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In this article, we deal with the problem of determining the economic operating policy when

a number of items are to be procured from a number of suppliers offering different quantity

discounts schedules. In such inventory problems, a fixed cost is incurred with each

replenishment order, independent of the suppliers as well as the items involved in the order.

Further, the item involves a minor fixed cost. In such a system, it includes the supplier

selection problem when considering the quantity discounts as well as the general joint

replenishment problem. We develop a hybrid genetic algorithm for this NP-hard decision

problem and extend it to systems with resource restrictions.
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1. Introduction

In inventory systems, cost savings can be achieved by
coordinating the replenishment of several items. The

joint replenishment problem (JRP) deals with the
problem of coordinating the replenishment of a group

of items that may be jointly ordered from a single
supplier. In such systems, the ordering cost has two

components: a major common ordering cost S
incurred whenever an order is placed and a minor

ordering cost si incurred if item i is ordered. During
the last three decades, the JRP has received consider-

able attention from researchers. Arkin et al. (1989)
proved that the JRP is an NP-hard problem, and

therefore, it is unlikely that it can be solved by
polynomial-time algorithms. There are only a few

studies which deal with exact optimisation procedures.
Goyal (1974) proposed an enumeration approach to

obtain an optimal solution. Van Eijs (1993) reported
that the lower bound on an optimal cycle time used

by Goyal (1974) does not guarantee a global optimal

solution and derived another algorithm that improves

Goyal’s algorithm. Viswanathan (1996) proposed

tighter bounds on the basic cycle time T to improve

the procedures by Goyal (1974) and Van Eijs (1993).

Wildeman et al. (1997) presented a new solution

approach based on Lipschitz optimisation to obtain

a solution with an arbitrarily small deviation from the

optimal. Bayindir et al. (2006) also proposed an

efficient solution algorithm based on Lipschitz opti-

misation for the JRP with concave production cost

functions. Porras and Dekker (2006) proposed a new

solution method based on the formulation of the

problem given by Wildeman et al. (1997) to solve the

JRP with minimum order quantities.
Unlike these optimisation approaches, Silver (1975,

1976) discussed the advantages and disadvantages of

coordinating replenishments and presented an extremely

simple non-iterative procedure to solve it. Kaspi and

Rosenblatt (1991) proposed an approach based on

attempting several values of the basic cycle time between

the minimum and maximum values. Then, they applied

the heuristic of Kaspi and Rosenblatt (1983) to each

value of the basic cycle time, which is a modified version*Corresponding author. Email: ikmoon@pusan.ac.kr
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 of the algorithm of Silver (1975). They demonstrated
that their procedure (known as the RAND method)
outperforms all the available heuristics. Later,
Goyal and Deshmukh (1993) proposed an improvement
of the lower bound used by Kaspi and Rosenblatt
(1991). Khouja et al. (2000) presented genetic
algorithms (GAs) for the JRP and compared the
performance of their GAs with that of Kaspi and
Rosenblatt’s heuristic algorithm (1991). Moon and Cha
(2006) developed both a modified RAND algorithm and
a GA for the joint replenishment problem with resource
restrictions.
The general JRP models assume that the unit cost is

independent of the quantity ordered. However, fre-
quently, suppliers attempt to induce their customers to
place larger orders by offering quantity discounts. These
quantity discounts have been considered in many
production and inventory models (Silver et al. 1998).
Pirkul and Aras (1985) considered the problem of
multiple-item economic order quantities with all-units
discounts offered separately for each item. Benton and
Park (1996) classified the literature on lot sizing
determination under several types of
discount schemes and discussed some of the significant
literature in this area. Benton (1991) presented an
efficient heuristic algorithm for evaluating
alternative discount schedules under multi-item and
multi-supplier conditions, considering the resource
limitations.
In order to address the joint replenishment problem,

Chakravarty (1984) proposed the grouping procedure.
He considered the group discounts available on the total
purchase value of a group replenishment. However, as
mentioned in Silver et al. (1998), discounts are
sometimes offered not for the total volume of a
replenishment composed of several different items but
for each individual item included in the replenishment.
Recently, Cha and Moon (2005) solved the joint
replenishment problem with quantity discounts using
both a simple heuristic and a modified RAND algorithm
known as QD-RAND.
The aim of our research is to fill the gap in the

literature on the JRP, wherein items are procured from
multiple suppliers offering quantity discounts.
The purpose of this article is to develop an efficient
algorithm for solving this type of problem.
The following section introduces the mathematical
model of this problem. In section 3, both an efficient
GA and a useful proposition are developed for solving
this problem. We use a numerical example to test the
suggested GA and present the results of a sensitivity
analysis in section 4. Further, in section 5, we also
demonstrate that our GA can be easily extended to the
JRP with resource restriction. Finally, we summarise the
conclusions of the present work.

2. Mathematical model

Similar to the joint replenishment problem under a

deterministic demand condition, the following assump-

tions are made:

(1) The demand rate for each item is constant and

deterministic.
(2) The replenishment lead time is of a known duration.
(3) Shortages are not permitted.
(4) The entire order quantity is delivered at the same time.
(5) The price of each item is dependent on the magnitude

of the replenishment of each item of each supplier.

The all-units discount schedule is considered.
(6) The inventory holding cost for each item of each

supplier is known and constant, independent of the

price of each item.
(7) Although several suppliers can be considered while

purchasing each item, it can be purchased from only

one supplier.

Moreover, we introduce the following notations to

discuss the JRP considering the quantity discounts of

multi-suppliers.

m: number of items
n: number of suppliers
i: index of item, i¼ 1, . . . ,m
j: index of supplier, j¼ 1, . . . , n
y: index of price break
Di: demand rate of item i
S: major ordering cost which is incurred when-

ever an order is placed
sij: minor ordering cost which is incurred if item

i purchased from supplier j is included
hi: inventory cost of item i per unit per unit time

pijy: price of item i ordered from supplier j in the

yth price break
qijy: quantity of item i from supplier j that

triggers the yth price break
Xij: binary variable equal to 1 if item i is ordered

from the jth supplier, otherwise it is 0

(decision variable)
T: basic cycle time which is the joint replenish-

ment time interval (decision variable)
ki: integer number that determines the replen-

ishment schedule of item i (decision variable)

According to the above assumptions and definitions, the

total relevant cost per unit time to be minimised is given by

TCðXij’s,T, ki’sÞ ¼
Sþ

Pm
i¼1

Pn
j¼1 ðsijXij=kiÞ

T

þ
Xm
i¼1

DikiThi
2

þ
Xm
i¼1

Xn
j¼1

CijðT, kiÞDiXij

ð1Þ

630 I. K. Moon et al.
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 that is subject to

Xn
j¼1

Xij ¼ 1, for i ¼ 1, 2, . . . ,m ð2Þ

where Cij is the unit cost function of item i when it is
purchased from supplier j. This is the step function of
T and ki. For the all-units quantity discount, the unit
cost Cij is represented as follows:

CijðT, kiÞ ¼ pijy, for qijy � DikiT < qijðyþ1Þ

where Di ki T is the order quantity Qi of item i.
Equation (2) implies that each item i can be purchased
from only one supplier.
This problem is very complex and involves many

decision variables related to purchasing. These decision
variables indicate both the supplier selection (Xij’s) and
the replenishment schedule (T, ki’s) of each item. It is
evident that this problem is NP-hard since the problem
of the supplier selection includes nm alternatives. We use
the GA to determine Xij’s, T, and ki’s that minimise the
total relevant cost per unit time.

3. Hybrid genetic algorithm

In this section, we present a new GA approach for
solving the JRP considering the quantity discounts of
multi-suppliers. We will introduce the main ideas of the
GA and demonstrate how we apply it to our problem.
Introduced by Khouja et al. (2000), a GA is suitable for
solving the JRP, an important feature of which is that it
can be formulated as a problem having one continuous
decision variable (basic cycle T ) and a set of integer
decision variables (m integer multiples ki of a basic
cycle T ).
GAs, which have been widely used to solve operations

management problems during the last decade
(Aytug et al. 2003), are stochastic search algorithms
based on the mechanism of natural selection and natural
genetics. Unlike conventional search techniques, GAs
begin with an initial set of (random) solutions known as
a population. These initial sets of solutions can be the
results from another method. Each individual in the
population is known as a chromosome that represents
a solution to the problem at hand. The chromosomes

evolve through successive iterations that are called

generations. During each generation, the chromosomes

are evaluated using some measures of fitness. Generally

speaking, the GA is applied to solution spaces that are

too large to be exhaustively searched. It is generally

accepted that any GA that is to solve a problem must

have six basic components (representation, initialisation,

fitness function, reproduction, crossover and mutation),

but it can have different characteristics, depending on

the problem being studied.
We explain our overall strategies including the

chromosome style in the following order.

. Representation and initialisation

. Objective and fitness function

. Reproduction, crossover and mutation

3.1 Representation and initialisation

The appropriate representation of a solution plays a key

role in the development of a GA. Unlike the research of

Khouja et al.’s (2000) for solving a general JRP, the

supplier selection variables (Xij’s), the basic cycle T, and

the replenishment schedule variables (ki’s) should be

determined by considering the quantity discounts of

multi-suppliers. In our GA, we can search Xij’s and ki’s

through the operations of the GA and determine the

basic cycle T through the optimality condition of T for

the given Xij’s and ki’s.
For example, if we purchase 10 items from three

suppliers, our chromosome can be represented as

follows:
As shown in figure 1, our chromosome is composed of

two parts. One is for the supplier selection, and the other

for the replenishment schedule of each item. The ith gene

of the first part of the chromosome indicates the index of

the supplier ( j ) from whom item i is purchased. The ith

gene of the second part of the chromosome indicates ki,

which decides the replenishment schedule of item i.

Therefore, we can decide the variables Xij’s and ki’s by

this type of chromosome. Our chromosome requires 2m

genes to decide the supplier selection variables (Xij’s)

and the replenishment schedule variables (ki’s).
In our study, we use a random number between 0 and

1 to represent each gene of our chromosome as this

allows for easy decoding into a feasible solution by a

simple decoding process.

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

2 1 2 3 3 3 3 1 1 1 12 6 3 1 1 3 4 6 11 37

Supplier selection Replenishment schedule

Figure 1. A sample chromosome structure for m¼ 10.

JRP involving multiple suppliers 631
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 3.2 Objective and fitness function

In this subsection, we will demonstrate how our

chromosome can be decoded to a feasible solution.

Each individual of the population is evaluated by the

following steps.

Step 1: Each chromosome is decoded to a feasible

solution (Xij’s, ki’s).

Step 2: The optimal basic cycle T is determined for

a given (Xij’s, ki’s).

Step 3: The total relevant cost TC is computed for

a given (T, Xij’s, ki’s).

Our decoding process for each gene of the first part of

our chromosome is as follows:

j ¼ 1þ n�GeneðiÞ
� �

, Xij ¼ 1 and Xij0 ¼ 0 for j 6¼ j 0

Gb c is the function that finds an integer number that is

less than or equal to G. Similarly, each gene of the

second part of our chromosome can be decoded as

follows:

ki ¼ kLBi þ kUB
i � kLBi þ 1

� �
�GeneðiÞ

� �
By setting an appropriate range of ki, we can define the

solution space including the optimal solution. It is

evident that considerably smaller ki’s lead to a

better solution space, as far as it contains the optimal

solution.
For solving the general JRP without considering the

quantity discounts of multi-suppliers, Khouja et al.

(2000) used ðkLBi ¼ 1, kUB
i ¼ dTIN

i =TmineÞ, where

TIN
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðSþ siÞ=ðDihiÞ

p
is the individual optimal

cycle time for product i which is obtained from the

EOQ model. It is clear that kLBi ¼ 1 for all i.

However, if we do not consider quantity discounts,

we can define considerably tighter upper bounds on

ki from the following optimality condition

(Goyal 1973):

ki ki � 1ð Þ �
2si

DihiT2
� ki ki þ 1ð Þ

Therefore, we can determine the upper bounds on

ki from the following equation.

kUB
i kUB

i � 1
� �

�
2maxfsijg

DihiT
2
min

� kUB
i kUB

i þ 1
� �

ð3Þ

where Tmin ¼ minð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sij=ðDihiÞ

p
Þ

Since quantity discounts of multi-suppliers have to be
considered, ki can have a considerably larger value as
shown below:

kUB
i ¼

maxfqijyg

DiTmin

� �
ð4Þ

Equation (4) implies that ki can take the value indicating
that we purchase item i at the minimum unit cost when
T is Tmin. This equation may enlarge the solution space
of this problem.

Van Eijs (1993) modified Tmin for the optimal strict
cyclic strategy, so we can determine the upper bounds on
ki to use the modified Tmin.

kUB
i ¼

maxfqijyg

DiT
Modi
min

& ’
ð5Þ

where

TModi
min ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffi
sij
Dihið Þ

r� 	
� max min

ffiffiffiffiffiffiffiffiffiffiffiffi
sij
Dihið Þ

r� 	
,

2A

TRC
�


 �
:

TRC� denotes the cost of the best strategy developed
thus far. Though Van Eijs recommended a dynamic
lower bound on T, we use TModi

min to determine the fixed
upper bounds on ki.

In the next section, the four upper bounds mentioned
above will be compared by using a numerical example.

To find T that minimises the total relevant cost per
unit time, we present the following proposition.

Proposition 1: For a given set of Xij’s and ki’s, the
optimal basic cycle time T is T� ¼ argminTy

fTCðTyÞg,
where Ty includes T0 and all Tijy, satisfying the following
condition:

Tijy ¼
qijy

Diki
4T0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Sþ

Pm
i¼1

Pn
j¼1 ðsijXij=kiÞ

� 
Pm

i¼1 Dikihi

vuut

where T0 is the optimal T obtained from the first-order
derivative of the total cost function of the JRP, not
considering quantity discounts.

Proof: For a particular given set of Xij’s and ki’s, the
total cost function of this problem can be easily
written as

TCðTÞ ¼
Sþ

Pm
i¼1

Pn
j¼1 ðsijXij=kiÞ

T
þ
Xm
i¼1

DikiThi
2

þ
Xm
i¼1

Xn
j¼1

Cij T,kið ÞDiXij ¼ TC1ðTÞ þ
Xm
i¼1

Ci Tð ÞDi

632 I. K. Moon et al.
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 where Ci is the unit cost function of item i, which
is purchased from supplier j. This is the step function
of T.
For given Xij’s and ki’s, it is evident that TC1(T) is a

convex function and
Pm

i¼1 Ci Tð ÞDi is a decreasing step
function. If T0 is the value that minimises TC1, TC(T0)
is always less than TC(T) for T<T0 because
TC1(T)4TC1(T0) and

Pm
i¼1 Ci Tð ÞDi >

Pm
i¼1 CiðT0ÞDi.

For T4T0, TC1(T) also increases with the increase in T.
However, TC(T0) is not always less than TC(T) becausePm

i¼1 Ci Tð ÞDi decreases at the price break points of
T(Tijy). Therefore, the optimal basic cycle time T that
minimises TC is T0, or one of the price break points
Tijy that is larger than T0 (figure 2). œ

3.3 Reproduction, crossover and mutation

Various evolutionary methods can be applied to obtain
a suitable solution to this problem. We employ

a tournament selection (r¼ 2) for selecting individuals

for reproduction. Further, we produce offsprings

through a uniform crossover with probability Pc.

Whenever an offspring is produced, mutation is applied

with the probability Pm. The operation of mutation

replaces one randomly chosen gene of the chromosome

with a new random number between (0, 1).
Figure 3 shows the overall structure of our GA.

T0 T0 252Tijy T T412

Convex function Decreasing step function

Figure 2. Graphs of TC1(T) and
Pm

i¼1 CiðTÞDi.

Chromosomes Crossover

Mutation  

37 6 2 1 3 2 3 3 3 1 1 1 3 6 12 4 3 1 1 11 

··· 

Decoding Process

37 6 2 1 3 2 3 3 3 1 1 1 3 6 12 4 3 1 1 11 

··· 

T
∗
 calculation & Evaluation  

T∗=0.1, TC=109,251  

37 6 2 1 3 2 3 3 3 1 1 1 3 6 12 4 3 1 1 11 

··· 

Selection 

Terminal ?

END

Yes

No  

Figure 3. The structure of the proposed genetic algorithm.

JRP involving multiple suppliers 633



D
ow

nl
oa

de
d 

B
y:

 [M
O

O
N

, I
LK

Y
E

O
N

G
] A

t: 
01

:3
1 

14
 A

pr
il 

20
08

 4. Numerical examples

In this section, we use an example to test our GA.

We consider purchasing ten items from three suppliers.

The data for this example are given in tables 1 and 2.

In addition, we assume that S¼ $10.
In this example, a population size of 50 is used and the

probabilities of crossover and mutation are set to 0.6

and 0.2, respectively. The termination condition is to

stop if no improvement is made after 1000 generations.

The GA solutions of the four upper bounds on ki in this

example are shown in table 3.
Table 3 shows that though we can create a larger

solution space from equation (5), we can get the best

solution from equation (4). In the case of using equation

(4) for the upper bounds on ki, both the representation

and decoding solutions of the best chromosome are

shown in table 4.
Table 5 shows that the supplier selection strategy is

not sensitive to the major ordering cost, unlike the

replenishment schedule. It appears rational that

the optimal basic period T increases with the increase

in the major ordering cost. This table also shows that

ki of each item is likely to converge to a smaller value for

the larger major cost.

5. Resource restriction

Most real-life JRPs exist under the conditions of limited

resources such as storage, transport equipment capacity,

and budget. Goyal (1975) considered a JRP with one

resource constraint and developed a heuristic algorithm

using the Lagrangian multiplier. It is difficult to apply

the heuristic algorithm to this type of problem.

However, by modifying Proposition 1, we can easily

extend our GA to solve the JRP with resource

restriction. The following transportation restriction can

be considered.

Xm
i¼1

DikiTbi � B

Table 1. Data for the 10-item problem.

Item 1 2 3 4 5 6 7 8 9 10

si1 5.0 19.4 9.5 8.5 2.2 8.2 10.6 4.0 20.0 16.0
si2 5.0 19.2 9.0 9.2 2.0 8.0 10.4 4.2 24.0 15.0

si3 5.2 19.4 8.4 9.2 2.4 7.8 11.2 4.2 24.0 18.0
hi 0.50 1.94 0.95 0.85 0.22 0.82 1.06 0.40 2.00 1.60
Di 600 900 2400 12000 18000 3000 2500 180 50 146

Table 2. Data for the discount schedules of each supplier (� No price breaks available).

j qijy C1j C2j C3j C4j C5j C6j C7j C8j C9j C10j

1 Qi1 < 150 2.50 9.70 4.75 4.25� 1.10 4.10 5.30 2.00� 10.00� 8.00
150 � Qi1 < 300 2.20 9.60 4.40 – 1.05 3.90 5.10 – – 7.00

Qi1 � 300 2.10 9.40 4.10 – 0.95 3.70 4.80 – – 6.00
2 Qi2 < 200 2.50 9.60� 4.50 4.60 1.00� 4.00 5.20� 2.10 12.00 7.50�

200 � Qi2 < 400 2.20 – 4.20 4.25 – 3.80 – 2.05 8.00 –
Qi2 � 400 1.90 – 4.00 4.10 – 3.50 – 1.95 6.00 –

3 Qi3 < 300 2.60 9.70 4.20� 4.60 1.20 3.90 5.60 2.10 12.00 9.00

300 � Qi3 < 500 2.30 9.50 – 4.30 1.10 3.80 5.00 1.95 9.00 6.00
Qi3 � 500 2.00 9.30 – 4.00 0.90 3.40 4.60 1.90 5.00 5.00

Table 3. Comparison between the performances for various upper bounds on ki.

Base kUB
i ’s ki’s Supplier selection T TC %

Khouja et al.’s 11, 6, 5, 2, 3, 4, 4, 20, 26, 16 10, 5, 3, 1, 1, 3, 3, 5, 10, 16 2, 1, 2, 3, 3, 3, 3, 1, 1, 1 0.0667 $109341 0.08
Equation (3) 6, 5, 3, 1, 1, 3, 3, 11, 22, 12 6, 4, 2, 1, 1, 2, 3, 4, 8, 4 1, 1, 1, 2, 3, 3, 3, 1, 1, 2 0.0833 $109502 0.23

Equation (4) 27, 18, 7, 2, 1, 6, 7, 88, 315, 108 12, 6, 3, 1, 1, 3, 4, 6, 11, 37 2, 1, 2, 3, 3, 3, 3, 1, 1, 1 0.0556 $109251 –
Equation (5) 38, 25, 10, 2, 2, 8, 9, 124, 445, 153 16, 8, 4, 1, 1, 4, 5, 8, 15, 50 2, 1, 2, 3, 3, 3, 3, 1, 1, 1 0.0417 $109270 0.02

634 I. K. Moon et al.
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where bi is the unit weight of item i and B is the
maximum weight capacity of a full-truck load.
In this case, we modify Proposition 1 and propose

Proposition 2 to determine an optimal T that satisfies
the resource restriction

Proposition 2: For a given set of Xij’s and ki’s, if
T1�T0, the optimal basic cycle time T is T1. If T14T0,
then the optimal basic cycle time T is
T � ¼ argminTy

fTCðTyÞg, where Ty includes T0 and all
Tijy, thus satisfying the following condition:

BPm
i¼1Dikibi

¼ T1 � Tijy ¼
qijy
Diki

4T0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Sþ

Pm
i¼1

Pn
j¼1 ðsijXij=kiÞ

� 
Pm

i¼1Dikihi

vuut

T1 denotes the largest T satisfying the resource restriction.

Proof: Unlike Proposition 1, it is evident that we need
not consider T that is larger than T1. Similar to
Proposition 1, TC1(T) is a convex function andPm

i¼1 Ci Tð ÞDi is a decreasing step function. If T0 is a
value that minimises TC1, TC(T1) is always less than
TC(T) for T<T1<T0. This is because
TC1(T)4TC1(T1) and

Pm
i¼1 Ci Tð ÞDi >

Pm
i¼1 Ci T1ð ÞDi.

For T0<T<T1, TC1(T) also increases with the
increase in T. However, TC(T0) is not always less than
TC(T) because

Pm
i¼1 Ci Tð ÞDi decreases at the price break

points of T(Tijy). Therefore, the optimal basic cycle time

T that minimises TC is T0 or one of the price break
points Tijy that is larger than T0 and smaller than or
equal to T1 (figure 4). œ

After adding the resource restriction to the previous
example (we assume that all bi¼ 1), we can obtain the
following results from our GA.

Table 6 shows that the optimal purchasing strategy is
extremely sensitive to the resource restriction.
The supplier selection, the replenishment schedule and
the total relevant cost change with the change in the
available resources.

6. Concluding remarks

In this article, we considered a JRP involving multiple
suppliers that offer quantity discounts. We developed a

Table 5. Sensitivity analysis of the GA solution for the major ordering cost.

S Supplier selection Replenishment schedule T TC

10 2, 1, 2, 3, 3, 3, 3, 1, 1, 1 12, 6, 3, 1, 1, 3, 4, 6, 11, 37 0.0556 $109 251
50 2, 1, 2, 3, 3, 3, 3, 1, 1, 1 12, 6, 3, 1, 1, 3, 4, 6, 11, 37 0.0556 $109 971

100 2, 1, 2, 3, 3, 3, 3, 1, 1, 1 7, 4, 2, 1, 1, 2, 2, 3, 6, 21 0.1000 $110 389
150 2, 1, 2, 3, 3, 3, 3, 1, 1, 1 4, 2, 1, 1, 1, 1, 2, 2, 4, 13 0.1667 $110 761
200 2, 1, 2, 3, 3, 3, 3, 1, 1, 1 4, 2, 1, 1, 1, 1, 2, 2, 4, 13 0.1667 $111 061

300 2, 1, 2, 3, 3, 3, 3, 1, 1, 1 4, 2, 1, 1, 1, 1, 1, 2, 3, 11 0.2000 $111 565
500 2, 1, 2, 3, 3, 3, 3, 1, 1, 1 3, 2, 1, 1, 1, 1, 1, 2, 3, 9 0.2283 $112 547
1000 2, 1, 2, 3, 3, 3, 3, 1, 1, 1 2, 1, 1, 1, 1, 1, 1, 1, 2, 6 0.3425 $114 363

Table 4. Representation and decoding solutions based on Equation (4).

Item 1 2 3 4 5 6 7 8 9 10

GA best 0.6376 0.3250 0.6159 0.6677 0.8372 0.9034 0.9894 0.3191 0.0549 0.1157
Chromosome 0.4334 0.2920 0.3758 0.2873 0.2047 0.4789 0.5461 0.0656 0.0338 0.3344
Decoding solution j 2 1 2 3 3 3 3 1 1 1

ki 12 6 3 1 1 3 4 6 11 37
Optimal T 0.0556
TC $109,251

T0 T0 T252Tijy T412

Convex function Decreasing step function

Case1

T1

Case2

T1

Figure 4. Graphs of TC1(T) and
Pm

i¼1 CiðTÞDi.
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hybrid GA by using the optimality structure of the
problem. The GA enables a feasible solution to complex
problems, and allows them to be easily represented.
In addition, the problem with resource restrictions can
be extended using the GA. We hope that this article
offers a practical approach to the daily problems faced
by purchasing managers who frequently have to procure
items from multiple suppliers offering quantity dis-
counts. Furthermore, once the optimal algorithm and or
heuristics procedures are developed through further
research, our hybrid GA will become a valuable
benchmarking algorithm.
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