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The joint replenishment problem
with quantity discounts under constant demand�
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Abstract. In many practical situations quantity discounts on basic purchase price
exist, and taking advantage of these can result in substantial savings. Quantity dis-
counts have been considered in many production and inventory models. But unlike
other research areas, there have been no studies to quantity discounts in the joint
replenishment problem. The purpose of this paper is to develop efficient algorithms
for solving this problem. Firstly, we suggest useful propositions to develop efficient
heuristic algorithms. Secondly, we develop two algorithms using these propositions.
Numerical examples are shown to illustrate the procedures of these algorithms. Ex-
tensive computational experiments are performed to analyze the effectiveness of
the heuristics.
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1 Introduction

For the inventory system with multiple items, cost savings can be obtained when the
replenishment of several items are coordinated. The joint replenishment problem
(JRP) is the multi-item inventory problem of coordinating the replenishment of a
group of items that may be jointly ordered from a single supplier. In this situation,
the ordering cost has two components – a major common ordering cost S incurred
whenever an order is placed and a minor ordering cost si incurred if item i is incurred
in the order. In the deterministic joint replenishment problem, it is assumed that the
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major ordering cost is charged at a basic cycle time T and that the ordering cycle
of each item is some integer multiple of this basic cycle.

Over the last few decades, the joint replenishment problem has received much
attention. Arkin et al. [1] proved that the JRP is an NP-hard problem, i.e., the JRP is
not solvable by polynomial-time algorithms. Goyal and Satir [10] reviewed various
modeling and experimentation under deterministic and stochastic demand condi-
tions. Goyal [7] proposed an enumeration approach, and he claimed that it always
secures a global optimal solution. However, Van Eijs [24] has pointed out that the
lower bound on an optimal cycle time used by Goyal [7] does not guarantee a global
optimal solution and derived another algorithm that improves Goyal’s algorithm [7].
Unlike these enumeration approaches, Silver [20, 21] discussed the advantages and
disadvantages of coordinating replenishments and presented a simple non-iterative
procedure to solve it. Kaspi and Rosenblatt [16] proposed an approach based on
trying several values of the basic cycle time between a minimum and a maximum
value. Then they applied the heuristic of Kaspi and Rosenblatt [15] for each value
of the basic cycle time, which is a modified version of the algorithm of Silver [20].
They showed that their procedure (RAND) outperforms all the available heuris-
tics. Later, Goyal and Deshmukh [9] proposed an improved lower bound used by
Kaspi and Rosenblatt [16]. Wildeman et al. [25] presented a new optimal solution
approach based on Lipschitz optimization to obtain a solution with an arbitrarily
small deviation from the optimal value. Khouja et al. [17] developed a genetic
algorithm and compared it with RAND. In spite of its inferiority to RAND, they
discussed the advantages of the genetic algorithm in terms of the ability of han-
dling constrained problems. Li [18] considered the multi-buyer joint replenishment
problem and proposed a new efficient RAND method.

The general JRP models assume that the unit cost is constant, no matter what
quantity is purchased. But in reality, suppliers may induce their customers to place
larger orders by offering them quantity discounts. If the quantity purchased is
greater than a specified “price break” quantity, the cost per unit is reduced. Two
types of price break schedule can be considered (all-units and incremental discount
schedule). The all-units discount applies the discounted price to all units beginning
with the first unit, if the quantity purchased exceeds the price break quantity. The
incremental discount schedule applies the discounted price only to those units over
the price break quantity. It is common practice to include this discount policy in
the published price schedule.

These quantity discounts have been considered in many production and in-
ventory models (Silver et al. [22]). Pirkul and Aras [19] considered the problem
of multiple item EOQs with all-units discounts offered separately for each item.
Güder et al. [13] studied the incremental quantity discounts case for the problem
of Pirkul and Aras [19]. The study of Güder et al. [13] is based on the independent
cycle approach. Güder and Zydiak [11, 12] presented a non-stationary method and
fixed cycle approach modifying above independent cycle approach. Hariri et al. [14]
presented a geometric programming approach instead of the traditional Lagrangian
method to handle a resource constraint for the all-units quantity discounts sched-
ule. Benton [2] presented an efficient heuristic algorithm for evaluating alternative
discount schedules under conditions of multi-item, multi-supplier considering the
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resource limitations. However, the coordination of the replenishments is not con-
sidered in these studies. Benton and Park [3] classified the literature on lot sizing
determination under several types of discount schemes and discussed some of the
significant literature in this area.

For the joint replenishment problem, Chakravarty [4] proposed the grouping
procedure. He considered the group discounts available on the total purchase value
of a group replenishment. However, as mentioned in Silver et al. [22], sometimes
discounts are offered not for the total volume of a replenishment made up of several
different items but for each individual item included in the replenishment. Chung
et al. [5] presented a mathematical programming for both all-units and incremental
quantity discounts schedules and developed an effective heuristic algorithm for
the incremental quantity discounts schedule under a dynamic demand condition.
Xu et al. [26] developed an algorithm based on a dynamic programming for the
all-units quantity discounts schedule under a dynamic demand condition. Van der
Duyn Schouten et al. [23] proposed a heuristic method to incorporate a quantity
discounts schedule in the framework of can-order strategies under a stochastic
demand condition.

However, there has been no research on dealing with the quantity discounts of
each item for the joint replenishment problem under constant demand. The purpose
of this paper is to develop an efficient algorithm for solving the JRP considering the
quantity discounts of each item. We consider the all-units discount schedule. The
following section introduces this problem and suggests propositions to be utilized
in developing solution procedures. The simple heuristic algorithm for solving this
problem has been developed in Section 3 and we illustrate the procedure of the
algorithm using a numerical example. In Section 4, we show how the modified
RAND algorithm can be used to handle the JRP with quantity discounts. Compu-
tational experiments are performed to analyze the effectiveness of the heuristics in
Section 5. Finally, we summarize the present work.

2 The joint replenishment problem with quantity discounts

Similar to the general joint replenishment problem under a deterministic demand
condition, the following assumptions are made:

1. The demand rate for each item is constant and deterministic.
2. The replenishment lead time is of known duration.
3. Shortages are not allowed.
4. The entire order quantity is delivered at the same time.
5. The price of each item is dependent on the magnitude of the replenishment of

each item. All-units discount schedule is considered in this paper.
6. The inventory holding cost for each item is known and constant, independent of

the price of each item.

Moreover, to discuss the joint replenishment problem with quantity discounts,
we introduce the following notation:

i: index of item, i = 1, 2, · · ·.., n
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Fig. 1. Behavior of inventory over time

y: index of price break
Di: demand rate of item i
S: major ordering cost
si: minor ordering cost of item i
hi: inventory holding cost of item i, per unit per unit time
piy: price of item i in the y th price break
qiy: quantity of item i triggering the y th price break
T : basic cycle time (decision variable)
ki: integer number that decides the replenishment quantity of item i (decision

variable)

A joint replenishment is made every T time intervals. However, all items may
not be included in each replenishment. Item i is only included every kiT time
intervals. This means that the replenishment of each item is made at every integer
multiple (ki) of the group replenishment time interval (T ) as shown in Figure 1.
This also indicates that kiT is the cycle time of item i.

According to the above assumptions and definitions, the total relevant cost per
unit time to be minimized is as follows:

TC(T, k1, k2, · · · , kn) =
S +

∑n
i=1

si

ki

t
+

n∑
i=1

DikiThi

2
+

n∑
i=1

Ci(t, ki)Di

where Ci is the unit cost function of item i. This is a step function of T and ki. For
the all-units quantity discount, the unit cost Ci is represented as follows:

Ci(T, ki) = piy, for qiy ≤ DikiT < qi(y+1)

where DikiT is the order quantity Qi of item i.
To find T and ki s that minimize the total relevant cost per unit time, we propose

the following two propositions.

Proposition 1. For a given set of ki’s, the optimal basic cycle time T is T ∗ =
argminTy

{TC(Ty)}, where Ty includes T 0 and all Tiy satisfying the following
condition:

Tiy =
qiy

Diki
> T 0 =

√√√√2

(
S +

n∑
i=1

si

ki

)/ n∑
i=1

Dikihi

T 0 means the optimal T obtained from the first order derivative of the total cost
function of the JRP ignoring quantity discounts.
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Fig. 2. Graphs of TC1(T ) and
∑n

i=1 Ci(T )Di

Proof. For a given set of ki’s, the total cost function of this problem is as follows.

TC(T ) =
S +

∑n
i=1

si

ki

T
+

n∑
i=1

DikiThi

2
+

n∑
i=1

Ci(T )Di

= TC1(T ) +
n∑

i=1

Ci(T )Di

where it is obvious that TC1(T ) is a convex function and
∑n

i=1 Ci(T )Di is a
decreasing step function. If T 0 is the value that minimizes TC1(T ), TC(T 0)
is always less than TC(T ) for T < T 0 because TC1(T ) > TC1(T 0) and∑n

i=1 Ci(T )Di >
∑n

i=1 Ci(T 0)Di. For T > T 0, TC1(T ) also increases as T in-
creases. However, TC(T 0) is not always less than TC(T ) because

∑n
i=1 Ci(T )Di

decreases at the price break points of T . Therefore, the optimal basic cycle time T
minimizing TC is T 0 or one of the price break points Tiy that is larger than T 0

(See Fig. 2).

Proposition 2. For a given T , the optimal integer value of ki is k∗
i =

argminkiy
{TC(kiy)}, where kiy includes k0

i and all kiy satisfying the following
condition:

kiy =
⌈

qiy

DiT

⌉
> k0

i

where k0
i means the optimal value of ki for the JRP ignoring quantity discounts. It

is well known that the value can be obtained from the following optimal conditions
(Goyal [6]).

k0
i

(
k0

i − 1
) ≤ 2si

DihiT 2 ≤ k0
i

(
k0

i + 1
)

Proof. For a given T , the total cost function of this problem is as follows.

TC(k1, k2, · · · , kn) =
S +

∑n
i=1

si

ki

T
+

n∑
i=1

DikiThi

2
+

n∑
i=1

Ci(ki)Di

=
S

T
+

n∑
i=1

[TC2(ki) + Ci(ki)Di]

where TC2(ki) = si

Tki
+ DikiThi

2 .
If we assume that the value of ki is a real number, we know that TC2(ki)

is a convex function in ki and Ci(ki)Di is a decreasing step function. More-
over, ki is independent of kj (j /= i). Though ki is an integer, it is obvious that
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TC(k0
i ) is always less than TC(ki) for ki < k0

i because TC2(ki) > TC2(k0
i )

and Ci(ki)Di > Ci(k0
i )Di. For ki > k0

i , TC2(ki) also increases as ki increases.
However, TC(k0

i ) is not always less than TC(ki) because Ci(ki)Di decreases at
the price break points of ki. Therefore, the optimal value of ki minimizing TC is
k0

i or one of the price break points (kiy) that is larger than k0
i .

Remark 1. By Proposition 2, it is obvious that TC(k0
i ) − TC(kiy) > 0 if the

optimal value of ki exists at the price break point satisfying kiy > k0
i . Therefore,

we can easily find the optimal value of ki by checking the following values at all
the price break points satisfying kiy > k0

i .

TC
(
k0

i

)− TC (kiy) =
si

T

(
1
k0

i

− 1
kiy

)

+
DiThi

2
(
k0

i − kiy

)
+ Di

[
Ci(k0

i ) − Ci(kiy)
]

3 The simple heuristic algorithm (SH)

Using the two propositions and Remark 1 in the previous section, we now develop a
simple recursive algorithm to solve the JRP with quantity discounts. The procedure
of this heuristic algorithm is as follows.

The simple heuristic algorithm (SH)

(Step 1) Set the iteration number r = 0.
Put T (r) = 0 and (k1(r), k2(r), · · · , kn(r)) = 1 and go to Step 2.

(Step 2) Set r = r + 1.
For a given set of ki(r)s, find the optimal value of T using Proposition 1.
Set T (r) = T . If T (r) = T (r − 1), stop. Otherwise, go to Step 3.

(Step 3) For a given value of T (r), find optimal values of ki for each item i using
Proposition 2 and Remark 1.
Set ki(r) = ki for each item i and go to Step 2.

To illustrate the SH, we solve a numerical example. We transform the example
problem of Goyal [8] to consider quantity discounts. The data for this example are
given in Table 1. We also assume S = $200 and all hi = $1.

Solution of the example

In Step 1, r = 0, T (0) = 0, (k1(0), k2(0), · · · , k6(0)) = (1, 1, 1, 1, 1, 1) and we go
to Step 2. In Step 2, for a given set of (k1(0), k2(0), · · · , k6(0)) = (1, 1, 1, 1, 1, 1),
T 0(1) = 0.2188 and TC(T 0) = $125,932. TCs for all price break points that are
larger than T 0(1) are as follows.

By Proposition 1, T (1) = 0.2188 and we go to Step 3. In Step 3, for a given
T (1) = 0.2188, (k0

1(1), k0
2(1), · · · , k0

6(1)) = (1, 1, 1, 1, 2, 3). TCs for all price
break points that are larger than (k0

1(1), k0
2(1), · · · , k0

6(1)) are shown in Table 3.
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Table 1. Data for the example

Item i Di si Price break Price

1 10,000 45 Q1 < 500 6.25
500 ≤ Q1 < 1, 000 6.20

1, 000 ≤ Q1 < 2, 000 6.15
Q1 ≥ 2, 000 6.10

2 5,000 46 Q2 < 500 6.25
500 ≤ Q2 < 1, 000 6.20

1, 000 ≤ Q2 < 2, 000 6.15
Q2 ≥ 2, 000 6.10

3 3,000 47 Q3 < 500 6.25
500 ≤ Q3 < 1, 000 6.20

Q3 ≥ 1, 000 6.15

4 1,000 44 Q4 < 500 6.25
Q4 ≥ 500 6.20

5 600 45 Q5 < 300 6.25
Q5 ≥ 300 6.20

6 200 47 Q6 < 150 6.25
Q6 ≥ 150 6.20

Table 2. Calculations using Proposition 1

Item i Di ki(0) qiy Price qiy/Diki(0) TC

2 5,000 1 2,000 6.10 0.4000 $126,345

3 3,000 1 1,000 6.15 0.3333 $126,172

4 1,000 1 500 6.20 0.5000 $127,018

5 600 1 300 6.20 0.5000 $127,018

6 200 1 150 6.20 0.7500 $129,167

By Proposition 2 and Remark 1, (k1(1), k2(1), · · · , k6(1)) = (1, 1, 1, 1, 2, 4).
Thus, we go to Step 2. In Step 2, for a given set of (k1(1), k2(1), · · · , k6(1)) =
(1, 1, 1, 1, 2, 4), T 0(2) = 0.1991 and TC(T 0) = $126,521. TCs for all price break
points that are larger than T 0(2) are shown in Table 4.

By Proposition 1, T (2) = 0.2000 and we go to Step 3 as T (2) /= T (1). In
Step 3, for a given T (2) = 0.2000, (k0

1(2), k0
2(2), · · · , k0

6(2)) = (1, 1, 1, 2, 2, 3).
TCs for all price break points that are larger than (k0

1(2), k0
2(2), · · · , k0

6(2)) are
shown in Table 5.

By Proposition 2 and Remark 1, (k1(2), k2(2), · · · , k6(2)) = (1, 1, 1, 2, 3, 4),
and we go to Step 2. In Step 2, for a given set of (k1(2), k2(2), · · · , k6(2)) =
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Table 3. Calculations using Proposition 2 and Remark 1

Item i Di qiy Price kiy = �qiy/DiT (1)� TC(k0
i ) − TC (kiy)

2 5,000 2,000 6.10 2 −191.88

3 3,000 1,000 6.15 2 −70.80

4 1,000 500 6.20 3 −34.74

5 600 300 6.20 3 −1.36

6 200 150 6.20 4 6.02

Table 4. Calculations using Proposition 1

Item i Di ki(1) qiy Price qiy/Diki(1) TC

1 10,000 1 2,000 6.10 0.2000 $125,771

2 5,000 1 1,000 6.15 0.2000 $125,771
2,000 6.10 0.4000 $126,401

3 3,000 1 1,000 6.15 0.3333 $126,159

4 1,000 1 500 6.20 0.5000 $127,193

5 600 2 300 6.20 0.2500 $125,850

Table 5. Calculations using Proposition 2 and Remark 1

Item i Di qiy Price kiy = �qiy/DiT (2)� TC(k0
i ) − TC (kiy)

2 5,000 2,000 6.10 2 −135.00

3 3,000 1,000 6.15 2 −32.50

4 1,000 500 6.20 3 −13.33

5 600 300 6.20 3 7.50

6 200 150 6.20 4 9.58

(1, 1, 1, 2, 3, 4), T 0(3) = 0.1850 and TC(T 0) = $126,501. TCs for all price
break points that are larger than T 0(3) are shown in Table 6.

By Proposition 1, T (3) = 0.2000 and we stop iterations since T (3) = T (2).
Table 7 shows the optimal policies of the general JRP and the JRP with quantity
discounts for this example.
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Table 6. Calculations using Proposition 1

Item i Di ki(2) qiy Price qiy/Diki(2) TC

1 10,000 1 2,000 6.10 0.2000 $125,754

2 5,000 1 1,000 6.15 0.2000 $125,754
2,000 6.10 0.4000 $126,597

3 3,000 1 1,000 6.15 0.3333 $126,287

4 1,000 2 500 6.20 0.2500 $125,882

6 200 4 150 6.20 0.1875 $126,491

Table 7. Comparison between the general JRP and the JRP with quantity discounts

T kis

general JRP 0.1893 1,1,1,2,2,3
JRP with quantity discounts 0.2000 1,1,1,2,3,4

4 The quantity discount RAND algorithm

In the JRPs, the iterative algorithms such as the SH generally converge to local op-
timal solutions and a global optimum is not guaranteed. To overcome this problem,
Kaspi and Rosenblatt [16] developed the RAND algorithm. They found several lo-
cal optimal solutions from the iterative algorithm using many different first values
of T and obtained the best solution among all the local optimal solutions. They have
shown that the first value of T greatly influences to find the optimal solution by the
simulation study. Using this idea, we modify RAND and develop a new algorithm
for solving the JRP with quantity discounts. The modified RAND algorithm, we
call QD-RAND from now on, is as follows.

The quantity discount RAND algorithm (QD-RAND)

(Step 1) Compute

Tmax = max



√√√√2

(
S +

n∑
i=1

si

)/ n∑
i=1

Dihi,
max{qiy}

Di


 and

Tmin = min
(√

2si

Dihi

)

for all values of item i, where max{qiy} means the largest price break
point of item i.

(Step 2) Divide the range [Tmin, Tmax] into m different equally spaced values of
T (T1, · · ·, Tj , · · ·, Tm). The value of m is to be decided by the decision
maker.
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Table 8. Iterations by QD-RAND

Tj Iteration r ki in Step 4 T in Step 5 TCj

T1 = 0.0949 1 3,3,2,3,6,8 0.0976
2 3,3,2,3,6,8 0.0976 $127,337

T2 = 0.2587 1 1,1,1,2,2,3 0.2000
2 1,1,1,2,3,4 0.2000 $125,754

T3 = 0.4224 1 1,1,1,1,1,2 0.2122
2 1,1,1,1,3,4 0.2000
3 1,1,1,2,3,4 0.2000 $125,754

T4 = 0.5862 1 1,1,1,1,1,1 0.2188
2 1,1,1,1,2,4 0.2000
3 1,1,1,2,3,4 0.2000 $125,754

T5 = 0.7500 1 1,1,1,1,1,1 0.2188
2 1,1,1,1,2,4 0.2000
3 1,1,1,2,3,4 0.2000 $125,754

Table 9. The discount schedules

Price break Price

Qi < 500 pi1

500 ≤ Qi < 1, 000 0.99pi1

1, 000 ≤ Qi < 2, 000 0.98pi1

Qi ≥ 2, 000 0.97pi1

Set j = 0.
(Step 3) Set j = j + 1 and r = 0.
(Step 4) Set r = r + 1.

For a given value of Tj(r), find optimal values of ki(r) for each item i
using Proposition 2 and Remark 1.

(Step 5) For a given set of ki(r)s, find the optimal value of T using Proposition 1.
(Step 6) Set Tj(r) = T . If Tj(r) /= Tj(r − 1), go to Step 4.

Otherwise, Set T ∗
j = Tj(r), k∗

ij = k∗
i (r) for each item i and compute

TCj for this (T ∗
j , k∗

ijs).
If j = m, stop and select (T ∗

j , k∗
ijs) with the minimum TC.

Otherwise, go to Step 3.

To illustrate QD-RAND, we use the previous numerical example. We use m=5.
It turns out that QD-RAND gives the same solution as the simple heuristic

algorithm. Table 8 also shows that the algorithm converges to the different local
optimum for different initial values of T . For T4 and T5, we can see that the iterations
of QD-RAND are completely the same as that of SH.
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5 Computational experiments

In this section we compare the performances of the two algorithms for a number of
randomly generated JRPs with quantity discounts. The initial price (pi1), demand
rate, minor ordering cost and holding cost are generated from uniform distribution
on the ranges [5, 25] , [500, 5000], [10, 50] and [0.1pi1, 0.2pi1], respectively. The
discount schedules are defined in Table 9.

Four different values of n (10, 20, 30 and 50) and four different values of S (25,
50, 75 and 100) are considered. For each combination of n and S, 100 problems are
generated and solved using both SH and QD-RAND for a total of 1600 problems. To
compare the effectiveness of the QR-RAND for different values of m, four different
values of (m = 0.5n, n, 2n, and 4n) are used. A summary of computational results
is shown in Table 10.

As shown in Table 10, we can confirm that the performance of QR-RAND is im-
proved as the value of m is increased. This result is consistent with the experiments
of Kaspi and Rosenblatt [16]. For the larger values of n (n = 30 and 50), the value
of m is sufficient to consider only 0.5n(m = 15 and 25) as the maximum error
found is only 0.086%. For the smaller values of n (n = 10 and 20), 4n(m = 40
and 80) or larger values of m can be considered since the computational time is
very small.

6 Concluding remarks

We presented two efficient algorithms for solving the joint replenishment problem
with quantity discounts. From extensive computational experiments, we show that
the performance of QR-RAND is improved as the value of m is increased. These
algorithms can be easily adopted by purchasing managers who are responsible for
the coordination of the replenishment. There are three possible extensions which
might be interesting research problems. Firstly, an incremental discount scheme
can be applied to this problem. Secondly, the model can be extended to multiple
suppliers case in which different suppliers offer different discount prices. Thirdly,
a model in which the inventory holding cost depends on the product value can be
developed.
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