The Journey to Business Process Compliance

Guido Governatori
NICTA, Queensland Research Laboratory
Brisbane, QLD, Australia
guido.governatori@nicta.com.au

Shazia Sadiq
School of Information Technology and Electrical Engineering
The University of Queensland
Brisbane, QLD, Australia
shazia@itee.uq.edu.au

1 October 2008

Abstract

It is a typical scenario that many organisations have their business processes
specified independently of their business obligations (which includes contractual
obligations to business partners, as well as obligations a business has to fulfil against
regulations and industry standards). This is because of the lack of guidelines and
tools that facilitate derivation of processes from contracts but also because of the
traditional mindset of treating contracts separately from business processes. This
chapter will provide a solution to one specific problem that arises from this situation,
namely the lack of mechanisms to check whether business processes are compliant
with business contracts. The chapter begins by defining the space for business pro-
cess compliance and the eco-system for ensuring that process are compliant. The
key point is that compliance is a relationship between two sets of specifications: the
specifications for executing a business process and the specifications regulating a
business. The central part of the chapter focuses on a logic based formalism for
describing both the semantics of normative specifications and the semantics of com-
pliance checking procedures.

1 Introduction

The term compliance is applied in many disciplines such as management, standards
development, regulations, medical practice and so on. It is often used to denote and
demonstrate adherence of one set of rules (we refer to them as ‘source rules’ hereafter)
against other set of rules (we refer to them as ‘target rules’ hereafter). Typically, target
rules represent an established or agreed set of guidelines, norms, laws, regulations, rec-
ommendations or qualities which, if obeyed, will deliver certain effect or value to those

to whom they can apply, or to those with whom they interact. In some way, the target
rules are intended for a global or broad community of participants in a specific universe
of discourse. On the other hand, source rules are developed to apply to participants and
their behaviours in certain local contexts, and adherence of source rules to the target
rules then ensures that both local and global expectations or requirements can be met.

In management for example, target rules represent policies that need to be obeyed by
companies, their staff or executives, while undertaking their normal course of actions to
meet their goals. Examples of such rules are the US regulations such as Sarbanes-Oxley
Act! or Health Insurance Privacy Act (HIPPA)?. In standards development, compliance
requirements are stated to ensure necessary consistency of one set of requirements with
some broader set of requirements, e.g., a compliance of the ODP Enterprise Language
with ODP-RM?. Note that in standards communities, the term conformance has a differ-
ent meaning: it is used to relate an implementation to a standard specification. Finally,
in health sector, compliance is referred to a patient’s (or doctor’s) adherence to a recom-
mended course of treatment.

Similarly, we apply this interpretation of compliance as a metaphor to discuss adher-
ence or consistence of a set of rules in business processes against a set of rules regulat-
ing a particular business. This set of rules can stem from different sources, legislation,
standards, best practices, internal guidelines and policies, contracts between the par-
ties involved in the process and so on. We will refer to the source of these as normative
documents, and to the rules themselves as norms or normative specifications. So, en-
suring compliance of business processes with a normative document means ensuring
consistency of norms stated in normative documents and rules covering the execution
of business processes. In other words, to check that the specification of a business pro-
cess complies with a normative document regulating the domain of the process, one has
to verify that all execution paths of the process, possible according to the specification
of the business process, comply with the normative specification. This means that no
execution path is in breach of the regulation. This consistency, for example, is neces-
sary to satisfy commitments that parties typically state in their agreements or business
contracts while carrying out their mutually related internal business activities. Such
compliance also leads to benefits to both parties, e.g., minimisation of costs or damages
to either party whether these are associated with potentially inadvertent behaviour or
deliberate violations while seeking more opportunistic engagements.

1.1 Compliance Space

Compliance of business processes with normative documents is thus important to ensure
establishing better links between these two traditionally separate universes of discourse,
i.e., legal and business process spaces (see Figure 1).

Firstly, the source of the normative specifications and the business specifications (i.e.,
the design of the process to meet the objectives of a business) will be distinct both from
an ownership and governance perspective, as well as from a timeline perspective. Where
as businesses can be expected to have some form of business objectives, normative spec-

ISarbanes-Oxley Act of 2002, US Public Law 107-204.
2Health Insurance Portability and Accountability Act of 1999. US Public Law 104-191.
3ITU-T Rec X.902, ISO/IEC 10746-2: Foundations, RM-ODP

Legal Space Compliance Space Business Process Space

-

i L]
Domain Experts -
? ") Contract Managers, @K Process Modellers
Regulatory |[#———— kﬂ Auditors ... L /
e/

Ll
o
/Cantractual Hm Translation = \ﬁ», -~ l Process
Document il o .
Compliance Modelling
New or
)

]
¥ l Existing _i-¥ Checking Yoo Exsting
I BP Models
(Formal) Specification a
<prohibitions=: e
<permissions>; T " New Mf
New or -\“'\-\.‘ et

r
m Business Analysts,
\ &, . Business Architects ...

Figure 1: Compliance Space

ifications will be dictated by mostly external sources and often the various norms regu-
lating a business are created at different times and are subject to evolution over time to
accommodate changes in the business and in the society.

Secondly, the two have differing concerns, namely business objectives and normative
objectives. Thus the use of business process languages to model normative specifications
may not provide a conceptually faithful representation. The focus in the legal space is to
describe what processes have to do, what should be avoided in the execution of a process.
Thus the major concern in the legal space is on what a business has to do. Accordingly,
in this space we have a declarative perspective of the objectives of processes, indicating
what needs to be done (in order to comply). The business process space, on the other
hand, has been the focus of management science, such as various business process re-
engineering approaches. This is a domain of business process modellers and business
architects involved in enterprise architecture developments. These professionals have
typically been involved in identifying business requirements and then designing busi-
ness processes to satisfy these requirements. Accordingly, business process specifications
are fundamentally prescriptive in nature, i.e., detailing how business activities should
take place. There is evidence of some developments towards descriptive approaches for
BPM, but these works were predominantly focused on achieving flexibility in business
process execution, see e.g. (Pesic and van der Aalst, 2006; Sadiq et al., 2005).

Thirdly, there is likelihood of conflicts, inconsistencies and redundancies within the
two specifications. Thus the intersection of the two needs to be carefully studied. This
is where the compliance space plays its role. The compliance space however, is a new
area of interest and endeavour, in particular driven by recent regulative and legislative
acts, which require the establishment of stronger and more enforceable compliance re-
quirements against the target set of rules. Some of the largest scandals in corporate
history, such as Enron, have led to an increased importance of compliance and related

initiatives within organisations. Therefore this new space has led to the development of
new roles such as compliance auditors, or requirements for new skills to be developed by
existing roles, such as contract managers, business analysts or business architects, for
the contract/compliance management domain.

1.2 Managing Compliance

Ensuring compliance of business processes with normative documents is a complex prob-
lem involving a number of alternatives. Currently there are two main approaches to-
wards achieving compliance. The first one is retrospective reporting, wherein traditional
audits are conducted for “after-the-fact” detection, often through manual checks by ex-
pensive consultants. With increasing pressures and penalties for non-compliance, this
approach is rather limited.

A second and more recent approach is to provide some level of automation through
automated detection. The bulk of existing software solutions for compliance follow this
approach. The proposed solutions hook into variety of enterprise system components
(e.g. SAP HR, LDAP Directory, Groupware etc.) and generate audit reports against hard-
coded checks performed on the system. These solutions often specialise in certain class
of checks, for example the widely supported checks that relate to Segregation of Duty
violations in role management and user provisioning systems. Such monitoring capabil-
ity assists in checking for compliance against the hard-coded checks and consequently
in the remediation and/or mitigation of control deficiencies. However, this approach still
resides in the space of “after-the-fact” detection.

We believe that a sustainable approach for achieving compliance should fundamen-
tally have a preventative focus. As such, we describe an approach that provides the ca-
pability to capture compliance requirements through a generic requirements modelling
framework, and subsequently facilitate the propagation of these requirements into busi-
ness process models and enterprise applications, thus achieving compliance by design.

The approach we describe in this chapter can be applied to problems common to many
enterprises, i.e., there are many existing processes that were designed in the absence of
any knowledge of specific regulations, opening possibilities for violations. This requires
checking compliance of processes against norms. This can be either against the existing
norms, to fix possible inconsistencies that have not been detected yet, or against new
regulations to detect whether existing business processes can lead to conflicts with new
norms, either in terms of incompatible rules or in terms of unrealistic resource expecta-
tions that new legislation may require (see Figure 1).

1.3 Organisation of the Chapter

In this chapter we describe an approach to business process compliance based on (se-
mantic) annotations, where the annotations are written in the formal language chosen
to represent the normative specifications. The idea is that business processes are anno-
tated and the annotations provide the conditions a process has to comply with. Annota-
tions can be defined at different levels. For example, we can annotate a full process or a
single task in a process. In addition, we can have different types of annotations. Anno-
tations can range from the full set of rules (norms) specific to a process or a single task

to simple semantic annotation corresponding to one effect of a particular task, e.g., after
the successful execution of task A in a process B the value of the environment variable
CisD.

In order to support the above technique based on annotations we first need a formal
representation of normative specifications. We will address this issue in the next section
where we describe a formalism able to capture the notions need for the representation of
normative specifications.

2 Normative Specifications

Compliance is a relationship between two sets of specifications: the normative specifica-
tions that prescribe what a business has to do, and the process modelling specification
describing how a business performs its activities. Accordingly to properly verify that a
process/procedure complies with the norms regulating the particular business one has to
provide conceptually sound representations of the process on one side and the norms on
the other, and then check the alignment of the formal specifications of the process and
the formal specifications for the norms. This means that the normative specifications tell
us what obligations, permissions, prohibitions a process is subject to. A normative doc-
ument often contains many norms regulating a business. Thus a normative document
can be seen as a normative system. Normative systems can be modelled with the help
of Deontic Logic. Deontic Logic is the branch of logic that studies the formal properties
of normative notions (also called normative positions) such as obligations, permissions,
prohibitions. In particular, Deontic Logic can be used to investigate the mutual rela-
tionships among the various normative positions, how complex normative positions (e.g.,
delegation, empowerment, rights and so) can be expressed using simpler one, and the
relationships between the norms in a normative system.

Standard Deontic Logic (SDL) is a starting point for logical investigation of the basic
normative notions and it offers a very idealised and abstract conceptual representation
of these notions but at the same time it suffers from several drawbacks given its high
level of abstraction (Sartor, 2005). Over the years many different deontic logics have
been proposed to capture the different intuitions behind these normative notions and to
overcome drawbacks and limitations of SDL. One of the main limitations in this context
is its inability to reason with violations, and the obligations arising in response to viola-
tions (Carmo and Jones, 2002). Very often normative statements pertinent to business
processes, and in particular contracts, specify conditions about when other conditions in
the document have nor been fulfilled, that is when some (contractual) clauses have been
violated. Hence, any formal representation, to be conceptually faithful, has to been able
to deal with this kind of situations.

In the rest of the section we introduce the basic notions of Deontic Logic and then we
present a particular deontic logic that addresses the issue discussed above and that is
suitable for checking compliance of business processes.

2.1 Formalising Deontic Constraints

Deontic logic extends first order logic with the deontic operators O, P and F' denoting
obligations, permissions and prohibitions. The deontic operators satisfy the following

5

equivalence relations:
OA=-P-A -O-A=PA O-A=FA -PA=FA.

The operators also satisfy the following relationship OA — PA, meaning that if A is
obligatory, then A is permitted. This relationship can be used to ensure checking of
the internal consistency of the obligations in a set of norms it is possible to execute
obligations without doing something that is forbidden. We extend the notation to cover
the subject to whom a normative position applies to. In case of obligation, this can be
denoted using the expression O;A to be read as ‘s has the obligation to do A’, or ‘A is
obligatory for s’. Where A represents a factual statement. Thus, for example, where A
is the proposition ‘payTaxes’, O;A means that “s has the obligation to pay the taxes” or
that ‘paying the taxes is obligatory for s’. Similarly for the other operators.

In case of certain breaches of norms, special norms/policies may be included to ex-
press the respective obligations for the actors involved in a process. These policies can
vary from pecuniary penalties to the termination of a contract and so on. In deontic logic,
this type of expression, namely the activation of certain obligations in case of other obli-
gations being violated, is referred to as contrary-to-duty obligations (CTD) or reparation
obligations (because they are intended to ‘repair’ or ‘compensate’ violations of primary
obligations). The reparation obligations are in force only when normative violations oc-
cur and are meant to ‘repair’ violations of primary obligations. Thus a reparation pol-
icy is a conditional obligation arising in response to a violation, where a violation is
signalled by an unfulfilled obligation. The expression of violation conditions and the
reparation obligations is an important requirement for formalising norms, design subse-
quent business processes to minimise or deal with such violations and also to determine
the compliance of a process with the relevant norms.

There are a number of different approaches in deontic logic to formalise CTD obli-
gations, but in this paper we use a simple logic of violation, to avoid danger of logical
paradoxes that some other approaches may involve (Carmo and Jones, 2002). This logic
is also suitable to model chains of violations as described next.

2.2 Formalising violations of deontic constraints

In addition to using the logic based approach to specifying core deontic constraints, we
thus provide a simple logic of violation.

The violation expression consists of the primary obligation, its violation conditions,
an obligation generated upon the violation condition occurs, and this can recursively be
iterated, until the final condition is reached. We introduce the non-boolean connective
®, whose interpretation is such that OA ® OB is read as “OB is the reparation of the
violation of OA”. In other words the interpretation of OA ® OB, is that A is obligatory,
but if the obligation OA is not fulfilled (i.e., the obligation expressed by OA is violated,
i.e., we have 1A), then the obligation OB is activated and becomes in force until it is
satisfied or violated. If OA ® OB appears in a longer chain of obligations/reparations,
e.g., OA® OB ®OC, then the violation of the OB activate a new obligation, i.e., OC.
Similarly for longer chains.

2.3 Formal Contract Logic (FCL)

We now provide a formal account of the idea presented in Section 2.2 which we will refer
to as Formal Contract Logic (FCL). FCL was introduced in (Governatori, 2005) for the
formal analysis of business contracts. FCL is a combination of an efficient non-monotonic
formalism (defeasible logic (Antoniou et al., 2001, 2006)) and a deontic logic of violations
(Governatori and Rotolo, 2006). This particular combination allows us to represent ex-
ceptions as well as the ability to capture violations, the obligations resulting from the
violations, and the reparations. In addition FCL has good computational properties: the
extension of a theory (i.e., the set of conclusions/normative positions following from a set
of facts can be computed in time linear to the size of the theory).

The ability to handle violation is very important for compliance of business processes.
Often business processes are deployed in dynamic and somehow unpredictable environ-
ments. As a consequence, in some cases, maybe due to external circumstances, it is not
possible to operate in the way specified by the norms, but the norms prescribe how to re-
cover from the resulting violations. In other cases, the prescribed behaviour is subject to
exceptions. Finally, in other cases, one might not have a complete description of the envi-
ronment. Accordingly the process has to operate based on the available input, but if more
information was available, then the task to be performed could be a different one (this is
typically the case of the due diligence conditions, where one has to act in a ‘reasonable’
way based on the available information, but if a more complete description the behaviour
might be different). A conceptually sound formalisation of norms (for assessing the com-
pliance of a process) should take into account all the aspects mentioned above. FCL is
sound in this respect given the combinations of the deontic component (able to represent
the fundamental normative positions and chains of violations/reparations) and the de-
feasible component that takes care of the issue about partial information and possibly
conflicting provisions.

The language of FCL consists of the following set of atomic symbols: a numerable
set of propositional letters p,q,r,..., intended to represent the state variables and the
tasks of a process. Formulas of the logic are constructed using the deontic operators
O (for obligation), P (for permission), negation = and the non-boolean connective ® (for
the contrary-to-duty operator). The formulas of FCL will be constructed in two steps
according to the following formation rules:

* every propositional letter is a literal;
* the negation of a literal is a literal;
¢ if X is a deontic operator and [is a literal then X/ and - X! are deontic literals.

After we have defined the notions of literal and deontic literal we can use the following
set of formation rules to introduce ®-expressions, i.e., the formulas used to encode chains
of obligations and violations.

* every deontic literal is an ®-expression;

e if Ol4,...,0l,, are deontic literals and /,.1 is a literal, then Ol1 ®...® O/, and
0l1®...9801,®Pl, 1 are ®-expressions (we also refer to ®-expressions as obligation
chains or simply chains).

The connective ® permits combining primary and contrary-to-duty obligations into unique
regulations. The meaning of an expression like O;A ® O;B® O is that the primary obli-
gation for s is A, but if A is not done, then s has the obligation to do B. But if event B
fails to be realised, then s has the obligation to do C. Thus B is the reparation of the
violation of the obligation Oz;A (to have violation of an obligation such as O;A we must
have that A does not hold; this mean that the negation of A, i.e., 7 A, holds). Similarly
C is the reparation of the obligation O,B, which is force when the violation of A occurs.

The formation rules for ®-expressions allow a permission to occur only at the end of
such expressions. This is due to the fact that a permission can be used as a reparation of
a violation, but it is not possible to violate a permission, thus it makes no sense to have
reparations to permissions.

Each condition or norm of a normative document is represented by a rule in FCL,
where a rule is an expression

r:Al,...,An =>C

where r is the name/id of the norm, A1,...,A, —the antecedent of the rule— is the set of
the premises of the rule (alternatively it can be understood as the conjunction of all the
literals in it) and C is the conclusion of the rule. Each A; is either a literal or a deontic
literal and C is an ®-expression.

The meaning of a rule is that the normative position (obligation, permission, prohi-
bition) represented by the conclusion of the rule is in force when all the premises of the
rule hold. Thus, for example, suppose we have a contract for the provision for a service
where we have the following clause:

“5.1 the supplier (S) shall refund the purchaser (P) and pay a penalty of
$1000 in case she does not replace within 3 days a service that does not con-
form with the published standards”

This clause can be represented as:*
r:—a,7b=0gc

where the propositional letter ¢ means “a service has been provided according to the
published standards”, b stands for the event “replacement occurred within 3 days”, and
c represents the event “refund the customer and pay her the penalty”. The norm is
activated, i.e., the supplier is obliged to refund the customer and pay a penalty of $1000,
when the condition —a is true (i.e., we have a faulty service), and the event “replacement
occurred within 3 days” lapsed, i.e., its negation (—b) occurred.

FCL is equipped with rule set. The superiority relation (<) determines the relative
strength of two rules, and it is used when rules have potentially conflicting conclusions.
For example given the rule r1: A= B®C and re : D = —7C. ri <rg means that rule r;
prevails over rule rg in situation where both fire and they are in conflict (i.e., rule rq fires
for the secondary obligation C).

4In the remaining of the chapter we will use Og and Pg for the obligation and permission operators
relative to the Supplier, and Op and Pp for the Purchaser. Oz and P will be used for a generic subject.

2.4 Normal Forms

We introduce transformations of an FCL representation of a normative document to pro-
duce a normal form of the same (NFCL). A normal form is a representation of a norma-
tive document based on an FCL specification containing all conditions that can gener-
ated/derived from the given FCL specification. The purpose of a normal form is to “clean
up” the FCL representation of a normative document, that is to identify formal loopholes,
deadlocks and inconsistencies in it, and to make hidden conditions explicit.

In the rest of this section we introduce the procedures to generate normal forms.
First (Section 2.4.1) we describe a mechanism to derive new contract conditions by merg-
ing together existing normative clauses. In particular we link an obligation and the
obligations triggered in response to violations of the obligation. Then, in Section 2.4.2,
we examine the problem of redundancies, and we give a condition to identify and remove
redundancies from the formal normative specification.

2.4.1 Merging Norms

One of the features of the logic of violations is to take two rules, or norms, and merge
them into a new clause. In what follows we will first examine some common patterns of
this kind of construction and then we will show how to generalise them.

Let us consider a norm like (in what follows I and A are sets of premises)

I'=> 0A.

Given an obligation like this, if we have that the violation of O;A is part of the premises
of another norm, for example,

A, —A > OS/C,
then the latter must be a good candidate as reparational obligation of the former. This

idea is formalised is as follows:

I-0,A A-A=0,C
T,A=0,A®0,C

This reads as follows: given two policies such that one is a conditional obligation (I' =
O;A) and the antecedent of second contains the negation of the propositional content of
the consequent of the first (A,7A = OyC), then the latter is a reparational obligation
of the former. Their reciprocal interplay makes them two related norms so that they
cannot be viewed anymore as independent obligations. Therefore we can combine them
to obtain an expression (i.e., ;A = O;A ® Oy C) that exhibits the explicit reparational
obligation of the second norm with respect to the first. Notice that the subject of the
primary obligation and the subject of its reparation can be different, even if very often
they are the same.
Suppose that a contract includes the rules

r : Invoice = OpPayWithin7Days
r' : 7 PayWithin7Days = O pPayWithlInterest.

From these we obtain

r'": Invoice = O pPayWithin7Days ® O pPayWithInterest.

9

We can also generate chains of CTDs in order to deal iteratively with violations of repa-
rational obligations. The following case is just an example of this process.
I'>0,A®04B -A,7B=0,C
I'=0,A90,B0,C

For example we can consider the situation described by the hypothetical clause 5.1 dis-
cussed at page 8, whose formal representation is given by the rules

r : Invoice = OgQualityOfService ® OgReplace3days
r’: 7QualityOfService, "Replace3days = OgRefund&Penalty

from which we derive the new rule
r’ : Invoice = OgQualityOfService ® OgReplace3days ® OgRefund&Penalty.

The above patterns are just special instances of the general mechanism described in
details in (Governatori and Rotolo, 2006; Governatori, 2005).

2.4.2 Removing Redundancies

Given the structure of the inference mechanism it is possible to combine rules in slightly
different ways, and in some cases the meaning of the rules resulting from such opera-
tions is already covered by other rules in the contract. In other cases, the rules resulting
from the merging operation are generalisations of the rules used to produce them, con-
sequently, the original rules are no longer needed in the specifications. To deal with this
issue we introduce the notion of subsumption between rules. A rule subsumes a second
rule when the behaviour of the second rule is implied by the first rule.

We first introduce the idea with the help of some examples and then we show how to
give a formal definition of the notion of subsumption appropriate for FCL.

Let us consider the rules:

r:Service=0gQualityOfService ® OgReplace3days ® OsRefund&Penalty,
r' : Service=>0gQualityOfService ® OgReplace3days.

The first rule, r, subsumes the second r’. Both rules state that after the supplier has pro-
vided the service she has the obligation to provide the service according to the published
standards, if she violates such an obligation, then the violation of QualityOfService can
be repaired by replacing the faulty service within three days (OgReplace3days). In other
words, OgReplace3days is a secondary obligation arising from the violation of the pri-
mary obligation OgQualityOfService. In addition r prescribes that the violation of the
secondary obligation OgReplace3days can be repaired by OgRefund&Penalty, i.e., the
seller has to refund the buyer and in addition she has to pay a penalty.

As we discussed in the previous paragraphs, the conditions of a normative document
cannot be taken in isolation in so far as they exist in the document. Consequently, the
whole normative document determines the meaning of each single clause (norm) in it.
In agreement with this holistic view of norms we have that the normative content of r’
is included in that of r. Accordingly, r’ does not add any new piece of information to

10

the contract, it is redundant and can be dispensed from the explicit formulation of the
norms.
Another common case is exemplified by the rules:

r : Invoice => OpPayWithin7Days ® O pPayWithInterest
r' : Invoice, "PayWithin7Days = O pPayWithInterest.

The first rule says that after the seller sends the invoice the buyer has one week to pay,
otherwise the buyer has to pay the principal plus the interest. Thus, we have the primary
obligation OpPayWithin7Days, whose violation is repaired by the secondary obligation
OpPayWithInterest, while, according to the second rule, given the same set of circum-
stances Invoice and " PayWithin7Days we have the primary obligation O pPayWithlInterest.
However, the primary obligation of ' obtains when we have a violation of the primary
obligation of . Thus, the condition of applicability of the second rule includes that of the
first rule, which then is more general than the second and we can discard r’ from the
formal representation of the specifications.
The intuitions we have just exemplified is captured by the following definition.

Definition 1 Let r1:I' > A®B®C and ryg : A = D be two rules, where A = ®§11Ai,
B=Q®?! Biand C=Q"_ C;. Then ri subsumes rs iff

1. T=Aand D =A;or
2. TU{"Ay,...,mAy}=Aand D =B; or
3. TU{=B1,...,mBy}=Aand D =Ae®""C,.

The intuition is that the normative content of r is fully included in 1. Thus, r9 does not
add anything new to the system and it can be safely discarded.

Conflicts often arise in normative systems. What we have to determine is whether
we have genuine conflicts, i.e., the norms are in some way flawed or whether we have
prima-facie conflicts. A prima-facie conflict is an apparent conflict that can be resolved
when we consider it in the context where it occurs and if we add more information the
conflict disappears. For example let us consider the following two rules:

r : PremiumCustomer => OgDiscount
r' : SpecialOrder = Og—Discount

saying that premium customers are entitled to a discount (), but there is no discount
for goods bought with a special order (7). Is a premium customer entitled to a discount
when she places a special order? If we only have the two rules above there is no way
to solve the conflict just using the contract and there is the need of a domain expert to
advise the knowledge engineer about what to do in such case.? The logic can only point
out that there is a conflict in the contract. On the other hand, if we have an additional
provision
r"" . PremiumCustomer, Discount = O Rebate

5As we have seen in Section 2.3 FCL has a superiority relation over rules to handle situations like this
one.

11

Specifying that if for some reasons a premium customer did not received a discount then
the customer is entitled to a rebate on the next order, then it is possible to solve the
conflict, because the contract allows a violation of rule r to be amended by .

We can now introduce the mechanism for making explicit conflicting norms (contra-
dictory norms) within the system:

I'=>A A=A
I''A=> 1

where
1. there is no rule I' = X such that either "A €I’ or X = A ®B;
2. there is no conditional rules A’ = X such that either A € A’ or X = "A ® B;
3. for any formula B, {B,"B}ZT UA.

The meaning of these three conditions is that given two rules, we have a conflict if the
normative content of the two rules is opposite, such that none of them can be repaired,
and the states of affairs/preconditions they require are consistent.

Once conflicts have been detected there are several ways to deal with them. The first
thing to do is to determine whether we have a prima-facie conflict or a genuine conflict.
As we have seen we have a conflict when we have two rules with opposite conclusions.
Thus, a possible way to solve the conflict is to create a superiority relation over the rules
and to use it do “defeat” the weaker rule. In Section 2.5 we will examine how to reason
with norms, and we will see how to use the superiority relation to solve conflicts.

2.4.3 Normalisation Process

We now describe how to use the machinery presented in Section 2.4.1 and Section 2.4.2
to obtain FCL normal forms. The FCL normal form of a normative document provides a
logical representation of normative specifications in format that can be used to check the
compliance of a process. This consists of the following three steps:

1. Starting from a formal representation of the explicit clauses of a set of normative
specifications we generate all the implicit conditions that can be derived from the
normative document by applying the merging mechanism of FCL.

2. We can clean the resulting representation of the contract by removing all redun-
dant rules according to the notion of subsumption.

3. Finally, we use the conflict identification rule to label and detect conflicts.

In general, the process at step 2 must be done several times in the appropriate order
as described above. The normal form of a set of rules in FCL is the fixed-point of the
above constructions. A normative document contains only finitely many rules and each
rule has finitely many elements. In addition it is possible to show that the operation on
which the construction is defined is monotonic (Governatori and Rotolo, 2006), thus ac-
cording to standard set theory results the fixed-point exists and it is unique. Notice that

12

the computation of the fixed-point depends on the order in which the operations of sub-
sumption and merging are performed (subsumption fixed and merging after). Changing
the order of these operations, i.e. merging first and subsumption after, or interleaving
the two operations does not produce the same result. Specifically, some rules might be
excluded from the computation.

2.5 Reasoning with Norms

In the previous section we have examined the mechanism to obtain a set of rules cov-
ering all possible (explicit) norms for obligations, permissions and prohibitions that can
arise from an initial set of norms. In this section we focus on the issue of how to deter-
mine what obligations are in force for a specific situations. Thus taking the well known
distinction between schema and instance. The previous section defines the procedure
to obtain the full (normalised) schema corresponding to a normative document. Here
we study how to get the normative positions active for a specific instance of a business
process. The reasoning mechanism of FCL is an extension of Defeasible Logic.

Defeasible logic, originally created by Donald Nute (Nute 1994) with a particular
concern about efficiency and implementation, is a simple and efficient rule based non-
monotonic formalism. Over the year, the logic has been developed and extended, and
several variants have been proposed to model different aspects of normative reasoning
and encompassed other formalisms to for normative reasoning.

The main intuition of the logic is to be able to derive “plausible” conclusions from
partial and sometimes conflicting information. Conclusions are tentative conclusions in
the sense that a conclusion can be withdrawn when we have new pieces of information.

The knowledge in a Defeasible Theory is organised in facts and rules and superiority
relation.

¢ Facts are indisputable statements.
* Defeasible rules are rules that can be defeated by contrary evidence.

* The superiority relation in a binary relation defined over the set of rules. The
superiority relation determines the relative strength of two (conflicting) rules.

The meaning of a defeasible rule, like
Al, ce ,A n= C

is that normally we are allowed to derive C given Aq,...,A,, unless we have some rea-
sons to support the opposite conclusion (i.e., we have a rule like B1,...,B,, = —C).

Defeasible Logic is a “skeptical” non-monotonic logic, meaning that it does not sup-
port contradictory conclusions. Instead, Defeasible Logic seeks to resolve conflicts. In
cases where there is some support for concluding A but also support for concluding —A,
Defeasible Logic does not conclude either of them (thus the name skeptical). If the sup-
port for A has priority over the support for 7A then A is concluded.

A defeasible conclusion is a tentative conclusion that might be withdrawn by new
pieces of information, or in other terms it is the ‘best’ conclusion we can reach with the
given information. In addition, the logic is able to tell whether a conclusion is or is not
provable. Thus, it is possible to have the following 2 types of conclusions:

13

* Positive defeasible conclusions: meaning that the conclusions can be defeasible
proved;

* Negative defeasible conclusions: meaning that one can show that the conclusion is
not even defeasibly provable.

A defeasible conclusion A can be derived if there is a rule whose conclusion is A, whose
prerequisites (antecedent) have either already been proved or given in the case at hand
(i.e., facts), and any stronger rule whose conclusion is = A (the negation of A) has pre-
requisites that fail to be derived. In other words, a conclusion A is (defeasibly) derivable
when:

1. Ais afact; or
2. there is an applicable defeasible rule for A, and either

(a) all the rules for = A are discarded (i.e., not applicable) or

(b) every applicable rule for A is weaker than an applicable strict or defeasible
rule for A.

A rule is applicable if all elements in the body of the rule are derivable (i.e., all the
premises are positively provable), and a rule is discarded if at least one of the element of
the body is not provable (or it is a negative defeasible conclusion).

2.5.1 Defeasible Logic at Work

We illustrate the inferential mechanism of Defeasible Logic with the help of an example.
Let us assume we have a theory containing the following rules:

r1: PremiumCustomer(X) = Discount(X)
ro :SpecialOrder(X) = —Discount(X)
rs : Promotion(X) = Discount(X)

where the superiority relation is thus defined: 71 <rg and ro <r;. The theory states that
services in promotion are not discounted, and so are special orders with the exception of
special orders placed by premium customers, who are normally entitled to a discount.

Consider a scenario where the only piece of information available is that we have
received a special order. In this case we can conclude that the price has to be calculated
without a discount since rule r; is not applicable (we do not know whether the customer
is a premium customer or not). In case the special order is received from a premium
customer for a service not in promotion, we can derive that the customer is entitled to a
discount. Indeed rule r; is now applicable and it is stronger than rule r9, and r3, which
is stronger than rg is not applicable (i.e., the service is not in promotion).

2.5.2 Adding Reparation Chains

FCL is an extension of defeasible logic with the reparation operator (®). Accordingly the
reasoning mechanism to derive conclusion is an extension of that for defeasible logic. In

14

defeasible logic the conclusions of a rule is a single literal and not a reparation chain.
Thus, the condition that OA appears in the conclusion of a rule means in defeasible logic
that OA is the conclusions of the rule. FCL extends defeasible logic with reparation
chains, thus, we have to extend the reasoning mechanism of defeasible logic to accommo-
date the additional construction provided by FCL. To prove OA, we have to consider all
rules with a reparation chain for OA, where for all elements before OA in the chain, the
negation of the element is already provable. Thus to prove A given a rule

Pq,....P,>0C1®---90C,,80A®0D1®---@0Dy,

we have that Pq,...,P, must be all provable, and so must be =C1,...,7C,,. For the full
details see (Governatori, 2005).
Consider a process governed by the following rule

r : Invoice > OpPayWithin7Days ® O pPayWithInterest

and a situation where an invoice has been received. Thus, we have Invoice. According to
the rule we derive that the obligation in force is O pPayWithin7Days. Suppose now that,
for some reasons, the invoice has not been paid until the tenth day after the reception.
The facts of the case at hand are Invoice and —PayWithin7Days. Here, according to
the rule and the reasoning mechanism of FCL, we obtain that the obligation in force is
OpPayWithInterest.

2.6 Summary

In this section we have argued about the need of conceptual model of normative specifica-
tions and we have illustrated how extensions of (Standard) Deontic Logic provide sound
conceptual specifications suitable for applications related to business process modelling.

We have introduced the notions of obligation, permission, prohibition and violation
and we have shown how to represent them in a rule based formalism. A rule based
formalism gives a representation close to the representation of norms in a normative
system. Essentially, every norm is mapped to a rule.

A close and faithful representation is the first step for successful modelling. The
second step is reasoning. In the framework presented in this chapter reasoning is done
in two phases. In the first phase we use a normalisation procedure to generate all and
only (maximal) reparation chains (norms) corresponding to all implicit norms that can be
obtained from a given, explicit set of norms: the norms a process has to comply with given
in a normative document. The output of the normalisation is the compliance schema
for a process. In the second reasoning phase, the task is given a activity (or task) in
an instance of a process what normative positions apply to the activity? This part is
examined in Section 2.5 where we also gave the rationale for the inference mechanism
behind FCL.

3 Process Modelling

We use BPMN notation® as our target process description language for a number of rea-
sons. Firstly, graphical business process modelling have a growing acceptance in indus-

Snttp://www.bpmn.org

15

try, and BPMN is steadily increasing its span of adoption. Secondly, BPMN models are
conducive to translation to executable process models (e.g., BPEL). Finally, BPMN pro-
vides a suitable environment for supporting interactions defined by business contracts
because it allows for support of process descriptions that range from internal processes to
complex cross-organisational processes, involving several parties. Namely, using BPMN
it is possible to describe abstract (or public) processes between parties, where the focus
is on exchange of messages between them. In this case, it is possible to either abstract
away the internal processes of both parties or to abstract away the internal processes of
the other partner only, depending on the circumstances. In the last case, the aim is to
provide description of interactions from the point of view of one party. In the most de-
tailed form, BPMN allows for the description of internal processes for all parties, along
with the messages between them. In BPMN terms this is called a collaboration (global)
process.

3.1 Execution Semantics

The basic execution semantics of the control flow aspect of a business process model is
defined using token-passing mechanisms, as in Petri Nets. The definitions used here
extend the execution semantics for process models given by (Vanhatalo et al., 2007) with
semantic annotations in the form of effects and their meaning.

A process model is seen as a graph with nodes of various types — a single start and
end node, task nodes, XOR split/join nodes, and parallel split/join nodes — and directed
edges (expressing sequentiality in execution). The number of incoming (outgoing) edges
are restricted as follows: start node 0 (1), end node 1 (0), task node 1 (1), split node 1
(>1), and join node >1 (1). The location of all tokens, referred to as a marking, manifests
the state of a process execution. An execution of the process starts with a token on the
outgoing edge of the start node and no other tokens in the process, and ends with one
token on the incoming edge of the end node and no tokens elsewhere (cf. soundness,
e.g., Wynn et al. (2007)). Task nodes are executed when a token on the incoming link is
consumed and a token on the outgoing link is produced. The execution of a XOR (parallel)
split node consumes the token on its incoming edge and produces a token on one (all) of
its outgoing edges, whereas a XOR (parallel) join node consumes a token on one (all) of
its incoming edges and produces a token on its outgoing edge.

3.2 Annotation of Processes

A process model is extended with a set of annotations, where the annotations describe
(i) the artefacts or effects of executing a task and (ii) the rules describing the obligations
(and other normative positions) relevant for the process.

As for the semantic annotations, the vocabulary is presented as a set of predicates
P. There is a set of process variables (x and y in Table 2), over which logical statements
can be made, in the form of literals involving these variables. The task nodes can be
annotated using effects (also referred to as post-conditions) which are conjunctions of
literals using the process variables. The meaning is that, if executed, a task changes the
state of the world according to its effect: every literal mentioned by the effect is true in
the resulting world; if a literal / was true before, and is not contradicted by the effect,

16

Control Objective Internal Control

Customer due dili- | All new customers must be scanned against provided
gence databases for identity checks.

Accounts must maintain a positive balance, unless ap-
proved by bank manager, or for VIP customers.

Record keeping Retain history of identity checks performed.

Table 1: Control objectives for the process in Figure 2

then it is still true (i.e., the world does not change of its own accord).

A: Enter
Customer
Information

Verification not
satisfactory

C: Notify
Customer and
Close Case

Existing
customer

Verification
satisfactory

D: Approve R I: Notify
Account '—/LCI:;'JE::} Customer and
Opening Close Case

E: Open F: Apply G: Accept initial
Account Account Policy Deposit

Figure 2: Example of an account opening process in private banking

><
N7 Y

The obligations for this example are motivated by the following scenario: A new leg-
islative framework has recently been put in place in Australia for anti-money laundering.
The first phase of reforms for the Anti-Money Laundering and Counter-Terrorism Financ-
ing Act 2006 (AML/CTF) covers the financial sector including banks, credit unions, build-
ing societies and trustees and extends to casinos, wagering service providers and bullion
dealers. The AML/CTF act imposes a number of obligations which include: customer due
diligence (identification, verification of identity and ongoing monitoring of transactions),
reporting (suspicious matters, threshold transactions and international funds transfer
instructions), and record keeping. AML/CTF does not dictate specific conditions but sets
out principles businesses have to obey to. Hence businesses need to determine the exact
manner in which they will fulfil the obligations, which comprises the design of internal
controls specific to the organisation.

Table 1 contains a natural language description of the control objectives and corre-
sponding internal controls for this process; Table 2 shows the semantic effect annotations
of the process activities. In this case, the control objectives describe the principles the
business is subject to, and the internal controls are the resulting “norms” implementing
the control objectives. Control objectives and internal controls are the typical way in
which enterprises implement norms regulating they business, processes and procedure.

The control objectives in Table 1 can be expressed by the following FCL rules to create
the compliance rule base:

17

ma
wn
=

Semantic Annotation
newCustomer(x)

checklIdentity(x)

checklIdentity(x), recordldentity(x)
owner(x,y), account(y)
accountType(y,type)
positiveBalance(y)
—positiveBalance(y)
accountActive(y)

notify(x,y)

ST QA Qe

Table 2: Annotations for the process in Fig 2.

¢ All new customers must be scanned against provided databases for identity checks.
r1 : newCustomer(x) = Ocheckldentity(x)

The meaning of the predicate newCustomer(x) is that the input data with Id = x
is a new customer, for which we have the obligation to check the provided data
against provided databases checkldentity(x). The obligation resulting from this
rule is a non-persistent obligation, i.e. as soon as a check has been performed, the
obligation is no longer in force.

* Retain history of identity checks performed.
ro : checkldentity(x) = Orecordldentity(x)

This rule establishes that there is a permanent obligation to keep record of the
identity corresponding to the (new) customer identified by x. In addition this obli-
gation is not fulfilled by the achievement of the activity (for example, by storing it
in a database). We have a violation of the condition, if for example, the record x is
deleted from the database.

* Accounts must maintain a positive balance, unless approved by a bank manager,
or for VIP customers.

rs :account(x) = OpositiveBalance(x) ® OapproveManager(x)

The primary obligation is that each account has to maintain a positive balance
positiveBalance; if this condition is violated (for any reason the account is not pos-
itive), then we still are in an acceptable situation if a bank manager approves the
account not to be positive. In this case, the obligation of approving persists until a
manager approves the situation; after the approval, the obligation is no longer in
force.

r4 :account(x),owner(x,y),accountType(x,VIP) = P-positiveBalance(x)

This rule creates an exception to rule r3. Accounts of type VIP are allowed to have
a non positive balance and no approval is required for this type of accounts (this is
achieved by imposing that rule r4 is stronger than rule r3, r4 <rs). Notice that the
normative position associated to r4 is a permission.

18

3.3 Summary

In this section we argued about the advantages about the graphical notation for busi-
ness processes and we have given an overview of the execution semantics of business
processes. However, this is not enough for compliance. While graphical notation can be
used to check the structural compliance of a process (i.e., whether task are executed in
a prescribed order), graphical notation must be supplemented by annotations. For com-
pliance one has to have two different types of annotations: on one hand we need to know
how data is affected by the different task, thus we annotate the single node in a process
graph (and eventually the arcs) with the effects produced by the nodes. On the other
hand, we have to know the rules (control objectives and internal controls) a process is
subject to. Thus, we annotate processes with set of FCL rules describing the normative
part regulating the process.

4 Compliance Checking

As stated, our aim in the compliance checking is to figure out (a) which obligations will
definitely appear when executing the process, and (b) which of those obligations may not
be fulfilled.

In a way, FCL constraint expressions for a normative document define a behavioural
and state space which can be used to analyse how well different behaviour execution
paths of a business process comply with the FCL constraints. Our aim is to use this
analysis as a basis for deciding whether execution paths of a business process are com-
pliant with the FCL and thus with the normative document modelled by the FCL spec-
ifications. The central part of this compliance checking is given by the notions of ideal,
sub-ideal, non-ideal and irrelevant situations which will be introduced and defined after
two simple motivating examples are given.

Consider the following FCL obligation rule:

servicey : WeekDay,FaultMessageEvent = OgRepair24hours

stating that on a week day, when a fault message occurs, the service provider is obliged
to repair the fault within 24hrs.
Assume now that one possible execution path from a process is:

1. a FaultMessageEvent is received from a premium customer on a week day
2. the service provider reacts by (in the order):

(a) sending an apology message,

(b) repairing the fault within 24 hours and

(c) sending a reparation confirmation message
When checking compliance of this execution path with the obligation it is obvious that
the obligation is fulfilled because the fault is fixed within 24 hours. Notice that the execu-
tion path also includes additional conditions such as sending of two additional messages

(an apology message, and a reparation confirmation message) which are not critical for
the obligation.

19

Consider another example:
serviceg : WeekDay,PremiumCustomer,FaultMessageEvent = OgRepairl2hours

This reflects the requirement for a faster reaction time for premium customers. Assume
we have the following situation:

WeekDay,FaultMessageEvent

Obviously, this situation is not sufficient for the Ogrepairi2hours to be activated.

4.1 Ideal Semantics

We now introduce the concepts of ideal, sub-ideal and non-ideal situations to describe
various degrees of compliance between execution paths and FCL constraints. We will
also provide a semantic interpretation of FCL rules in terms of ideal, sub-ideal, non-
ideal and irrelevant situations, which we refer to as Ideal Semantics. In this context,
a situation is the state of a process after the execution of a task. Thus, a situation
corresponds to the set of effects (literals) obtained after the execution of a task.

Intuitively, an ideal situation is a situation where execution paths do not violate FCL
expressions, and thus the execution paths (which will then correspond to processes that
are related to the contract) are fully compliant with the normative specifications. A sub-
ideal situation is a situation where there are some violations, but the norms relevant
for the situation at hand establish means to recover from the violation, and the compen-
satory measures have been taken. In other terms there is at least a reparation chains
where the primary obligation has not been fulfilled but some of the secondary obliga-
tion have been fulfilled. Accordingly, processes resulting in sub-ideal situations are still
compliant to a normative document even if they provide non-optimal performances of
the normative specifications. A situation is non-ideal if it violates a normative document
(and the violations are not repaired). In this case, a process resulting in a non-ideal situ-
ation does not comply with the normative specifications. There are two possible reasons
for a process not to comply with the normative specifications: 1) the process executes
some tasks which are prohibited by the normative specifications (or equivalently, it exe-
cutes the opposite of obligatory tasks); 2) the process fails to execute some tasks required
by the normative specifications. Finally, a situation is irrelevant for a normative docu-
ment if no rule is applicable in the situation. Irrelevant situations correspond to states
of affairs where a normative document is silent about them.

As discussed in Section 2.4, for every FCL representation of a contract its normal
form contains all conditions that can be derived from the normative specifications and
redundant clauses are removed. Thus, normal forms are the most appropriate means
to determine whether a process conforms with a normative document. We now define
conditions under which we are able to determine whether a situation complies with a set
of normative specifications or if it represents a violation of some clauses.

First of all, we define when a situation (set of literals) is either ideal, sub-ideal, non-
ideal or irrelevant with respect to a contract rule.

Definition 2

20

A situation S is ideal with respecttoaruleI' > A1®---® A, iff TU{A1} < S.

A situation S is sub-ideal with respect toaruleI' > A1®---® A, iff TU{A;} S S, for
some 1<i<n such that YAj, j<i, A1,...,A; ¢8S.

A situation S is non-ideal with respect toaruleI’ > A1®---® A, iff TS and S is
neither ideal nor sub-ideal, i.e., A1,...,A, & 8S.

A situation S is irrelevant with respect to a rule I > A1 ®---® A,, iff it is neither
ideal nor sub-ideal nor non-ideal, i.e., ' £ S

Returning to our first example of the previous section, rule service;, we have that
I' = {WeekDay, FaultMessageEvent}
Accordingly, for the situation:

S = {WeekDay,FaultMessageEvent,SendApologyMessage,
Repair24hours,SendReparationConfirmationMessage}

we have that 'U{Repair24hours} < S, thus the situation is classified as ideal. As we have
seen in the previous section, for the second rule, i.e., serviceg, I' is not a subset of S, thus
S is irrelevant for the rules concerning premium customers.

According to Definition 2, a situation is ideal with respect to a norm if the rule is not
violated; sub-ideal when the primary obligation is violated but the rule allows for a repa-
ration, which is satisfied; non-ideal when the primary obligation and all its reparations
are violated, and irrelevant when the rule is not applicable. Definition 2 is concerned
with the status of a situation with respect to a single rule, while a contract consists of
many rules, thus we have to extend this definition to cover the case of a set of rules.
In particular we will extend it considering all rules in the normal form for a normative
document containing all rules inherent to the document.

Definition 3

* A situation S is ideal with respect to a set of rules R iff for every rule in R, either S
is irrelevant or ideal for the rule.

* A situation S is sub-ideal with respect to a set of rules R iff there is a rule in R for
which S is sub-ideal, and there is no rule in R for which S is non-ideal.

* A situation S is non-ideal with respect to a set of rules R iff there is a rule in R for
which S is non-ideal.

* A situation S is irrelevant with respect to a set of rules R iff for all rules in R the
situation S is irrelevant.

Definition 3 follows immediately from the intuitive interpretation of ideality and the
related notions we have provided in Definition 2. On the other hand, the relation between
a normal form and the normative specifications from which it is obtained seems to be a
more delicate matter. A careful analysis of the conditions for constructing an FCL normal
form allows us to state the following general criterion:

21

Definition 4 A situation S is ideal (sub-ideal, non-ideal, irrelevant) with respect to a
set of FCL rules if S is ideal (sub-ideal, non-ideal, irrelevant) with respect to the normal
form of the set of FCL rules.

It is worth noting that Definition 4 shows the relevance of the distinction between a set
of normative specifications and its normal form. This holds in particular for the case of
sub-ideal situations. Suppose you have the following set of FCL rules

= 0A A= 0B
The corresponding normal form is
=>0A®0OB

While the situation with =A and B is sub-ideal with respect to the latter, it would be
non-ideal for the former. In the first case, even if "A = OB expresses in fact an implicit
reparational obligation of the rule = A, this is not made explicit. The key point here is
that there was no link between the primary and reparation obligations in the original set
of rules, but this is made explicit in the normal form. So, there exists a situation which
apparently accomplishes a rule and violates the other without satisfying any reparation.
This conclusion cannot be accepted because it is in contrast with our intuition according
to which the presence of two rules like = OA and 7A = OB must lead to a unique
regulation. For this reason, we can evaluate a situation as sub-ideal with respect to a set
of FCL rules only if it is sub-ideal with respect to its normal form.

4.2 Checking Compliance

The ideal semantics allows us to relate business processes and FCL expression, thus it
enable us to determine whether a business process is compliant with a set of regulations.
What we have to do now is to look at the details of how to relate the two domains. The
idea is as follows:

1. We traverse the graph describing the business process and we identify the sets
of effects (sets of literals) for all the tasks (nodes) in the process according to the
execution semantics specified in Section 3.1.

2. For each task we use the set of effects for that particular task to determine the nor-
mative positions (obligations, permissions, prohibitions) triggered by the execution
of the task. This means that effects of a task are used as a set of facts, and we
compute the conclusions of the defeasible theory resulting from the effects and the
FCL rules annotating the process (see Section 2.5). In the same way we accumu-
late effects we accumulate (undischarged) obligations from one task in the process
to the task following it in the process.

3. For each task we compare the effects of the tasks and the obligations accumulated
up to the task. If an obligation is fulfilled by a task, we discharge the obligation,
otherwise if the obligation is violated we signal the violation. Finally, if an obliga-
tion is not fulfilled nor violated, we keep the obligation in the stack of obligations
and we propagate the obligation to the successive tasks.

22

Here, we assume that the obligations derived from a task should be fulfilled in the re-
maining of the process. Variations of this schema are possible. For example, one could
stipulate that the obligations derived from a task should be fulfilled by the tasks imme-
diately after the task’. In another approach one could use a schema where for each task
one has both preconditions and effects. Then the obligations derived from the precondi-
tions must be fulfilled by current task (i.e., the obligations must be fulfilled by the effects
of the task), and the obligations derived from the effects are as in our basic schema.

In the rest of the section we discuss in details step 2 (Section 4.3) and 3 (Section 4.4)
above.

4.3 From Tasks to Obligations

The second step to perform when we have to determine whether a process is compliant is
to determine the obligations derived by the effects of a task. Given a set of rules R and a
set of literals S (plain literals and deontic literals), we can use the inference mechanism
of defeasible logic (Section 2.5) to compute the set of conclusions (obligations) in force
given the set of literals. These are the obligations an agent has to obey to in the situation
described by the set of literals. However, the situation could already be sub-ideal, i.e.,
some of the obligations prescribed by the rules are already violated. Thus, given a set of
literals describing a state-of-affairs one has to compute not only the current obligations,
but also what reparation chains are in force given the set.

For example consider a scenario where we have the rules A = OB and =B = OC, and
the effects are A and —B. The normal form of the rules is A = OB ® OC and =B = OC.
The only obligation in force for this scenario is OC. Since we have a violation of the first
rule (A = OB and —B), then we know that it is not possible to have an ideal situation
here. Hence, computing only the current obligation does not tell us the state of the
corresponding business process. What we have to do is to identify the chain for the ideal
situation for the task at hand. To deal with this issue we have to identify the active
reparation chains.

A reparation chain C is active given a set of literals S, if

* thereisarule'= C such that'c S, i.e., the rule is triggered by the situation, and
e for all rule for conflicting chains®, either

- the chain is not triggered by the situation or
- the negation of an element before the conflicting element is not in the situa-

tion.

Let us examine the following example. Consider the rules

7”11A1303®00,
ro:As=>0-BeOD,
rg:A3=>0E®0O~B.

"This approach can be used to check the compliance of the flow of tasks.
8Given a chain A1,...,A,, a conflicting chain is any containing —A;, for some 1 <i <n.

23

The effects describing the situation are A; and As. In this scenario the active chains
are OB® OC and OFE O—B. The chain OB ® OC is active since rg cannot be used to
activate the chain O-B®OD. For r3, and the resulting chain OFE ® OB, we do not have
the violation of the primary obligation OF of the rule (i.e., 7E is not one of the effects),
so the resulting obligation OB is not entailed by rule rs.

Consider, again, the scenario described at the end of Section 2.5. Given the rule

r :Invoice = OpPayWithin7Days ® OpPayWithInterest
and the case data Invoice we have that the active chain is
OpPayWithin7Days ® O pPayWithlInterest,

and the current obligation in force is OpPayWithin7Days. In case of a late payment of
the invoice, i.e., when the case data consists of both Invoice and —“PayWithin7Days, the
active chain is still the same, but the obligation in force is O p PayWithInterest. In the first
case, to obey the current obligation (i.e., to pay the invoice in time) results in an ideal
situation. In the second case, the best one can do is to end up in a sub-ideal situation.

4.4 Obligation Propagation

A reparation chain is in force if there is a rule of which the reparation chain is the con-
sequent and a set of facts (effects of a task in a process) including the rule antecedents.
In addition, we assume that, once in force, a reparation chain remains as such unless
we can determine that it has been violated or the obligations corresponding to it have all
been obeyed to (these are two cases when we can discharge an obligation or reparation
chain). This means that it is not possible to have two instances at the same time of the
same reparation chain. Accordingly, a reparation chain in force is uniquely determined
by the combination of the task T' when the chain has been derived and the rule R from
which the chain has been obtained.

The procedure for compliance checking is based on two algorithms, ComputeObligations
and CheckCompliance. ComputeObligations is the algorithm to determine the active
chains presented in Section 4.3. Given a set of literals S, corresponding to effects of
a task T in a process model, we use the algorithm ComputeObligations to determine
the current set of obligations for the process Current. The set of the current obliga-
tions includes the new obligations triggered by the task, as well as the obligations car-
ried out from previous tasks. The algorithm CheckCompliance scans all elements of
Current against the set of literals S, and determines the state of each reparation chain
(C=A1®A5) in Current. CheckCompliance operates as follows:

if A1 = OB, then
if Be S, then
remove([T,R,A1® Asl,Current)
remove([T,R,A1® Asl, Unfulfilled)
if [T,R,B1®By®A1®As] € Violated then
add([T,R,B1®Bs® A1 ® Asl,Compensated)
if "B € S, then

24

add([T,R,A® As,B], Violated)
add([T,R,As],Current)

else
add([T,R,A1 ® Asl, Unfulfilled).

Let us examine the CheckCompliance algorithm. Remember the algorithm scans all
active reparation chains one by one. Then for each of them reports on the status of it.
For each chain in Current (the set of all active chains), it looks for the first element of the
chain and it determines the content of the obligation (so if the first element is OB, the
content of the obligation is B). Then it checks whether the obligation has been fulfilled
(B is in the set of effects), or violated (=B is in the set of effects), or simply we cannot
say anything about it (none of B and —B is in the set of effects). In the first case we can
discharge the obligation and we remove the chain from the set of active chains (similarly
if the obligation was carried over from a previous task, i.e., it was in the set Unfulfilled).
In case of a violation, we add the information about it in the system. This is done by
inserting a tuple with the identifier of the chain and what violation we have in the set
Violated. In addition, we know that violations can be compensated, thus if the chain
has a second element we remove the violated element from the chain and put the rest of
the chain in the set of active chains. Here we take the stance that a violation does not
discharge an obligation, thus we do not remove the chain from the set of active chains®.
Finally, in the last case, the set of effects does not tell us if the obligation has been
fulfilled or violated, so we propagate the obligation to the successive tasks by putting the
chain in the set Unfulfilled. The algorithm also checks whether a chain/obligation was
previously violated but it was then compensated.

Definition 5

® A process is compliant iff for all [T,R,A] € Current, A = OB®C, forevery [T,R,A,B] €
Violated, [T,R,A,B] € Compensated and Unfulfilled = @.

* A process is fully compliant iff for all [T,R,A] € Current, A =0B®C, Violated = ¢
and Unfulfilled = @.

The above definition relates the state of a process base on the report generated by the
CheckCompliance algorithm and the ideal semantics for FCL expressions. In particular,
a process is compliant if the situation at the end of the process is at least sub-ideal (it is
possible to have violations but these have been compensated for). Similarly a process is
fully compliant if it results in an ideal situation.

According to Definition 5, a process is not compliant if the set of unfulfilled obligations
(Unfulfilled) is not empty. Consider, for example the rule

rs :account(x) = OpositiveBalance(x) ® OapproveManager(x)

9Governatori et al. (2007) propose a more fine grained classification of obligations. Accordingly it is
possible to have obligations that are discharged when are violated, as well as obligations that persist in
case of a violation. The above algorithm can be easily modified to deal with the different types of obligations
examined by Governatori et al. (2007).

25

relative to the process of Figure 2 with the annotation as in Table 2. After task E we
have, among others, the effect account(x). This means that after task E we have the
chain

[E,r4,0positiveBalance(x) ® OapproveManager(x)]

in Current for task F. After task F, the above entry for the chain obtained from rule
r4 is moved to the set Unfulfilled. Suppose now that tasks G and H do not have any
annotation attached to them. In this case at the end of the process we still have the
active chain, but the resulting situation is not ideal: the antecedent of the rule is a
subset of the set of effects, but we do not have the first element of the chain as one of the
effects. Thus something the process were required to do was not done; hence, the process
is not compliant.!?

4.5 Summary

In this section we have first introduced a semantics to evaluate a set of literals given a
set of FCL expressions determining whether obligations relative to a situation (state-of-
affairs) where met or not. Accordingly, a state can be ideal, if all (primary) obligations
are fulfilled, sub-ideal, if some obligations are not fulfilled but they are repaired, and
non-ideal if there are violations which are not compensated.

Then, we discussed a mechanism to determine whether a process is compliant or not
based on the ideal semantics. In particular, first we have to gather the effects for a task
(and propagate effects from one task to tasks after it), then we have to determine the
active obligations as well as the situation is ideal, sub-ideal or non-ideal with respect
to the effects of the current task. However, a task could introduce some degree of non-
compliance that could be resolved in successive tasks. We have show how to propagate
obligations and the compliance status across task. We also have discussed some variants
of the main schema.

5 Related Work

Governance, risk and compliance (GRC) is an emerging area of research which holds
challenges for various communities including information systems, business software
development, legal, cultural, behavioural studies and corporate governance.

In this chapter, we have focused on compliance management from an information
systems perspective, in particular the modelling and analysis of compliance require-
ments. Both process modelling as well as modelling of normative requirements are well
studied fields independently, but until recently the interactions between the two have

0What about a situation where after task F we have a task producing the annotation
approveManager(x) but no task with effect positiveBalance(x)? Is the resulting process compliant? In
this case we the reparation of the violation, but not the violation. The issue here is that we could have that
a sanction is enforced before the violation the sanction was supposed to compensate occurred. Thus we are
in a situation similar to that described in footnote 9 where the way to address the issue depends on the
types of the obligations we have to deal with. Anyway, (i) it is easy to modify algorithm CheckCompliance
to account for this type of cases, (ii) if one accepts pre-emptive reparations one can change the definition
that classifies a process as compliant by replacing the condition that Unfulfilled = @ with the condition:
let S be the set of effects for the end task of a process, VIT,R,0A1®---® OA,] € Unfulfilled, JA; € S.

26

been largely ignored (Desai et al., 2005; Padmanabhan et al., 2006). In particular, zur
Muehlen et al. (2007) provide a valuable representational analysis to understand the
synergies between process modelling and rule modelling.

It is obvious that the modelling of controls will be undertaken as rules, although
the question of appropriate formalism is still under studied. A plethora of proposals
exist both in the research community on formal modelling of rules, as well as in the
commercial arena through business rule management systems.

Historically, formal modelling of normative systems has focused on how to capture
the logical properties of the notions of the normative concepts (e.g., obligations, prohibi-
tions, permissions, violations, ...) and how these relate to the entities in an organisation
and to the activities to be performed. Deontic logic is the branch of logic that studies
normative concepts such as obligations, permissions, prohibitions and related notions.
Standard Deontic Logic (SDL) is a starting point for logical investigation of the basic
normative notions and it offers a very idealised and abstract conceptual representation
of these notions but at the same time it suffers from several drawbacks given its high
level of abstraction (Sartor, 2005). Over the years many different deontic logics have
been proposed to capture the different intuitions behind these normative notions and to
overcome drawbacks and limitations of SDL. One of the main limitations in this context
is its inability to reason with violations, and the obligations arising in response to viola-
tions (Carmo and Jones, 2002). Very often normative statements pertinent to business
processes, and in particular contracts, specify conditions about when other conditions in
the document have nor been fulfilled, that is when some (contractual) clauses have been
violated. Hence, any formal representation, to be conceptually faithful, has to been able
to deal with this kind of situations.

As we have discussed before compliance is a relationship between two sets of specifi-
cations: the normative specifications that prescribe what a business has to do, and the
process modelling specification describing how a business performs its activities. Accord-
ingly to properly verify that a process/procedure complies with the norms regulating the
particular business one has to provide conceptually sound representations of the process
on one side and the norms on the other, and then check the alignment of the formal
specifications of the process and the formal specifications for the norms.

In this chapter, we have proposed a formal modelling of controls through the Formal
Contract Language (FCL). FCL has proved effective due to its ability to express repara-
tion chains and consequently ability to reason with violations.

There have been some other notable contributions from research on the matter of
control modelling. Goedertier and Vanthienen (2006) presents a logical language PENE-
LOPE, that provides the ability to verify temporal constraints arising from compliance
requirements on effected business processes. Kiister et al. (2007) provide a method to
check compliance between object life-cycles that provide reference models for data arte-
facts e.g. insurance claims and business process models. Giblin et al. (2006) provide
temporal rule patterns for regulatory policies, although the objective of this work is to
facilitate event monitoring rather than the usage of the patterns for support of design
time activities. Furthermore, Agrawal et al. (2006) presented a workflow architecture for
supporting Sarbanes-Oxley Internal Controls, which include functions such as workflow
modelling, active enforcement, workflow auditing, as well as anomaly detection.

Another line of investigation studies compliance based on the structure of business

27

processes. Ghose and Koliadis (2007) consider an approach where the tasks of a business
process model, written in BPMN, are annotated with the effects of the tasks, and a tech-
nique to propagate and cumulate the effects from a task to a successive contiguous one
is proposed. The technique is designed to take into account possible conflicts between
the effects of tasks and to determine the degree of compliance of a BPMN specification.
Chopra and Sing (2007), on the other hand, investigate compliance in the context of
agents and multi-agent systems based on a classification of paths of tasks. Roman and
Kifer (2007) proposed Concurrent Transaction Logic to model the states of a workflow
and presented some algorithms to determine whether the workflow is compliant. The
major limitation of these approaches to compliance is that they ignore the normative
aspects of compliance.

There has been some complementary work in the analysis of formal models repre-
senting normative notions. For example, Farrell et al. (2005) study the performance
of business contract based on their formal representation. Desai et al. (2008) seek to
provide support for assessing the correctness of business contracts represented formally
through a set of commitments. The reasoning is based on value of various states of com-
mitment as perceived by cooperative agents. Research on closely related issues has also
been carried out in the field of autonomous agents (Alberti et al., 2006).

As discussed previously, modelling the controls is only the first step towards com-
pliance by design. The second essential step is the enrichment of process models with
compliance requirements (i.e., the modelled controls). Clearly this cannot take place
without a formal controls model (as proposed by above mentioned works), or at least
some machine readable specification of the controls. There have been recently some ef-
forts towards support for business process modelling against compliance requirements.
In particular, the work of zur Muehlen and Rosemann (2005) provides an appealing
method for integrating risks in business processes. The proposed technique for “risk-
aware” business process models is developed for EPCs (Event-Driven Process Chains)
using an extended notation. Sadiq et al. (2007) propose an approach based on control
tags to visualise internal controls on process models. Liu et al. (2007) takes a similar
approach of annotating and checking process models against compliance rules, although
the visual rule language, namely BPSL is general purpose and does not directly address
the deontic notions providing compliance requirements.

Lastly, although this section has primarily focused on preventative approaches to
compliance, it is important to identify the role of detective approaches as well, where
a wide range of supporting technologies are present. These include several commercial
solutions such as business activity monitoring, business intelligence etc. Noteworthy in
research literature with respect to compliance monitoring, is the synergy with process
mining techniques (van der Aalst et al., 2003) which provide the capability to discover
runtime process behaviour (and deviations) and can thereby assist in detection of com-
pliance violations.

6 Conclusions

The growing importance of governance, risk and compliance for various industries, has
created an evident need to provide supporting tools and methods to enable organisations

28

seeking compliance, which may ranging from safeguards against enforceable undertak-
ings to being champions of corporate social responsibility. The challenges that reside in
this topic warrant systematic approaches that motivate and empower business users to
achieve a high degree of compliance with regulations, standards, and corporate policies.

Process and control modelling represent two distinct but mutually dependent speci-
fications in current enterprise systems. In this chapter, we take the view that the two
specifications, will be created somewhat independently, at different times, and by dif-
ferent stakeholders, using their respective conceptually faithful representation schemes.
However the convergence of the two must be supported in order to achieve business prac-
tices that our compliant with control objectives stemming from various regulatory, stan-
dard and contractual concerns. This convergence should be supported with a systematic
and well structured approach if the vision of compliance by design is to be achieved.

We have proposed a means of achieving so called compliance by design through an
overall methodology that can be summarised into three main steps of control modelling;
process enrichment; and compliance checking through analysis and feedback for com-
pliance aware process (re)design. Figure 3 summarises the overall methodology that
provides a structured and systematic approach to undertaking changes in the process
model in response to compliance requirements.

% —D‘ Control Directory

Compliance

Control

Parse
A

Expert *
Ontological Control
Alignment Annotations
* Visualize
Process Modelling Enriched

Process Models

Process
Expert Analysis &
Feedback

Figure 3: Summary of Overall Methodology

The proposed language for control modelling, namely FCL (section 2), provides a con-
ceptually faithful representation of the compliance requirements. In addition FCL offers
two reasoning modules: (1) a normaliser to make explicit rules that can be derived from
explicitly given rules by merging their normative conclusions, to remove redundancy
and identify conflicts rules; and (2) an inference engine to derive conclusions given some
propositions as input (Governatori, 2005). The rigour introduced by FCL enables a sys-
tematic establishment of control models with process models. As outlined in section 3,
process enrichment can be realised as a result through structured control annotations.
These annotations can not only provide a means of visualising the impact of compliance
controls on process models (Sadiq et al., 2007), but also assist in compliance checking
(section 4) and analysis and feedback for subsequent (re)design of the process models.

One of the biggest challenges facing the compliance industry is the measurement of
adequacy of controls (KPMG Advisory, 2005). The methodology proposed provides the
added benefit of providing the capability for diagnostics. That is provide a means of
understanding what needs to be done in order to achieve (an acceptable degree of) com-

29

pliance (Lu et al., 2007). This has the potential to create a more holistic approach to
compliance management, by not only providing preventative and detective techniques,
but also corrective recommendations. This allows organisations to better respond to the
changing regulatory demands and also reap the benefits of process improvement. We
recommend that future research endeavours in this area should strive towards compli-
ance management frameworks that provide a close integration of the process and control
modelling perspectives.

Acknowledgments

NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

References

Agrawal, R., C. M. Johnson, J. Kiernan, and F. Leymann (2006). Taming compliance with
sarbanes-oxley internal controls using database technology. In L. Liu, A. Reuter, K.-Y.
Whang, and J. Zhang (Eds.), ICDE, pp. 92. IEEE Computer Society.

Alberti, M., M. Gavanelli, E. Lamma, F. Chesani, P. Mello, and P. Torroni (2006). Com-
pliance verification of agent interaction: a logic-based software tool. Applied Artificial
Intelligence 20(2-4), 133-157.

Alonso, G., P. Dadam, and M. Rosemann (Eds.) (2007). Business Process Management,
5th International Conference, BPM 2007, Brisbane, Australia, September 24-28, 2007,
Proceedings, Volume 4714 of Lecture Notes in Computer Science. Springer.

Antoniou, G., D. Billington, G. Governatori, and M. J. Maher (2001). Representation
results for defeasible logic. ACM Transactions on Computational Logic 2(2), 255—-287.

Antoniou, G., D. Billington, G. Governatori, and M. J. Maher (2006). Embedding defea-
sible logic into logic programming. Theory and Practice of Logic Programming 6(6),
703-735.

Carmo, J. and A. J. Jones (2002). Deontic logic and contrary to duties. In D. Gabbay
and F. Guenther (Eds.), Handbook of Philosophical Logic, 2nd Edition, Volume 8, pp.
265-343. Dordrecht: Kluwer.

Chopra, A. K. and M. P. Sing (2007, May 8, 2007). Producing compliant interactions:
Conformance, coverage and interoperability. In M. Baldoni and U. Endriss (Eds.),
Declarative Agent Languages and Technologies IV, Volume 4327 of LNAI, Berlin Hei-
delberg, pp. 1-15. Springer-Verlag.

Desai, N., A. U. Mallya, A. K. Chopra, and M. P. Singh (2005). Interaction protocols as
design abstractions for business processes. IEEE Trans. Software Eng. 31(12), 1015—
1027.

30

Desai, N., N. C. Narendra, and M. P. Singh (2008). Checking correctness of business
contracts via commitments. In L. Padgham, D. C. Parkes, J. Miiller, and S. Parsons
(Eds.), AAMAS, pp. 787-794. IFAAMAS.

Farrell, A. D. H., M. J. Sergot, M. Sallé, and C. Bartolini (2005). Using the event calculus
for tracking the normative state of contracts. International Journal of Cooperative
Information Systems 14(2-3), 99-129.

Ghose, A. and G. Koliadis (2007). Auditing business process compliance. In Service
Oriented Computing, ISOC 2007, LNCS, pp. 169-180. Springer.

Giblin, C., S. Miiller, and B. Pfitzmann (2006, October). From regulatory policies to event
monitoring rules: Towards model driven compliance automation. Technical report,
IBM Research Report. Zurich Research Laboratory.

Goedertier, S. and J. Vanthienen (2006). Designing compliant business processes with
obligations and permissions. In Business Process Management (BPM) Workshops, pp.
5-14.

Governatori, G. (2005). Representing business contracts in RuleML. International Jour-
nal of Cooperative Information Systems 14(2-3), 181-216.

Governatori, G., J. Hulstijn, R. Riveret, and A. Rotolo (2007). Characterising deadlines
in temporal modal defeasible logic. In 20th Australian Joint Conference on Artificial
Intelligence, AI 2007, pp. 486—496.

Governatori, G. and A. Rotolo (2006). Logic of violations: A Gentzen system for reasoning
with contrary-to-duty obligations. Australasian Journal of Logic 4, 193-215.

KPMG Advisory (2005). The Compliance Journey: Balancing Risk and Controls with
Business Improvement. KPMG Advisory.

Kiister, J. M., K. Ryndina, and H. Gall (2007). Generation of business process models for
object life cycle compliance. See Alonso et al. (2007), pp. 165-181.

Liu, Y., S. Miiller, and K. Xu (2007). A static compliance-checking framework for business
process models. IBM Systems Journal 46(2), 335—-362.

Lu, R., S. W. Sadiq, and G. Governatori (2007). Compliance aware business process
design. In Business Process Management Workshops, pp. 120-131.

Nute, D. (1994). Defeasible logic. In Handbook of Logic in Artificial Intelligence and
Logic Programming, Volume 3.

Padmanabhan, V., G. Governatori, S. Sadiq, R. M. Colomb, and A. Rotolo (2006). Pro-
cess modelling: The deontic way. In M. Stumptner, S. Hartmann, and Y. Kiyoki (Eds.),
Conceptual Modelling 2006. Proceedings of the Thirds Asia-Pacific Conference on Con-
ceptual Modelling (APCCMZ2006), pp. 75—-84. Australian Computer Science Communi-
cations.

31

Pesic, M. and W. M. P. van der Aalst (2006). A declarative approach for flexible business
processes management. In J. Eder and S. Dustdar (Eds.), Business Process Manage-
ment Workshops, Volume 4103 of Lecture Notes in Computer Science, pp. 169-180.
Springer.

Roman, D. and M. Kifer (2007). Reasoning about the behaviour of semantic web services
with concurrent transaction logic. In VLDB, pp. 627—-638.

Sadiq, S., G. Governatori, and K. Naimiri (2007). Modelling of control objectives for
business process compliance. See Alonso et al. (2007), pp. 149-164.

Sadiq, S. W., M. E. Orlowska, and W. Sadiq (2005). Specification and validation of process
constraints for flexible workflows. Inf. Syst. 30(5), 349-378.

Sartor, G. (2005). Legal Reasoning. Dordrecht: Springer.

van der Aalst, W. M. P., B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A. J.
M. M. Weijters (2003). Workflow mining: A survey of issues and approaches. Data
Knowl. Eng. 47(2), 237-2617.

Vanhatalo, J., H. Vélzer, and F. Leymann (2007). Faster and More Focused Control-Flow
Analysis for Business Process Models though SESE Decomposition. In 5tk Interna-
tional Conference on Service-Oriented Computing (ICSOC), pp. 43-55.

Wynn, M. T., H. Verbeek, W. M. van der Aalst, A. H. ter Hofstede, and D. Edmond (2007).
Business process verification - finally a reality! Business Process Management Jour-
nal.

zur Muehlen, M., M. Indulska, and G. Kemp (2007). Business process and business rule
modeling languages for compliance management: A representational analysis. In Proc
ER 2007: Tutorials, Poster, Panels, and Industrial Contribution.

zur Muehlen, M. and M. Rosemann (2005). Integrating risks in business process models.
In Proceedings of 16th AustralasianConference on Information Systems.

32

