The Jordan Structure of Two Dimensional Loop Models

Alexi Morin-Duchesne (alexi.morin-duchesne@umontreal.ca) and Yvan Saint-Aubin (saint@dms.umontreal.ca)

Introduction

We show how to use the link representation of the transfer matrix D_{N} of loop models on the lattice to calculate partition functions, at criticality, of the Q-Potts spin models. To probe the Jordan structure of the Hamiltonian, we study $C_{2 N}$, the top Fourier coefficient of D_{N}. The eigenvalues and eigenvectors of $C_{2 N}$ are determined. Studying singularities of the eigenvectors, we show that $C_{2 N}$ and D_{N} have non trivial Jordan blocks for particular values of the spectral parameter, λ.

Q-Potts spin model

In the Potts spin model, spins on a lattice take Q different values and interact solely with nearest neighbors. The energy of a spin configuration is $E_{\sigma}=-J \sum_{\langle i, j\rangle} \delta_{\sigma_{i}, \sigma_{j}}$ where J is the interaction constant and $\langle i, j\rangle$ denotes all pairs of neighboring spins i and j. Spins on left and right boundaries are free.

Ising configuration, $N=3, M=3$
The model exhibits second order phase transition at a finite temperature, $k T_{c}=J(\log (1+\sqrt{Q}))^{-1}$. For $Q=2$ (Ising model), the partition function and two point function have been calculated ex actly, for various choices of boundary conditions Monte-Carlo simulations give the following:

$T<T c$

$T=T c$

$T>T c$

These models are conformally invariant and, in the continuum limit, described by rational conformal field theories (CFT)!

Temperley-Lieb algebra and link representation

Let N be a positive integer and draw a rectangle with $2 N$ marked points on it, N on its upper side, N on the bottom. A connectivity is a pairwise pairing of all points by non-crossing curves drawn within the rectangular box. The Temperley-Lieb algebra $T L_{N}(\beta)$ is the set of linear combination of connectivities endowed with the following β-product:

A multiplicative factor of β is added for every closed loop.

A link state is a set of non-crossing curves drawn above a horizontal segment pairing N points among themselves or to infinity (point connected to infinity are called defects). B_{N} is the set of all link states:

$$
\mathrm{B}_{4}=\{\Omega \Omega, \curvearrowleft \prec\} \bigcup\{\downarrow \downarrow \Omega, \downarrow \Omega \downarrow, \Omega \downarrow!\} \bigcup\{\downarrow!\downarrow!\} .
$$

The definition of the action of connectivities on link states is analogous to the β-product (every closed loop gives a power of β). This gives the ρ representation of $T L_{N}$:

Double-row transfer matrix

We're interested in only one element of $T L_{N}$, the double-row transfer matrix:

where each box stands for the sum

$u \in[0, \lambda]$ is the anisotropy and $\lambda \in[0, \pi / 2]$, the spectral parameter, related to β by $\beta=2 \cos \lambda$. Again, $\mathrm{a} \beta$ is added for every closed loop.
D_{N} is the Hamiltonian of our loop model! It satisfies the Yang-Baxter equation, $\left[D_{N}(\lambda, u), D_{N}(\lambda, v)\right]=0 \forall u, v$, a key element for integrability.

$$
=a_{1}(\lambda, u)\left[\prod_{\square}\right]+a_{2}(\lambda, u)\left[\begin{array}{l}
\left.\begin{array}{l}
\square \\
\curvearrowleft
\end{array}\right]
\end{array}\right.
$$

and the ρ-representation of D_{2} is:
$\left.B_{2}=\{\rho,!\rfloor\right\} \rightarrow \rho\left(D_{2}\right)=\left(\begin{array}{cc}\beta a_{2}+a_{1} & a_{2} \\ 0 & a_{1}\end{array}\right)$

Spins and loops

Partition functions of the Q-Potts model at T_{c} can be calculated using $\rho\left(D_{N}\right)$ with $\beta=\sqrt{Q}$. For instance, with cylindrical boundary conditions: Let $W: B_{N} \rightarrow B_{N}$ be the linear transformation that acts as a multiple of the identity on elements of B_{N} with d defects, with $\left.W\right|_{d}=\frac{\sin \lambda(d+1)}{\sin \lambda}$ id. Then

$$
Z_{N, M}=\operatorname{tr}\left(\rho\left(D_{N}\right)^{M} W\right), \quad \text { for all } M
$$

	d	0	2	4	6	8	\cdots
Ising	$\left.W\right\|_{d}$	1	1	-1	-1	1	\cdots
3-Potts	$\left.W\right\|_{d}$	1	2	1	-1	-2	\cdots

Jordan blocks

Since $\rho\left(D_{N}\right)$ is not hermitian, it may not be diagonalizable. This happens, for instance, when $N=2$ and $\beta=0(\lambda=\pi / 2)$. For example, a simple matrix:

$$
m(x)=\left(\begin{array}{ll}
x & 1 \\
0 & 0
\end{array}\right)
$$

Its eigenvectors, when $x \neq 0$, are

$$
v_{0}=\binom{1}{0} \quad \text { and } \quad v_{x}=\binom{-1 / x}{1}
$$

When $x=0$, the matrix can't be diagonalized: it a has Jordan block. Jordan blocks can be studied by looking at singularities in the eigenvectors! Since eigenvectors of $\rho\left(D_{N}\right)$ are generally unknown, to probe its Jordan structure, we expand

$$
D_{N}(\lambda, u)=\sum_{i=0}^{N} C_{2 i}(\lambda) \cos (2 i v)
$$

and find the eigenvectors of $C_{2 N}$, the top Fourier coefficient. Their singularities give the values of λ where Jordan blocks appear, and an understanding of the pattern of Jordan blocks $\rho\left(D_{N}\right)$!

Conclusion

The Jordan blocks of $\rho\left(D_{N}\right)$ result in two points functions behaving logarithmically, a strong indicator that the theory is described, in the continuum, by logarithmic conformal field theories (LCFT's)

Funding and references

This work was supported by the Canadian Natural Sciences and Engineering Research Council (NSERC).
[1] A. Morin-Duchesne, Y Saint-Aubin. The Jordan Struc ture of Two Dimensional Loop Models. arXiv:mathph/1101.2885v3

