of the
significance of the math object in the whiteboard and the achievement of “indexical
symmetry” among the parties involved with respect to this math object (see Stahl 2009b,
chap.14).

Fig. 7 Use of the referencing tool to point to a stage of the hexagonal array
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Although Jason explicitly endorsed 137’s drawing as an adequate illustration, the small
boxes in the chat stream that appear after Jason’s acknowledgement in line 17 show that 137
is still oriented to and operating on the whiteboard. In line 21, 137 solicits other members’
help regarding how he can change the color of an object on the board, which opens a side
sequence about a specific feature of the whiteboard system. Based on the description he got,
137 finishes marking the hexagon by coloring all its edges with blue, and he posts “that
hexagon” in line 25. This can be read as a chat reference to the whiteboard shape enclosed by
the blue contour, and as a response to other members’ earlier requests for clarification.

In this excerpt, we have observed two referential methods enacted by participants to bring
relevant graphical objects on the whiteboard to other group members’ attention. In the first
case, 137 marked the drawing with a different color to identify the contour of a hexagonal
shape. As evidenced in other members’ responses, this was designed to make the hexagonal
array embedded in a grid of triangles visible to others. Jason demonstrated another method
by using the explicit referencing tool to support his textual description of the first stage of
the pattern. Both mechanisms play a key role in directing other members’ attention to
features of the shared visual field in particular ways. This kind of deictic usage isolates
components of the shared drawing and constitutes them as relevant objects to be attended to
for the purposes at hand. As we shall see, these guided shifts in visual focus of the group
have strategic importance for the group’s mathematical work. Hence, such referential work
establishes a fundamental relationship between the narrative and mathematical terminology
used in text chat and the animated graphical constructions produced on the whiteboard.
The shared sense of the textual terms and the inscriptions co-evolve through the referential
linkages established as the interaction sequentially unfolds in both interaction spaces.

In Log 3, the group tentatively proposes a major mathematical insight—that a hexagon
can be viewed as six symmetric triangular areas. It is a visual achievement. It emerges from
a visual inspection by Jason of 137’s graphical diagram, based on Qwertyuiop’s method of
visually representing hexagons as patterns of triangularly intersecting lines. By literally
focusing his eyes on a smallest hexagon in the larger array and counting the number of
triangles visible within a hexagonal border, Jason discovers that there are at least six
triangles at the initial stage of a hexagon with one unit on each side. We will see how the
group visualizes the generalization of this picture to other stages. However, it is already
interesting to note that Jason not only observes the composition of a small hexagon out of
six triangles, but he conveys this to the rest of the group in both media. He posts chat line
19 and then references from chat line 20 to a visually highlighted view in the whiteboard,
so that his visual understanding can be shared by the group as well as his narrative
description in his claim. The next step for the group will be to formulate a symbolic
mathematical expression of this claim.

Whiteboard visualizations, chat narratives and wiki symbolisms

The excerpt in Log 4 immediately follows Log 3. The way 137 uses both interaction
spaces in this episode highlights another important aspect of collaborative problem-
solving work in an environment like VMT. Because participants can contribute to only
one of the interaction spaces at a time, they cannot narrate their whiteboard actions
simultaneously with chat postings, as can be done with talking about a whiteboard in a
face-to-face setting. However, as we will observe in 137’s use of the whiteboard in the
following excerpt, participants can achieve a similar interactional organization by
coordinating their actions in such a way that whiteboard actions can be seen as part of
an exposition performed in chat.
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Jason brings the prior activity of locating the hexagonal array on the shared drawing to a
close with his so-prefaced posting in line 27, where he invokes the task of finding a formula
that was mentioned by 137 earlier. Jason provides further specificity to the formula he is
referring to in the next line (i.e., given the side length as input the formula should return the
number of triangles as output). In line 29, Qwertyuiop takes up Jason’s proposal by
suggesting the team consider the hexagonal array as six smaller triangles to potentially
simplify the task at hand. In the next line, 137 posts a question phrased as “like this?”
which is addressed to Qwertyuiop’s prior posting, as indicated by the use of the referential
arrow. Next, we observe the appearance of three red lines on the shared diagram, which are
all added by 137. Here, 137 demonstrates a particular way of splitting the hexagon into six

Log 4

27 7:20:02 Jason so... should we try to find a formula i guess

28 7:20:22 Jason input: side length; output: # triangles

29 7:20:39 Qwertyuiop It might be easier to see it as the 6 smaller triangles.

30 7:20:48 137 Like this? <REF to line 29>

7:20:53 137 <137 draws a red line>

7:20:57 137 <137 draws a red line>

7:21:00 137 <137 draws a red line>

31 7:21:02 Qwertyuiop Yes

32 7:21:03 Jason Yup

7:21:03 137 <137 moves the second red line>

7:21:05 137 <137 moves the second red line again. It is positioned
on the grid now>

33 7:21:29 Qwertyuiop Side length is the same...

34 7:22:06 Jason Yeah

Fig. 8 137 splits the hexagon into six parts
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parts: The image on the left of Fig. 8 corresponds to the sequence of three whiteboard
actions represented as three boxes in the chat excerpt. After 137 adds the third line whose
intersection with the previously drawn red lines recognizably produces six triangular
regions on the shared representation, Qwertyuiop and Jason both endorse 137’s
demonstration of a particular way of splitting up the hexagonal shape.

One important aspect of this organization is directing other members’ attention to the
projected whiteboard activity as a relevant step in the sequentially unfolding exposition in
chat. For instance, the deictic term “this” in 137’s chat line 30 refers to something yet to be
produced, and thereby projects that there is more to follow the current posting, possibly in
the other interaction space. Moreover, the use of the referential link and the term “like”
together inform others that what is about to be done should be read in relation to the
message to which 137 is responding. Finally, 137’s use of a different color marks the newly
added lines as recognizably distinct from what is already there as the background, and
hence, noticeable as a demonstration of what is implicated in recent chat postings.

Again, the progress in understanding the mathematics of the problem is propelled through
visual means. In response to Jason’s proposal of finding a formula, Qwertyuiop suggests that
“it might be easier to see it” in a certain way. Jason’s proposed approach might be difficult to
pursue because no one has suggested a concrete approach to constructing a formula that
would meet the general criteria of producing an output result for any input variable value. By
contrast, the group has been working successfully in the visual medium of the whiteboard
drawing and has been literally able to “see” important characteristics of the math object that
they have co-constructed out of intersecting lines. Jason has pointed out that at least six
triangles are involved (in the smallest hexagon). So, Qwertyuiop proposes building on this
in-sight. 137 asks if the way to see the general case in terms of the six small triangles as
proposed by Qwertyuiop can be visualized by intersecting the hexagon array with three
intersecting lines to distinguish the six regions of the array. He does this through a visual
construction, simply referenced from the chat with his “Like this?” post.

By staring at the final version of the array (stage 3 in Fig. 8), all members of the group can
see the hexagon divided into six equal parts at each stage of the hexagonal pattern. Near the
intersection of the red lines, they can see a single small triangle nestled in each of the six
regions. As will be evidenced in Log 5, within the larger hexagon delimited by the blue lines,
they can see a set of 1+3+5=9 small triangles in each of the six larger triangular regions.
Similarly, midway between stage N=1 and stage N=3, one can visually observe 1+3=4 small
triangles in each region. The new view, scaffolded by 137’s red lines, entails visual reasoning
that leads to mathematical deductions. As soon as Qwertyuiop and Jason see 137’s
construction, they both concur with it as the easier way to see the mathematical pattern of
triangles in the hexagonal array. The visual reasoning supported by whiteboard and narrated
textually in the chat will lead in the next episode to symbolic reasoning for posting in the wiki.

A first glance at the chat logs might suggest that the group is narrating their problem-solving
process in the chat and illustrating what they mean by “napkin” drawings in the whiteboard, to
use Dillenbourg and Traum’s (2006) metaphor. However, a second look reveals that the most
significant insight and sharing is occurring in the whiteboard, more along the lines of a
visual “model” metaphor. Perhaps the best way to describe what is going on is to say that
the group is very carefully coordinating their work in the dual space as a whole to achieve
a shared progression of understanding of the pattern problem. This is accomplished with an
efficiency and effectiveness that could not be achieved in either a purely textual chat
system or a purely graphical whiteboard. Although in this view the chat and whiteboard
both function as symmetric parts of a coordinated whole in which chat references drawing
and drawing illustrates chat, it is important to differentiate their roles as well.
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Using representations of specific instances as a resource for generalization

Immediately following the previous excerpt, the team moves on to figuring out a general
formula to compute the number of triangles in a hexagonal pattern. In line 34 of Log 5,
Jason relates the particular partitioning of the hexagon illustrated on the whiteboard to the
problem at hand by stating that the number (“#”) of triangles in the hexagon will equal 6
times (“×6”) the number of triangles enclosed in each partition. In the next posting, 137
seems to be indexing one of the six partitions with the phrase “each one.” Hence, this
posting can be read as a proposal about the number of triangles included in a partition. The
sequence of numbers in the expression “1+3+5” calls others to look at a partition in a
particular way. While 137 could have simply said here that there are nine triangles in each
partition, he instead organizes the numbers in summation form and offers more than an
aggregated result. His expression also demonstrates a systematic method for counting the
triangles. In other words, his construction is designed to highlight a particular orderliness in
the organization of triangles that form a partition. Moreover, the sequence includes
increasing consecutive odd numbers, which implicitly informs a certain progression for the
growth of the shape under consideration.

About a minute after his most recent posting, 137 offers an extended version of his
sequence as a query in line 38. The relationship between the sequence for the special case
and this one is made explicit through the repetition of the first two terms. In the new version
the “…” notation is used to substitute a series of numbers following the second term up to a
generic value represented by “n+n−1,” which can be recognized as a standard expression
for the nth odd number. Hence, this representation is designed to stand for something more
general than the one derived from the specific instance illustrated on the whiteboard. 137
attributes this generalization to the concept of “rows,” and solicits other members’
assessment regarding the validity of his version (by ending with a question mark). 137’s use
of the term “rows” seems to serve as a pedagogic device that attempts to locate the numbers
in the sequence on the nth stage of the hexagonal pattern (see Fig. 9 for an analyst’s
illustration of the generalized hexagonal pattern). For stages 1, 2, and 3, the hexagonal
shape has 6*(1) = 6, 6*(1+3) = 24, 6*(1+3+5) = 54 triangles, respectively.

Qwertyuiop’s endorsement of 137’s proposal comes in line 39. He also demonstrates a
row-by-row iteration on a hexagon, where each number in the sequence corresponds to a

Log 5

34 7:22:13 Jason so it’ll just be ×6 for # triangles in the hexagon

35 7:22:19 137 Each one has 1+3+5 triangles.

36 7:22:23 Jason but then we’re assuming just regular hexagons

37 7:22:29 Qwertyuiop the “each polygon corrisponds to 2 sides” thing we did last time
doesn’t work for triangles

38 7:23:17 137 It equals 1+3+...+(n+n−1) because of the “rows”?

39 7:24:00 Qwertyuiop yes- 1st row is 1, 2nd row is 3...

40 7:24:49 137 And there are n terms so... n(2n/2)

41 7:25:07 137 or n^2 <REF to line 40>

42 7:25:17 Jason Yeah

43 7:25:21 Jason then multiply by 6

44 7:25:31 137 To get 6n^2 <REF to line 43>
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row of triangles in a partition. In other words, Qwertyuiop elaborates on 137’s statement in
line 38 of the chat by displaying his understanding of the relationship between the rows and
the sequence of odd numbers. Although he does not explicitly reference it here, Qwertyuiop
may be viewing the figure in the whiteboard to see the successive rows. The figure is, of
course, also available to 137 and Jason to help them follow Qwertyuiop’s chat posting and
check it.

Then 137 proposes an expression for the sum of the first n odd numbers in line 40.4

Jason agrees with the proposed expression and suggests that it should be multiplied by 6
next. In the following line, 137 grammatically completes Jason’s posting with the resulting
expression. In short, by virtue of the agreements and the co-construction work of Jason and
137, the team demonstrates its endorsement of the conclusion that the number of triangles
would equal 6n2 for a hexagonal array made of triangles. As the group collaboratively
discovered, when n equals the stage number (as “input” to the formula), the number of
triangles is given by the expression 6n2.

The way team members orient themselves to the shared drawing in this episode
illustrates that the drawings on the whiteboard have a figurative role in addition to their
concrete appearance as illustrations of specific cases. The particular cases captured by
concrete, tangible marks on the whiteboard are often used as a resource to investigate and
talk about general properties of the mathematical objects indexed by them.

Another important aspect of the team’s achievement of a general expression in this
episode is the way they transformed a particular way of counting the triangles in one of the
partitions (i.e., a geometric observation) into an algebraic mode of investigation. This shift
from a visual method led the team members to recognize that a particular sequence of
numbers can be associated with the way the partition grows in subsequent iterations. The
shift to this symbolic mode of engagement, which heavily uses the shared drawing as a
resource, allowed the team to go further in the task of generalizing the pattern of growth by
invoking algebraic resources. In other words, the team made use of multiple realizations
(graphical and linguistic) of the math object (the hexagonal array) distributed across the
dual-interaction space to co-construct a general formula for the task at hand.

Chat versus whiteboard contributions as persistent referential resources

In all of the excerpts we have considered so far, the shared drawing has been used as a
resource within a sequence of related but recognizably distinct activities. For instance, the

4 137 makes use of Gauss’s method for summing this kind of series, adding the first and last term and
multiplying by half of the number of terms: (1 + n + n – 1)*n/2 = 2n*n/2 = n2. This method was used by the
group and shared in previous sessions involving the stair pattern that is still visible in the whiteboard.

Fig. 9 A reconstruction of the first three iterations of the geometric pattern
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group has oriented itself to the following activities: (1) drawing a grid of triangles, (2)
formulating a problem that relates a hexagonal array to a grid of triangles, (3) highlighting a
particular hexagon on the grid, (4) illustrating a particular way to split the shape into six
smaller pieces, and (5) devising a systematic method to count the number of triangles
within one of the six pieces. As the group oriented to different aspects of their shared task,
the shared diagram was modified on the whiteboard and annotated in chat accordingly. Yet,
although it had been modified and annotated along the way, the availability of this shared
drawing on the screen and the way participants organize their discussion around it
highlights its persistent characteristic as an ongoing referential resource. In contrast, none of
the chat postings in prior excerpts were attributed a similar referential status by the
participants. As we have seen, in each episode the postings responded or referred either to
recently posted chat messages or to the visual objects in the shared space.

The textual chat postings and the graphical objects produced on the whiteboard differ in
terms of the way they are used as referential resources by the participants. The content of
the whiteboard is persistently available for reference and manipulation, whereas the chat
content is visually available for reference for a relatively shorter period. This is due to the
linear growth of chat content, which replaces previous messages with the most recent
contributions inserted at the bottom of the chat window. Although one can make explicit
references to older postings by using the scroll-bar feature, the limited size of the chat
window affords a referential locality between postings that are visually (and hence
temporally) close to each other.

By contrast, objects drawn in the whiteboard tend to remain there for a long time. They
are often only erased or moved out of view when space is needed for drawings related to a
new topic. While they may be modified, elaborated, or moved around, whiteboard objects
may remain visible for an entire hour-long session or even across sessions. Like the chat,
the whiteboard has a history scrollbar, so that any past state of the drawing can be made
visible again—although in practice students rarely use this feature. Although both media
technically offer a persistent record of their contents, the visual locality of the whiteboard—
the fact that graphical objects tend to stay available for reference from the more fleeting
chat—qualifies it as the more persistent medium as an interactional resource. This notion of
persistence does not imply that the shared sense of whiteboard objects is fixed once they are
registered to the shared visual field. As they continue to serve as referential resources
during the course of the problem-solving effort, the sense of whiteboard objects may
become increasingly evident and shared, or their role may be modified as participants make
use of them for varying purposes.

Implications for CSCL chat interaction analysis

In this case study, we investigated how a group of three upper-middle-school students put
the features of an online environment with dual-interaction spaces into use as they
collaboratively worked on a math problem they themselves came up with. Our analysis has
revealed important insights regarding the affordances of systems with dual-interaction
spaces. First, we observed that the whiteboard can make visible to everyone the animated
evolution of a geometric construction, displaying the visual reasoning process manifested
in drawing actions. Second, whiteboard and chat contents differ in terms of mutability of
their contents, due to the object-oriented design of the whiteboard that allows modification
and annotation of past contributions. Third, the media differ in terms of the persistence of
their contents: Whiteboard objects remain in the shared visual field until they are removed,
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whereas chat content gradually scrolls off as new postings are produced. Although contents
of both spaces are persistently available for reference, due to linear progression of the chat
window, chat postings are likely to refer to visually (and hence temporally) close chat
messages and to graphical whiteboard objects. Finally, the whiteboard objects index a
horizon of past and future activities as they serve as an interactional resource through the
course of recognizably distinct but related episodes of chat discussion.

Our analysis of this team’s joint work has also revealed methods for the organization of
collaborative work, through which group members co-construct mathematical meaning
sedimented in semiotic objects distributed across the dual-interaction spaces of the VMT
environment. We observed that bringing relevant math artifacts referenced by indexical
terms such as “hexagonal array” to other members’ attention often requires a coordinated
sequence of actions across the two interaction spaces. Participants use explicit and verbal
references to guide each other about how a new contribution should be read in relation to
prior contents. Indexical terms stated in chat referring to the visible production of shared
objects are instrumental in the reification of those terms as meaningful mathematical objects
for the participants. Verbal references to co-constructed objects are often used as a resource
to index complicated and abstract mathematical concepts in the process of co-constructing
new ones. Finally, different representational affordances of the dual-interaction spaces allow
groups to develop multiple realizations of the math artifacts to which they are oriented.
Shared graphical inscriptions and chat postings are used together as semiotic resources in
mutually elaborating ways. Methods of coordinating group interaction across the media
spaces also interrelate the mathematical significances of the multiple realizations.

Overall, we observed that actions performed in both interaction spaces constitute an
evolving historical context for the joint work of the group. What gets done now informs the
relevant actions to be performed next, and the significance of what was done previously can
be modified depending on the circumstances of the ongoing activity. As the interaction
unfolds sequentially, the sense of previously posted whiteboard objects and chat statements
may become evident and/or refined. In this way, the group’s joint problem space is
maintained.

Through the sequential coordination of chat postings and whiteboard inscriptions, the
group successfully solved their mathematical challenge, to find a formula for the number of
small triangles in a hexagonal array of any given side-length. Their interaction was guided
by a sequence of proposals and responses carried out textually in the chat medium.
However, the sense of the terms and relationships narrated in the chat were largely
instantiated, shared, and investigated through observation of visible features of graphical
inscriptions in the whiteboard medium. The mathematical object that was visually co-
constructed in the whiteboard was named and described in words within the chat. Finally, a
symbolic expression was developed by the group, grounded in the graphic that evolved in
the whiteboard and discussed in the terminology that emerged in the chat. The symbolic
mathematical result was then posted to the wiki, a third medium within the VMT
environment. The wiki is intended for sharing group findings with other groups as part of a
permanent archive of work by virtual math teams.

Our case study in this paper demonstrates that it is possible to analyze how math
problem solving—and presumably other cognitive achievements—can be carried out by
small groups of students. The students can define and refine their own problems to pursue;
they can invent their own methods of working; they can use unrestricted vocabulary; they
can coordinate work in multiple media, taking advantage of different affordances. Careful
attention to the sequentiality of references and responses is necessary to reveal how the
group coordinated its work and how that work was driven by the reactions of the group
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members’ actions to each other. Only by focusing on the sequentiality of the actions can
one see how the visual, narrative, and symbolic build on each other as well as how the
actions of the individual students respond to each other. Through these actions, the students
co-construct math objects, personal understanding, group agreement, and mathematical
results that cannot be attributed to any one individual, but that emerge from the interaction
as complexly sequenced.

This analysis illustrates a promising approach for CSCL research to investigate aspects
of group cognition that are beyond the reach of alternative methods that systematically
ignore the full sequentiality of their data.

The group as the unit of analysis

For methodological reasons, quantitative approaches—such as those reviewed in the next
section—generally (a) constrain (scaffold) subject behaviors, (b) filter (code) the data in
terms of operationalized variables, and (c) aggregate (count) the coded data. These acts of
standardization and reduction of the data eliminate the possibility of observing the details
and enacted processes of unique, situated, indexical, sequential, group interaction (Stahl
2006, chap. 10). An alternative form of interaction analysis is needed to explore the
organization of interaction that can take place in CSCL settings.

In this paper, we focused on small-group interactions mediated by a multimodal interaction
space. Our study differs from similar work in CSCL by our focus on groups larger than dyads
whose members are situated outside a controlled lab environment, and by our use of open-
ended math tasks where students are encouraged to come up with their own problems.
Moreover, we do not impose any deliberate restrictions on the ways students access the
features of our online environment or on what they can say. Our main goal is to investigate
how small groups of students construe and make use of the “available features” of the VMT
online environment to discuss mathematics with peers from different schools outside their
classroom setting. In other words, we are interested in studying interactional achievements of
small groups in complex computer mediations “in the wild” (Hutchins 1996).

Our interest in studying the use of an online environment with multiple interaction
spaces in a more naturalistic use scenario raises serious methodological challenges. In an
early VMT study where we conducted a content analysis of collaborative problem-solving
activities mediated by a standard text-chat tool in a similar scenario of use, we observed that
groups larger than dyads exhibit complex interactional patterns that are difficult to
categorize based on a theory-informed coding scheme with a fixed/predetermined unit of
analysis (Stahl 2009b, chap. 20). In particular, we observed numerous cases where
participants post their messages in multiple chat turns, deal with contributions seemingly
out of sequence, and sustain conversations across multiple threads that made it problematic
to segment the data into fixed analytic units for categorization. Moreover, coming to
agreement on a code assignment for a unit that is defined a priori (e.g., a chat line) turned
out to be heavily dependent upon how the unit can be read in relation to resources available
to participants (e.g., the problem description) and to prior units (Stahl 2009b, chap. 22). In
other words, the sense of a unit not only depends on the semantic import of its constituent
elements, but also on the occasion in which it is situated (Heritage 1984). This often makes
it possible to apply multiple categories to a given unit and threatens the comparability of
cases that are labeled with the same category. More importantly, once the data is reduced to
codes and the assignments are aggregated, the complex sequential relationships among the
units are largely lost. Hence, the coding approach’s attempt to enforce a category to each
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fixed unit without any consideration to how users sequentially organize their actions in the
environment proved to be too restrictive to adequately capture the interactional complexity
of chat (Stahl 2009b, chap. 23). Moreover, the inclusion of a shared drawing area in our
online environment made the use of a standard coding schema even harder due to increased
possibilities for interaction. The open-ended nature of the tasks we use in our study makes it
especially challenging to model certain types of actions and to compare them against ideal
solutions.

The issue of unit of analysis has theoretical implications. In text chat, it is tempting to
take a single posting as the unit to be analyzed and coded, because a participant defined this
as a unit by posting it as a message and because the chat software displays it as a visual
unit. However, this tends to lead the analyst to treat the posting as a message from the
posting individual—that is, as an expression of a thought in the poster’s mind, which must
then be interpreted in the minds of the post readers. Conversation analysis has argued for
the importance of interactions among participants as forming more meaningful units for
analysis. These consist of sequences of multiple utterances by different speakers; the
individual utterances take each other into account. For instance, in a question/answer
“adjacency pair,” the question elicits an answer and the answer responds to the question. To
take a pair of postings such as a question/answer pair as the analytic unit is to treat the
interaction within the group as primary. It focuses the analysis at the level of the group
rather than the individual. As mentioned, in online text chat, responses are often separated
from their referents, so the analysis is more complicated. In general, we find that the
important thing is to trace as many references as possible between chat postings or
whiteboard actions in order to analyze the interaction of the group as it unfolds (Stahl
2009b, chap. 26). As seen in our case study, it is through the co-construction of a rich nexus
of such references that the group weaves its joint problem space.

Analysis at the group unit focuses on the co-construction, maintenance, and progressive
refinement of the joint problem space. This is a distinctive analytic task that takes as its data
only what is shared by the group. Whatever may go on in the physical, mental, or cultural
backgrounds of the individual participants is irrelevant unless it is brought into the group
discourse. Because the students know nothing about the gender, age, ethnicity, accent,
appearance, location, personality, opinions, grades, or skills of the other participants other
than what is mentioned or displayed in the chat interaction, these “factors” from the
individual and societal levels can be bracketed out of the group analysis. Survey and
interview data is unnecessary; individual learning trajectories are not plotted. The VMT
Project has been designed to make available to the analyst precisely what was shared by the
student group, and nothing else.

Relatedly, the notion of common ground (see section on grounding below) as an abstract
placeholder for registered cumulative facts or pre-established meanings has been critiqued
in the CSCL literature for treating meaning as a fixed/denotative entity transcendental to the
meaning-making activities of inquirers (Koschmann 2002). The common ground that
supports mutual understanding in group cognition or group problem solving is a matter of
semantic references that unfold sequentially in the momentary situation of dialog, not a
matter of comparing mental contents (Stahl 2006, pp. 353–356). Committing to a reference-
repair model (Clark and Marshall 1981) for meaning making falls short of taking into
account the dynamic, constitutive nature of meaning-making interactions that foster the
process of inquiry (Koschmann et al. 2001).

As we saw in the preceding case study, the understanding of the mathematical structure
of the hexagon area did not occur as a mental model of one of the students that was
subsequently externalized in the chat and whiteboard and communicated to the other
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students. It emerged in the discourse media in a way that we could witness as analysts. It
consisted of the layering of inscriptions (textual and graphical) that referenced one another.
The referential network of group meaning can be observed in the way that deictic and
indexical expressions are resolved. The three students each contribute to the progressive
development of the shared meaning by responding appropriately to the ongoing state of the
discourse. This is a matter of linguistic skill—including ability in discussing mathematical
matters—not of articulating mental representations. It is surprising from a rationalist
perspective how poor students are at explaining (Stahl 2009b, chap. 26), reproducing
(Koschmann and LeBaron 2003), or even recalling (Stahl 2009b, chap. 6) what they did in
the group when they are no longer situated in the moment.

Given these analytical and theoretical issues, we opted for an alternative to the
approaches reviewed below that involve modeling of actions and correct solution paths or
treating shared understanding as alignment of preexisting individual representations and
opinions. In this paper, we built on our previous work on referencing math objects in a
system with chat and a whiteboard (Stahl 2009b, chap. 17); we presented a “micro-
ethnographic” (Streeck and Mehus 2003) case study using interaction analysis (Jordan and
Henderson 1995). We focused on the sequence of actions in which the group co-constructs
and makes use of semiotic resources (Goodwin 2000) distributed across dual-interaction
spaces to do collaborative problem-solving work. In particular, we focused on the joint
organization of activities that produce graphical drawings on the shared whiteboard and the
ways those drawings are used as resources by actors as they collaboratively work on an
open-ended math task. Through detailed analysis at the group unit of analysis, we
investigated how actions performed in one workspace inform the actions performed in the
other and how the group coordinates its actions across both interaction spaces.

Other approaches in CSCL to analyzing multimodal interaction

Multimodal interaction spaces—which typically bring together two or more synchronous
online communication technologies such as text chat and a shared graphical workspace—
have been widely used to support collaborative learning activities of small groups
(Dillenbourg and Traum 2006; Jermann 2002; Mühlpfordt and Wessner 2005; Soller and
Lesgold 2003; Suthers et al. 2001). The way such systems are designed as a juxtaposition
of several technologically independent online communication tools carries important
interactional consequences for the users. Engaging in forms of joint activity in such online
environments requires group members to use the technological features available to them in
methodical ways to make their actions across multiple spaces intelligible to each other and
to sustain their joint problem-solving work.

In this section we summarize our review (Çakir 2009) of previous studies in the CSCL
research literature that focus on the interactions mediated by systems with multimodal
interaction spaces to support collaborative work online. Our review is not meant to be
exhaustive, but representative of the more advanced analytical approaches employed. We
have selected sophisticated analyses, which go well beyond the standard coding-and-
counting genre of CSCL quantitative reports, in which utterances are sorted according to a
fixed coding scheme and then statistics are derived from the count of utterances in each
category. Unlike the simple coding-and-counting studies, the approaches we review attempt
to analyze some of the structure of the semantic and temporal relationships among chat
utterances and workspace inscriptions in an effort to get at the fabric of common ground in
dual-interaction online environments.
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The communicative processes mediated by multimodal interaction spaces have attracted
increasing analytical interest in the CSCL community. A workshop held at CSCL 2005
specifically highlighted the need for more systematic ways to investigate the unique
affordances of such online environments (Dillenbourg 2005). Previous CSCL studies that
focus on the interactions mediated by systems with two or more interaction spaces can be
broadly categorized under: (1) prescriptive approaches based on models of interaction and
(2) descriptive approaches based on content analysis of user actions.

(1) The modeling approach builds on the content-coding approach by devising models of
categorized user actions performed across multimodal interaction spaces, for example:

(a) Soller and Lesgold’s (2003) use of hidden Markov models (HMM) and
(b) Avouris et al.’s (2003) object-oriented collaboration analysis framework (OCAF).

In these studies, the online environment is tailored to a specific problem-solving
situation so that researchers can partially automate the coding process by narrowing the
possibilities for user actions to a well-defined set of categories. The specificity of the
problem-solving situation also allows researchers to produce models of idealized solution
cases. Such ideal cases are then used as a baseline to make automated assessments of group
work and learning outcomes.

(2) The descriptive approach informed by content analysis also involves categorization of
user actions mediated by multimodal interaction spaces, applying a theoretically
informed coding scheme. Categorized interaction logs are then subjected to statistical
analysis to investigate various aspects of collaborative work such as:

(c) The correlation between planning moves performed in chat and the success of
subsequent manipulations performed in a shared workspace (Jermann 2002;
Jermann and Dillenbourg 2005),

(d) The relationship between grounding and problem-solving processes across
multiple interaction spaces (Dillenbourg and Traum 2006),

(e) A similar approach based on cultural-historical activity theory (Baker et al. 1999),
and

(f) The referential uses of graphical representations in a shared workspace in the
absence of explicit gestural deixis (Suthers et al. 2003).

These studies all focus on the group processes of collaboration, rather than treating it as
a mere experimental condition for comparing the individuals in the groups. Also, they
employ a content-coding approach to categorize actions occurring in multiple interaction
spaces. In most cases, representational features like sentence openers or nodes
corresponding to specific ontological entities are implemented in the interface to guide/
constrain the possibilities for interaction. Such features are also used to aid the
categorization of user actions. The categorization schemes are applied to recorded logs
and subjected to statistical analysis to elicit interaction patterns.

The analytic thrust of these studies is to arrive at quantitative results through statistical
comparisons of aggregated data. To accomplish this, they generally have to restrict student
actions in order to control variables in their studies and to facilitate the coding of student
utterances within a fixed ontology. We fear that this unduly restricts the interaction, which
must be flexible enough to allow students to invent unanticipated behaviors. The
restrictions of laboratory settings make problematic experimental validity and generaliza-
tion of results to real-world contexts. Even more seriously, the aggregation of data—
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grouping utterances by types or codes rather than maintaining their sequentiality—ignores
the complexity of the relations among the utterances and actions. According to our analysis,
the temporal and semiotic relations are essential to understanding, sharing, and coordinating
meaning, problem solving, and cognition. While quantitative approaches can be effective in
testing model-based hypotheses, they seem less appropriate both for exploring the problem
of interactional organization and for investigating interactional methods, which we feel are
central to CSCL theory.

Despite the accomplishments of these studies, we find that their approaches introduce
systematic limitations. Interactional analysis is impossible because coherent excerpts from
recorded interactions are excluded from the analysis itself. (Excerpts are only used
anecdotally, outside of the analysis, to introduce the features of the system to the reader, to
illustrate the categorization schemes employed, or to motivate speculative discussion).
Moreover, most studies like these involve dyads working on specific problem-solving
contexts through highly structured interfaces in controlled lab studies in an effort to manage
the complexity of collaboration. The meanings attributed by the researchers to such features
of the interface need to be discovered/unpacked by the participants as they put them into
use in interaction—and this critical process is necessarily ignored by the methodology.
Finally, most of these papers are informed by the psycholinguistic theory of common
ground, and are unable to critique it systematically. By contrast—as we shall see in the
following section—our analysis of the joint organization of interaction in the case study
positions us to understand how the group grounds its shared understanding in interactional
terms at the group level.

Grounding through interactional organization

The coordination of visual and linguistic methods (across the whiteboard and chat
workspaces) plays an important role in the establishment of common ground through the
co-construction of references between items in the different media within the VMT
environment. Particularly in mathematics—with its geometric/algebraic dual nature—
symbolic terms are often grounded in visual presence and associated visual practices, such
as counting or collecting multiple units into a single referent (Goodwin 1994; Healy and
Hoyles 1999; Livingston 2006; Sfard 2008; Wittgenstein 1944/1956). The visually present
can be replaced by linguistic references to objects that are no longer in the visual field, but
that can be understood based on prior experience supported by some mediating object such
as a name—see the discussion of mediated memory and of the power of names in thought
by Vygotsky (1930/1978, 1934/1986). A more extended analysis of the co-construction of
mathematical artifacts by virtual math teams, the complementarity of their visual, semantic,
and symbolic aspects, their reliance on pre-mathematical practices and processes of
reification into concepts are beyond the scope of this paper and require comparison of
multiple case studies (see Çakir 2009). However, for this paper it is important to understand
something of how the interactional organization that we have observed here functions to
ground the group’s understanding of their math object (the hexagonal array) as a shared
group achievement.

As implied in the OCAF study (Avouris et al. 2003) mentioned in the previous section,
investigating grounding and problem-solving processes in online dual-interaction environ-
ments like VMT requires close attention to the relationships among actions performed in
multiple interaction spaces. Our case study illustrates some of the practical challenges
involved with producing mathematical models that aim to exhaustively capture such
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relationships. For instance, the hexagonal array that was co-constructed by the team draws
upon a triangular grid that is formed by three sets of parallel lines that intersect with each
other in a particular way. In other words, these objects are layered on top of each other by
the participants to produce a shape recognizable as a hexagon. Despite this combinatoric
challenge, a modeling approach can still attempt to capture all possible geometric
relationships among these graphical objects in a bottom-up fashion. However, when all
chat messages referring to the whiteboard objects are added to the mix, the resulting model
may obscure rather than reveal the details of the interactional organization through which
group members discuss more complicated mathematical objects by treating a collection of
atomic actions as a single entity. Terminology co-constructed in the chat-and-whiteboard
environment—like “hexagonal array”—can refer to complexly defined math objects. What
is interesting about the student knowledge building is how they aggregate elements and
reify them into higher order, more powerful units (Sfard 2008). A model should mirror this
rather than to simply represent the elements as isolated.

The challenges involved with the modeling approach are not limited to finding efficient
ways to capture all relationships among actions and identifying meaningful clusters of
objects. The figurative uses of the graphical objects present the most daunting challenge for
such an undertaking. For instance, the team members in our case study used the term
“hexagonal array” to refer to a mathematical object implicated in the witnessed production
of prior drawing actions. As we have seen in the way the team used this term during their
session, “hexagonal array” does not simply refer to a readily available whiteboard
illustration. Instead it is used as a gloss (Garfinkel and Sacks 1970) to talk about an
imagined pattern that grows infinitely and takes the shape illustrated on the whiteboard only
at a particular stage. In the absence of a fixed set of ontological elements and constraints on
types of actions a user can perform, modeling approaches that aim to capture emergent
relationships among semiotic objects distributed across multiple interaction spaces need to
adequately deal with the retrospective and prospective uses of language in interaction.
Rather than relying upon a generic approach to modeling imposed by the researchers, our
ethnographic approach aims to discover the unique “model”—or, better, the specific
meaning—that was constructed by the group in its particular situation.

In another study discussed earlier, Dillenbourg and Traum (2006) offer the napkin and
mockup models in their effort to characterize the relationship between whiteboard and chat
spaces. In short, these models seem to describe two use scenarios where one interaction
space is subordinated to the other during an entire problem-solving session. The complex
relationships between the actions performed across both interaction spaces in our case made
it difficult for us to describe the interactions we have observed by committing to only one
of these models, as Dillenbourg & Traum did in their study. Instead, we have observed that
in the context of an open-ended math task, groups may invoke either type of organization,
depending upon the contingencies of their ongoing problem-solving work. For instance,
during long episodes of drawing actions where a model of some aspect of the shared task is
being co-constructed on the whiteboard (as in our first excerpt), the chat area often serves as
an auxiliary medium to coordinate the drawing actions, which seems to conform to the
mockup model. In contrast, when a strategy to address the shared task is being discussed in
chat (as in the excerpt where the group considered splitting the hexagon into six regions),
the whiteboard may be mainly used to quickly illustrate the textual descriptions with
annotations or rough sketches, in accordance with the napkin model. Depending on the
circumstances of ongoing interaction, participants may switch from one type of
organization to another from moment to moment. Therefore, instead of ascribing mockup
and napkin models to entire problem-solving sessions, we argue that it would be more
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fruitful to use these terms as glosses or descriptive categories for types of interactional
organizations that group members may invoke during specific episodes of their interaction.

Another provocative observation made by Dillenbourg & Traum is that the whiteboard
serves as a kind of shared external memory where group members keep a record of agreed-
upon facts. In their study, the dyads were reported to post text notes on the whiteboard to
keep track of the information they had discovered about a murder-mystery task. This seems
to have led the authors to characterize the whiteboard as a placeholder and/or a shared
working memory for the group, where agreed-upon facts or “contributions” in Clark’s sense
are persistently stored and spatially organized. As Dillenbourg & Traum observed, the scale
of what is shared in the course of collaborative problem solving becomes an important issue
when a theory operating at the utterance level like contribution theory (Clark and Marshall
1981) is used as an analytic resource to study grounding processes that span a longer period
of time. Dillenbourg & Traum seem to have used the notion of persistence to extend
common ground across time to address this limitation. In particular, they argued that the
whiteboard grounds the solution to the problem itself rather than the contributions made by
each utterance. In other words, the whiteboard is metaphorically treated as a physical
manifestation of the common ground. We certainly agree with this broadening of the
conceptualization of common ground, although we do not see the whiteboard as just a
metaphor or externalization of a mental phenomenon. Rather, common ground is
established in the discourse spaces of text chat and graphical whiteboard. Their differential
forms of persistence provide a continuing resource for sharing, modifying, and
remembering the group meaning of joint artifacts and products of group cognition.

In our case study, we have observed that the whiteboard does not simply serve as a kind
of shared external memory where the group keeps a record of agreed-upon facts, opinions,
hypotheses, or conclusions. The shared visible communication media are places where the
group does its work, where it cognizes. Ideas, concepts, meanings, and so forth can
subsequently be taken up by individuals into their personal memories as resources for future
social or mental interactions. There is no need to reduce group meaning to identical
individual mental contents or to hypothesize a mysterious “group mind” as the location of
common ground—the location is the discourse medium, with all its particular affordances
and modes of access.

In our sessions, the whiteboard was primarily used to draw and annotate graphical
illustrations of geometric shapes, although users occasionally posted textboxes on the
whiteboard to note formulas they had found (see Fig. 2 above). While the whiteboard
mainly supported visual reasoning—and textual discussion or symbolic manipulation
occurred chiefly in the chat stream—actions were carefully, systematically coordinated
across the media and integrated within an interactionally organized group-cognitive
process. As we have illustrated in our analysis, the fact that there were inscriptions posted
on the whiteboard did not necessarily mean that all members immediately shared the same
sense of those graphical objects. The group members did considerable interactional work to
achieve a shared sense of those objects that was adequate for the purposes at hand. For
instance, the crosshatched lines that Qwertyuiop originally drew became increasingly
meaningful for the group as it was visually outlined and segmented and as it was discussed
in the chat and expressed symbolically.

Hence, the whiteboard objects have a different epistemic status in our case study than in
Dillenbourg & Traum’s experiment. Moreover, the participants did not deem all the
contents of the whiteboard relevant to the ongoing discussion. For instance, Fig. 2 above
shows a snapshot of the entire whiteboard as the team was discussing the hexagonal pattern
problem. The figure shows that there are additional objects in the shared scene like a blue
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hypercube and a 3-D staircase, which are remnants of the group’s prior problem-solving
work. Finally, the sense of previously posted whiteboard objects may be modified or
become evident as a result of current actions (Suchman 1990).

In other words, group members can not only reuse or reproduce drawings, but they can also
make subsequent sense of those drawings or discard the ones that are not deemed relevant
anymore. Therefore, the technologically extended notion of common ground as a placeholder
for a worked-out solution suffers from the same issues stated in Koschmann and LeBaron’s
(2003) critique of Clark’s theory. As an abstract construct transcendental to the meaning-
making practices of participants, the notion of common ground obscures rather than explains
the ways the whiteboard is used as a resource for collaborative problem solving.

Instead of using an extended version of common ground as an analytical resource, we
frame our analysis using the notion of “indexical ground of deictic reference,” which is a
notion we appropriated from linguistic anthropology (Hanks 1992). In face-to-face
interaction, human action is built through the sequential organization of not only talk but
also coordinated use of the features of the local scene that are made relevant via bodily
orientations, gesture, eye gaze, and so forth. In other words, “human action is built through
simultaneous deployment of a range of quite different kinds of semiotic resources”
(Goodwin 2000, p. 1489). Indexical terms and referential deixis play a fundamental role in
the way these semiotic resources are interwoven in interaction into a coherent whole.

Indexical terms are generally defined as expressions whose interpretation requires
identification of some element of the context in which it was uttered, such as who made the
utterance, to whom it was addressed, when and where the utterance was made (Levinson
1983). Because the sense of indexical terms depends on the context in which they are
uttered, indexicality is necessarily a relational phenomenon. Indexical references facilitate
the mutually constitutive relationship between language and context (Hanks 1996). The
basic communicative function of indexical-referentials is “to individuate or single out
objects of reference or address in terms of their relation to the current interactive context in
which the utterance occurs” (Hanks 1992, p. 47).

The specific sense of referential terms such as this, that, now, here is defined locally by
interlocutors against a shared indexical ground. Conversely, the linguistic labels assigned to
highlighted features of the local scene shapes the indexical ground. Hence, the indexical
ground is not an abstract placeholder for a fixed set of registered contributions. Rather, it
signifies an emergently coherent field of action that encodes an interactionally achieved set
of background understandings, orientations, and perspectives that make references
intelligible to interlocutors (Zemel et al. 2008).

Despite the limitations of online environments for supporting multimodality of
embodied interaction, participants make substantial use of their everyday interactional
competencies as they appropriate the features of such environments to engage with other
users. For instance, Suthers et al.’s (2003) study reports that deictic uses of representational
proxies play an important role in the interactional organization of online problem-solving
sessions mediated by the Belvedere system. The authors report that participants in the
online case devised mechanisms that compensate for the lack of gestural deixis with
alternative means, such as using verbal deixis to refer to the most recently added text nodes
and visual manipulation of nodes to direct their partner’s attention to a particular node in
the shared argument map.

In contrast to the Belvedere system, VMT offers participants additional resources such as
an explicit referencing mechanism, a more generic workspace that allows producing and
annotating drawings, and an awareness feature that produces a sense of sequentiality by
embedding indicators for drawing actions in the sequence of chat postings. Our case study
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shows that despite the online situation’s lack of the familiar resources of embodied
interaction, team members can still achieve a sense of shared access to the meaningful
objects displayed in the dual-interaction spaces of the VMT environment. Our analysis
indicates that coherence among multiple modalities of an online environment like VMT is
achieved through group members’ development and application of shared methods for
using the features of the system to coordinate their actions in the interface.

Through coordinated use of indexical-referential terms and highlighting actions, team
members help each other to literally “see” the objects implicated in the shared visual field
(Goodwin 1994) and to encode them with locally specified terminology for subsequent use.
They demonstrate how to “read” graphical as well as textual objects through the way the
objects are built up sequentially and are spatially arranged in relation to each other through
sequences of actions. The deictic references that link chat messages to features of graphical
inscriptions and to prior chat content are instrumental in the sequential achievement of
indexical symmetry, intersubjectivity, or common ground.

Sequential analysis of the joint organization of interaction

To sum up, the focus of our ethnomethodological inquiry is directed toward documenting
how a virtual team achieved intersubjectivity and coherence among their actions in an
online CSCL environment with multiple interaction spaces. We looked at the moment-to-
moment details of the practices through which participants organize their chat utterances
and whiteboard actions as a coherent whole in interaction—a process that is central to
CSCL. We observed that referential practices enacted by the users are essential, particularly
in the coordinated use of multimodalities afforded by environments like VMT. The
referential uses of available features are instrumental not only in allocating other members’
attention to specific parts of the interface where relevant actions are being performed, but
also in the achievement of reciprocity (intersubjectivity, common ground, shared
understanding, group cognition) among actions in the multiple interaction spaces, and
hence, a sense of sequential organization across the spaces.

In our case study, we have seen the establishment of an indexical ground of deictic
references co-constructed by the group members as an underlying support for the creation
and maintenance of their joint problem space. We have seen that nexus of references
created interactionally as group members propose, question, repair, respond, illustrate,
make visible, supply symbols, name, and so forth. In the VMT dual-media environment, the
differential persistence, visibility, and mutability of the media are consequential for the
interaction. Group members develop methods of coordinating chat and drawing activities to
combine visual and conceptual reasoning by the group and to co-construct and maintain an
evolving shared indexical ground of their discourse.

In this paper, we have reconceptualized the problem of common ground from an issue of
sharing mental representations to a practical matter of being able to jointly relate semiotic
objects to their indexed referents. The references do not reside in the minds of particular
actors, but have been crafted into the presentation of the chat postings and drawing
inscriptions through the details of wording and sequential presentation. The references are
present in the data as affordances for understanding by group participants as well as by
analysts (Stahl 2006, chap. 17). The meaning is there in the visual presentation of the
communication objects and in the network of interrelated references (Stahl 2007), rather
than in mental re-presentations of them. The understanding of the references is a matter of
normally tacit social practice, rather than of rationalist explicit deduction. The references can be
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explicated by analysis, but only if the structure of sequentiality and indexicality is preserved in
the data analysis and only if the skill of situated human understanding is applied.

In our case study of an 18-min excerpt taken from a four-hour group chat, three students
construct a diagram of lines, triangles, and hexagons, propose a math pattern problem, analyze
the structure of their diagram, and derive an algebraic formula to solve their problem. They
propose their own creative problem about mathematical properties; gradually construct a
complex mathematical object; explore related patterns with visual, narrative, and symbolic
means; express wonder; gain mathematical insight; and appreciate their achievement. They do
this by coordinating their whiteboard and chat activities in a synchronous online environment.
Their accomplishment is precisely the kind of educational math experience recommended by
mathematicians (Livingston 2006; Lockhart 2008; Moss and Beatty 2006). It was not a
mental achievement of an individual, but a group accomplishment carried out in computer-
supported discourse. By analyzing the sequentiality and indexicality of their interactions, we
explicated several mechanisms of the group cognition by which the students coordinated the
group meaning of their discourse and maintained an effective joint problem space.

The coordination of visual and textual realizations of the mathematical objects that the
students co-construct provides a grounding of the algebraic formulas the students jointly
derive using the line drawings that they inspect visually together. As the students
individualize this experience of group cognition, they can develop the deep understanding
of mathematical phenomena that comes from seeing the connections among multiple
realizations (Sfard 2008; Stahl 2008). Our case study does not by any means predict that all
students can accomplish similar results under specific conditions, but merely demonstrates
that such group cognition is possible within a synchronous CSCL setting and that a fine-
grained sequential analysis of interaction can study how it is collaboratively accomplished.
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