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Introduction
We show how to use the link representation of the
transfer matrix DN of loop models on the lattice
to calculate partition functions, at criticality, of
the Q-Potts spin models. To probe the Jordan
structure of the Hamiltonian, we study C2N , the
top Fourier coefficient of DN . The eigenvalues
and eigenvectors of C2N are determined. Studying
singularities of the eigenvectors, we show that
C2N and DN have non trivial Jordan blocks for
particular values of the spectral parameter, λ.

Q-Potts spin model
In the Potts spin model, spins on a lattice take Q
different values and interact solely with nearest
neighbors. The energy of a spin configuration is
Eσ = −J

∑
〈i,j〉 δσi,σj where J is the interaction

constant and 〈i, j〉 denotes all pairs of neighboring
spins i and j. Spins on left and right boundaries
are free.

Ising configuration, N = 3, M = 3

The model exhibits second order phase transition
at a finite temperature, kTc = J(log(1 +

√
Q))−1.

For Q = 2 (Ising model), the partition function
and two point function have been calculated ex-
actly, for various choices of boundary conditions.
Monte-Carlo simulations give the following:

T < Tc T = Tc T > Tc

These models are conformally invariant and, in the
continuum limit, described by rational conformal
field theories (CFT)!

Temperley-Lieb algebra and link representation
Let N be a positive integer and draw a rectangle with 2N marked points on it, N on its upper side, N
on the bottom. A connectivity is a pairwise pairing of all points by non-crossing curves drawn within the
rectangular box. The Temperley-Lieb algebra TLN (β) is the set of linear combination of connectivities
endowed with the following β-product:

TL4 = Span

{
, , ,

, , , ...

}
.

The β-product

= β2

A multiplicative factor of β is added for every closed loop.

A link state is a set of non-crossing curves drawn above a horizontal segment pairing N points among
themselves or to infinity (point connected to infinity are called defects). BN is the set of all link states :

B4 =
{

,

}⋃{
, ,

}⋃{ }
.

The definition of the action of connectivities on link states is analogous to the β-product (every closed loop
gives a power of β). This gives the ρ representation of TLN :

= β ρ

( )
=




β 1 1 0 0 0

0 0 0 0 0 0

0 0 0 1 β 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




.

Double-row transfer matrix...
We’re interested in only one element of TLN , the
double-row transfer matrix:

DN(λ, u) =

u u u u

λ − u λ − u λ − u λ − u

where each box stands for the sum

u = sin(λ − u) + sin u .

u ∈ [0, λ] is the anisotropy and λ ∈ [0, π/2], the
spectral parameter, related to β by β = 2 cosλ.
Again, a β is added for every closed loop.
DN is the Hamiltonian of our loop model!
It satisfies the Yang-Baxter equation,
[DN (λ, u), DN (λ, v)] = 0 ∀u, v, a key element
for integrability.

... and an example for N = 2

D2(λ, u) =

sin
2 u sin

2(λ − u)

+

sin u sin
3(λ − u)

+

β sin u sin
3(λ − u)

+

sin
2 u sin

2(λ − u)

+

sin u sin
3(λ − u)

+

β2 sin
2 u sin

2(λ − u)

+

β sin
2 u sin

2(λ − u)

+ 9 other terms

= a1(λ, u) + a2(λ, u)

and the ρ -representation of D2 is:

B2 =
{

,

}
→ ρ

(
D2

)
=

(
βa2 + a1 a2

0 a1

)
.

Spins and loops
Partition functions of the Q-Potts model at Tc can
be calculated using ρ(DN ) with β =

√
Q. For in-

stance, with cylindrical boundary conditions:
Let W : BN → BN be the linear transformation
that acts as a multiple of the identity on elements
ofBN with d defects, withW |d = sinλ(d+1)

sinλ id. Then

ZN,M = tr(ρ(DN )MW ), for all M.

d 0 2 4 6 8 . . .

Ising W |d 1 1 −1 −1 1 . . .
3-Potts W |d 1 2 1 −1 −2 . . .

Jordan blocks
Since ρ(DN ) is not hermitian, it may not be diago-
nalizable. This happens, for instance, when N = 2
and β = 0 (λ = π/2). For example, a simple matrix:

m(x) =
(
x 1
0 0

)
.

Its eigenvectors, when x 6= 0, are

v0 =
(

1
0

)
and vx =

(
−1/x

1

)
.

When x = 0, the matrix can’t be diagonalized: it
a has Jordan block. Jordan blocks can be studied by
looking at singularities in the eigenvectors! Since
eigenvectors of ρ(DN ) are generally unknown, to
probe its Jordan structure, we expand

DN (λ, u) =
N∑

i=0

C2i(λ) cos(2iv),

and find the eigenvectors of C2N , the top Fourier
coefficient. Their singularities give the values of λ
where Jordan blocks appear, and an understanding
of the pattern of Jordan blocks ρ(DN )!

Conclusion
The Jordan blocks of ρ(DN ) result in two points
functions behaving logarithmically, a strong indi-
cator that the theory is described, in the contin-
uum, by logarithmic conformal field theories (LCFT’s)
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